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ABSTRACT

:'-.Iany ordinary differential equations that describe physical phenomena
possess solutions that cannot be obtained in closed form. To obtain the
solutions to these systems, the use of numerical schemes is unavoidable. Tra
ditional numerical analysis concerns itself with obtaining error bounds within
finite closed time intervals: however, the study of asymptotic or long term
behaviour of solutions generated by numerical schemes bas attracted a lot of
interest in recent years. It is now well established tbat numerical schemes for
nonlinear autonomous differential equations can admit asymptotic solutions
which do not correspond to those of the ODE.

This thesis studies linearized one-point collocation methods, contribut
ing to this important investigation by considering bifurcation pltenomena in
autonomous ODEs and studying the dynamics of the methods for nonau
tonomous ODEs.

Using the theory of nonnal forms, it is established that the common
codimension-l bifurcations that exi~t in continuous dvnamical svstems will
occur in the methods at the same phase space locatio~. However: the meth·
ods can exhibit period doubling bifurcations, which are necessarily spurious
They also introduce a singular set, whicb drastically affects the global d:r
namics of the methods.

The technique of stroboscopic sampling of the numerical solution is used
to study the dynamics of nonautonomous ODEs with periodic solutions, and
conditions under which the methods have a unique periodic solution that is
asymptotically stable, are stated explicitly. :\. link between these conditions
and nonautonomous linear and nonlinear stability theory is established.
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Chapter 1

Preliminaries

1.1 Introduction

x' =!(t,x), x(O} =xo, (1.1)

where f : R x I c Rm -I' R"", be ao ordin3[)" differential equation.

If f does not depend explicitly on t, then the differential equation

X' = I(x), x(O) =Xo, (L2)

where f : I c IRm -+ R"', is said to be autonomous, otherwise it is nonuu-

tonomotls.

This thesis will be primarily concerned with various aspects of dynamical

beha\"iour that may exist in the solution of (1.1) and the conditions under

which these are exhibited by linearized one-point collocation methods. In this



chapter, we will summarize the well known aspects of dynamical behaviour

that will be of interest in this work, and derive this class of numerical methods

which we will be using in toe study.

1.2 Autonomous Case

Assume f E G'(am, IR"'), so that (1.2) has unique solution, <Il(xo, t), defined

for t = CBb~) wito 0 E (iJt.lh).

If f(x") = 0, x· is said to be an equiLibrium point of (1.2).

Define the orbits of Xo;

"f+(Xo) U 4>(xo,t)
IEIO,"')

"f-(xo) U 4l(xo,t)
IE(3,.OI

i(XO) U 4l(xo,t).
IE{S,./1,l

If i-(Xo) is bounded, we define

and if ~("'(xo) is bounded, define

w(xo) =: lim <P(xo, t).
I.....S;

We call o(xo) the o-Iimit set of Xo and w(xo) toe w-limit set of xo.



\Ve state some stability concepts for equilibrium points in autonomous

equations (see Wiggins [32]).

Definition 1.2.1 An equilibrium point, x', of (1.2) is said to be LapuDov

stable if, for any e > 0, there is a,J = ,J(e) > 0, such that, for every Xo for

which Uxo-x'il <,J, the solution of'{t,xo) of (1.2) satisfies lIofl(t,xo) -x'll < e

for all t:::: o.

x' is said to be asymptotically stable if it is stable and, in addition, there

isanr>Osuchthat!l41(t,xo)-x'U-+ Oast -+ +=forallxosatisfying

Ilxo - x'il < r.

An equilibrium point x· of x' = f(x) is said to be hyperbolic if none of the

eigenvalues of fz(x') have zero real part.

Stability of a hyperbolic equilibrium point can be determined from the

linearization of the vector field:

Theorem 1.2.2 Let f be a CI function. [f all the eigenualues of the Jaco

bian matrix, fz(x'), have negative real parts, then the equilibrium point x· is

asymptotically stable.

A hyperbolic equilibrium point is called a saddle if some, but not all, the

eigenvalues of fz(x') have real parts greater than zero and the rest have real



parts less than zero. If all the eigenvalues ha\'e negath"e (positive) real part.

then the hyperbolic equilibrium point is called a stable (an unstable) node or

a sink (a source). An equilibrium point is called a spiral if all the eigenvalues

ha\"(~ nonzero real and imaginary parts.

For scalar autonomous equations, the 0- and w-limit sets are equilibrium

points, if they exist. If a numerical method is used to discretize a differential

equation, then the discrete system so obtained is a dynamical system in its

own right - a discrete dynamical system" Since discrete systems possess, in

general, much richer dynamics tban their continuous counterparts (see De

\"aney [6) for a comprehensive discussion of the dynamics of discrete systems),

we are confronted with a number of possibilities:

• Can the numerical method exhibit limit sets that are not present in

any continuous system?

• Can the numerical method exhibit limit sets that do not exist in the

specific system it has been designed to solve?

In other words, how do the aspects of dynamical behaviour of the numer

ical method compare with that of the continuous system? Let

x 0-+ x + h¢J(x, h) :=g(x) (1.3)



be the map corresponding to the di.scretiution of (1.2) by a chosen numerical

method. Staning ~';th the initial ..-alue Xu, the map generates a solution

sequence {posith-e orbit} denoted by

Then. we ha\'(! the following definition.

Definition 1.2.3 A point X' such that g(X") = X', that is, ¢(X", h) = °
in (1.3) is called a fixed point 01 the map.

Definition 1.2.4 A fi%ed point, X', 01 (1.3) i.5 said to be stable if, lor any

t > 0, there i.5 ao = o(t) > 0, roch that, lor every Xu lor which IJxo-X'1l < 6,

the solution sequence originating at Xo satisjiu IIg"(xo} - X'II < t lor all

n 2: O.

X" is said to be asymptotically stable il it is stable and, in addition, there

is an r > 0 such that IIg"{Zo) - X'JI -+ 0 as n -+ +00 lor ail Xo sotisfying

tlxo-X"II<r.

It should be noted that the stability of X" is dependent on the discretiza-

tion parameter h.

A li.xed point X" of the map x t-+ g(x) is hyperbolic if none of the eigen.

values of gz(X") has modulus one.



Stability of a hyperbolic fixed point can also be determined from lin

earization of tbe map:

Theorem 1.2.5 Let g be a Cl function. If all the eigenvalues of the Jaco

bian matrix, g.(X"j, have moduli less than one, then the fixed point X· is

asymptotically stable. If at least one of the eigenvalues has modulus greater

than one, X" is unstable.

A hyperbolic n..,<:e<! point is called a saddle if some, but not all, tbe eigen

\'alues of g.(X") have moduli greater than one and the rest ba\'e moduli less

than one. rf all the eigenvalues have moduli less than one (greater than one),

tben the hyperbolic 6:"e<! point is called a stable (an unstable) node or a sink

(source). A fixed point is caned a spiral if all the eigenvalues ha\'e nOD:zero

real and imaginary parts.

The phenomenon of period 2 solutions in discrete dynamics. which we

nOI\" define, has no counterpart in continuous systems of dimension less than

3 (see Humphries [18J and Stuart & Humphries [31]).

Definition 1.2.6 A solution sequence of the farm X 2n = u", X2n+ 1 = v·,

where u" =F v", is called a period 2 solution of (J.3).

If a numerical method generates period 2 solutions, we know that such



solutions are necessarily spurious since no continuous systems admit such

solutions.

The study of dynamics of numerics has focused primarily on Runge-Kutta

and multi-step methods. \Ve present here these two classes of numerical

methods.

Consider the general consistent linear k-step method

, ,
E OtjX,,+j = h L IJd(X,,+j)
j=O j=O

(1.4)

with fixed h > O. Define the first and second characteristic polynomials by

PC:) = L~=oajzj and O"(z) = E~=olJjZl respectively. Since the method is

consistent, p{l) = 0 and 0"(1) = pel) = a. If the method is zero-stable, a is

\Ve also consider the s-stage Runge-Kutta method

where

(1.5)

Zj = X" + h t G;jf(z;),
j=1

Here, we define .4:= [aij] and b:= [&;jT.

i=I,2. (1.6)

Definition 1.2.7 A function f ; Rm -+ Rm is said to be Lipschitz on X c



IRm il there exists a number L > 0 such that

II/(r) - I(ylll ~ Lllr - yll I" ,'Ix,y E X, (1.7)

where II II is an am norm. L is called the Lipschitz constant I is globally

Lipschitz il I is Lipschitz on am, and locally Lipshilz il I is Lipschitz on all

bounded subset.s 01 am .

(serles [19] related the notion of a fi..xe<t point of (1.3) with that of an

equilibrium point of (1.2) for Runge-Kutta and multi-step methods. He

proved that Runge-Kutta schemes can possess extra fixed points that are

not equilibrium solutions of the differential equation; these, whenever they

exist, are said to be spurious solutions. Linear multi-step metb.ods do not

possess spurious fi..xed points.

Definition 1.2.8 (Stuart & Humphries [31]) A numerical method lor (1.2)

which does not admit spurious fixed point.s is said to be regular of degree

1, Rill. A method which is not Rill is irregular of degree 1, denoted IRIII.

Definition 1.2.9 (Stuart & Humphries [31]) A numerical method lor (J.2)

which does not have period two solutions is said to be regular of degree 2,

R[21. A method which is not R[21 is irregular of degree 2, denoted IR121.

.4 method that is both Rill and R[2! is said to be regular, denoted R[I,21.



The explicit Euler method is the only explicit R-K method that is R[l],

no explicit R-K method that is R[2] exists, and the highest order of regular

Runge-Kutta methods is 2 (Hairer et a1. [13], Stein [28]). rf we would

like to use only Rl1,2[ R-K methods, then we are essentially restricted to

[ow order methods. Howc\'cr, Stein [28] proved that a limit stepsize, hj,

exists, below which a Runge-Kutta method exhibits no spurious fL-xed points.

A[so, Humphries [18J proved that if f is globally Lipschitz, spurious fixed

points in R-K methods cannot exist for arbitrarily small h. Howe....er. Stein

demonstrated that the limit stcpsize hI can be computed.

Theorem 1.2.10 (Humphries [18]) The linear multi-step method (J.-lJ is

not Ri2[ if p(-l) = O. If p{-l) =F 0, and the method is zero-stable, then it is

R{2) if and only ifa(-l) =0.

The backward differentiation formula (BDF) is an example of an R[21 linear

multi-step method.

The following famous example is used to demonstrate that numerical

methods can exhibit very complicated dynamical behaviour e\'en if the un

der[ying system is ....ery simple.



Example (Griffiths et ai. [lOD

Consider the well-known logi:;:tic equation

x' = ox{l - x), x{O) =xo, (1.8)

where x E R and a > 0 is a parameter. This differentia! equation has

equilibrium solutions xi = 0 (unstable) and x2 = 1 (stable). The "",-limit set

of all solutions with Xo > 0 is %2'

The Explicit Euler ~'1ethod. applied to the logistic equation, gives the

map

XH-x+hox(l-x). (1.9)

figure 1.1 depicts the bifurcation diagram for (1.9). As the parameter

I = he. is increased through the value 2, x; loses stability and the system

undergoes a series of spurious period doubling bifurcations.

lO
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Figure 1.1: Bifurcation diagram: Explicit Euler method, applied to (1.8).

In the simple example above, no spurious beha~'iour exists below the lin-

earized stability limit (I = 2) of the method for the fi.xed. point x;" However,

spurious behaviour ha.'$ been observed by Vee, Sweby and their collaborators

(Yee et at. [35]) below linearized stability limits of methods.
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1.3 Invariant Sets and Manifolds

Definition 1.3.1 A set S c IRm is said to be invariant under the vector field

(J.2) if for any 70 E 5, the solution x(t,xo) E S for all t E R

Let x' be an equilibrium point of (1.2). In seeking to study the nature of

the orbits of the system near x', we consider the associated linear equation

x t = f,,(x·)x.

The following sets (or manifolds) are invariant under this linear flow.

E" span{e'+I,e.+1;.·· ,e.+,,}

EC span{e,+u+l,e,+u+2. -. ,c.+u+c},

(1.10)

where s+u+c = m and CI, .. ,e, are the eigenvectors of fAx') correspond

ing to the eigenvalues of I.(x·) having negative real part, CHI> .. , e.+« are

the eigenvectors of /.(x·) corresponding to the eigenvalues of /.(x·) having

positive real part, and eH_+h' " e.+u+c are the eigen\"ectors of fr(x') corf(~·

sponding to the eigenvalues of f%{x") having zero real part. The sets E', E"

and Ec are invariant subspaces of Rm, and are referred to as stable, unstable

and center subspaces of the linearization (1.IO). Furthermore, the subspaces

E' and EU have the following asymptotic properties;

12



(i) Solution.s wi.th in.itial ....alues in E' approach x· asymptotically as t -j.

(ii) Solutions with initial \lalues in E" approach x· as}'IDptotically as

t -+-oc.

Considering the nonlinear system (1.2). we define the global stable and

unstable manifolds of x· respectively as

1-1/'(:&") {xo E Rml<l>(xo,t) --+ x· as t -t +oo},

~P(x") {xo E Rml41(xo, t) --+ x· as t --+ -oo}.

These manifolds are tangent to the respective invariant subspaces of the

linear vector field (1.10) at x·; hence they are locally representable as graphs.

To discuss center manifolds, we assume without loss of generality that

x· = 0 and (1.2) has been transfonned to the form

where u(O,O) = 0, v(O,O) = 0, U ZI (0, 0) = 0 and vz,(O, 0) = O. In (l.11), A is

a c x c matrLx having eigen....a1ues with zero real parts, B is an s x s matrix

having eigerJ.\'alues with negative real parts, and u and v are C~ functions

(r ~ 2). Then, an invariant manifold that is locally representable as follows

13



H'~(O) = {(Xl,X2) E iii" X R'lx2 = h(XI)' IXII < 6, h{O) = O,h'(O) = O}

for sufficiently smand, is called a center manifold for (Lll). A center mani

fold. 11'~(0) is tangent to £C at x = (Xl.X2) = (0,0).

The Center Manifold Theorem (see Guckenheimer & Holmes [11], Wiggins

[32]) states that the dynamics of (1.11) restricted to the center manifold is

given by the vector field

y' = Ay + u(y, h(y», yE R".

and, near y = 0, determines the dynamics of (1.11) near (Xl, X2) = (0,0).

Analogous definitions for maps exist.

Definition 1.3.2 A set SCam is said to be invariant under the map {l.S}

if for any Xo E S, g"(xo) E S for all n.

Let X· be a fi.xed point of (L3). In seeking to study the nature of the

orbits of the system near X', we consider the associated linear map

x>-tg.,(XO)X.

14
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The following sets (or manifolds) are invariant under this linear map.

E'

E"

E" span{e,+u+l, e,+-u+2' ", e,+,,+c}

(1.13)

(1.14)

(1.15)

where s+u+c = m and ej, ." ,eo are the eigem'ectors of 9:r(X') correspond

ing to the eigen\'3.lues of 9:r(X') having modulus less than one, e,+b· '. e,+u

are the eigem"ectors of 9:r(X') corresponding to the eigenvalues of 9:r(X")

having modulus greater than one, and e,+u+l" " e,+,,+c are the eigenvec-

tors of 9:r(X') corresponding to the eigenvalues of 9:r(}(") having modulus

one. E', EU and E C are invariant subspaces of It"', and are referred to as

stable, unstable and center subspaces. The subspaces E' and E" have the

following asymptotic properties:

(i) Solutions with initial values in E' approach x" asymptoticaHy as

(ii) Solutions with initial values in E" approach X" asymptotically as

Considering the nonlinear map (1.3), we define the global stable and

15



unstable manifolds of X· respecth-ely as

W~(X·)

W-(X·)

(Xo E R"'I¢(t,xo) -+ X· as t ~ +oo},

(ro E a"'l4i<t,xo) -+ X· as t ~ -~}.

These manifolds ate tangent to the respecth'c invariant subspaces of the

linear \'ector field (1.l2) at X·,

Th.e discussion of center olanifolds for maps is very similar to the one fot

\'cctor fields; we assume without loss of generality that X' = 0 and (1.3) h.as

been transformed to the following form

where u(O,O) = 0, v(O,O) = 0, u~.(O,O) = °and V~1(0,0) = 0, In (1.16),

as in (1.11), A is a c x c matri.'II: ha\;ng eigenvalues of modulus one, B is an

$ x $ matrix ha\'ing eigen\'alues of modulus less tban one, and u and v are

C' functions (r ~ 2), Then there exists an io\-ariant manifold that is locally

representable as follo\1o'5

for sufficiently small 6. This manifold is called a center manifold for (1.16) .

.-\ center manifold, weco) is tangent to ec at x= (X1>X'2) = (0,0).

16



The Center Manifold Theorem for maps is completely analogous to the

one given for ~'ector fields and states tbat the dynamics of (1.16) restricted

to the center manifold is given by the map

y,"""" .4y + u(y, hey)), 'yE R",

and. near y =::. 0, detennines the dynamics of (1.16) near (Xl> X2) = (O, 0).

1.4 Nonautonomous Case

Consider tbe ODE

x' =f(t,x), x(O) =xo, (1.17)

wbere f : I C R x R --t R, and f depends explicitly on t.

\\'e confine ourselves to the case in which f is assumed to be periodic in

t with prime period T. Under certain conditions on f, (1.17) has a unique

T-periodic solution. These will be stated for each form of f we will consider.

In tbese cases, tDe notion of equilibrium points encountered in autonomous

systems is replaced by tbat of periodic solutions.

Definition 1.4.1 A periodic solution, ~(t,xo), of (1.17) is said to be stable

if, for a.ny ( > 0, there is a. (, = 6(t) > 0, such that, for every Yo for which

17



Iyo - xol < 0, the solution eIl(t, Yo) of (1.17) satisfies leIl(t, Yo) - 4>(t,xu)1 < f

for all t ~ O.

<P(t, xo) is said to be asymptotically stable if it is stable and, in addition,

there is an r > 0 slJchthat 1~(t,Yo)-41(t,xoli ...... 0 ast ...... +00 for all Yo

satisfying Iyo - Iol < r.

We will use linearized one-point collocation methods to study the dynam

ics of the nonautonomous system (1.17) for the special fonns of f:

(il f linear: f(x, t) = a(t)I + bet), wbere aCt) and bet) are C l T-periodic

functions of t.

(ii) f nonlinear: f = a(t)g(x) +b(t), where a(t) and bet) are as in (I) and

g(x) is a Cl nonlinear function of I.

The Poincari map is often used to study the stability of periodic solutions.

Definition 1.4.2 Let (1.17) be aT-periodic scalar ordinary differential equa

tion with T-periodic solution 4>(t,2:o), Then, the Poincare map of (1.17) is

the scalar mapping

n:R. ...... R; Xo0-+ 4>(T,xo).

A point IO is the initial value of a T-periodic solution of (1.17) if and

only if n(xo) = xo, that is, it is a fixed point of the Poincare map. The

18



stability properties of the T-periodic solution are the same as the stability

properties of the corresponding fixed point of the Poincare map (see Hale &

Kocac [16]). We will use an analogous procedure; by selecting the stepsize

h in a numerical method such that T is an integral multiple of h, T = hk

(k E N), we can use the k-fold composition of the method instead of the

Poincare map. This procedure, which does not require prior knowledge of

the periodic solution, is known as stroboscopic sampling, and is explained in

explicit detail in Chapter 5.

1.5 Linearized Collocation Methods

Our study will be based on linearized one-point collocation methods, which

is a class of numerical methods for the solution of (1.1). \Ve wi!l present a

short derivation of the methods, and present three important special cases.

1.5.1 Derivation of One--Point Collocation Methods

We approximate the solution, x(t), by a piecewise linear CO function, u(t);

on (t~, t~+d, u(t) is given by

u(t~ + sh) = x" + hsz~

where s E [0, 1) and z" = u'(t) is constant on (t",t~+d.
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Collocation at t = tn + c1h, where 0 :5 Cl :5 1 is gi\'en, implies

u'(tn + c1h) = fUn + clh, U(tn + c1h)) (1.19)

and, from (Ll8) and (Ll9),

(1.20)

If we let s = 1 in (1.18), noting that u(tn) =Xn, u{tn+d = Xn+l, then

(1.21)

Rearranging (1.20) and (LI8) gives the family of numerical methods called

one-point collocation methods:

where Cl E [0,1].

Collocation methods for initial value problems were introduced in Loscalzo

[2-1], and have attracted great interest ever since. A general discussion of the

methods can be found in Hairer et at. [14J, and a brief history is given in

Brunner [5]. .\11 the one-point methods are globally tirst.order; however.

Guillou and Soule [121 proved that local superconvergence of the methods

is attained at the mesh points if the {c.;} are Gauss points. In the one

point case, this would mean order 2 local superconvergcnce is attained when

Cl = 0.5.
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Special CaAe6: Note that putting Cl = 0 in (1.22) gives us the explicit

Euler method, Cl = 1/2 gives the implicit midpoint method, and Cl = I gives

the implicit Euler method.

One-point collocation methods belong to a class of continuous one--step

Rungc-Kutta methods for (1.1); they are implicit whenever C\ > O.

When Cl > 0, difficulties can arise (such as loss of uniqueness) in at

tempting to solve the implicit equations at each step for In+l' A method

that has proved to be numerically inexpensive and reliable (see Vee & Sweby

[33]) is linearization. Also, the study of the dynamics of linearized methods

is of illterest on its own; due to their obvious computational advantages, they

would be preferable over fully implicit methods if they retain the dynamics

of the differential equation.

1.5.2 Linearization

We perform a linearization of (1.22) about the point (tn, In). The resulting

methods take the following form:

I n+l = In + h[l - c1hlz;(tn, In)]-l[f(tn, In) + c\h/!(tn , In)}.

(1.23)

Extracting the three special cases gives:
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Explicit Euler (Cl = 0):

I ..+\ = I .. + hf(t.. , In).

Linearized Implicit Midpoint (Cl =0.5):

In+! = Xn + h{l- ~fr(t.. ,InW'[j(t.. ,I.. ) + ~fl(t",x,,)I.

Linearized Implicit Euler (Cl = I):

I"+1 =:t" + h[/- hfr(t.. ,x,,)rl[j(tn,xn) + hf,(tn,x,,)].

(1.2')

(1.25)

(1.26)

Observe that for autonomous equations, linearized one-point collocation

methods are gh'en by

The following lemmas are simple consequences of the fonn of the lin

earized one-point collocation methods (1.2;).

Lemma 1.5.1 If x =x· i.t an equilibrium point ofr = fez), and hcLlr(I') #:

I, then x· L, a fix~ point of (U!7).

Lemma 1.5.2 If x =x· i.t a fixed point of (1.21), then it i.t an equilibrium

point of the generating vector field x' = f(x) of (I.27).
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Proof: We write (1.27) in the form

[I - c\hfz(x.. )](x.. +1 - x .. ) = hf(x.. ).

Clearly, if X· is a fi.xed point of (1.27), f(X") = O.

1.6 Outline of Thesis

Chapter 2 gives some background and motivation of the work in the the

sis, and provides some historical development of the area of Dynamics of

:'\umerics.

In Chapter 3, we apply the linearized. one-point collocation methods to

autonomous equations of the form x' = f(jj,x), where jj is a parameter.

Our objective is to ascertain whether an)' bifurcations that occur in the

differential equation are inherited by the methods, and at the same \"3lues of

the parameter.

In Chapter 4, we consider the possible effect of the singularity in these

collocation methods when solving autonomous equations. It is shown that

the singularity structures of the methods are responsible for the distortion of

the global asymptotic behaviour of the methods.

In Cbapter 5, we consider nonautonomous equations. Starting with lin

ear equations, we establish conditions under which the numerical methods'
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dynamical behaviour mimics that of the differential equations. This study is

extended to nonlinear problems, and it is shown that there is a relationship

between dynamical behaviour and linear/nonlinear stability theory for our

chosen methods. The study is e.'l:tended to multi-dimensional linear Donau·

tonomous equations in Chapter 6.

Chapter 7 summarizes the results obtained in the thesis, and gives some

suggestions for future work.
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Chapter 2

History and Background

2.1 Introduction

The subject treated in this thesis belongs to a new area of Applied Math

ematics called "The Dynamics of Numerics", which attempts to study uu·

merical methods for the solution of differential equations using the theory of

dynamical systems.

The study of numerical schemes using the theory of dynamical systems

has attracted much interest since the early 1990's and the term "Dynamics

of ?\umerics" , as applied in this context, was the subject of the Conference

on Dynamics of Numerics and Numerics of Dynamics (4).

It is no\v well established that numerical methods are dynamical systems

in their own right whose behaviour caD differ significantly, often drastically,

from that of the differential equation they are attempting to solve. The
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implications of this possibilit)' are far reaching. In practice, to predict (ong

term behaviour of solutions of differential equations, one has to rely solely on

numerical schemes. Therefore, it is absolutely essential to be familiar with

the dynamical behaviour of the numerical scheme one intends to use. The

importance of this investigation is stated explicitl)' by Stewart (291:

.. the safest route is to have some understanding of the dy

namical behaviour of the numerical method being used. In short,

the whole area needs sorting out. The main problems are not so

much numerical as dynamical: the actual beha\'iour of the con

tinuum models, and their relation to discretizations, must be the

central object of study. until these advances in the dynamics of

numerics are made, all users of the numerics of dynamics - most

of whom are wielding a mathematical tool without understanding

how it works - should heed the warning."

This chapter will survey existing results on this dynamic subject which

has come to be known as the Dynamics of Numerics. The text by Stuart &

Humphries [31] gives a comprehensive review of the then known results on

this subject.
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We consider the autonomous differential equation

X' = I(x), x(O) = XO E am,

and the corresponding map associated with a numerical discretization

x...-+ x + h¢(x, h) := g(x, h).

It is the asym....wtic states (the a- and w-limit sets) tbat are of interest in

this chapter.

2.2 Spurious Fixed Points

[series [191 made the connection between the dynamical features of the map

representing a numerical method and those of the autonomous differential

equation (1.2). Defining the sets

F := {x E am : I(x) = O} and

Gh {X E am: lji(X,h) = OJ,

he pro\'ed the following results.

Theorem 2.2.1 For linear multi-step methods, G h = F for all h > o.

Theorem 2.2.2 For Rungc-KuUa and Predictor-Corrector methods, F ~

Gh , and the inclusion may be strict.
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In other words. linear multi-step methods are RIl] whereas Runge-Kutta

and Predictor-Corrector methods are generally I R[ll (can admit spurious

lixed points). However, even in the absence of spurious fixed points, the

dynamics of a linear multi-step method can differ from toat of the differential

equation since the domain of attraction of a fixed point of the method may

fail to resemble that of the corresponding equilibrium point in the differential

equation, depending on h (see Iserles [19]).

2.3 Characterization of Regularity in Runge
Kutta Methods

Hairer et ai. [131 studied conditions under which Runge-Kutta methods arc

Rill. Thc.y established the following results.

Theorem 2.3.1 A consistent explicit Runge-Kutta scheme is RIll if and only

if it produces the same solution sequence as the explicit Eu.ler method.

This theorem essentially means that spurious fixed points can be expected

in higher order explicit Runge-Kutta methods. The following theorem, also

in Hairer et ai. [131. states the regularity condition of general Runge-Kutta

methods.

Theorem 2.3.2 The maximal order of an RILJ Runge-Kutta method is 3,
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and the maximal order of an A-stable Runge-Kutta method is 4.

The above results do not specify the magnitude of tbe stepsize for which

spurious fixed points are observable. Hence, it may be assumed that they

would occur for stepsizes above those normally used in practice. Humphries

[18] studied the behaviour of these spurious fi:'(ed points as h -Jo 0, and

Griffiths et al. [10] studied the occurrence of spurious fixed points below the

linearized stability limit for the genuine 6Jced points.

2.4 Study of Spurious Fixed Points

Humphries [18] studied tbe behaviour of spurious fixed points, whose exis

tence was unco\'ered by Iserles [19], in the limit as h -Jo O. He proved the

following results.

Theorem 2.4.1 /f a numerical approrimation to (1.2) is obtained b~, !Laing

an explicit Runge.Kutta method or an implicit Runge.Kutta method (where

the implicit equations are solved using a convergent iterative scheme), then

(i) if f is globally Lipschitz, spurious /i:&ed points cannot e:tist for h arbi-

trariiysmall,

(ii) if f i.J locally Lipschitz, and in particular if f E CI(jRm,am). and
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spurious fixed points exist lor h arbitrarily small, then they tend to infinity

in norm, as h -+ O.

A similar result is true for pcriod·2 solutions.

Theorem 2.4.2 II a numerical approximation to (1.2) is obtained using an

explicit R·K method, an implicit R-K method (where the implicit equations

are solved using a convergent iteration), or a zero-stable linear multi-step

method with p(-I) oF 0, then

(i) ill is globally Lipschitz, period-2 solutions cannot exist Jor h arbitrar

ily small,

(ii) il I is locally Lipschitz, and in particular il f € CL(lRm, R"') and a

period-2 solution (u(h), v(h)) eri.sts jar h arbitrarily small, then both u(h).

v(h) tend to infinity in norm, as h -!' O.

\Vhile these results are quite revealing, in practical computations, h remains

finite but not extremely small, so that h -f+ O. This necessitates the study

of the possible effect of spurious solutions which may coexist with the true

asymptotic solutions.

:'\Iore recently, Stein [281 pro\'ed that, for any hyperbolic fixed pOint of

an explicit Runge-Kutta method, there exists a computable limit stepsize h"
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below which spurious solutions do not exist and the method inherits only the

fixed points of the differential equation with their stability types. While this

result reveals that spurious solutions do oot exist provided the stepsize is

small enough, we often have to use relatively large stepsizes when computing

o\·er long time intervals.

2.5 Bifurcations to Spurious Period-2 Solu
tions

lserles et al. [201 proved that spurious period-2 solutions can bifurcate from

genuine fixed points as h is varied. This, they showed, can occur in both

Runge.Kutta and linear multi-step methods. They also established an order

condition for RIL21 Runge-Kutta methods, which is stated below.

Theorem 2.5.1 The highest attainable order of an RIL.2] Runge-Kutta method

is 2.

A natural question to ask is: How do period-2 solutions in [Rl2l methods

arise? The two theorems below answer tnis question for Runge-Kutta and

linear multi-step methods.

Theorem 2.5.2 Consider the Runge-Kutta method (J.5), used to solve the

scalar equation:r' = f(x) where f : R -oj. R, which has a hyperbolic equilib-
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rium point x'. Then, period-2 solutions bifurcate from x· at h = he, where

provided (I - hef'(x')A) is invertible and bT(l- hef'(x')A)-21 # O.

A similar result holds for linear multi.step methods.

Theorem 2.5.3 Consider the consistent and zero-stable linear mum-step

method (LV, with p(-I), 0-(-1) ::F O. Suppose this method is used to solve

the scalar equation x' = f(x), where f : R -t R which has a hyperbolic

equilibrium point x·. Then, period-2 solutions bifurcate from x' at h = he,

where

(2.2)

Griffiths et al. (10] show that, even though he may be above the linearized

stabilit), limit of the respective method for x', an unstable branch of the

spurious solution may exist below the linearized stability limit. This may

affect the global as:rmptotics of the method for reasonable values of h by

distorting or segmenting the basin of attraction of x' (see Vee & Sweby [361

and Chapter 4 of the thesis).
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2.6 Branches of Spurious Solutions

In [10], Griffiths et ai. study a genuine fixed point, x', of an explicit Runge

KUlla method such as (1.5). Perturbation arguments are used to investigate

the local nature of bifurcations from the fixed point to spurious solutions.

Linearization about a fixed point leads to the stability function

(2.3)

where p = hf'(x'), b = (bL ,b:2, .. ,bs)T, 1 = (1,1, .. , 1)T, and A denotes

the 8 x s array of weights aij in (1.6).

Loss of stabilit)· of x' is encountered when p = p' = h" /,(x") satisfies

either

(2.4)

(2.5)

In the former case, as p decreases beyond p', the method undergoes a

period doubling bifurcation. In the latter case, x' loses stability and for

a linear problem, this would lead to IX"I --+ lX> as n -+ 00; however, fOf

genuinely non-linear differential equations (f'(x) '" constant), there may be

a bifurcation to a fixed point X· that is spurious.
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It is further proved that not only can spurious steady states be reached

for h > h' (corresponding to pO), but an unstable branch e:cists for h < h',

which may substantially affeet the domain of attraction of the true, stable

steady state.

This work is enlightening because it shows that the existence of spurious

solutions of a Runge-Kutta scheme, regardless of their stability, below the

linearized stability limit of tbe scheme for a genuine a...'Ced point, can adversely

affect the computed solution and result in a distorted numerical basin of

attraction.

2.7 Global Asymptotic Behaviour

\"ee & Sweby ([36]' [33], [34]) concentrate their study on specific 2 x 2 systems

of ODEs and show how spurious asymptotes, regardless of their stability, can

gi \·c rise to numerical basins of attraction that differ significantly from the

basins of the ODE for the true asymptotes.

~inc explicit and two implicit R·K methods, as weU as four linear multi

step methods are considered. These are the explicit Euler, modified Euler,

impro\·ed Euler, Heun, R-K 3, R-K 4, PC2, Adam-Basbforth, linearized im~

pHcit Euler, linearized trapezoidal, implicit Euler, trapezoidal, 3-level BDF
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and mid-point implicit method. Comprehensive bifurcation diagrams are ob

tained. All ele"en R·K methods generate spurious asymptotes, and for the

predator-prey model, for example, more than one spurious fixed point below

the linearized stability limit of the scheme is introduced.

:\umerical results indicate that, for different finite discretization parame

ters hi and h 2 below the linearized stability limit of the scheme, numerical

solutions might converge to two different solutions even if no spurious stable

steady-state numerical solution is introduced by the scheme. The existence

of spurious asymptotes, regardless of their stability has detrimental effects

on the computed solution.

Thus, for a given h below the linearized stability limit of the scheme, tbe

numerical solution may:

(a) converge to the correct steady state;

(b) converge to a spurious steady state:

(c) cOO\'erge to a spurious periodic solution;

(d) yield spurious asymptotes other than (b) or (cl;

(e) diverge, even for physically relevant initial data.

E\'en though linear multi-step methods preserve the same number of

steady states as the underlying ODE, they may change stability types of

the fixed points. Also, the solution procedure used in computing the full
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discretized equations, has an effect on the asymptotic behaviour. Results

show that linearized implidt methods are more effident than other solution

procedures.

2.8 Relevance of Thesis

This thesis will settle some issues in the dynamics of numerics that are either

incompletely considered or not treated in the literature.

Collocation methods have grown in importance since their initial intro

duction. Generally speaking, implicit methods tend to be computationally

expensh-e in practice, and e.xplicit methods are computationally cheaper yet

impose stringent stability restrictions which place major limits on the dis-

cretization parameters. In order to determine whether linearization gives us

the best of both worlds, we have to study the dynamics of the linearized

methods.

:\[uch of the study that is represented in the literature has concentrated

on autonomous ODEs, fixed points and possible existence of spurious fixed

points in Runge-Kutta and linear multi-step methods. This thesis goes fur

ther, and studies the dynamics of linearized collocation methods for both. au

tonomous equations and Donautonomous equations with periodic solutions.
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From tbe numerical results in Vee & Sweby ([331, 136]), it is observed

that there are different numerical basins o( attraction (or different numeri·

cal methods and different solution procedures used in implicit methods. In

particular, there is a shrinking of the basin of attraction for 00 in certain

methods, particularly linearized ones. Here, we introduce the concept of

pole-type behaviour and prove that the existence of spurious pole-type be

haviour, which is inextricably linked to the presence of singularities in the

methods, causes basin shrinkage for 00.

It has been established in Griffiths et ai. [101 that numerical methods can

introduce spurious period-doubling bifurcations and bifurcations to spurious

fixed points. \Vhat is the effect of discretization of a parameter-dependent

ODE by a numerical method? In particular, we will consider two types of

parameter-dependent ODEs: scalar ODEs with the common codimension

I bifurcations and planar ODEs with the Hopf bifurcation. The objective

is to ascertain whetber discretization of the ODEs by linearized one-point

collocation methods results in a discrete system that possesses tbe discrete

analog of the same bifurcation and if so, wbether this bifurcation occurs

at the same parameter value. The results are generally applicable to higher

dimensional systems through center manifold theory (as discussed in Wiggins

[32]).
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Chapter 3

Autonomous Equations

3.1 Introduction

X' =f(x,p.), for t ~ 0 and x(O) = xo, (3.1)

where f ; IRm x JR -+ R"', be an ordinary differential equation with parameter

f.J. E R Since f does not depend explicitly on t, (3.1) is autonomous.

In those instances in which the solution ret) of (3.1) is approximated by

a linearized one-point collocation method, we would like to investigate the

dynamical behaviour of the numerical method and see how far it correctly

represents the dynamical features of the vector field.

The linearized one-point collocation methods, when applied to (3.1) are

gh"en by
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X"'+l = x'" + h[l - hcd,;{X"" JLW 1
I(X",,~) := g(X",), (3.2)

whcre I is the m x m identity matrix, 1% tbe Jacobian of I with respect to

x and h is the time step. It is clear from Lemma 1.5.1 that (ji",x"(;7)) is a

fixed point of (3.2) if and only if it is an equilibrium point of (3.1) for J.L =;7

provided hcdr(x"(ji"),ji") =F 1.

If an equilibrium point of the system (3.1) undergoes a bifurcation, we

would like to ascertain whether the fixed point in the numerical methods

will undergo the discrete analog of the same bifurcation, and whether that

bifurcation occurs at the same vaJue of the parameter J.L. \Ve begin by study

ing common codimension-1 bifurcations, then the Hopf bifurcation in planar

systems.

3.2 Codimension-l Bifurcations

The stability of common codimension·l bifurcations under linearized one

point collocation methods has been studied using normal forms, and detailed

rcsults are in Foster & Khumalo [71.

Normal forms is a method of simplifying a dynamical system (continuous

or discrete) b)' finding a coordinate system in whicb the dynamical system
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takes the simplest fonn. The coordinate transformations generated are t~

ically local to a known solution (such as a fi.:'ted point or periodic solution).

3.2.1 Saddle-Node Bifurcation

The following lemmas gh-e well-kncm-n topological normal fonus for one

dimensional s~·stems that possess the saddle-node bifurcation (see Wiggins

[3211·

Lemma 3.2.1 Let:r! = I(x, Q) be a one-parameter family of scalar flows

such that I is CZ in :r: and CI in cr on some sufficiently large open set

containing (0,0). Let the origin be a nonhyperbolic fized point: f(O,O) = 0,

f ..(O,O) = O. Let the non.degeneracy condition.5 In·(O,O) :F 0, fo(O,O) :F 0

e:rist. Then a nonnal form for the saddle-node bifurcation is

(3.3)

The normal fonn equation:r! = Q+x2 has equilibrium points x' = ±..t=Q.

for n < 0, x· = +..t=Q is unstable and x· = -.,f=a is stable. At 0: = O.

there is a single unstable equilibrium point x· = O.

The second lemma states a normal form for the saddle-node bifurcation

in maps.
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Lemma 3.2.2 Let x >-+ g(x, Jl) be a one-parameter family of scalar map$

such that 9 is C'l in x and C l in Jl. Let g{O,O) = 0 and gr(O,O) = 1,

g;rr(O,O) #: 0 and g,.(O, 0) ::F O. Then a nonnal fonn for the saddle-node

bifurcation is

(3.4)

The cun;es of fixed points in equations (3.3) and (3.4) correspond exactly

in location and stability type.

Theorem 3.2.3 If a saddle-node bifurcation occurs in r = f(x,o), then

a corresponding saddle-node occurs in its transformation by linearized one-

point collocation.

Proof til: Applying linearized one-point collocation methods to the nor-

mal form (3.3) gives rise to the maps x >-+ g, where

h{o+ sx'l)
g=x+ i-shcIX'

and oS = ±l.

Expanding as g(x,O') = x+Eg;(o)x i
, we obtain 9 = hO'+(1+2Sh2clO') x+
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Let ~ ~ x+6, wbere 6 = 6(a} is to be defined. Then the image of ~ under

the action of the map is

z+6 100-+ g(x, a} +6 = g({-6,a)+6

Because gl(O} = 0 and 92(0) # 0, the Implicit Function Tbeorem can be

in"oked to annihilate the Q-dependent part of the linear term (in () for all

sufficiently small 101. Hence we define 6(0) = ~,(~) 0: + 0(0') = helO +

0(0'), obtaining

(3.5)

where <1>(0) is a smootb function. Let 7(a) be the ~.independent term of

(3.5). Sina! 7(0) = 0 and 7"(0) = h > 0, the Inverse Function Theorem

assures locaJ e:cistence and uniqueness of a smooth inverse 0(-,) increasing

through the origin. Then {t-+ .,+{+a,(..,)(l+O(e), wbere 02("') is smooth

with 02(0) = ih # O. A 6nal change of variable TJ = la2(-,)1 ~ gh-es

where JJ = 1«,(..,)1.,. The bigher-degree terms can be eliminated due to local

topological conjugacy of these continuously parameter-dependent maps [21.
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Thus we obtain the normal fonn (3.4) for sadd!e.node bifurcation at

('1.1-/) = (0,0). Direct consideration of the above transformation sequence,

restricted to a neighbourhood of (x, 0') = (0,0), confirms that (11,,u) = (0,0)

if and only if (x, 0') = (0,0). Furthermore, the derived map and the original

flow have exactly corresponding normal forms and,u is x-independent. There.

fore, the phase location, orientation and stability properties of the saddle.

node bifurcation are preserved under the map. o

We now consider the stability of lixed points. Assuming without loss of

generality that s = +1, the lixed points are gi ....en by x' = ±.;=a. Sin-

gularities occur for 1 - 2hclX = 0, hence the fixed points exist for 0' ::5 o.

0' #- _1((4h2q). Performing standard stabilit)· analysis, we determine that

the fixed point x' = ..;=c; is stable for

{

PD -1

0' < h2(2cl _ 1)2

and the fi.xed point x· = -..;=c; is stable fat

{

Q't 0

-1 PD SN

h2 (1-2cd2 < Q < 0

(el> 1(2).

(CI < 1(2).

The labelled inequalities represent the locations of saddle-node (SN) and

period doubling (PD) bifurcations, see figures 3.1 and 3.2. The following

key applies to each of the diagrams;
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Stable fi.xed point: ~

Unstable fixed point:

Singular set: - . - .

Observe that when Cl = 0 (explicit Euler method), the singularity is

remo\'ed to x --t 00. On the other hand, for Cl = 1/2 (linearized implicit

midpoint) tbe period doubling bifurcation is removed to x --t 00.

Figure 3.1: Saddle-node: f = ('t + x2 , Cl :> 0.5
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Figure 3.2: Saddle-node: f = 0' + x 2 , Cl < 0.5

We now consider tbe converse of Theorem 3.2.3. That is, we assume a

saddle-node bifurcation exists in the family of maps generated by linearized

one-point collocation methods, and examine the nature ofthe flow from which

the maps are derived.

Theorem 3.2.4 If a saddle-node bifurcation occurs in a scalar map x 0-+

g(x.j.I.) due 10 a Irons/ormation by a linearized one-point collocation method,

it results from a corresponding saddle-node in the originating scalar flow

X' = f(x,o.).
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Proof (7J: Assume a linearized one-point collocation method possesses a

saddle-node bifurcation at (r,p.) = (0,0), where! = f(x, p.) is an undeter-

mined flow function given to be CJ in x and CL in p.. Equating this family

of maps to the normal form (3.4). and expanding !(x,Jl) = ~ai(Jl)xi, we

match coefficients to obtain

A change of variable <= x + 6(p.) yields the originating flow as

f,' x' = !(x,p) = f(f, - 6,p.)

where 'l/(p.,6) is a smooth function. If aL (O) = 0 and -2a2(O) #' 0, then the

linear term in f, can be annihilated for all sufficiently small 1p.1 by application

of the Implicit Function Theorem. These conditions are satisfied whenever

;Jo #- 0 in a2(p.) = Po + O(p.), equivalent to the non-degeneracy condition

f~~(O.O) #- 0 for saddle-node bifurcation. Assuming this, we can define

6(1') = 2;2\~) p. + 0(1'2) = -CLJl + O(Jl2), to obtain

(3.6)

where <I>(p.) is smooth.
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:'\ow de6ne .., = ..,(~) as the {-independent term of (3.6). Since ,(0) = 0

and .,.'(0) =F 0, the lm-erse Function Theorem guarantees locaJ existence

and uniqueness of a smooth inverse ~ = ~(..,) ,,;th ~(o) = O. Therefore,

Finally, we scale the "7Lriable as '1 = 1.801{, which gh-es

where 0: =1.801 (* + fJo~JJ2 + 1J3~(1J») and s =sgn{fJo).

The higher-degree teems for rj can be eliminated due to local topological

equh-alence of the Bows, to attain the normal form (3.3) in '1" The origin is

locally preserved under the transformation (%,~) -+ ('1,0), so the location

of the bifurcation is preserved. Lemma 1.5.2 implies the direction of saddle-

node bifurcation is preserved under the transformation (n.b., direction is not

prescn"oo by the nonnal forms themselves). The derived normal form is

identical to (3.3), and 0: increases with increasing ~ near the origin, so the

stabilit)· t)·pe is presen-ed as well. o

Thus, no spurious saddle-node bifurcations can occur in linearized one-

point collocation methods.
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3.2.2 'franscritica1 Bifurcation

rntuiti\~ly, a transcritical bifurcation occurs when two equilibrium (or fixed)

points (one stable, the other unstable) coalesce at the bifurcation point and

an exchange of stability occurs. We now state weH-known topological normal

forms for tbe transcritical bifurcation in Bows and maps.

Lemma 3.2.5 Let x' = f(x,o) be a one-parameter family of scalar flows

such that f is C 2 in x and CI in 0:. Assume the genericity conditions

f(O,O) = 0, 1:.(0,0) = 0, f",(O,O) = 0, and the non-degeneracy conditions

fu(O,O} # 0, f"",(O,O) # o. Then a normal form for the tronscritical bijur-

cation is

x'=QX±x2 . (3.7)

The following lemma contains a normal form for the transcriticaJ bifur

cation in a discrete system.

Lemma 3.2.6 Let x >-l- g(x,J.l) be a one-parameter family of scalar maps

such that 9 is C 2 in x and C l in Jl. Assume g(O,O) = 0, g,,(O,O) = 1,

9.. (0,0) = 0, g,,%(O,O) '# 0 and g",.(O, 0) # O. Then a normal form for the

lranscritical bifurcation is

(3.8)
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The theorem below guarantees toe existence of a corresponding transcrit-

ical bifurcation in the discrete system generated by the transformation of a

differential equation that possesses a transcritical bifurcation.

Theorem 3.2.1 If a transcritical bifurcation occurs in x' = f(x, nJ, then

a corresponding transcritical bifurcation occur" in its transformation due to

linearized one-point collocation methocb.

Proof: See [71.

The bifurcation behaviour of the family of maps arising from the transfor-

mation due to linearized one-point collocation can be found explicitly. The

collocation methods transform (3.7) into the family of maps x 0-+ g, where

Observe that the maps introduce a singular set 1 - hel(n + 2sx), which

is, however, removed from the origin.
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\Ve now obtain the bifurcation behaviour of the maps explicitly. The

fixed point x· = 0 is stable for

j
-2 PO T

h(1-2CI~ < 0'<0

.<0

PO 2
0>--

h(ZCI -1)

(Cl < l/Z)

(Cl > l/Z).

The other fi..xed pOint is x· = =Fa, with the following stability regions;

j
0

T PO 2
<. < --:(l- ZCd

.>0

PO -2

a < h(2cl -1)

(CI < 1/2)

(Cl > liZ).

The labelled inequalities represent the locations of transcritical tT) and pe.

riod doubling (PD) bifurcations. See Figures 3.3 and 3.4.
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D

Figure 3.3: Transcritica1: f = ax + x 2 , Cl > 0.5

Figure 3.4: Transcritical: f = ax + x2 , Cl < 0.5
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Both fixed points exist for all 0, except for the singularities (x,o) =

(O,(hcd- 1), (±(hcd-1,-(hcd-1). Cl = 0, the singularities are remon~d to

x. aud for Cl = 1/2 the locations of the period doubling bifurcations are

removed to 00.

Theorem 3.2.8 If a tra113critical bifurcation occurs in a scalar map x >--+

g(x, j.J.) due to transformation by linearized one-point collocation, it results

from a corresponding transcritical bifurcation in the originating scalar flow

r' = f(x,o.).

Proof: See [71.

Hence, linearized one-point collocation methods can introduce no spurious

transcritical bifurcations.

3.2.3 Pitchfork Bifurcation

Suppose the scalar flow x' = f(x, Q) has an equilibrium point x· = 0 for all

0. E R. Assume that on one side of the bifurcation value, 0 = 0, the system

has twO other equilibrium points and on the other x' is the only equilibrium

point. Then, the system undergoes a pitchfork bifurcation at 0 = O. The

following lemmas supply well-known topological normal forms for this t)'pe

of bifurcation (Wiggins [32]).

52



Lemma 3.2.9 Let x' = f(x,o) be a one-parameter family of scalar flows

such that f is C 3 in x and C 1 in o. Assume the genericity conditions

f(O,O) = 0, Ir(O,O) = 0, fo(O,O) = 0, fu(O,O) = 0, and the non-generacy

conditions f%o(O, 0) oF 0, fu%(O, 0) oF O. Then a normal form for the pitchfork

bifurcation is

(3.9)

Lemma 3.2.10 Let x >--I> 9(X, p.) be a one-parameter family of scalar maps

such that 9 is C 3 in x and C l in p.. Assume g(O,O) = 0, 9%(0,0) = 1,

9,,(0,0) = 0, 9%%(0,0) = 0, 9%,,(0,0) oF °and 9%%%(0,0) oF O. Then a normal

form for the pitchfork bifurcation is

(3.10)

The following theorem asserts that linearized one-point collocation me[h

ods do not gh'e rise to spurious pitchfork bifurcations.

Theorem 3.2.11 If a pitchfork bifurcation occurs in :r' = f(x,O:), then a

cOrTesponding pitchfork bifurcation occurs in its transformation due to lin-

earized one-point collocation.
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Proof: See [71.

Explicit calculation from the family of maps arising from the transforma-

tion shows the fi.'too point %" = 0 to be stable for

1

-2 PD P

h(I-2c I : < 0<0

0<0

PD 2
o > h(2c l _ I)

(c\ < 1/2)

(CI> 1/2).

stable for

If the pitchfork is supercritical, the nontrivial fixed points are %" = ±v'Q,

{

0:: 0 "! :(1 ~ 2cd (c, < 1/2)

a > 0 (CI ~ 1/2).

If the pitchfork is subcritical. the nontrh·ial fixed points are x" = ±.;::o,

which are alwa,Ys unstable when c, < 1/2, and stable for

{

PO -I
0«--

h(2c, -1)
(CI > 1/2).

The labelled inequalities represent the locations of pitchfork (P) and pe-

riod doubling (PD) bifurcations. See Figures 3.5 and 3.6.
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PD

-~~---/-----
P ,

-_.:-,~-----+-----------------+----

,,,-,q)~q) ~--

PO-- _

----

Figure 3.5: Supercritical Pitchfork: f = ox - xJ , Cl < 0.5

Figure 3.6: Supercritical Pitchfork: f = ox - xJ , Cl > 0.5
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The rJontriyial li'(ed points exist for a > 0 in the supercritical case, and

for 0: < 0, 0: # -1/(2hcJl, in the subcritical case. The trivial fixed point

exists for all a # 1/{hcd. The limiting case c\ = 0 merely removes the

singular set to 00. The limiting case c\ = 1/2 removes the period doubling

bifurcations to 00.

Theorem 3.2.12 If a pitchfork bifurcation occurs in a scalar map x >--+

g(x,J./-) due to transformation by a linearized one-point collocation method,

it results from a corresponding pitchfork bifurcation in the originating scalar

flow x' = f(x,a).

Proof: Sec [71.

3.2.4 Period Doubling Bifurcation

The case of an eigenvalue A = -1 is fundamentally different and does not

ha\"e an analogue with one-dimensional vector field dynamics; if it occurs in

a numerical method, it is necessarily spurious. This case results in a period

doubling (flip) bifurcation.

Lemma 3.2.13 Let x o-t 9(X, Jl) be a one-parameter family of scalar maps

such that g is C3 in x and Cl in J-l. Assume the genericity conditions 9(0, 0) =
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0, g..,(o, 0) = -1, and the non.degenerac1/condition.sg,,(O, O) '" 0, g~:t:t(O,O) '"

0. Then a normal form for the period doubling bifurcation is

x>-+-(I+p.)x±x3. (3.11)

The map has a nonbyperboHc fixed point with A = -1, and the second

itcratc of the map undergoes a pitchfork bifurcation at the same fixed point.

Theorem 3.2.14 Spurious period doubling bifurcations can occur under the

transformation resulting from linearized collocation methods for all c oF 1/2.

A normal form for spurious period doubling bifurcation is

, (2 ) ,
X = h(2c l _ 1) - Q- X ± X ,

for aLi Cl =F 1/6, 1/2.

Proof [7]: Assume the induced scalar map will have normal form (3.11)

for period doubling bifurcation at (x, J.l) = (0,0). Expanding the undeter·

mined flow function f(x, J.l) = L a;(J.l)xi and solving for coefficients of powers

of x in

-(1 + J.l)x + sx3 = I + hf/(1 - hCI!")

yields
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Define

a=a(p) = h(2cI +Cl/-t~ 1)(2cl -I)'

Then a(O) = 0 and a'(O) > 0 for Cl =F 1/2, so a unique smooth local inverse

function pea) exists by the Inverse Function Theorem, and the function and

its im'ersc monotonically increase in a neighbourhood of the origin. \Ve have

2
ao = h(2c l -1)'

singular for Cl = 1/6 and CI = 1/2.

Finally, let T/ =~ x, yielding

where s = sgn(SQ3(O)) = sgn(s(2cl - 1)(6c1 - 1», Higher degree terms can

eliminated due to local topological equivalences [21. The origin (x, JJ) = (0,0)

is preserved under the transformations (x,/-t) -+ (I'/,a), Therefore, we inter-

pret this as a normal form for scalar Bow causing a spurious period doubling

bifurcation at the origin under linearized one-point collocation methods. 0

The normal forms of scalar vector fields causing SpuriOllS period doubling

underco!location methods are f(x, 0:) = (00-0) x±x3, where 00 = h(2C~ _ I)'

\\'e can explicitly calculate the family of maps arising from the transforma-
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tion by considering

h toox - ox + sx3
)

g=x+ l hCt(O'o a+3sx2 )·

Fixed points are x· = 0 and x· = ±Js(Q - Qo). x· = 0 is stable for:

p ,

a> h(2Ct-1)

.1;' = ±Js(ct - cto) are stable for:

-3 p-2
h(I-2cd <ct< h(1-2cd

p ,

0'< h (2Cl _ 1)

a> __3_
h(2cI - 1)

(Ct < 1/2)

(Cl > 1/2).

(Ct < 1/2,s= -1)

(CI > 1/2,s = -1)

(Cl > 1/2,s = 1).

In the subcritical case, the nontrivial fixed points are x' = ±v'=lk, always

unstable when Cl < 1/2, and stable for:

{

PD -1
a<--

h(2c t -1)
(Cl > 1/2).

The labelled inequalities represent the locations of pitchfork (P) and pc-

riod doubling (PD) bifurcations. See Figures 3.7 to 3.10.
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PO p/~
_hh_m__t hhh _ -'--

hc,(Zq-,J) h(ZCI, I) h(2q_l)
.~. "

->,

Figure 3.7: Period doubling: f = (no - n)x + x 3 , fro = h{2C~-I)' Cl > 0.5

/::::::>.
/

, p/
-f---------------------------
~I'. ---=i....-

hc 1-2ql~. h(i-2ro;.d

"
""'~~~

Figure 3.8: Period doubling: f = (no - n)x + x3, fro = h{z.:~-l)' 0 < Cl < i
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--~-

Figure 3.9: Period doubling: f = (00 - o-)x + x3, 0-0 = 1t(2C~-I)' ~ < Cj < ~

Figure 3.10: Period doubling: f = (00 - o-)x - x 3 , 0-0 = 1t(2C~-I)' ~ < Cj < ~
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The nontrhial fixed points exist for (l' > 0 in the supercritical case, and

for (l < 0, Cl' :F -1/(2hcd, in the subcritical bifurcation. The trivial fi'Ced

point exists for all Q::F 1/(hcd. The limitiogcase c, = 0 merely removes the

singularity set to (l' -+ +00. The limiting case Cl = 1/2 removes the period

doubling bifurcations to Q: ..,. ±x.

3.2.5 Conclusion

It has been established that linearized one-point collocation methods do not

admit spurious codimension-l bifurcations, with the exception of the period

doubling hifurcation which can occur in the methods for Cl :F 1/2. A normal

form for the flow that gives rise to spurious period doubling bifurcations

under transformation by these methods has been obtained.

It is worth noting, though, that while local dynamical beha,·iour of the

methods may resemble tbat of tbe differential equatioo in the neighbourhood

of the bifurcation, the presence of the singular set may distort the basins of

attraction for the fixed points. This is discussed in Chapter 4.
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3.3 Hopf and Neimark-Sacker Bifurcations

In this section, we assume x' = f(x, Jl) for some IJ E IR. is a C" (k ~ 3) planar

vector field. Isolating the linear part of f, we obtain

x' = J(p)x + F(x, po).

Assume the linear part J(IJ) at x· (x' may depend on ,u) has eigenvalues

>'1,2(tt) = n(J.l) ± ifJ(JJ)· Assume further that a(,u.") = 0 and ,iJ(p.0) ¥ 0

and that for sufficiently small IJ.! - pO!, F(z',,u) = 0 and For(x', Jl) = O.

Furthermore, suppose o!(p.") #: O. Then, the vector field undergoes a Hop!

bifurcation, and in any neighbourhood U of x' in JR.:! there exists with any

gh"en Po > 0, a jJ. with Iii - poi < Ilo such that x' = J(illx + F(z,,ii) has a

nontrivial periodic orbit in U.

3.3.1 Bifurcation Values in Differential Equations

define the quantities

.-I(p., x)

B(,u,x)

?l.!.+~
aXI ax:!
all fJf2 ail &12
lh;&; - a;;a;;'
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Then, the eigenvalues of fz(x"(IJ),,u) are

Al(,u) ~(a+~)

A2(1J) ~(a-~),

where a = .4.(x·{,u),,u) and b = 8(x·(,u.),,u.). If we let 0 = a/2, then

o+~

o-~.

(3.I4)

(3.I5)

A necessary condition for the equilibrium point x·(.u) to undergo a Hopf

bifurcation at ,u = .u" is o{,u") =0 and b(,u) > 0 2 in a neighbouhood of ,u•.

3.3.2 Bifurcation Values in the Numerical Methods

Xow. let us assume that a numerical scheme such as (3.2) is used to solve

(3.1) numerically. Assume 9 is a C~ map and satisfies the conditions

(i) g(,u,x') = 0 for,u near some fixed Ti (x" may depend on ,u);

(ii) gz(,u., x') has two non-real eigenvalues UI.2(,u) for,u nearJi with 1"'(Ii)l =

(iii) t-1u(,u1l > 0 at IJ = Ii;

(iv) ut(Ji) #- I, for k = 1,2,3,4.

Then, there is a neighbourhood U of x· and a ,; > 0 such that, for

1J.t - iii < ,; and Xo E U, either
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(a) the omega limit set of ro is .:t" if Ii < p and for Ii > p. the omega

limit set of .:to is r(p) where r(p.) is a closed invariant CI curve encircling

x". Furthermore, f(p) = z";

(b) the aJpha limit set of Zo is x" if p > p and for p < 11, the alpha

limit set of Xo is r(p) where r(p) is a closed invariant C' cun'e encircling

z·. Furthermore, f(p) = x·.

The map undergoes a Neimark-Sacker bifurcation, which is the discrete

analog of the Hopf bifurcation in vector fields. In (a) above, the bifurcation

is said to be 3upercritical and in (b) it is said to be .fubcritical.

We then have the following lemma.

Lemma 3.3.1 Forp = p, tet AJ(p) andA.'l(p) be eigenv41ves oll~(p,x"(1i».

Then, the eigenvalues cofTUponding to the linearization of the method.J (3.2)

at x· for p = p are given by

O"(p) 1 hA.,(p)
(3.16)+ I-hc,A.I(ji)'

O''l(ji) 1 + hA.'l(p) . (3.17)
1- hc,A.'l(ji)

Proof: Perform standard perturbation analysis on (3.2) about the fixed point

x·(m, that is, define vectors 0" and 0"+' such that X"+' = X"(ji) +0..+1 and

x .. = X·(ji) + 0". Linearizing about z"(ji), and dropping second and higher
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order terms in II" and h, ...."e obtain

on+l = J"A(x',Ji), (3.18)

where A(x' ,Ii) = 1+ h(l- hClfz(x' ,Ji))-lf:l.(x',Ji).

If the eigenvalues of fz(x·.ji) are Al(Ji) and A2(jI). then the eigenvalues

of A(x',"j1) are given by (3.16) and (3.17). o

We now consider the problem of determining whether solving a system

with a Hopf bifurcation by linearized one-point collocation methods will re

sult in the same bifurcation occurring at the same parameter value. The

following theorem answers this question.

Theorem 3.3.2 Let (3.1) be a system that undergoes a Hopf bifurcation at

the parameter value J.L = J.L'. We represent the eigenvalues of the Jacobian

matrix oj f at any equilibrium point (J.L,x·(J.L)} where J.L i3 sufficiently close

to 1", by A1,2 = a ± var=b where b > a 2
• Then, iJ a linearized one-point

collocation method with fixed stepsize is used to discretize the system, the

method will exhibit a Neimark-Sacker bifurcation, occurring at a parameter

value J.L = jI, where

2o{li) = hb(ji)(2cl - 1).

66

(3.19)



Proof: Assume the non-degeneracy conditions are satisfied. ~"aking use of

(3.16) and (3.17), and performing some algebraic manipulations, we obtain

_(1 bh(a: - bhcd ) ±
0"1.2 - + b _ 2bhClCl: + l?h2Ci b

Now. 100l,2(jI)1 = 1 if either

2O:(jI) - b(jI)h{2cl - I} = O.

The first of the above conditions represents a singular point for the eigenval-

ues, and the second yields

This completes the proof.

20m) = hb(jI)(2cI - 1]. (3.21)

o

Under our assumptions, it is clear that j1 = ~. if and only if Cl = ~.

Hence, the following corollary.

COl'ollary 3.3.3 The Neimark-Sacker bifv.rcation occurs for the same paro-

meter value as with the Hopf bifurcation iTi the differential equatioTi if and

only if Cl = 1/2. that is, for the linearized implicit midpoint method.
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3.4 Examples

3.4.1 Van der Pol's Oscillator (Unforced)

The Van der Pol oscillator is given by

X" +~(X2 -l)x' +x =0. (3.22)

where ~I is a parameter. This system can be transformed to the 2-D system

(3.23)

Clearl)', the origin is the only equilibrium point of the system (3.23). The

eigenvalues of the linearization of the system about the equilibrium point are

gi\'cn by

).l.2="(±~'

If we make the transformation t: =-r/2, then

(3.24)

(3.25)

\re assume -1 < f < 1, so that the eigen\-alues are complex. Tile origin

undergoes a supercritical Hopf bifurcation at f = O.

For one-point collocation methods we have, according to Theorem 3.3.2,

the l'\eimark-Sacker bifurcation at tbe parameter value

l= ~(2Cl -1).
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3.4.2 Forced Oscillators and the Method of Averaging

The method oj averaging transforms a nooautooomous differential equation

to an autonomous one. Suppose we have a differential equation of the form

X' = t.f(x, t) + (2g(X, t. t.) (3.26)

where j: U xR--+iR.... and g: U xRx [O,to) --+ a'" areC" (r;:: 1) on their

respective domains of definition and T-periodic (T > 0) in t. Here, U is an

open set in R.... Then, the averaged equation will take the fonn

11 E a"',

where

/(y) = ~ iT f(y,t)dt.

Starting with a differential equation of the form

(3.27)

X' = f(x) +t.g(x,t,tj, xE am, (3.28)

we can transform it to the form (3.26) by performing the simple steps (see

Wiggins, 1990 for details):

• Consider a solution, yet) == x(t, xo(t»), of (3.28), taking tbe initial con-

clition as a function of t. Differentiating with respect to t and rearrang

ing gives x~ = (DroX)-I(J(X(t,xo)) - x' +t.g(x(t,x()), t,t)).
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• If z(t, xo) is a solution of (3.28) with f = 0 (unperturbed equation), the

abo\-e reduces to

The dynamics of the averaged equation is related to that of the original

equation by the following theorem from Guckenheimer &:: Holmes [IIJ.

Theorem 3.4.1 Con,sider the differential equation

X' = ff(x, tj p) + f2g (.x, t, fj Jl)

and i15 associated averaged equation

(3.29)

y' = fJ(y,Jl), J = f foT fey, t; lJ)dt. (3.3D)

where Jl E R is a parameter.

Ij, al IJ = p', (S.SO) undergoes a saddle-node or Hopi bifurcation, Ihen,

jor Jl near p," and f sufficiently small, the Pr1inco.re map of (3.29) undergoes

a saddle-node or Neimark·Sacker bifurcation.

Van der Pol's Oscillator (Forced)

The forced Van cler Pol's oscillator

x" + ~(X2 -1)x' +x = fFcoswt
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is transformed by the method of averaging to the autonomous system

u' u - (TV _ U(U2 +V2 )

v' = au +v - v(u2 +v2
) - '1, (3.32)

where iU = 1 - w 2 and 7 = F/2 (See Guckenheimer & Holmes [11]).

Figure 3.11 depicts the bifurcation diagram for (3.32). A Hopfbifurcation

occurs along the curve marked OE, whose equation is given by 872 = 411 2 + I

where 1171 > 0.5.

0.8

0.6

OA
0

0.2

C
0

0 0.2 OA 0.6 0.8

Figure 3.11: Bifurcation diagram of the averaged equations (3.32)
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Guckenheimer & Holmes [111 discuss the diagram in more detail from the

point of \'iew of continuous dynamics. Our interest here will be to study the

effect of discretization by using linearized one-point collocation methods on

the location of the Hopf bifurcation. \\le take a cross-section of the diagram

at a = 0.75, and val)' "Y. Tbe Hopf bifurcation (subcritical) then occurs at

A:. = .jl3732.:::: 0.6373774. It can be shown that for any value of -, and 0',

the equilibrium points of the system (3.32) satisfy

Recall that the eigenvalues of the linearization

_ (1_3U2 _V2 -O'-2UV)
J(u,v)- a-2uu 1-3v2_u2

of the function on the right of (3.32) at an equilibrium point determined by

"/ (0' = 0.75) are gi\"en by

where aC"Y") = O. The canonical form of the Jacobian is then gi\"en by
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Recall also that the Neimark-Sacker bifurcation in the collocation methods

will occur at I = ",;, where

20'(1') = bC",;)he2cl - 1).

On the other hand, we observe that

e3.35)

Det{J(u"e"i, v"C'f)J = (I - 3u2
- u2 )(1 - 3v2 - u2 ) + u 2

- 4u2 v2 = b("Y)
(3.36)

Trace{Jeu'('f, v"e"i)] = 2a("Y) = 2 - 4u2
- 4v1

. e3.37)

We solve the equations (3.33), (3.34), (3.36) and (3.37) simultaneously

using (3.35) on MAPLE to obtain (u', v') and the corresponding "';. In Fig-

ure 3.12, we plot the bifurcation values "Y for various values of Cl and h = 0.01.

;';ote that, for Cl < 0.5, the numerical bifurcation values are below the true

value and the opposite is true for CI > 0.5.
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0.6376,---,....----r----.----,----,

0.63755 x

0.6375

0.63745

""i 0.6374

0.63735

0.6373

0.63725

0.6372

0.63715
0
L --

O
.l...,---O-'-..---O.,..6,------J

O
.'-8-----l

"
Figure 3.12: Bifurcation values of collocation methods for the averaged equa-

tions of the forced VOP oscillator.
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Chapter 4

Spurious Poles in Numerical
Solutions to Autonomous
Equations

4.1 Introduction

In this chapter, we consider the possible effect of the singularity in linearized

one-point collocation methods on the dynamics of autonomous equations.

Recall that, applied to the autonomous ODE (1.2). the linearized one-point

collocation methods are given by

(4.1)

where f:r is the Jacobian of f. The existence of the inverse of the matrL"i:

J -hcdr in the method may result in singularities. \Ve will first demonstrate

what effect this could have on tbe asymptotic behaviour of tbe solution, then

discuss some general theory on singularity analysis and poles.
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The discussion begins with a consideration of global dynamics in some of

the normal form equations in § 3.2 of Chapter 3.

4.2 Normal Form Equations: Codimension-l
Bifurcations

4.2.1 Saddle-node Bifurcation

Recall that a normal form for the saddle-node bifurcation is given by

x'=a+x2
•

Hence the map

represents an application of linearized one.point collocation methods to the

normal form.

The case Cl = 1/2 is of special interest since it produces a locally su-

perconvergent method_ Taking CI > 1/2, \\"C use linear stability analysis to

establish that a local period-2 cycle exists for a> h2(2~~ IF- This cycle

is stable for

-1 3-lOcl
h2(2cl - 1)2 < Q < 2h2(2cl - l)(lOq - 6Cl + I)·

For these values ofa, the cycle attracts all x-values such that 2~CI < x < oc.
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The system goes through a period doubling cascade to chaos, before a

boundary crisis bifurcation occurs at Q = 2h2Cl (~;I _1)· A boundary crisis

is created when the basin boundary of a chaotic attractor collides with an

unstable axed point. In this case, the unstable 'iixed point" is the singular

set. As a result of tbe boundary crisis, tbe chaotic set is no longer attracting

and becomes transient. For 2h2Cd~;1 -1) < a < 0, aU initial values, apart

from the singular set, are mapped to the stable fixed point x· =- -,J=a. In

this range, the numerical method turns the stable fi;'(ed point into a global at-

tractor, which is not the case in tbe ODE. In the ODE, the stable equilibrium

attracts all x < ..;=0, and for all x > ~, orbits go to 00. Furtbermore,

the monotonicity of tbe orbits for x >~ is lost in tbe numerical methods.

This is because tb.e direction of orbits destined for +00 is changed when tbey

cross the singular set. For a > 0, the system has no axed points and the

chaotic set, which bas been transient, reappears as a type I intermittency

(see Pomeau & Manneville {25], Foster IS]). Figure 4.1 is the bifurcation

diagram for th.e system with h =- 0.1 and Cl = 1.
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Figure 4.1: Saddle-node: f =0:+x2 , Cl = 1, h= 0.1

4.2.2 'I'ranscritical Bifurcation

A normal form for the transcritical bifurcation is given by

x' = o:x+x2
•

Discretizing using linearized one-point collocation methods results in the map

Using Cl > 1/2, we establish that there is a local period-2 cycle for 0:2 <

h2(2c~_1)2' This cycle is stable (and attracts all initial values above the sin-

gular set) for
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-2 2(IOc I - 3)
h(2cl - 1) < 0 < h~(20q _ 22Cf + 8cI - 1)

The system undergoes period doubling cascades to chaos, culminating with

boundary crisis bifurcations at

and for )01 < JlI:lc,(;c,_l)' aU initial conditions apart from the singular set

itself yield orbits tbat collverge to the stable fixed point. Again, the map

com·erts the fixed point into a global attractor, and tbe singular set destroys

the monotonicity of orbits. Figure 4.2 is the complete bifurcation diagram

for this map.
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Figure 4.2: Transcritical: f = ax + x 2
, c\ = 1 and h = 0.1.

4.2.3 Subcritical Pitchfork Bifurcation

A normal form for the subcritical pitchfork bifurcation is given by

x'=ax+x3,

hence the map

(4.2)

represents an application of linearized one-point collocation methods to the

normal form.
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Due to the complexity of tbe equations for the locations of the bifurcations

in the map (4.2), we let h = 0.1 and c\ = 1.

Figure ..1.3 shows the complete bifurcation diagram for (4.2). As we

saw with the saddle-node and transcritical nonna! forms, there are spurious

period-doubling bifurcations, period-doubling cascades and chaotic bebav·

iour. In addition, at (t = 90/i, a period-2 eycle undergoes a transcriticaI

bifurcation, then a period.doubling bifurcation at a = 20 +1~0v'5. We iden

tify Type III intermittent behaviour (Pomeau & Manneville [25]) to the right

of the pitchfork bifurcation.

Figure 4.3: Subcritical Pitchfork: f "'" ax + x 3
, Ct = 1, h = 0.1
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4.2.4 Remarks

From the preceding examples, it is clear that the global dynamics of th!!

methods is different from that of the corresponding system. Not only do

the methods give rise to spurious period doubling and chaotic behaviour.

but they change the asymptotics of trajectories and drastically alter the

basins of attraction of the fi..xed points. Howe,,-er, local to a bifurcation,

the local dynamics and asymptotics of the ODE are preserved. Typically.

in the presence of a stable fixed point and an unstable one, the w-Iimit set

of any orbit with initial condition not on the singular set is the stable fi..xed

point; the exception being the values of the parameter for which tbe spurious

period-doubling cascade is present. This does not occur in scalar Oows, and

is directly due to the presence of the singular set in tbe methods.

"Ye further motivate the study of the effect of the singular set on global

dynamics by considering a planar predator-prey system.
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4.3 Motivation: A Predator-Prey System

Consider the two-dimensional system of nonlinear first-order autonomous

ordinary differentiaJ equations,

{
u' = -3u +4u2 -O.5uv _ u3

v' = -2.1v + uv
(4.3)

where u and v represent the population ortbe prey and predator respectively.

The equilibrium points of this system are (0,0) (stable node), (2.1, 1.98)

(stable spiral), (1, 0) and (3. 0) (saddles).

Vee &:: Sweby [3J] studied the global asymptotic behaviour of the above

system using a number of linear multistep methods. \Vhat they unco...-ered

is that different numerical schemes can give rise to differing appearances of

basins of attraction of local fi.xed points. In general, the numerical basins of

attraction bore no resemblance to the exact basins of attraction. Depending

on the discretization parameter, the numerical basins also differed signifi-

cantly from each other (see Chapter 2). Our objective here is to explain this

behaviour by appealing to the singular set analysis of the maps.
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(U)

4.3.1 Linearized One-point Collocation Methods

Applying the methods (4.1) to the system (4.3) gives

h(l + 2.1hcl - hClu")(-3u,, + 4u~ - O.SU"t:" - u~)

u" + Q(u", v,,) +
-O.5h2c\u"(-2.1t:,, + u"u,,)

Q(u",v,,)
h:lC1V,,( -3u" + 4u~ - O.StI"V" - u~)

v" + Q(u", v,,) +
hel + 3hcl - Shc,ll" +O.5hc\v" + 3hclu~)(-2.1v" + u"v,,)

Q(u",u,,)

where h is the time step and

Performing some standard stability analysis of each of the four fixed

points, we discover that, depending on Cl and the stepsize h, the dynamics

of the numerical methods may differ significantly from that of the system.

The stability analysis was performed analytically and verified using ~IAPLE.

Figures 4.4 to 4.7 are bifurcation diagrams for each of the four fi..'(ed points,

as obtained analytically.
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Stable Spiral

1.8

I.,
1.4

1.2

h 1 Un.stable Spiral

0.8

0.'
0.4

0.2
Ol-_-="__--,',__-'-_---,L-_--.J
o 0.2 0.4 0.6 0.8

Figure 4.4: Bifurcation curve for the fixed point (2.1,1.98).

Stable Node

Saddle

0.8

oL-__'-__'-_-="__-J. _

o 0.2 0.4 0.6
<,

Figure 4.5: Bifurcation curve for the fixed point (0,0).
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1O,----r---...,...----,-...,...----r--~

nstable Node

Saddle

oL-_-'-__-'-_----'__--'-_--.J
o 0.2 0.4 0.6 0.8

Figure 4.6: Bifurcation curve for the 6.xed point (1,O).

10 ,------,,------,-,.---,,,----,,---,

Unstable Node. Saddle Stable Nod

o l===:L::=---,-l---,L-----,J-_-.J
o 0.2 0.4 0.6 0.8

Figure 4.7: Bifurcation curve for the fixed point (3,0).
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\Vhile the methods do not admit spurious fi.xed points, the diagrams

show that they change the stability types. for example, the saddle (1,0) is

converted to a stable node by a linearized one-point collocation method \\ith

Cl >0.5 and h > 2c\I_I'

4,3.2 Basins of Attraction

Depicting basins of attraction (showing global asymptotic behaviour) is very

revealing. Figure 4.8 shows the true basin of attraction for the equilibrium

points of (4.3) as shown in Vee &: Sweby [331. Figure 4.9 shows the basin as

computed by the linearized implicit midpoint method with h = 0.1. In both

diagrams, red represents the basin for (0,0), blue for (2.1,1.98) and black for

infinity. The darker shade of blue indicates a slower rate of convergence to

(2.1,1.98).

The set of initial values that is attracted to (0,0) is larger in the numerical

basin than in the true basin. This is due to the shrinking of the basin

for ce. The reason for this behaviour is the existence of the singular set

Q(u,v) = O. .-\11 orbits with initial value in the true basin for -00 are

attracted to the fourth-quadrant subset of the unstable manifold, \-Vu, of the

saddle at (u, u) = (3,0). However, because of the singular set, these orbits

"di\"erted~ into the basin for (0,0) upon reaching some neighbourhood
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of the singular set. Such bebaviour ~ill be defined in the next section as

pole-type behaviour.

For h = 0.1 and c, = 0.5, E- = span(-0.21739, I)r. W- is tangent to

the \·ector E- at (3,0).

Figure ..1..10 sbows tbe location oftbe singular set Q(u, v) = o of linearized

one-point collocation methods with he, = 0.05 for the s)"Stem (4.3). The fig.

ure also shows one orbit of the discrete system with initial value, .ro, in the

true basin of attraction of -00. For this initial condition, w(.rol = (0,0).

When the orbit. while moving along IP, reaches a neighbourhood of the

singular set, it loses its monotonicitr, falls in the basin of (0, 0) and then ap

proaches this fi..xed point monotonically, as shown. The Joss of monotonicit:r

occurs at approximately v =-800 (not shown).
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Fig 4.8: Basin of attraction· Predator-Prey Model
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Fig 4.9: Numerical Basin of local fixed points (h=>O.I, CI""O.S)
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Figure 4.10; Singular set oC linearized One-point collocation methods with

hel = 0.0.5. Singular set (_. _ '), single orbit (-).

4.4 Spurious Pole-type Behaviour

linearized one-point collocation methods, ronnulated specifically Cor the pla-

nar autonomous equation u' = b(u,v), v' = f2(U,V) can be written in the

rorm

U~+l =U~+h~~:::::~

V~+I =V~+h~~:::~:~
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where P(u, uJ, Q(u, v) and R(u. tI) are functioDs iD\'Ohing the b and f2 and

their partial deri\"'lltive5.

Definition 4.4.1 We define the .ringular $et of the method Q$ the J'Ub$et of

R' where Q(u, u) = O.

.-\11 linearized one-point collocat-ion met-hods with Cl > 0 ha\'e a Dontrilial

singular set. The location and nature of the singular set is important since we

expect the dynamics of the method near the singular set to be unpredictable,

so that orbits destined for infinity are "disrupted" and end up finite. This

behaviour is analogous to tbe existence of poles in continuous systems.

Definition 4.4.2 (Albowitz &: Segur [1]) Coruider any ordinarv or partial

differential equation. Singularities of the coefficients of the differential equa

tion will also be .ringularities of the $olution_ Such .ringularitie" are rolled

fb:ed singularities. Any "inguiarity of the solution that is initial conditilm

dependent u rolled a mo\-able singularit~·.

Definition 4.4.3 A differential equation is said to pouus the Painlevi prop

erty (PP) if all movable singularities of its solutioru are pole".

Joshi [211 alluded to the existence of behaviour analogous to poles in

discrete dynamical systems. The following is an adaptation of his definition

to JR."'.
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Definition 4.4.4 (Joshi [211) An orbit of a discrete dynamical system that

begins in the finite part of lRm, reaches the point at infinity in a finite number

of ste.ps 11, and continues pa.st infinity to the finite region of Rm is said to

have pole-type behaviour.

The integration of a differential equation that has no PP by a numerical

method that exhibits pole-type behaviour can result in distortion or misrep--

resentation of the global asymptotic behaviour (basin of attraction).

Consider a scalar differential equation of the form

x' = P(x), (4.6)

where P(x) is a polynomial of degree q > 2 in x. This differential equation

has no PP ([21]).

Theorem 4.4.5 A linearized one.point collocation method with Cl > 0, ap-

plied to (.t.5), exhibits spurious pole-type behaviour if and only if Cl = Ijq.

Proof: If the numerical methods are represented by the map

then it suffices to show that limh .... .,., X~+l = d < 00.

Lot

P(x) = tOjxi.
j=O
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Then, applying one-point collocation methods to (4.6), gathering terms and

simplifying, gives

x" + h r:l 0(1 - jCI)Ojx!.
1 he l r:l",ljaj r'..-1

x~-q + h r:l-o(1 - jcdajx~-9

X;9 hCI El=l jajr'.. q I .

Clearly, if Cl :# l/q, r~i..!pooX"+l = 00.

Ifcl = l/q.

so that

X,,+I
qx" + h El:~(q - j)ajx~

q- hEl:oljajr..- 1

qx~-q + hEl:~(q - j)ajxh-9+1

qx;q+l h Ej:ol jaj;d,-q

and the conclusion of the theorem follows.

4.4.1 Remarks

o

In spite of the fact that we have not proved the existence of spurious pole-

type beha\"iour in systems in which J(x) is not a polynomial, we remark here

that Theorem 4.4.5 and the results of the first two sections of this chapter,

suggest that the phenomenon of spurious pole-type behaviour does occur in
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the genera! case. indeed, if f is approximated by a truncated power series.

spurious pole-.type ~haviour will be observed for some values of Cl-
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Chapter 5

N onautonomous Equations and
Periodic Solutions

5.1 Introduction

x' =f(x,t), X(O) =xo (5.1)

where f ; I C Ii{ x IR -+ IR, be a scalar ordinary differential equation in which

f(x, t) is a periodic function of t with prime period T.

Since f depends explicitly on t, the differential equation is said to be

nonautonomotes. The detai(ed dynamics of numerics for nonautonomous

ODEs has notably been Jacking until the work in Kbumalo 1221 which is

based on the material in this chapter.

Although any nonautonomous ODE can be transformed to an autonomous

one, thereby increasing the dimension by one, the familiar dynamics of
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autonomous equations which is centered around the notion of equilibrium

points, is lost. In certain special cases, this notion is replaced by that of pe-.

riodicity. It is on these special cases that we will focus our attention. Stuart

[30J, proved using bifurcation theory that for reaction·diffusion-<:onvection

equations, linearized instability implies the existence of SPUriOWi periodic so-

lutions. Our consideration here concentrates on nonautonomous ODEs where

f is periodic in t, and differs from that of Stuart who considered partial dif

ferential equations. Nonautonomous ODEs with ~eriodic solutions are very

common in applications such as population d}'namics with seasonal parame-.

tets or periodically forced systems.

Under certain conditions on f, (l.li) has a unique r.periodic solution.

The:.e will be stated for each fonn of f we will consider. We will assume

the solution is approximated by a linearized one-point collocation method.

Our objective is to determine, for each f under consideration, whether the

numerical scheme has the same dynamical behaviour as the differential equa

tion. In particular, we will consider cases in which the ODE has a unique.

asymptotically stable periodic solution and establish conditions under which

the numerical methods have the same dynamics. These special cases will

take the following form:

(i) f linear: f(x, t) = a(t)x + b(t), where a(t) and b(t) are Cl T-periodic
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functions of t.

(ii) j nonlinear: j == a{t)g(x) +b{t), where a(t) and b(t) are Cl T-periodic

functions of t and g(x) is a Cl nonlinear function of x.

Recall that the linearized one-point collocation methods for (1.17) are

given by

X"+l = x" + hj(t", x,,) + Clh27k~n'Xn) - c1hx,,*(tn,x,,).

1 c1hOz(tn,x,,) (5.2)

We begin with a description of tbe dynamical systems theory approach.

which will be used in determining the conditioos under which tbe methods

have the same dynamical behaviour as the differential equations. Upon es·

tablishing these conditions, we compare them with those imposed by nonau-

tonomous stability theory.

5.1.1 Dynamical Systems Approach

In what follows, we will use a technique known as stroboscopic sampling to re-

duce the problem of determining existence and stahility of periodic solutions

to existence and stability of fi.xed points.

Let X,,+I = p(x"j nj h) be tbe discrete system representing the numeri-

cal method. applied with fixed stepsize, to the nonautonomous differential

equation.
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Step 1: using inductive arguments, write the method in the form X n+ I =

(j(xo; n;h).

Step 2: Choose h such that the period, T = hk. Then, Xt = c6(xo: k; h),

and then we establish the new discrete s)'stem X"+l = (fl(X,,; k; h). This is

known as stroboscopic sampling.

Step 3: The fi.xed points of the last system correspond to T-periodic

solutions of the method. These are determined, with their stability types.

The above procedure is analogous to the Poincare map of (1.17): Let

4>(l,xo) be the T-periodic solution of (1.17), with starting value x(O) = xo.

Then, the Poincare map of (1.17) is the scalar mapping

n : JR -Jo R x 0-+ 4>(T, x).

5.2 Linear Case

Suppose f = a(t)x + bet), where a and bare T.periodic functions of t. Then,

the linear nonautonomous differential equation (1.l7) be<:omcs

X' = a(t)x+b(t}, for t ~ 0 and x(O) = Xo. (5.3)

If VI = It a(t)dt < 0, then (5.3) has a unique T-periodic asymptotically

stable solution. If a(t) = 0, then (5.3) has a unique T-periodic solution that

is asymptotically stable if 1I2 = It b(s)ds = 0 (Hale & KOl;ac, 1991).
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Now, the linearized one-point collocation methods are given by

Xn+l = In +-hh ( h) {a(nh)xn + b(nh) + hCI[a'(nh)xn +f/(nh)j}.
1 - cia n (5.4)

We will begin our discussion with the cases in which the function a(t) is

trivially periodic (a(t) = 0 and a(t) = -I).

5.2.1 Linear Case with a(t) = 0

Theorem 5.2.1 Suppose a linearized one-point collocation method is 1UIed

to solve the linear nonautonomotls differential equation (5.3) with aCt) = O.

The method tends (as n -t 00, h > 0 fixed) to a periodic solution for any

starting value if and only if

~br=O,

where br = b(rh) + hclb'(rh) for each r.

Proof: Assume /.o<;l = It b(s)ds = O. Taking aCt) = 0 in (5.4), we obtain

InH = X n + h{b(nh) + hclb'(nh)}.

Wc define

b; = b(ih) + hctb'(ih)
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and denote

(5.6)

Xo\\,. we can prove by induction that for a given value of IO,

(5.7)

\Ve can select h in such a way that T is an integral multiple of h. That

is, we can fi..x kEN such that T = hk. Consider the k4th iterate of IO under

and the related iteration, which corresponds to stroboSClJpic sampling

T.I:-l_

Xn+ l =Xn+"k ~br

(5.8)

(5.9)

where .\'0 = IO' If the summation on the right-hand side of (5.9) is zero, then

the discrete system is fixed at Xo for all n, which corresponds to a periodic

solution. If it is nonzero, then the stroboscopic iteration has no fi..-.;ed point

and diverges.
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Remark

The second term on the right-hand side of (5.9) CaD be 'I";ewed as aD appli-

cation of the left rectangular quadrature rule to the integral

From the assumption that II-.! = 0, we conclude that the abo\'e integral is

zero, and (5.9) can be written as the simple map

Xn+I=Xn+C

where

(5.10)

T k_l_ y'l T
lei ~ .1; '.1 ~ 2k1b'(~1 + e, .'''«11 (5.11)

for some { E (0, T), is the quadrature error.

The abo\'e theorem can then be restated as follows: Suppose a linearized

one-point collocation method is used to solve the linear nooautonomous dif-

ferential equation (5.3) with aCt) = 0. The method tends (as n --+ 00, h > 0

fixed) to a periodic solution for any starting value if and only if the rectao-

gular quadrature rule, used to approximate the integral in (5.11). gh-""Cs an

exact result.

Suppose that c#:-O in the last theorem, We remark that the rate at

which the system (5.9) grows or decays is dependent on the value of 14
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which, in tum depends on h. If h is very small (corresponding to large k).

thc growth/decay will be so small that in order for it to he significant, one

would have to integrate over significantly long times.

Illustration

\\'c cxamine the stroboscopic sampling of the solution of the differential equa

tion x' = costeli'l'; x(O) = 1. Figure 5.1 shows the numcrical results for

k = 4, 5 and 10 with Cl = 0.5. For k = 4, the method diverges quicker from

the periodic solution than for k ""- 5. For k = 10, the divergence is negligible.
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Figure 5.1: Numerical results for (5.9) with Cl = 1/2. k = 4 (x x), k = 5

(~l-k=IO(---)

5.2.2 Linear Case with a(t) = -1

If we take aCt) = -1 in (5.3), then clearly VI = J[ a(s)ds < 0 and the

differential equation has a unique, as)'mptotically stable periodic solution.

If aCt) is a negative constant, the differential equation could be scaled such

that aCt) = -1. Then, we have the following theorem.

Theorem 5.2.2 Suppose a linearized one-point collocation method i.s used to
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solve the linear nonautonomous differential equation (5.3) with aCt) = -1.

Then, for fixed Cl and k, the method admits a unique periodic solution that

is asymptotically stable, provided

Proof: If aU) = -1, (5.4) simplifies to

In+l = Xn + k +TTCI [-Xn + b(nT/k) + T;l b'(nTjk)]

_ (k + T(" - 1)) T IbC T/k) ~b'( T/k)j
In+l-Xn~ +k+Tcl n + k n .

Proceeding in a manner analogous to the above, we can sllow by induction

that

Xn+l = Xo (k+ T(CI - 1))n+1 + _T_ t (k + T(Ct - l))~ b
n

_
c

k + TCI k + TCI ~=o k + TCI (5.12)

where each bi is defined by (5.5).

Denoting the right-hand side of (5.12) by n(xn), we can perform strobo-

scopic sampling and consider
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and the associated map

. (k+T(C' -1»)' T ~ (k +T(c, -1))'-
.\:"+1 = A'" -k-T-- +-kT "- -k-T-- bk_~_l'

+ C\ + Cl ~"'o + Cl (5.14)

Equation (5.14) is just the linear map

X"+l = eX" +d

with

c ~ (k + T(cl - 1»)'
k+Tcl

d~ _T_~ (k+T(cl-l»)' b
k + TCI :;0 k + TCI k-~-l'

The map has a single fi.xed point,

X"= l~e'

which is asymptotically stable if and only if leI < 1, that is,

k
T(l-2cd>--,-,

and the result is established.

(5.15)

o

The following results are simple consequences of the above theorem.

Theorem 5.2.3 A linearized one·point colloco.tion method with Cl Eft, IJ,

applied 10 the linear nonautonomous differential equation with aCt) = -1.
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admiu a unique periodic .folution that U o..f!/1l'lptotically ,table for all vaJuu

ofk.

Thus. the linearized implicit Euler method and the linearized implicit

midpoint method for the linear DonaUlonomous differential equation with

aCt) = -1, admit a unique. asymptotically stable periodic solution for all

k >0.

However.

Theorem 5.2.4 The upficit Euler method for the linear nonautonomow

differential equation with aCt) = -1 admiu a unique, asymptotically ,table

periodic ,olution if and only if k > T /2.

\\te attempt to bound IX"I. The follffi'ling lemma gives a bound on the

solution 4l'(t) of (5.3).

Lemma 5.2.5 Let bet} be a C l T -periodic function of t and (l"f,fUme (5.3)

with aCt) = -1 fuu a unique T -periodic .folution. There e:rists a number

.\l > 0 ,ucA that lb(t)l, W(t)! :5 M and the T -periodic ,oluUon, 4>(t), .fatiljiu

1"'('II:5 M

for t -t:)O.
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Proof: The boundedness of b(t) and b'(t) follows from the periodicity and

continuity of both functions.

Let ¢(t) be a periodic solution of (5.3) with aCt) = -1. Then, ¢(t) satisfies

the inequality

-Ij)- AI:5 ¢':5 -¢J+M

This givcs Gronwall's inequality

for all t.

see [16]. Thus, ¢(t) is bounded for t ~ 0; therefore it approaches a T4periodic

solution ~(t). Taking t -+ IX) in (5.16) establishes the lemma. 0

From the abo\'c lemma, we bave lxol :s AI. Then, we have the following

theorem.

Theorem 5.2.6 Let X', given by (5.15), denote the fixed point generated

by the stroboscopic sampling of the numerical solution of the linear nonau

tonomous differential equation (5.3) with a(t) = -1 by a linearized one-point

collocation method. Then, the inequality

IX'I ':5 M(l + '!f)
holds.
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Proof: Since b{t) is continuous, there is a number AI such that Ib(t)l, Ib'(t)! :s:

;\[ for all t E R Then, for large t, the solution [4)(tll < M.

Observe that

and

Idl :s: k+TTCl 'Ml.~(k+k-Z;~c:l))'

k :TCI All' {I + k + T~l -l){l - (k +k~:;'C: Ilr-Il }

Ml.(l- (k+T(Cl-l))'j
k+Tc\

Ml(l-c).

Therefore,

IX'I:S: iH~(~~ c) = Af l = M(l + ~). (5.17)

o

Hence, X' has essentially the same bound as the periodic solution.

Numerical Experiments

Consider the linear nonautonomous equation

x' = -x + sin t, x(O) = 0
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which has a solution x(t) = 4[sin t - cos t + e-lj. Figure 5.2 shows the

numerical results (stroboscopic sampling) of the linearized implicit midpoint

method (Cl = 1/2) with k = 3 and k = 10; Figure 5.3 shows the results of the

explicit Euler method (CI = 0) with k = 3 and k = 10. In these experiments,

T = 2;r; hence, convergence to a unique periodic solution is expected for

k > ;r(I-2ed.

-0.2 r--,----.----,--,-------,,---,

-0.-1

-0.6

-0.8

-1

-1.2

-u I-------------------l

20 40 60
t

Figure 5.2: Numerical results of (5.18) using linearized implicit midpoint

method: k = 3 (-) and k = 10 (- --)
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Figure 5.3: Numerical results of (5.18) using Explicit Euler method: k = 3

(-)andk=lO(---)

5.2.3 Linear Case with aCt) = -1 + Ep(t)

aCt) = -1 + (p(t) (5.19)

where f. ~ 0 is a constant, and pet) is a T-periodic function of t. We assume

that ~T + (f[ p(s)ds < 0, so that (5.3) has a unique asymptotically stable

III



periodic solution.

Linearized One-Point Collocation Methods

We establish conditions under which a one-point collocation method with

fixed CI and step-size h > 0 exhibits the same dynamical behaviour as the

nonautonomous linear differential equation with aCt) = -1 + ep(t).

Notation: In what £ollows, we will denote bn = b(nh), b'n = Y(nh), Pn =

penh) and tin = p(nh). Here, as before, T = hk (k E N).

Theorem 5.2.7 Suppose a linearized one-point collocation method is used

to solve a linear nonautonomous differential equation of the form (5.S) with

aCt) = -1 + ep(t). Then, for fixed Cl and k, the method will admit a unique

periodic solution that is a.symptoticaily stable, provided

Proof: From (5.4), we deduce that the linearized collocation methods, ap-

plied to the nonautonomous linear ODE with a(t) given by (5.19), are

[
h<-I+ePn)+Clh2ePn]

X n +! = 1+ I- hcl(-I+epn) xn +

1 hCl ( h 1 + lPn) . [b.. + clhb~J. (5.20)
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\\'e can write the above as

where

1 + h(-1 +t"P.. ) +c l h 2{tf"
1- hCl( 1 +(p,,)

h

Proceeding by induction, we establisb that

I"H = Xo ft T; + t HiJ; ft Tj ,
b,O ;=0 j=;+l

from wnich we deduce that

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

k_l k-l ,1,_1

Xk = Xo II T; + L HJ); II Tj := nk(xo). (5.26)
i",O 1=0 i=;+l

The discrete system that corresponds to stroboscopic sampling is the

linear system

where

X"+l =c(e:)X" +d{e:),

c(t) llT;
d(l) EB;b; IT Tj •

;=0 j ..i+1
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This system has a unique fixed point, X', given by (5.15). It is asymptotically

stable if and only if Ic«()1 < 1, that is, Im;J Til < 1, or

Substituting h = T/k gives the result. O.

Numerical Experiments

For each of the three special values of c" p(t) = sin t and increasing values

of t:, we detennined, using (5.28), the minimum value of k such that each

method has dynamical bebaviour that is the same as that of the differential

equation. The results are illustrated in Figure 5.4.
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Figure 5.4: Least k for unique periodic solution. Explicit Euler (- - -),

Linearized Implicit Midpoint (-), Linearized Implicit Euler (x x)

For ~ < 2, the Explicit Euler method is the most restrictive of the three

(that is, comparatively larger minimum values of k must be used to obtain

dynamical behaviour tbat is the same as tnat of the differential equation).

However, as t: is increased, the Explicit Euler method outperforms the lin

earized implicit Euler method by becoming less restrictive than that method

for t: ~ 3. For t: ~ 3, the explicit Euler and linearized implicit midpoint

methods give comparable results, and for those values of c, the linearized
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implicit Euler method becomes more and more restrictive in comparison to

the other two.

Finally, we develop a bound on IX·I. For comparison purposes, we

present the following lemma, which can be PW\·ed in a manner analogous

to Lemma 5.2.5.

Lemma 5.2.8 Let b{t),p(t) be Cl T-periodic junctions oj t. There exist

numbers M, ;\12 > 0 such that [bet)!, fb'(tll :5 AI, Ip(t)l.lP'(tll :5 ,Hz, and the

solution <Il(t) satisjie3

as t -+ 00.

Theorem 5.2.9 Let X·, given by (5.15), be the ftzed point generated by the

stroboscopic sampling oj the numerical solution oj the linear nonautonomous

differential equation with aCt) '= -1 +(p(tl by a linearized collocation method.

Then, the following inequality holds.

IX"I < M{I+Tfl .
- 11 - cl(,Hz - dlzl

(5.29)

Proof: Since bet) and p{t) are C l and periodic. there are numbers M, Mz

such that [b(t)l, fb'(t)l :5 AI and Ip(tll, [P'(t)l :5 !Hz for all t E R
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For each i,

where h = T/k. If

IToI "
11 +hCI + hdf2 - hi

1 +hCl - hCl(.M2

IHd
h

" Il+hcl hc1dl21

Ib,1 " ,\til =.iH(l+clh),

then

Id(')1

On the other hand, we deduce from the definition of c{() that

Hence.

which is identical to the inequality (5.29).
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If we substitute t: = 0 in (5.31), we obtain (5.17) as expected. Here, as

welL the bound for X"{t:) is the same as that of the periodic solution as

h -t O.

We would like to obtain a relationship between the dynamical approach

study and stability analysis. \Ve introduce a natural stabilit:y criterion for

the differential equation as well as any numerical method used to discretize

it.

5.2.4 Conditional AN·stability and AN-stability

We consider the problem of determining a criterion for some sort of ~con

trolled behaviour" of tbe solutions of the metbods. We adopt a linear stability

criterion that is based on tbe scalar test equation

x' =a(t)x,

where aCt) E C. If Re(a(t)) < 0 for all t E [,81, .8:z], then

(5.32)

x(t + h) = Kx(t),

for all x E [.811 .8:11 and h > o.

WI $1,

Definition 5.2.10 A numerical method is said to be conditionally AN-stable

for some h > 0 if, when applied to the test equation (5.32) with Re(a(t)) < 0
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for all t,

IK(h)l'; I,

holds for all n E N.

If this condition is satisfied for all h > 0, then the method is AN-stable

(Lambert f23}, Stuart B Humphries f31}).

The following simple result gh-es a condition under which the linearized

one-point collocation methods are conditionally AN-stable.

Theorem 5.2.11 The linearized one*point collocation methods are condi

tionGlly AN -stable if

(1 - 2cda(t) + cjha'(t) ::: -~

and a(ll + c1ha'(t) :5 O.

Proof: C:sc the above test equation in (1.23).

Examples:

(5.33)

1. If aCt) = -1, then the linearized one-point collocation methods are con-

ditionally AN-stable if

~(1-2Cd$1.
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It is easy to observe that the methods are AN-stable if CI 2: ~ and condi

tionally AN-stable for sufficiently small h if c, < ~.

2. If aCt) = -1 +tp(t), where t, P(t) Ee, and t(P(t) +c1hP'(t» :S I, then

the linearized one-point collocation methods ace conditionally A.l'l·stable if

-1 + cp(t) +cl(hcP'(t) + 2 - 2cp(t) 2: -~.

Our results suggest the existence of a relationship between the linear

stability theOl)' of the collocation methods and the existence and asymptotic

stability of periodic solutions, identified via stroboscopic sampling. This

relationship is stated in the following theorem.

Theorem 5.2.12 Suppose a linearized one-point collocotion method is wed

to solve a linea,. nonautonomous equation with ptriodic coefficients which has

(I unique, asymptotiC4lly stable periodic solution. Then, the method yields the

!l(lme dynamical bchauiou,. if it is conditirmaily AN-stable. The reve,.se does

not necessarily hold.

Proof: The first statement follo\\'S from tbe conclusions ofTbeorems 5.2.2

and 5.2.7 as well as Examples 1 and 2 in section 5.2.4.

\\'e use an example to show that the reverse is not true in general. If,

in § 5.2.3, we let p{t) = sin t, CI = 1, k = 10, and t = 2, we find that the
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method has a single asymptoticaUy stable periodic solution since it satisfies

the condition (5.28). However, it is not conditionally AN-stable since the

condition in Example 2 is violated. o

The last theorem is very significant, since it gives us a bridge connecting

standard stability theory with dynamical systems. Naturally, we would like

to find out if there is a corresponding result for the nonlinear case, which we

now consider.

5.3 Nonlinear Case

We consider the nonlinear equation,

x' = a(t)g(x) + bet), for t 2: 0 and x(O) =Xo (5.34)

where bet) is a T.periodic function of t and g(x) is a C 2 nonlinear function

ofx.

The following is an existence and uniqueness theorem for the solution of

(5.34).

Theorem 5.3.1 The differential equation (5.34) has a unique T-periodic

solution that is asymptotically stable if g(x) E Ci, g'(x) > 0, aCt) < 0 fOT all

x and t, and g(x) -l- +00 as x -l- +00, g(x) -+ -00 as x -l- -00.
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Proof: \,Ve follow a method of proof similar to that used in Ha!~ & K~ac

[161· We start by establishing the existence of at least one periodic solution

of (5.34). Let

amin lf1~ea(t)

ama.'( rr;;:lIf a(t)

bmin rp~J1b(t)

broax rr:o"'b(t),

where aCt) and bet) are T-periodic.

If 4>(t) is any solution of (5.34), then <f>(t) satisfies

g(4))amin + bmin :5 4>':S g(<f»amax + bmax. (5.35)

Defining the sets

U_ {(t,x): g(x)amin + bmin > O}

U+ {(t,x):9(x)ama.'C+bma.",<O}

wc obscrve that <f> is increasing in U_ and decreasing in U+. If g(x) ...--j> +00

as x ----10 +00 then x E U_ for all x sufficiently large, and if g(x) ...--j> -00 as

x ----10 -00 then x E U+ for all x sufficiently small.

Therefore, the solution is bounded for all t ~ 0; hence, therc is at least

one T-periodic solution of (5.34).
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Unique.ness: Let x\(t) and xdt) be two T-periodicsolutions of the diffec-

ential equation. Then,

x', a(t)g(xd + b(t)

a(t)g(x2) +b(t).

(5.36)

(5.37)

From (5.36). (5.37) and the Mean Value Theorem, we have

X'(t) ~ a(t)g'(a(t))X (5.38)

where X(t) = Xl(t) - X7(t) and a(t) is between x\(t) and X2(t) for all t.

If 9'(X) > 0 for all x, and aCt) ::5 -f < 0 for aU t, tben clearly X(t) -+ 0

as t -+ 00, proving the uniqueness of tbe periodic solution. o

We assume the hypotheses in Theorem 5.3.1 are satisfied, and consider

the exercise of de\i.sing numerical approximations for the solution of (5.34).

5.3.1 Linearized One-Point Collocation Methods

The linearized collocation methods, applied to (5.34), are given by

where b" = bn + clhb~ and ii" =an + clha~.

We perform a simplification on the tbird term of (5.39) that takes the

form of evaluating tbe derivative of 9 at the starting value, instead at each
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step. The resulting method, that will be referred to as a simplified linearized

one-point collocation method, is

where

X,,+! = X" + hii"G(x,,; n) + H"E", (5.40)

G(x;n)

1 hanCl9'(XoJ
9(X)

1 - hanCI9'(X)'

5.3.2 The Dynamical Systems Approach

\\'e would like to take the dynamical systems approach and determine the

conditions under which (5.40), applied to the differential equation (5.3-1),

yields the same dynamics as the continuous system.

We rewrite (5.40) as

ha"G(xn;n) = X"+l - I" - Hnbn.

Inducth'ely, we can show that

We choose an integer k such that T = hk. Sampling stroboscopically in

the iteration above, we get

k_l k-l

Xk = Xo + ?; HriJr + h~ ii,.G(xr ; r) (5.42)

124



and associate this with the discrete system

where.

r_1 r_1

:<r X" + ~Hrbr+h~ii;G(X;;i) forr = 1,2.... k-1. (5.44)

The fixed points of (5.43) correspond to periodic solutions of (5.34). Fixed

points are points, X", such that

where

r_1 r_l

.X"r =X' + LH;b; +hLii;G(~Y;;i) for r= 1,2, ... ,k-1,
;"'0 ;=1

and So = X". Define the sequence of functions F1(x), F2(x), ... by

where :fa = x and

for r = 1,2, .. ,k-l.
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The theorem below gives conditions under which the simplified Linearized

one-point collocation methods, applied to (5.34), exhibit dynamical behav-

iour that is the same as the differential equation.

Lemma 5.3.2 If 11 + hii(t)G'(x; t)l < 1 fOT all x and t, then

-1::5 F;(x) <0

lOT all kEN, where Fe(x) is given by (5.46).

Proof: Observe that Fl(x) = hiioG(x;O) + Hobo and

(5.48)

for k = 2,3, ... It can be established by induction that

where iii = hO.iG'(x + F;(x); i) < 0 for each i E N.

(5.-1.9)

It can be shown by induction on k that F~(x) < 0 for all x and kEN.

On the other hand, we obtain an extremum, F'k' of F:' when

fort = 1,2, .. ,k -1. Takingl=k-I in the abo\"e equation gives
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from which we deduce that PI: = -1. Clearly, this extremum is a minimum,

and the lemma is established. o

Theorem 5.3.3 Assume the differential equation (5.34) has a unique solu

tion. /f

(il 9"(X)9(X) $: 0,

Oi) ClU'(t) <~ for all t, and

(iii) ~Ta'( G'(x;t) $: hl<l~!)I'

then a simplified linearized one.point collocation method has a periodic

solution for any k = Tlhi this solution is unique and asymptotically stable.

Proof: Finding possible fixed points of (5.43), nence periodic solutions as-

sociated with the metb.ods, is tne same as finding zeros of (5.46). This is

equivalent to solving tb.e nonlinear system:
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XL - X" - hiioG(x";O) - Hobo = 0

The above system is of the form F(x) = 0, where F is a nonlinear function

of

[ ~:~X'lx= X2

X"'-_l

To prove existence, it is sufficient to show that the Jacobian matrix, J(F),

of F is non-singular. Now,

[ ,
d, d, d, d

lc
_ 2

~]
-l+do 1 0 0 0
-1 +do d 1 1 0

J(F) = -1 +do d1 d, I

-1+do d L d, d"'_2 d"'_l
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wbere d, = -haiG'(x,; i) for each i. We perform one elementary row opera·

tion: row 1 -+ row I • row k. Tbe matri."( becomes

[

1 0 0 0
-1 + do 1 0 0
-1+do d l 1 0
-I+do d l d2 1

-I+do d l d2 ••:.

It is eas)' to see tbat the above matrix is nonsingular.

To prove uniqueness, let Xl and X2 be two fixed points or (5.43). Then,

from (5.48).

and

(5.51)

(5.52)

Subtracting (5.52) from (5.51) and using the :\'!ean Value Theorem gives

(5.53)

which may alternatively be written as

(%1 - %2){FLI(nl)(1 +hak_IG'(02;k - 1» +hak_IG'(02;k -I)} = O.
(5.54)
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In the above equations, 0'1 is between Xl and X2 and 0'2 is between XI +

Fk_l{Xl) and X2 + Fk _ 1(X2).

From the nypotbeses of the theorem. we have that F' < O. G' > O.

O:k_l < 0 and 1::: 1+hiik _ 1G'{O'2;k-I)::: O. Thus, Xl =X2'

To prove that the periodic solution is asymptotically stable, we need

only to show that 11 + F'I < 1. Since 1::: 1 + hii(t)G'(x;t) ::: 0, we have

-1 :s:: F' < 0 from Lemma 5.3.2.

This completes the proof.

5.3.3 Nonlinear Stability Theory

o

\Ve wish to establish conditions under which numerical methods for the so-

lution of (5.34) behave in a "controlled" manner.

Consider jR'" as an inner product space with corresponding norm II II.

Then, if neighbouring solution curves converge with respect to this norm (as

t -+ =), the s:rstem is said to have contractive solutions (Lambert [231,

Stuart & Humphries [31]). As in the linear case, we will contrast the condi

tions for stability with the existence and uniqueness of a periodic solution in

the numerical methods.

We briefly state the concepts of contractivity and conditional BN-stability.
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Definition 5.3.4 Let :ret) and :ret) be any two .solutioru of the differential

equation 7! = fez, t), .satufying initial conditioru z(O) = fl, reO) = 'f, 'I 'F 11·

Then, if

IIx(I,) - ~(I,)11 ,; IIx(l,) - ~(I,)II

holcU under the R'" nann 1I·II/or all til t2 $Uch that /3, :5 t, $ t2 '5 fh. the

.solutioru of the .sy.stem are .said to be contractive in [PI! tJ21·

The discrete analog of the above definition is given below.

Definition 5.3.5 Let {xn} and {In} be two numerical .solutioru generuted

by a numerical method with different .starting lIalUe.f. Then, i/

IIxn+1 - l'n+tlJ '5 Ilxn - Z"nll. 0:5 n $ N.

the numerical .solulioru UTe .said to be contructive lor n e (0. N].

Definition 5.3.6 The .sy.stem z' = f(x. t) is dissipative in l81• ~I if

< /(x,t) - !(x,t),x - % >$ 0

holds for all x, % E It'" and lor 011 t E [.0".82).

(5.55)

It is easy to show that the solutions of a dissipative system are contractive

under the norm induced by the inner product in (5.55). It is desirable that
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a numerical method, used with li,<oo stepsize h > 0 to solve a dissipative

system, gives contractive solutions. This brings us to the concepts of con

ditional BN.stability and BN-stability, nonlinear nonautonomous stability

criteria.

Definition 5.3.1 If a numerical method, applied with fi:xed steplength h > 0

to (5.34) satisfying (5.55), generates contractive solutions, the method is said

to be conditionally BN-stable. If the method generates contractive solutions

when applied with any h > 0, then it it is BN-stable (Lambert [23J).

The concepts of AN- and BN-stability are equivalent for nonconfiuent

Runge-Kutta methods.

To determine the conditional BN-stability of the methods, we use the

scalar test system

x' = a(t)g(x) (5.56)

where, as before, aCt) E C and g(x) E C 1 . This system is dissipative if

aCt) < g(x) - g(:f"),x - x > a(t)g'(~)lx _ xl2

:S 0,

where ( lies between x and x and < ',' > is an inner product in R The

condition is satisfied if aCt) :S 0 for all t and g'(x) ~ 0 for all x. Therefore, the
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existence and uniqueness of a periodic solution in (5.34), by Theorem 5.3.1.

is a sufficient condition for the dissipativity of the system.

Xow, we determine the conditions under which the linearized one-point

collocation methods are conditionally BN·stable. Applying the methods to

the test sy'Stem (5.56) for two different initial conditions, gives

X ..+I x.. + ha....G(x.. ;n)

x.. + ha-..G(x.. ;n).

(5.57)

(5.58)

Subtracting (5.58) from (5.57) and using the Mean Value Theorem gives

IX"+1 - X..+l [ = Hx.. - x.. }1 ·11 + ha....G'(~ .. ;n)1, (5.59)

where ~.. lies between x.. and x...

The solutions generated by tbe methods are contractive ifll+ha..G'(~.. ; nll :s 1.

Assuming ii(t) < 0 for all t and G'(x; t) ::: 0 for all x and t, the methods are

conditionally BN-stable if

G'(x; t) :s hla~t)I' (5.6()

Remark: If we let g(x) = x (the linear case), then condition (5.60)

collapses to (5.33), which is the condition for conditional AN.stability.
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5.3.4 Discussion

We have, io Theorem 5.3.3, established sufficient conditions for the simplified

linearized one-point collocation methods to exb.ibit the same dynamics as

the nonlinear nonautonomous ODE. Conditions (i) and (ii) are required for

conditional BN.stability as well, but condition (iii) is not necessary for the

existence of a unique, asymptotically stable solution. In fact, we can come

to the same conclusion as in Theorem 5.3.3 if, in (5.53).

F'(x){l + hii(t)G'(x; t)J + hii(t)G'(x; t) #' 0 (5.61)

for all I and t. The following theorem shows that condition (5.61) is satisfied

if the method is conditionaJly BN-stable.

Theorem 5.3.8 Suppose a simplified linearized one-point coltocatio'l method

is used to solve a nonlinear nonautonomous equation of the form (5.3~) with

periodic coefficients which has a unique, asymptotically stable periodic solu

tion. Then, the method yields a unique periodic solution that is asymptotically

stable if it is conditionally BN -stable.

Proof: Assume conditional BN-stability. To prove the theorem, it is

sufficient to establish condition (5.61). From conditional BN-stability, we

have -1 :S 1 + hiiG' S; 1. Recall that -1 S; F' < 0 from Lemma 5.3.2.

134



Therefore.

F' + hiiG':::: F'{1 +hiiG') + hiiG':::: -F' + hiiG'. (5.62)

From Lemma 5.3.2, 0 < -F':S 1, so tbat if -1 :s 1 + haG' < o.

F'(1 + haC) + hiiG' :::: 1 + hiiG' < O.

IrO:S l+hiiG':S 1,

F' + hiiG' :s P(1 + haG') + hoD' :::: haG' < O. (5.63)

This proves the theorem. 0

Remark: The above theorem is equivalent to Theorem 5.2.12 (in the lin

ear case) if we replace tbe concept of conditional BN.stability by conditional

AN-stability.

5.4 Conclusion

We already knew that numerical methods can introduce spurious behav-

iour into the solution for autonomous equations. Concentrating on linear

and nonlinear nonautonomous equations witb unique periodic solutions, and

discretizing them using linearized one-point collocation met bods, we were

interested in the existence of periodic solutions in the numerical methods.
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We found that the results obtained from the dynamical s)'stems approach

are closely linked to those that are imposed by standard stability analysis.

It has been shown that, for linear and nonlinear nonautonomous differential

equations of the form considered in this chapter, the conditional AN- or BN

stability of a linearized one-point collocation method i~ a sufficient condition

for the method yielding the same dynamical behaviour as the differential

equation under consideration.
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Chapter 6

Higher Dimensional Linear
Systems

6.1 Introduction

In this chapter, we will extend some of the results of the preceding one to

higaer dimensional linear systems. In particular, we would like to determine

couditions under which the results that were obtained in the scalar case carry

Consider the system of linear equations (see Sanchez [27]),

x' = .4(t)x + bet), (6.1)

where A(t) = [a;j(tl] E IR...·... is a continuous periodic matrix of period T and

bet) = (b;(t)) E R'" is also continuous and r.periodic. In addition, consider

the boundary conditions

x(O) - x(T) = O.
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We will also he concerned with the corresponding homogeneous system

x' =.4.(t)x. (6.3)

Since .4(t), bet) are T-periodic, then any solution x(t) of (6.l) or (6.3) sat

isfying (6.2) is T-periodic (Hartman !171). The theorem helow is an existence

and uniqueness result for the solution of (6.1).

Theorem 6.1.1 (Hartman (17]) Let A(t) be continuous jor 0 :s t :s T and

T.periodic. Then, (6.1) has a T.periodic solution x(t) sati3fying (6.2) jor

every continuoU8 T.periodic bet) if and only if (6.3),(6.2) has no nontrivial

(~ 0) solution; in which case x(t) i.s unique and there exists a con.stant K,

independent oj b(t), such that

IIx(t)lI :s K loT IIb(sHlds jor O:s t:s T. (6.4)

\Ve now consider linearized one-point collocation methods, as used to

discretize a system of the form (6.1) which satisfies the hypotheses of The

orem 6.1.1. In a manner similar to the discussion of the linear scalar case

of Chapter 5 with aCt) = -1 + (p(t), we will use stroboscopic sampling to
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establish conditions under which the methods exhibit the same dynamics as

the differential equation.

6.2 Linearized Collocation Methods

We rewrite the linearized one-point collocation methods (1.23) in the form

[I - c\hf,,(t .. ,x.. )jx"+l = [/- c\h!",(t .. ,x.. )]xn + h[!(t.. ,x.. ) + C,h!l{t .. ,X.. )]

(6.5)

where, as before, I is the m x m identity matrix, h a constant stepsize and

fr the Jacobian of f with respect to x.

Applying (6.5) to (6.1), we obtain

where .4(..) = [a;j(nh)], A(n)' = [a:j(nh)], etc.

The methods can then be written in the form of the discrete system

where
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It can be verified by induction that the system (6.6) can be written

(6.7)

6.2.1 Periodic Solutions

\\·e now consider the possible existence of a unique, asymptotically stable

periodic solution in the discrete system. For any kEN, we define the matrix

H
S = !! S(k-l-il.

Then, we ha\'e the following theorem.

(6.8)

Theorem 6.2.1 Suppo.se a linmrized one-point collOClJtion method is used

to discretize the sy.stem (6.1) with boundary condition.! (6.2). satisfying the

hypotheses of Theorem 6.1.1. Thtn, the method hG.! a unique, a.symptotirolly

.stobie periodic .solution provided the matrn S, defined by (6.8). ha.s all 01 its

eigenvalues with moduli leu than unity.

Proof; From (6.1), we have

(6.9)

140



Choose h such that T = hk, kEN. The discrete system corresponding to

the stroboscopic sampling of (6.7) is then given by

(6.10)

where S is defined by (6.8) and

Clearly, the system (6.10) has a unique fi.:xed point given by

prodded the matrix S has no eigenvalue of 1. This !i'l:ed point is asymptoti.

cally stable if all eigenvalues of S have moduli less than unity. Cl

Referring back to § 5.2.3, we observe that the argument has been general-

ized; the role of T; in (5.22) is replaced by the matrices Sci) and the condition

(5.28) is replaced by the conclusion of Theorem 6.2.1. .-\ similar link exists

between the vector v and the corresponding term in (5.25).

6.2.2 Remarks

The complexity of the matrix 5 and the vector v in the above argument

shows the difficulties that arise in moving from the scalar case to higher

dimensions. Future work will be directed at relating the conditions imposed
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by Theorem 6.2.1 on 5 to the original matrix .'l(t). This will enable us to

characterize those systems, if any, which could result in spurious periodic

solutions in linearized one-point collocation methods.

The result 011 tbe link between conditional AN-stability and dynami

cal behaviour bolds in the higher dimensional situation, since tbe nODau

tonomous stability criterion is based on tbe scalar test equation (5.32).
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Chapter 7

Concluding Remarks

7.1 Summary of Thesis

The main objective of the thesis was to study tbe dynamical behaviour of

linearized one-point collocation methods, used with constant stepsize. to dis

cretize four classes of ordinary differential equations. The idea is to charac

terize tbe differences, if any, between some of the dynamical features of the

discrete system and its continuous counterpart.

7.1.1 Scalar Parameter-dependent ODEs

Discretizing ODEs of tbe form

x' =/(x,J.I), x(O) = %0 (7.1)

where !L E Ill. and f ; IR x R ..... R. the thesis considered the question of the

possible existence of spurious codimension-l bifurcations in the methods.
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:\ormal forms tbeot)· ....'35 used in tbe analr.;is.

It was established tbat no spurious saddle-node, transcritical, and pitch

fork bifurcations can occur in linearized one-point collocation methods. In

other wurds, any such bifurcation occurring in the methods must ba\'e re

sulted from a corresponding bifurcation in the originating ODE.

The period doubling hifurcation in discrete dynamical systems is a phe

nomenon that has no counterpart in continuous systems. It was discovered

that spurious period doubling bifurcations can occur in all the methods with

the exception of the linearized implicit midpoint method (Cl = 1/2).

1.1.2 Planar Parameter-dependent ODEs

An ODE of the form (7.1) \\;th pER and f: R x R2 ...... R2 was considered.

The ODE was assumed. to have an equilibrium point that undergoes a Hopf

bifurcation at a known parameter \"&lue.

It was determined that, .....hen using a linearized one-point collocation

method to solve such an ODE, the corresponding fixed point in the resulting

discrete system undergoes a Neimark·Sacker bifurcation (.....hich is the discrete

analog of the Hopf bifurcation) but, unless CI = 1/2, the bifurcation occurs

at a different parameter \1llue. The parameter value at which the bifurcation

11"&5 found to be dependent on CI and the stepsize h.
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The unforced and forced Van der PoL's oscillators were used to illustrate

these results. In the case of the forced oscillator, the method of averaging

was used to reduce the system to an autonomous one. The numerical results

were consistent with theoretical expectations.

7.1.3 Planar Non-parameter-dependent ODEs

Concentrating on the autonomous ODE

z'= I(z), x{O) = xo (7.2)

where 1 : R -+ R, the issue of global asymptotic beha,,·iour was considered.

.-\S stated in Chapter 1, linearized one-point collocation methods do not

generally admit spurious fi."(ed points. However, the presence of a singularity

in those methods for which Cl > 0 may introduce spurious pole-type behav

iour, and the numerical basin of attraction for the fixed points may differ

from the true basin.

It was proved that if I(z) = P(z), where P(x) is a polynomial of degree

at least 2, spurious pole-type behaviour will occur in tbe linearized one-point

collocation method with Cl = lIn.

This is illustrated in R2 using a predator-prey model, in which the lin

earized implicit midpoint method depicts spurious pole-type behaviour.
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7.1.4 Periodic Solutions - Nonautonomous ODEs

A scalar nonautonomous ODE of the form

x' =: f(t,x), x(O) =:Xo (7.3)

where f : IR x R --t R and T-periodic in t, was considered. For the cases

in which (7.3) is known to have a unique, asymptotically stable T4periodic

solution, the main interest was to establish conditious under which the chosen

methods exhibited the same dynamics.

The technique used is analogous to the Poincare map, and is called stro

boscopic sampling. Two cases were considered; f =a(t)x + bet) (linear case)

and f = a(t)g(x) + bet) (nonlinear case), where aCt) and bet) are C 1 and T

periodic and g(x) is C I and generally nonlinear. The trh'ial cases, aCt) = 0

and aCt) = -1 in the linear category, were studied first.

Having established conditions for the existence of unique, asymptotically

stable periodic solutions in the methods, it was investigated whether the

conditions were linked to linear and nonlinear stability theory. It was proved

that such a relationship exists; if a method is conditionally AN- or BN4

stable, it will have a unique periodic solution that is asymptotically stable.

The study was taken to higber dimensions. Let

X' = A(t)x + b(t)
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where A(t) e Rm.m is Cl and T.periodie and b(t) e am is also Cl and

T.periodic_ The anal)"$is ",-as similar to tbe scalar case, and some of the

difficulties tbat arise were highligbted.

7.2 Suggestions for Future Work

Tbis thesis has raised a number of issues and questions tbat are l\vrth in·

\-estigating. The most natural direction in whieh to take this '\vrk is in

generalizing tbe problems and methods used. The setting in which the the

sis addresses some fundamental questions in the dynamics of numerics has

been a simple one, }'et it has enabled identification of areas to wbich further

in\-estigation could be directed_

Periodically forced systems playa "cry important role in practice. In the

thesis_ we considered the forced van der Pol's oscillator as an example and

in\"CStigated the Neimark-Sacker bifurcation in linearized one-point colloca

tiun methods, used to discretize the averaged equations of tbis system. We

would like to extend the investigation to consider the complete bifurcation

analysis. For e.."(ample, we would like to consider the effect of the proximity,

in some places, of the saddle-node and Hopf bifurcations on the d)"oamics of

numerics_ Since, as it bas been established in Chapter 4, the Hopf bifurca-
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tion does not occur at the same parameter value as it does in the differential

equation, it would be interesting to study the consequences of this in the

presence of a neighbouring bifurcation.

The link between the dynamics of the methods and the stability theory

discussed in the thesis could naturally be investigated with other standard

numerical methods such as Runge-Kutta and linear multistep methods. This

also goes for the local bifurcations. Linearization of a general s-stage implicit

Runge-Kutta method results in an s-stage Rosenbrock method (see Hairer &

Wanner [15J), which, for the autonomous case, is gh-en by

k; f (X" + ~crijkj) +Jt~fijkj,

Xn+hthjk j
j=l

i= 1,2, ..

(7.5)

where J = f'(xo) and Qij, ~ij, hi are the determining coefficients.

Applied to nonautonomous problems, these methods can be written

X,,+htbjkj ,
j=1

where OJ = L};~ Cltij and 1'. = t}"l ~ij.

(7.6)

Some Roscnbrock methods (7.5) or (7.6) can also be categorized as lin-

earizcd collocation methods. This is the case if, in tbe derivation of the orig-
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inating implicit Runge-Kutta method, a set of collocation points {tn + e;h}

(i = 1.2, .. ,s) is chosen and the solution from tn to tn+! is approximated

by a polynomial of degree IJ wbich satisfies tbe differential equation at the

collocation points. Future work ....ill attempt to base the dynamical approach

study on such methods.

Also, it is known that explicit methods generally perform poorly, while

Rosenbrock methods perform .....ell, when used to solve stiff differential equa

tions (Hairer & \-Vanner [15)). Future work .....ill also attempt to apply [in·

earizcd collocation methods to stiff equations, the aim being to ascertain if

these methods can be used to solve stiff equations in general.

Finally, there has been increasing interest re<:ently on local error control.

It has been proved that, in most cases, spurious solutions cease to exist .....hen

local error control is used (see Aves et ai. [31 and 5anz-Serna (26)). Further

more, most modern numerical algorithms have built-in local error control. It

would, therefore, be of great value to consider the problems and methods in

this thesis within the \"ariable time-stepping context. An understanding of

the dynamics of fixed time-stepping methods is, howe\"Cr, ne<:essary before

embarking on variable time-stepping (see Ste.....art [29]).
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