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SUMMARY

Time-lapse seismic data are widely used for monitoring time-
variant subsurface changes. Conventional analysis provides
qualitative information by comparing results from consecutive
surveys, whereas waveform inversion can retrieve quantitative
estimates of reservoir properties through seismic waveform fit-
ting. The quantitative evaluation of the physical parameters
obtained by waveform inversion allows for better interpreta-
tion of fluid substitution and migration during processes like
oil and gas production, and carbon sequestration. Since reser-
voir changes are localized and only part of the data are of
interest, the time-lapse waveform inversion can be optimized
in terms of computational cost and convergence rate. In this
study, we propose a scheme of localized waveform inversion
with computed datasets we refer to as virtual surveys. Both
the model domain and trace duration in forward modeling are
reduced by the reorganization of the data. We show a numer-
ical example in which the recovery of the reservoir change is
computationally faster and more robust to source-receiver lo-
cations than inversion with original survey.

INTRODUCTION

Time-lapse seismic monitoring is often applied in reservoir
management in the oil industry to obtain information about
reservoir changes. It helps identify bypassed oil to be tar-
geted for infill drilling, and extends the economic life of a
field (Lumley, 2001). It is also capable of monitoring the progress
of fluid fronts providing information for injection optimization
in enhanced oil recovery and long-term fluid storage like car-
bon sequestration (Bickle et al., 2007). Generally, one baseline
survey and subsequent monitoring surveys are acquired over
time. Analysis and comparison of the datasets provides an es-
timate of changes in seismic velocity and mass density. These
changes are related to the changes in dynamic reservoir proper-
ties like pore pressure and fluid saturation (Dadashpour et al.,
2008) that are important in reservoir simulation and interpreta-
tion. To quantitatively recover these physical parameters, full
waveform inversion (FWI) (Tarantola, 1984; Virieux and Op-
erto, 2009) is beginning to be tested on individual surveys. The
application of FWI to time-lapse data seems straight-forward,
however, the high nonlinearity and costly computation moti-
vate further research on inversion strategies tailored for time-
lapse data.

Although FWI is becoming more feasible with increasing com-
puting power, it is still time-consuming because of the large
computational domain and large number of required iterations
due to the slow convergence of the method. Since we are only
interested in the time-variant changes in the reservoir, reduc-
ing the large portion of the computation that would be devoted
to evaluating structures outside the reservoir will expedite the
process and allow more focus to be placed on the reservoir it-

self. Moreover, inversions for the entire model domain might
induce a poor recovery of volumetric information within the
reservoir from surface reflection acquisitions. The high nonlin-
earity might cause spurious images when directly subtracting
independent inversion results (Yang et al., 2011). A localized
inversion focused on the reservoir with only the corresponding
data has the potential to overcome these issues.

In this work, we present a target-oriented waveform inversion
scheme specialized for time-lapse reservoir monitoring. Base-
line surface survey data are used in a standard waveform inver-
sion to obtain a baseline model. The signal changes between
the baseline and time-lapse datasets sensitive to the reservoir
changes are transformed to a new datum at the top of the reser-
voir. New data sets are synthesized from the recorded data
with the re-datumed signals and the new virtual survey ge-
ometry. A time-lapse waveform inversion is conducted in a
reduced model domain to extract the information about the
reservoir changes. We describe the virtual survey technique
first, and then use synthetic examples to show the advantage of
our method.

THEORY

Seismic redatuming is essential in most imaging techniques
for exploration purposes. Various methodologies have been
proposed to project the surface survey data into the subsurface
to form constructive images based on the concept of survey
sinking (Claerbout, 1985). The datasets are recursively syn-
thesized at increasing depth by applying an appropriate phase
shift to the data:

Pz(ω,R,S) = eikzz ∗(R) eikzz ∗(S) Pz−δ z(ω,R,S) (1)

where Pz(ω,R,S) and Pz−δ z(ω,R,S) are the wavefields at depth
z and z−δ z respectively. The first convolution operation (∗(S))
downward continues the receiver gathers, and the second con-
volution operation (∗(R)) downward continues the source gath-
ers.

However, the phase shift correction is not enough for wave-
form inversion as it does not accurately account for amplitude
changes. Assuming that we have obtained a reasonable base-
line model from the standard waveform inversion that fits the
baseline survey, we can calculate the Green’s function between
any two points using finite difference forward modeling. Only
the shallower part of the model that is above the reservoir (be-
tween the actual survey line and the virtual survey line) is in-
volved in this calculation. We can calculate the Green’s func-
tion Gi, j from each virtual receiver V Ri to each surface receiver
SR j . The signal recorded by the SR j can be written as:

PSR j (ω) = PV Ri(ω)∗Gi, j(ω) (2)

Standard backpropagation will approximate the inverse of the
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waveform inversion with virtual survey

matrix Gi, j using its adjoint G∗ j,i:

PV Ri(ω)≈ PSR j (ω)∗G∗ j,i(ω) (3)

This effectively reduces the amplitude of the waves by apply-
ing the Green’s function twice.

Since we can calculate the Green’s function explicitly, the PV Ri(ω)
can be derived by:

PV Ri(ω) = PSR j (ω)∗G∗ j,i(ω)∗ (Gi, j(ω)∗G∗ j,i(ω))−1 (4)

The matrix Gi, j(ω) ∗G∗ j,i(ω) is positive definite, and for a
practical number of receivers, the computation of the inverse
of the matrix is not difficult. The term (Gi, j(ω)∗G∗ j,i(ω))−1

serves as an amplitude correction during the data backpropa-
gation.

(a) (b)

(c)

(e) (f)

(d)

Figure 1: (a) The original survey on the surface with a lot of
sources and receivers. (b) The receiver field on the surface is
re-datumed into the subsurface for each shot. (c) Now the sur-
vey consists of sources on the surface and receivers in the sub-
surface. (d) By applying reciprocity, the survey equivalently
consists of sources in the subsurface and receivers on the sur-
face. (e) The new receiver field in (d) is re-datumed into the
subsurface. (f) The virtual survey is formed with sources and
receivers in the subsurface after the process above.

After re-datuming the surface shot gathers PSR j , we have the
shot gathers at the virtual receiver locations PV Ri (Figure 1(c)).
With reciprocity, we consider these virtual receivers as sources
(virtual sources V Si) and the surface sources as receivers and
obtain virtual source gathers PV Si at the surface (Figure 1(d)).

With the process described above, the wave records PV Si are
propagated from the surface to the virtual receiver depth (Fig-
ure 1(e)) to form a ”virtual survey” which is now independent
of the upper part of the model (Figure 1(f)). The whole pro-
cess not only reduces the model size, but also makes use of the
data redundancy to reduce the size of the data domain. There
are fewer sources and receivers in the virtual survey than in the
actual survey, and only the data that focus on the reservoir are
kept in the virtual survey.

This survey sinking style process described above is very sim-
ilar to the idea of extended images (Sava and Vasconcelos,
2011). An extended image can be defined by evaluating the
scattered field for finite source-receiver offsets and at nonzero
times. In our study, the virtual survey data are essentially the
scattered field from the subsurface below the virtual survey
depth evaluated for finite source-receiver offsets.

With the synthesized datasets, we can conduct a full waveform
inversion within a much smaller model domain. The objective
function to be minimized is

E(m) =
1
2
| uvirtual −umodeling |2=

1
2

δuT
δu (5)

where uvirtual and umodeling are the synthesized virtual sur-
vey data and forward modeling data with the virtual source-
receiver geometry based on the baseline model, respectively,
δu = uvirtual − umodeling, the superscript T denotes the trans-
pose, and m is the parameter (velocity and density) to be up-
dated. Based on the assumption that the change from the base-
line model is relatively small, the objective function can be
minimized via a gradient-based method.

The gradient of the objective function is derived by taking its
derivative with respect to m, leading to

∇mE =
∂E(m)

∂m
=
(∂umodeling

∂m

)T
δu (6)

This can be calculated efficiently by cross-correlating the for-
ward propagating wavefields from sources with the back prop-
agating the residual wavefield from receivers (Tarantola, 1984).
We use the nonlinear conjugate gradient method to update the
model in each iteration, which has both low computational cost
and fast convergence. The inversion process is discussed in
more details in (Yang et al., 2011).

SYNTHETIC EXAMPLE

We use a layered acoustic model as shown in Figure 2 to demon-
strate the power of the method. In the time-lapse model shown
in Figure 3, the model has a reduction in P-wave velocity (-
200 meters/s) in the reservoir location as indicated. 350 re-
ceivers and 200 sources are used on the surface to generate the
datasets. Figure 4 shows one shot gather for each dataset. The
source is a 25 Hz Ricker wavelet. In this synthetic study, we
assume the baseline model is known. With the knowledge of
the approximate location of the reservoir, we can use the part
of the model that is above the reservoir to calculate Green’s
functions used to estimate data for the virtual survey. We com-
pare the performance of a standard time-lapse FWI with one
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waveform inversion with virtual survey

with the virtual survey to show its advantages in speed and
convergence.
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Figure 2: The baseline model and the surface survey geometry.
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Figure 3: The time-lapse model and the virtual survey geome-
try (yellow triangles).

VIRTUAL SURVEY

The only data that can be correctly projected to the virtual sur-
vey are those reflected from below the virtual survey depth. We
only project the data difference that is shown in Figure 4(c). At
the new survey depth, 5 receivers are used to record the pro-
jected data from each shot. After reciprocity, these receivers
became shots in the receiver gathers. We project the receiver
gathers and recorded the field with 200 receivers. We use nu-
merical simulation to generate virtual baseline datasets with
the 5 virtual sources and 200 virtual receivers in the baseline
model. The virtual time-lapse datasets are additions of vir-
tual baseline datasets and the virtual receiver gathers obtained
above as shown in Figure 5.

INVERSION RESULTS COMPARISON

The standard waveform inversion was performed for both the
original time-lapse data and the virtual survey data. Five sources
are used in both methods. The 5 virtual sources are computed
from all 200 surface sources as described above. Figure 6
shows the inverted model change at iteration 1, 10 and 30 for
both methods. In both cases, the shape of the velocity anomaly
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Figure 4: (a). one baseline shot gather of a surface survey;
(b). one time-lapse shot gather of a surface survey; (c). data
difference between the two datasets
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Figure 5: (a). Synthetic baseline survey with virtual geome-
try; (b). Synthesized time-lapse survey with synthetic baseline
survey and projected data difference;(c). Projected data differ-
ence

is well recovered from the reflection signals from the first iter-
ation, similar to the results of reverse time migration. But the
amplitude inside the volume is lower than the true value. At
each iteration shown in Figure 6, the recovery of the velocity
amplitude with the virtual survey method is always better than
the standard method. The convergence of the inversion with
the virtual survey addressed through the cost function mini-
mization is also faster as shown in Figure 7.

DISCUSSION

From a computational point of view, the virtual survey method
expedites the calculation by reducing the model size and record
duration. For standard waveform inversion, to obtain a reason-
able recovery for the reservoir, 20 to 30 iterations are needed.
Each iteration involves Ns∗Nls times forward modelings, where
Ns is the number of sources, and Nls is the number of iterations
used for each line search. In our 2D synthetic example, the
model domain is reduced to 40% of the original size. And the
duration is half of the original time. Each forward modeling
only takes 20% of the original calculation. And to achieve the
same model recovery, fewer iterations are needed. In 3-D, the
saving would be more significant.

To use all the sources in a standard waveform inversion is also
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Figure 6: The comparison between inversion results with a
surface survey and virtual survey. The inversion with virtual
survey recovers the velocity better in each iteration showed in
the figure.
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Figure 7: Normalized cost function reductions over iterations
for surface survey and virtual survey are compared. The virtual
survey inversion converges faster.

costly. Phase encoding (Krebs et al., 2009) was proposed to
reduce the computation but also introduces cross-talk. In our
method, the data from different shot gathers are synthesized
together to form the virtual data. If the same number of sources
for the two methods are used, our method makes use of more
information from the original surveys.

The virtual survey itself needs Green’s function calculations
between virtual receivers and actual receivers, and between
sources and virtual sources. It takes Nvr +Nvs times forward
modelings within the upper part of the model, which are highly
parallelizable.

Another advantage of this method is that the virtual surveys
can be synthesized at the same source-receiver locations for

both baseline and time-lapse data, even if the actual surveys
have different geometries. This allows the application of double-
difference waveform inversion (Denli and Huang, 2009) which
improves the time-lapse image quality by reducing the contam-
ination from local minima.

The convergence slows down as the iteration number increases
for both the standard inversion and the one with the virtual sur-
vey. The full recovery of the volumetric change (the value in-
side the anomaly) is always difficult. One reason for this is
that the forward scattering signals (waves transmitted through
the anomaly) are weaker than the backscattering signals. It is
possible to make use of the virtual survey idea to enhance the
forward scattering signals as shown in Figure 8. The virtual
receivers below the reservoir utilize large-offset signals which
might be omitted by the virtual receivers above the reservoir
during back-propagation since the virtual survey has a much
smaller offset range. The new survey geometry will have both
surface survey and partial cross-well survey. The cost func-
tion is reweighed to expedite the recovery for the volumetric
change. However, to calculate the wavefield below the reser-
voir, we need to know the velocity model below the reservoir.
And the ray-path of these large-offset waves from the actual
receiver to the virtual receiver as indicated in Figure 8 should
not pass through the reservoir.

Targeted 
Region

Figure 8: Transform the reflection into transmission.

CONCLUSIONS

We have proposed an optimized target-oriented time-lapse wave-
form inversion method. The original surface survey is trans-
formed into a new survey geometry that focuses on the reser-
voir region. The synthetic example shows that our method is
computationally more efficient, and converges faster compared
to a standard waveform inversion. More importantly, the re-
covery of the volumetric change inside the reservoir is closer
to the true value.
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