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Abstract 

The purpose of the present study was to examine how people’s perceptions of their own 

learning, during a category learning task, matched their performance. In two experiments, 

participants were asked to learn natural categories, of both high and low variability, and 

make category learning judgments (CLJs). Variability was manipulated by varying the 

number of exemplars and the number of times each exemplar was presented within each 

category. Experiment 1 showed that participants were generally overconfident in their 

knowledge of low variability families, suggesting that they considered repetition to be 

more useful for learning than it actually was. CLJs had the largest increase when a trial 

was correct following an incorrect trial and the largest decrease when an incorrect trial 

followed a correct trial. Experiment 2 replicated these results, but also demonstrated that 

global CLJ ratings showed the same bias toward repetition. 
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Metacognitive Monitoring during Category Learning: 

How Success affects Future Behaviour 

 A quick internet search reveals thousands of websites containing innumerable 

quotations from notable individuals that converge on the idea that we learn more from our 

mistakes than from our successes (Medlock, 2015). But is this commonly-held belief 

supported by empirical data on learning and our perceptions of our own learning 

behavior? The goal of the present thesis was to investigate how people perceive their 

progress when they are learning a natural category – categories that do not have strict 

rules that define membership inclusion criteria (Homa, Sterling, & Trepel, 1981; Kellog, 

Bourne, & Ekstrand, 1978), focusing on how they view their learning following a correct 

classification compared to an incorrect one. Metacognitive judgments – participants’ 

assessments of the relative quality of their learning – were used to indicate how well 

participants thought they were learning different categories as they were performing a 

natural category learning task. Although the literature examining metacognition and 

category learning is small, there are a few studies that have examined this relationship 

(Higgins & Ross, 2011; Meuwese, van Loon, Lamme, & Fahrenfort, 2014; Tauber, & 

Dunlosky, 2015; Tauber, Dunlosky, Rawson, Wahlheim, & Jacoby, 2013; Thomas, Finn, 

& Jacoby, 2015; Wahlheim, Dunlosky, & Jacoby, 2011; Wahlheim & DeSoto, 2016; 

Wahlheim, Finn, & Jacoby, 2012). To my knowledge, the only other study on category 

learning that has examined metacognitive judgments on a trial-by-trial basis is by 

Wahlheim and DeSoto (2016). Therefore, an exploration of the pattern of metacognitive 

judgments throughout learning should provide valuable information on how people view 

their own learning progress during a category learning task. 
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1.1 Category learning 

Any given category is made up of a number of items, called exemplars. Some 

categories can be grouped together to form a cluster of categories, which are organized at 

the superordinate level; this results in a categorical hierarchy (Bower, Clark, Lesgold, & 

Winzenz, 1969). For instance, oil, pastel, and watercolor all belong to the category 

‘PAINTINGS’, which in turn belongs to the broader category ‘ART’. People develop 

categories and superordinate categories to make it easier to organize large amounts of 

information. Categories are an integral part of cognitive functions and play an important 

role in communication (Brown, 1958), memory (Mandler, Pearlstone, & Koopmans, 

1969), and learning (Ashby & Maddox, 2005). Understanding how we learn to categorize 

is ultimately the goal of research in category learning.  

One potential issue for category learning theories is distinguishing the difference 

between types of categories and whether they are learned differently. Learning how to 

identify members of some categories, like what constitutes an oil painting versus a 

watercolor painting, is very straightforward because these categories have clear rules that 

differentiate exemplars among different categories. However, identifying an 

impressionistic painting versus an abstract painting is more difficult, because to a certain 

extent it relies on the interpretation of the viewer rather than on a strict rule. The 

distinction between types of categories that have clear rules versus those that do not has 

been referred to as ill- versus well-defined categories or rule-based versus natural 

categories (for a review see: Close, Hahn, Hodgetts, & Pothos, 2010). Recent studies have 

focused on natural (ill-defined) categories as they better resemble the types of categories 

people commonly use. 
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Understanding how people learn natural categories is complicated by the fact that 

natural categories are difficult to define in terms of inclusive or exclusive criteria for a 

given exemplar (Homa et al., 1981). For example, considering sub-categories of the 

category ‘BIRD’, members of one particular bird family differ from another bird family 

based on a collection of features like colour, wing span, leg size etc., but these features 

often overlap across families. Even expert bird watchers with a lot of experience have 

trouble classifying birds, because of how difficult it is to identify which group of features 

belongs exclusively to a particular family (Wang, Schiner, & Yao, 2008). However, even 

without explicit rules for organizing categories, people still manage to differentiate 

among different natural categories in a category learning task (e.g., Kellog et al., 1978). 

The primary aim of a category learning task is to learn what constitutes a member 

of a particular category (Chin-Parker & Ross, 2004). One task commonly used to study 

category learning requires a participant to initially study a set of exemplars belonging to a 

number of different categories. During this study phase the participants must decide 

which category an item belongs to, and are then given feedback on whether they were 

correct. Because natural categories do not have simple rules, participants typically do not 

achieve 100% accuracy during the study phase; instead, they are given a certain amount 

of time to study, or allowed to continue until they reach an accuracy level above chance. 

Participants’ category knowledge is subsequently tested by having to categorize novel 

exemplars without feedback. 

In the category learning literature, there are two classes of theories that are the 

most well-developed. In simplified terms, exemplar-based models (e.g., Medin and 

Schaffer’s “Context theory”, 1978; Nosofsky’s “categorization model”, 1986; and 
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Minerva 2, Hintzman, 1986) suggest that people categorize novel items based on their 

stored memory for previously seen exemplars. The assumption that people make 

categorization decision based on a similarity to previous exemplars is also based on the 

assumption that during learning people attend to particular features that aid in diagnosing 

category membership (Nosofsky, 1986). One of the first exemplar models, Medin and 

Schaffer’s context theory of categorization, was based on earlier studies by Rosch, Mervis 

and their colleagues who looked at category learning of ill-defined categories (e.g. Rosch, 

Mervis, Gray, Johnson, & Boyes-Braem, 1976). Rosch and Mervis (1975) suggested that 

stimulus classification of ill-defined categories was more likely to be based on a “family 

resemblance” (i.e., familiarity) to previous exemplars than on underlying criterion rules. 

In contrast, they considered well-defined categories to have definitive rules that could be 

learned and applied when categorizing novel exemplars.   

Rule-based (well-defined) theories of categorization formed the basis for an 

alternative approach to category learning, the prototype models. These models suggest 

that when participants classify a novel stimulus they compare it to how well it matches 

the most typical exemplar in that category, called a ‘prototype’ (e.g., Homa et al., 1981; 

Jacoby, Wahlheim, & Coane, 2010). These models assume that when people are learning 

a new category they form a prototypical exemplar of that category, which is composed of 

the features they think are most typical of all the exemplars (Bransford & Franks, 1971). 

Support for this assumption came from Smith, Shoben, and Rips (1974) who found that 

people are faster at classifying more typical exemplars of a category than less typical 

exemplars. Additionally, prototypical information is less likely to be forgotten over large 

retention intervals than less typical information (e.g., Goldman & Homa, 1977).  



 
 

5 
 

Recent work by Chin-Parker and Ross (2004) suggests that there should be an 

important distinction made between diagnostic information and prototypical information. 

Diagnostic information (e.g., that birds fly) is more important for determining which 

category an item belongs to, while prototypical information is more useful in 

distinguishing among highly shared features within the members of a category. In a 

learning task where a participant must classify a member of a category of which they 

have no prior knowledge, individuals tend to focus on determining what cues or features 

best determine category membership. More attention is then paid to the features that lead 

to correct classification. This strategy is opposed to a prototypical model that would 

suggest a strategy of focusing on groups of features that are found in the majority of 

exemplars in a category. At the moment, there is no consensus on which model accounts 

for the extant of the data.  

There has been substantial research on how we learn categories and the variables 

that affect category learning (for a review, see: Ashby & Maddox, 2005). A consistent 

finding in the literature is that increasing variability during learning allows people to gain 

a better understanding of a category, which improves classification of novel exemplars 

(Dukes & Bevan, 1967; Homa, 1978; Perry, Samuelson, Malloy & Schiffer, 2010; Posner 

& Keele, 1968; Smith, 2003; Wahlheim & DeSoto, 2016; Wahlheim et al., 2012). This is 

known as the variability effect. Variability refers to both the number of unique exemplars 

in a category and the number of times each exemplar is presented. It is difficult to specify 

what constitutes a “low” or “high” variability category, as past research has varied 

significantly in the number of exemplars presented in these conditions. For example, as 

their high variability condition Dukes and Bevans (1967) used a set of five stimuli 
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belonging to the same category and presented them four times each (each stimulus within 

a set had slight differences). On the other hand, Wahlheim, Finn and Jacoby’s (2012) high 

variability condition used six different stimuli belonging to the same category, presented 

two times each. In general, research has shown that increasing experience with exemplars 

of a category increases accuracy on a categorization task (Medin & Schaffer, 1978). 

Dukes and Bevan (1967) were among the first to manipulate variability during a 

categorization task, in which participants studied a set of photographs of men and women. 

There were 20 individuals in total, and the researchers created a set of five photos for 

each individual by varying their clothes and pose. Participants had to try to learn the name 

of each individual. The high variability condition had four sets of photos presented once 

and the low variability condition had one set presented four times. Participants were then 

tested on the pictures they had studied plus new pictures. Dukes and Bevan found that the 

number of correct responses on new items was greater for the high variability condition 

compared to the low variability condition. They concluded that this effect was a result of 

greater generalizability for the high variability condition. 

A more recent study by Perry et al. (2010) looked at the effect of variability on 

category learning in children. They had young children (mean age of 18 months) learn 

words for certain objects (e.g. a bucket, a hammer, and a toothbrush). They taught the 

words by showing the children three pictures of the same object and saying its name. 

They varied the similarity between the three pictures, with the low variability condition 

having very similar pictures and the high variability condition having highly dissimilar 

pictures (the degree of similarity was previously determined by a multidimensional 

scaling algorithm using different features of the objects). They found that children in the 
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high variability condition performed better on novel items compared to children in the 

low variability condition. The authors suggest that this effect could be a result of children 

in the low variability condition attending to the shape of the objects, while children in the 

high variability condition did not, resulting in the former relying on a less-diagnostic 

feature to classify novel exemplars. An alternative explanation is that a high variability 

condition allowed the children to see the features of the stimuli that were not relevant to 

the category, which might have allowed them to disregard these features when trying to 

classify a novel exemplar. 

There is a natural trade-off in category learning when variability is increased, as 

this necessarily decreases repetition of each particular exemplar when the same number of 

learning trials are used. Most of the studies previously cited on variability effects also 

demonstrate a counter effect of repetition. Conditions that have low variability, where the 

same exemplars are presented repeatedly, result in better test performance on the items 

used in the study phase. For instance, Perry et al., (2010), while showing that high 

variability resulted in better performance on new items, also found that low variability 

resulted in better performance for old items. Similarly, recent findings from Wahlheim et 

al. (2012) support both the variability effect and the repetition effect. In sum, increasing 

repetition (presentation of the same items) improves categorization of previously seen 

exemplars, while increasing variability (presentation of many different exemplary 

members of a category) improves categorization of novel items.  

The effect of variability may be explained within the context of the exemplar-

based models of category learning, which suggest that increasing the number of 

exemplars similar to a test item facilitates classification learning (Medin & Schaffer, 
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1978; Medin & Smith, 1981). Numerous studies have found that learning a category by 

studying many exemplars, or exemplars that are highly diverse in defining stimuli, 

increases the generalizability of that category (Homa, 1978; Homa et al., 1981; Homa & 

Vosburgh, 1976). However, the variability effect can equally easily be explained by the 

prototype model, since increasing variability may add to the stored prototypical 

information of a category. In order to determine which theory provides the best 

explanation, recent studies have used metacognitive measures.   

1.2 Metacognition in category learning 

Metacognition is the monitoring and knowledge of our own cognition (Flavell, 

1979). Metacognitive research has mostly focused on the relation between metacognition 

and memory (see Dunlosky and Metcalfe, 2009, for a review). For example, one measure, 

judgment of learning (JOL), is used to compare people’s judgments of their own learning 

to their actual performance (Arbuckle & Cuddy, 1969). There are also measures that ask 

for predicted future performance or confidence in the accuracy of past performance. The 

accuracy of the judgment is then measured by comparing the estimate to actual 

performance. One goal of metacognitive research is to identify inaccurate beliefs about 

cognition and develop methods to counteract these beliefs. The basis of metacognitive 

measures, such as JOLs, can be readily applied to other cognitive areas such as category 

learning.  

The recent use of metacognition with category learning has focused heavily on 

how people choose to learn. Thomas et al. (2015) demonstrated that participants’ 

metacognitive judgments of learning were more accurate after being given an initial test 

with feedback and that they were sensitive to item difficulty. It has also been found that 
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spacing study of different categories (i.e., by studying various categories intermixed) is 

better for learning than blocked study (i.e., studying many exemplars from one category 

in a row before studying a different category; e.g., Wahlheim et al., 2011), but 

participants demonstrate a preference for blocking their study when given a choice 

(Tauber et al., 2013). A handful of studies have specifically looked at CLJs, in which 

participants are asked to judge how well they can classify a novel item of a particular 

category (Higgins & Ross, 2011; Tauber & Dunlosky, 2015; Tauber et al., 2013; Thomas 

et al., 2015; Wahlheim & DeSoto, 2016; Wahlheim, et al., 2011; Wahlheim et al., 2012). 

This is an important measure as it directly addresses the level of confidence a participant 

has about their ability to categorize members of a given category, which as previously 

mentioned is the primary aim of category learning. 

One of the earliest studies to use metacognitive measures in a category learning 

procedure was by Homa et al. (1981) who examined the effects of variability on 

confidence judgments. In their experiment participants studied three different kinds of 

categories, with varying numbers of instances per category (i.e., variability). They tested 

participants by having them classify items as either one of three categories or as a ‘junk’ 

item (never before seen) and had them give confidence judgments for each of their 

responses. As expected by previous studies (e.g., Homa, 1978), an increase in category 

size was positively correlated with an increase in correct classification of new instances. 

Interestingly, an increase in category size resulted in a decrease in the effect of old-new 

similarity; that is to say, the tendency to identify a new item as a studied item based on its 

similarity to an old category. This means that when more instances of a category are 

given, it becomes more distinguishable from other categories. Confidence judgments 
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were found to reflect performance, suggesting that participants were able to recognize 

that an increase in category size improved their ability to discriminate between new and 

old members of a category.  

A similar approach was taken by Wahlheim et al. (2012) who examined how 

variability and repetition affected metacognitive judgments of performance on a natural 

category learning task. The focus of their study was on the effect of variability and 

repetition on CLJs. In their study, Wahlheim et al. had participants study a set of bird 

species from 12 different families, in either high repetition or high variability conditions.  

Following the study phase, participants were given a classification test on the items they 

had studied plus new items. By manipulating the study items as described, classification 

of test items showed their respective effects on previously studied items and new items: 

High variability families resulted in better performance for new items, whereas high 

repetition families produced better performance for studied items.  

 More importantly, at the end of the study phase, Wahlheim et al. (2012) asked 

participants to make CLJs for each of the bird families. In their first experiment, 

participants’ overall confidence in their predictions of classifying novel bird species 

compared to their actual performance showed that they were overconfident in their 

judgments (i.e., they predicted better performance than they actually obtained). In 

particular, the high repetition condition showed a greater discrepancy between CLJs and 

performance than the high variability condition, which was not due to higher CLJs but 

rather better classification accuracy for the high variability condition; this is called 

variability neglect. These results demonstrated that participants failed to consider 

variability as a benefit to category learning; this finding was replicated in their subsequent 
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experiments. One goal of the present thesis was to replicate Wahlheim et al.’s findings of 

variability neglect in CLJs while learning natural categories; specifically, I expected that 

participants’ classifications of novel items would be more accurate in the high variability 

condition compared to the low variability condition, but that their CLJs would be the 

same for both conditions. Critically, the present experiments elicited CLJs throughout the 

entire learning phase, in order to determine whether changes in CLJs corresponded to 

changes in learning performance. 

1.3 Trial-by-trial learning 

 Histed, Pasupathy, and Miller (2009) conducted an association learning task with 

monkeys in order to better understand the neurological basis of learning. The task 

involved monkeys making an eye movement response to the right or left depending on 

which particular stimulus they were shown. The monkeys were rewarded following each 

correct response. During the task, Histed et al. examined the firing rate of neurons in the 

prefrontal cortex (PFC) and the caudate nucleus (Cd) of the basal ganglia, and found 

evidence to support a sustained firing model of learning. What their model showed was 

that the information from a single trial altered the firing rate of neurons, which influenced 

behaviour on the next trial (Ganguli, Huh, & Sompolinsky, 2008). The researchers 

interpreted the results as showing that the outcome of a single trial affected the selective 

direction of the following trial, meaning that if the monkeys made a correct eye 

movement, then on the next trial they were more likely to make an eye movement in the 

same direction (Pasupathy & Miller, 2005).  

Previously, the influence of outcome reward had been shown to affect activity 

during a learning task (Seo, Barraclough, & Lee, 2007; Seo & Lee, 2009). Histed et al. 
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(2009) showed that a given trial’s outcome had a direct effect on a trial-to-trial basis and 

that behaviour was altered solely on the basis of the previous trial’s outcome (e.g., Seo, 

Barraclough, & Lee, 2007; Seo & Lee, 2009). In addition, the likelihood of a correct 

response was found to increase following a correct trial, which was suggested to occur 

because of a direction selectivity effect. That is, if a response led to a correct trial then the 

animals were likely to make the same response on the next trial which would lead to 

successful learning, whereas a response leading to an incorrect trial was equally likely to 

be followed by the same response or a different one. In terms of category learning I 

predict that a given trial, for a particular category, is more likely to be correct if the 

previous trial is correct, and that participants’ CLJs will increase accordingly.  

1.4 Current thesis 

 The primary goal of the present thesis was to examine more closely whether CLJs 

reflect actual learning using a detailed analysis of the response patterns during learning. 

That is, are there specific patterns of behaviour during category learning that are utilized 

as cues to make inferences about how well one is learning a new category? The present 

study set to test out the metacognitive knowledge of participants during a category 

learning task. Specifically, the purpose was to observe whether participants judge 

learning to improve more following a correct trial versus an incorrect trial and whether 

they consider variability to be a benefit to learning. Two experiments were conducted in 

which participants completed a category learning task where they were shown a series of 

pictures belonging to natural categories (birds in Experiment 1; paintings in Experiment 

2) and were asked to classify them; they were given feedback after each trial. Following 

feedback, participants made CLJs on the just-classified category. Categories were 
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manipulated for variability, meaning that while holding the number of learning trials 

constant, some categories only had a few exemplars presented repeatedly, while other 

categories had numerous unique exemplars but shown a fewer number of times. Learning 

was tested by presenting items from the learning task intermixed with new items and 

participants once again had to classify exemplars by category.  

 While learning was expected to result in an increase in correct classification of 

exemplars as the task went on, a specific trial-by-trial pattern was also expected to 

emerge. Similar to the results found by Histed et al. (2009), I expected to show that 

following a correct classification of an exemplar in a given category, the next instance 

from that category is more likely to be correct, as opposed to when an incorrect 

classification is made. It was hypothesized that correct classification trials of a particular 

category would increase the likelihood that the following trial on the same category 

would also be correct. The reason behind this prediction is based on Pasupathy and 

Miller’s (2005) direction selectivity effect. The likelihood of making a certain response 

will increase if it leads to a correct trial. Since the direction selectivity effect is based on 

associative learning, I predict this result will apply to trials within the same category as 

participants are making the association between exemplar and category membership.  

 The effect of correct classification on subsequent trials was predicted to affect 

CLJs. A second hypothesis was that CLJs would be higher following correct trials than 

incorrect trials. This hypothesis was derived from the predictive learning models (see 

Luque, López, Marco-Pallares, Càmara, Rodríguez-Fornells, 2012), whereby correct trials 

decrease the chance of a future incorrect response and increase the perceived 

understanding of a concept. Also, considering CLJs were found to be generally 
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overconfident by Wahlheim et al. (2012), correct trials were expected to boost an 

individual’s confidence in the understanding of a category. Lastly, metacognitive 

judgments were predicted to ignore the effect of variability, based on the results from 

Wahlheim et al. (2012). 

2.1 Experiment 1 

2.2 Method 

2.2.1 Participants. Participants included 35 Memorial University students; one 

participant did not complete the procedure. Twenty participants received course credit in 

exchange for participation and 15 were compensated $10 for participating.  

2.2.2 Materials. The experiment was conducted on a computer, using E-prime 2.0 

(Psychology Software Tools, Pittsburgh, PA). The participants were shown a series of 

pictures of birds centered on a white background accompanied by a list of bird family 

names labelled 1-6 directly underneath. A total of 96 pictures were used, which included 

16 different exemplars for each of the following six families: finch, jay, oriole, sparrow, 

flycatcher, and warbler. Nearly all exemplars depicted different species of birds within 

each family. The photos were selected from a set of photos used by Tullis, Benjamin, and 

Ross (2011) (originally obtained from various internet sources). For each participant, the 

program randomly selected three of the families to be assigned to the Diverse (high 

variability) condition; the remaining three families were assigned to the Repeated (low 

variability) condition. Diverse families contained 12 different birds shown once each 

during each block of the learning phase and Repeated families contained four different 

birds shown three times each during each block of the learning phase.  Four studied bird 
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pictures (for the Diverse families, a random four of the studied exemplars were selected) 

and four new bird pictures from studied families were presented on the test.  

2.2.3 Design. Category type (Diverse vs. Repeated) and learning block (the 

learning phase was composed of two blocks, with 72 trials per block) were manipulated 

within-subjects. A mean accuracy measure was obtained from an average score across all 

trials, with separate accuracy scores for the two blocks of the learning phase and the test 

phase. Similarly, a mean CLJ measure was obtained by averaging all responses across 

trials for each block of the learning phase. Additional analyses of individual trial response 

contingencies were conducted as described below. 

2.2.4 Procedure. Participants were tested individually in a small cubicle. The 

experiment began with an introduction explaining that the task was to classify bird 

species based on the family they belonged to, as well as to learn the families in general. 

Participants were informed that they would be given feedback on each response, and they 

would then be asked to provide a CLJ. Participants were told to use the keyboard to make 

their responses, and to take as much time as they needed to complete each trial. The 

experiment began once the participant pressed a key to start.  

Learning trials were self-paced. On each trial a slide presented a picture of a bird 

at the center of the screen that took up approximately half of the screen, with the six 

family names listed underneath and labelled 1-6. Participants selected a response by 

pressing the number key on the keyboard corresponding to the family name shown on 

screen. A response input display appeared on screen for participants to view and correct if 

a typing mistake was made. Following their choice a feedback slide told them if they 

were correct or incorrect and displayed the correct answer, including the picture of the 
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just-classified bird, for 3000 ms. The next slide asked them to make a category learning 

judgment (CLJ) with the following prompt: “How confident are you that you know the 

(FamilyName), that if shown a different bird in this family you could identify it?”, where 

(FamilyName) was the bird family that had been presented prior to the CLJ. Participants 

made their choices on a rating scale of 0-100, 0 being “not confident at all” and 100 being 

“completely confident”. They were encouraged to make use of the whole range of the 

scale. The learning phase was composed of two blocks of 72 trials. Exemplars from six 

bird families, including three Diverse category types (twelve birds presented once) and 

three Repeated category types (four birds presented three times each) were presented in 

random order in Block 1. Block 2 presented the same bird exemplars as in Block 1, but in 

a new random order. Participants were not explicitly informed about the different types of 

categories. 

The test phase began directly after the last learning trial ended. Before starting the 

first test trial, participants were informed that the test phase was about to begin and that 

they would no longer be given feedback on their classification accuracy.  They were 

instructed to try to correctly classify as many bird species as possible. Test trials began 

once the participants indicated they were ready. The appearance for each test trial was 

identical to the study trials, except that feedback and CLJs were not included. Following a 

response, the experiment immediately moved on to the next trial. The test phase consisted 

of 48 trials: for each Repeated category type, each studied item was shown plus four new 

items; for each Diverse category type, a random four of the possible twelve studied items 

were presented plus four new items.    
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2.3 Results 

Statistical reliability was measured at p < 0.05 in all of the analyses to be 

discussed. I first considered test performance in relation to CLJs, and then explored the 

learning trials in more detail. Data from four participants were eliminated from all 

analyses to be discussed, due to failure to complete the experiment or failure to follow 

instructions. Some analyses report different degrees of freedom, which occurred 

whenever a measure contained missing data from a participant (e.g. when a participant 

did not have any incorrect trials for a category).  

2.3.1 Test Phase 

2.3.1.1 Mean Performance. Test accuracy for old and new items (see Table 2.1) 

was analyzed using a 2 (item status: new vs. old) x 2 (category: Diverse vs. Repeated) 

repeated measures ANOVA.  There was a main effect of item status (F (1, 30) = 101.29, 

MSE = 0.022, p < 0.001, ηp
2 = 0.77), but no main effect of category type (p = 0.50). Old 

items were categorized better than new items, in general, but there was also a significant 

interaction (F (1, 30) = 31.16, MSE = 0.012, p < 0.001, ηp
2 = .51). Old items from 

Repeated categories were categorized better than old items from Diverse categories, but 

there was no significant difference between category types in performance on new items.  

2.3.2 Learning Phase. Classification accuracy and CLJs across the learning phase 

are displayed in Figure 2.1. This figure primarily demonstrates the increase in accuracy 

for both Repeated and Diverse categories as the learning phase progressed, while also 

showing that CLJs increased accordingly. Participants’ CLJs were much closer to their 

actual performance on Diverse categories than Repeated categories, even as they were 

performing better on the Repeated category items.   
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Table 2.1 Mean Performance and Category Learning Judgments (CLJs) in Learning and 

Test Phases 

Note: For Experiment 1, end of learning CLJs were calculated using the mean of the last 

3 CLJs per category. For Experiment 2, end of learning CLJs were the mean of the global 

CLJs per category type. Numbers in parentheses are standard error of the mean. 

 

 

 Experiment 1 Experiment 2 

 Category Type 

 Diverse Repeated Diverse Repeated 

Learning Phase Accuracy 0.49 

(0.20) 

0.63 

(0.02) 

0.63 

(0.026) 

0.71 

(0.019) 

Learning Phase CLJs  

Correct 57.29 

(3.91) 

58.97 

(4.30) 

61.19 

(4.54) 

61.87 

(3.74) 

Incorrect 38.59 

(3.67) 

39.56 

(3.74) 

43.03 

(4.18) 

41.71 

(4.18) 

End of learning CLJs  

Old Items - - 77.21 

(3.03) 

76.00 

(3.04) 

New Items 60.88 

(5.14) 

68.70 

(4.96) 

64.80 

(3.29) 

62.93 

(3.05) 

Test Phase Accuracy  

Old Items 0.67 

(0.20) 

0.81 

(0.15) 

0.79 

(0.028) 

0.91 

(0.021) 

New Items 0.51 

(0.19) 

0.43 

(0.20) 

0.68 

(0.028) 

0.60 

(0.036) 
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Figure 2.1 Mean classification accuracy and CLJs for Diverse and Repeated categories 

across both blocks of learning trials in Experiment 1. Each trial bin includes nine trials. 

 

2.3.2.1 Mean Performance. Mean CLJs following correct vs. incorrect responses 

(displayed in Table 2.1) were analyzed using a 2 (Block: 1 vs. 2) x 2 (category type: 

Diverse vs. Repeated) x 2 (response: correct vs. incorrect) repeated measures ANOVA. 

There were main effects of Block (F (1, 29) = 27.85, MSE = 407.25, p < 0.001, ηp
2 = 

0.49) and response (F (1, 29) = 55.26, MSE = 393.96, p < 0.001, ηp
2 = 0.66), but no main 

effect of category type (p = 0.38), and an interaction between block and response (F (1, 

29) = 7.53, MSE = 43.10, p = 0.010, ηp
2 = 0.21). As predicted, CLJs were higher for 

correct trials than for incorrect trials. The magnitude of the difference between CLJs 

following correct responses versus incorrect responses was smaller in Block 2 (M = 

33.45, SD = 30.58) than in Block 1 (M = 42.75, SD = 28.51), and was unaffected by 
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category type. This likely indicates a perceived decrease in the overall rate of learning 

across blocks.  

2.3.2.2 Trial-by-trial Accuracy. For each participant, accuracy data from each 

trial (n) were sorted into four bins on the basis of whether the current trial under 

consideration and the previous trial within the same family were correct or incorrect: 

correct (n) following correct (n-1), where n and n-1 were trials corresponding to the same 

family; correct-incorrect; incorrect-correct; and incorrect-incorrect. These four bins were 

tabulated separately for both Diverse and Repeated categories (see Table 2.2). Each 

participant was then given a score based on the proportion of trials that fell into each bin. 

A nonparametric sign test was used to determine whether categorization responses were 

more likely to be correct following a correct trial than following an incorrect trial. 

Wilcoxon’s rank sign test was chosen because it assesses whether there is a difference 

between the mean ranks of two related samples that come from the same population. For 

Repeated categories, correct-correct differed from correct-incorrect (Z = -4.76, p < 0.001), 

while incorrect-correct did not differ from incorrect-incorrect (Z = -0.361, p = 0.72). 

When the same analysis was performed for Diverse categories, correct-correct once again 

differed from correct-incorrect (Z = -2.15, p = 0.031), however incorrect-incorrect also 

differed from incorrect-correct (Z = -2.59, p = 0.010). 

2.3.2.3 Trial-by-trial CLJs. The numeric change in CLJs from one trial to the next 

within a given family was sorted into four bins on the basis of response accuracy 

contingencies, as described above for accuracy data, but considering Block 1 and Block 2 
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separately.1 The values are displayed in Table 2.2. The mean change in CLJ for each of 

the eight bins were analyzed using a 2 (Block: 1 & 2) x 4 (bin: correct-correct, correct-

incorrect, incorrect-correct, incorrect-incorrect) repeated measures ANOVA. There was 

no main effect of Block (p = .53), but the main effect of bin was significant (F (3, 90) = 

27.88, MSE = 244.41, p < .001, ηp
2 = 0.48) as was the Block x Bin interaction (F (3, 90) = 

10.78, MSE = 28.42, p < .001, ηp
2 = 0.26). 

 Because the Block x Bin interaction was significant, follow-up analyses on 

differences among bins were conducted separately for Block 1 and Block 2. In Block 1, 

an initial one-way ANOVA was significant (F (3, 120) = 47.01, MSE = 104.652, p < .001, 

ηp
2 = 0.54). Follow-up pairwise comparisons (using the Bonferroni correction for multiple 

comparisons) showed that all but two of the bins were significantly different from one 

another (all ps < .001), while bin 1 (correct-correct) did not differ from bin 4 (incorrect-

incorrect). Participants increased their CLJs the most on correct trials when the previous 

trial had been incorrect, whereas correct responses following correct responses resulted in 

a significantly smaller increase in CLJs (t (30) = 6.57, p < .001, t (30) = 2.99, p = .005, 

respectively) When participants were incorrect and had been incorrect on the previous 

trial, CLJs did not increase or decrease significantly (p = .53), and when an incorrect 

response followed a correct response, CLJs decreased significantly (t (30) = -6.13, p <  

.001). That is, CLJs tended to change the most when response accuracy changed, and 

changed only slightly (if at all) when response accuracy was the same as on trial n – 1. 

                                                           
1I initially considered Diverse and Repeated families separately in this analysis, but found no significant 

differences based on category type. I therefore collapsed over this variable in the reported analysis. 
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Table 2.2 Trial-by-Trial Accuracy Contingencies during Learning Trials and 

Corresponding Changes in Category Learning Judgments (CLJs) in Experiment 1 

Note: Numbers in parentheses are standard error of the mean. 

A similar analysis of Block 2 also showed that all but two of the bins were 

significantly different from one another (all ps < .019), and bin 1 and 4 did not differ. 

Changes in CLJs across bins followed the same pattern as in Block 1, but the magnitude 

of the increase or decrease in CLJs was smaller for Incorrect-Correct bins ( t (30) = 4.82, 

 Trial Type 

 Correct-

Correct 

Correct-

Incorrect 

Incorrect-

Correct 

Incorrect-

Incorrect 

Proportion of Learning 

Trials 

    

Diverse 0.28 

(0.025) 

0.21 

(0.007) 

0.21 

(0.006) 

0.29 

(0.022) 

Repeated 0.45 

(0.029) 

0.16 

(0.0078) 

0.19 

(0.0083) 

0.20 

(0.021) 

Change in CLJs     

 Block 1     

Diverse +3.36 

(1.81) 

-13.40  

(2.30) 

+14.77 

(2.01) 

-0.98 

(0.84) 

Repeated +3.02 

(1.39) 

-17.38  

(3.08) 

+15.59 

(3.05) 

-0.12 

(1.25) 

 Block 2     

Diverse +2.72 

(0.83) 

-8.15 

(2.46) 

+10.76 

(2.31) 

-1.16 

(0.61) 

Repeated +0.86 

(0.60) 

-9.17 

(3.02) 

+12.64 

(2.98) 

-1.13 

(1.19) 



 
 

23 
 

p < .001), Correct-Incorrect (t (30) = -3.26, p = .003) and Correct-Correct (t (30) = 3.51, p 

= .001), relative to Block 1.  

2.3.2.4 Calibration of CLJs. Calibration scores were obtained by taking the 

average of the last three CLJs per category (as a measure of performance at the end of the 

learning phase) and subtracting a corresponding accuracy score (e.g., CLJs for diverse – 

accuracy for old, diverse items). Calibration scores for diverse and repeated categories 

can be seen in Figure 2.2. Values above zero indicate overconfidence, those under zero 

indicate underconfidence and zero indicates perfectly accurate scores.  

Calibration scores for diverse and repeated categories were analyzed using a 2 

(Item status: Old vs. New) x 2 (Category type: diverse vs. repeated) repeated measures 

ANOVA. There was a main effect of item status (F (1, 30) = 101.288, MSE = 0.022, ηp
2 = 

0.771, p < 0.001), but no main effect of category type (p = 0.103). There was also a 

significant interaction (F (1, 30) = 31.163, MSE = 0.012, ηp
2 = 0.51, p < 0.001). One-

sample t-tests indicated that calibration scores for old (t (30) = -2.966, p = 0.006) and new 

items (t (30) = 4.896, p < 0.001) in repeated categories were different from zero, 

indicating significant underconfidence and overconfidence, respectively. This was not 

true for the Diverse condition (p = 0.095 for new items and p = 0.229 for old items).  

2.4 Discussion 

The purpose of Experiment 1 was to determine whether accuracy on a single 

learning trial affects subsequent performance on the learning task and whether 

participants’ metacognitive judgments were in line with their performance. The results of 

the test phase indicated a trend that new items for diverse categories were better classified  
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Figure 2.2 Calibration scores (average of last 3 CLJs minus test accuracy) for Diverse 

and Repeated categories in Experiment 1. Error bars represent standard errors of the 

means. 

  

than new items for repeated categories; however, this finding failed to reach significance. 

Repetition had the expected benefit for classification of old Repeated items compared to 

old Diverse items. Participants’ CLJs were greater following correct responses versus 

incorrect responses; they increased as the learning phase progressed, and they did not 

differ based on category type. Thus, participants did not consider variability when giving 

their trial-by-trial CLJs. Contrary to Wahlheim et al.’s (2012) finding and our prediction, 

new items from Diverse categories were not classified better than new items from 

Repeated categories (p = .087). However, as previously noted there is a numeric trend in 

the expected direction, so it is possible that the null result is due to the relatively small 

number of items tested and potential variation in item difficulty. In their third and fourth 
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experiment Wahlheim and DeSoto (2016) also failed to find a variability effect using a 

very similar procedure to the Wahlheim et al. (2012) study. Another finding to consider in 

the current experiment is that participants were not well calibrated on repeated categories, 

in general, meaning that the predictions for how well they thought they would classify old 

and new items were numerically quite different from the observed accuracies. This 

indicates overconfidence in repetition, rather than a neglect of variability (especially 

considering that diverse categories were well calibrated). This is in line with Wahlheim et 

al.’s finding that participants were greatly overconfident for new items in their repeated 

condition. 

In regard to trial-by-trial accuracy, a correct trial was more likely to be followed 

by another correct trial than by an incorrect trial, while incorrect trials were equally likely 

to be followed by correct or incorrect trials. An interpretation of the data would suggest 

that a trial was more likely to be correct if the previous trial (from the same category) was 

also correct. This supports my prediction and the direction selectivity effect (Histed et al., 

2009); successful behavior leads to better learning than making mistakes. The 

implications of this finding are discussed below.  

The changes in the magnitude of CLJs showed that participants’ judgments of 

their own learning are sensitive to the feedback they receive. When a correct response is 

made following an incorrect response, this is perceived to be the result of a large gain in 

overall learning of the category, leading to a large increase in CLJ magnitudes. 

Conversely, when an incorrect response is made following a correct response, this results 

in a reduction in CLJ magnitudes, perhaps in an attempt to correct a perceived 

overconfidence from the prior correct trial. For repeated responses (correct-correct and 
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incorrect-incorrect), CLJ magnitudes change very little from trial to trial, reflecting a 

belief that learning is not changing substantially. This finding was surprising and novel, 

but has wide implications on the nature of how people perceive learning. Therefore, one 

of the goals of a second experiment was to replicate this finding.  

3.1 Experiment 2 

 The purpose of Experiment 2 was primarily to replicate the findings of 

Experiment 1 and extend them to different stimuli. The stimuli that I chose were 

previously used by Kornell and Bjork (2008). The set of stimuli were 10 pictures of 

landscape or skyscape paintings from six different artists, chosen because of their 

relatively low popularity, therefore making them less likely to be known by participants. 

Kornell and Bjork used these stimuli to observe the effects of spaced (interleaved) versus 

massed (blocked) study. They predicted that massed study would help learning more than 

spaced, because it would allow participants to compare the similarities among exemplars. 

Contrary to their prediction they found that spaced study was better than massed study, 

although participants judged massed to be more beneficial. As previously mentioned, this 

“massing illusion” has since been supported by follow up studies (e.g., Tauber et al., 

2013).  

Another addition to Experiment 2 was that global CLJs (i.e., single judgments 

about each artist category) were elicited after participants completed the learning phase 

and which asked for separate confidence ratings for both old and new items for each 

category. This procedure differs from Experiment 1, which only asked for participants to 

give a CLJ rating after every trial (i.e., item-level CLJs). Since item-level CLJs 

specifically state to give a confidence judgment based on future performance on novel 



 
 

27 
 

items, it is difficult to interpret the relation between item CLJs and performance on old 

items at test. By including global CLJs for both new and old items it would allow for a 

better determination of whether participants’ CLJs are accurate predictors of their test 

performance on the two types of items. It was expected that global CLJs would show a 

bias toward Repeated categories over Diverse categories, similar to the item-level CLJs in 

Experiment 1.  

3.2 Method 

3.2.1 Participants. Participants included 34 Memorial University students. All 

participants received course credit in exchange for participation.  

3.2.2 Materials. Instead of pictures of birds, Experiment 2 used pictures of 

paintings, selected from materials originally used by Kornell and Bjork (2008). I used 

paintings from the following six artists: Pessani, Stratulat, Wexler, Braque, Seurat, and 

Cross. Besides changing pictures, the number of stimuli and repetitions in each condition 

was identical to Experiment 1.  

3.2.3 Design. The design was identical to Experiment 1, with the addition of 

global CLJs (for both Old and New items) elicited at the end of the learning phase. 

3.2.4 Procedure. The procedure for Experiment 2 was almost identical to the 

procedure for Experiment 1, besides the change in stimuli and the addition of global CLJ 

ratings. Before starting the learning phase participants gave a CLJ rating for each of the 

artists, simply to indicate whether any participants had knowledge of the artists prior to 

the experiment. Upon completion of the learning phase participants were asked to give 

two CLJ ratings for each category, called global CLJs. They were first given the 

following prompt: “Please give an overall confidence judgment on how likely you would 
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be to correctly identify the paintings you just studied by [Artist]”. This was followed by a 

very similar prompt, except it was for asking for a confidence rating for new items from 

that artist. The order of the artists was random, however participants always gave a rating 

for old items followed by a rating for new items for the same artist.  

3.3 Results 

Statistical reliability was measured at p < 0.05 in all of the analyses to be 

discussed. As I did in Experiment 1, I first consider test performance in relation to CLJs, 

and then explore the learning trials in more detail. Data from three participants were 

eliminated from all the analyses to be discussed because of failure to follow instructions. 

As in Experiment 1, the degrees of freedom for the following analyses change depending 

on whether there are missing values. 

3.3.1 Test Phase. 

3.3.1.1 Mean Performance. Test accuracy for old and new items (see Table 3.1) 

was analyzed using a 2 (item status: new vs. old) x 2 (category: Diverse vs. Repeated) 

repeated measures ANOVA.  There was a main effect of item status (F (1, 30) = 186.68, 

MSE = 0.007, p < 0.001, ηp
2 = 0.86), but no main effect of category type (p = 0.66). Old 

items were categorized better than new items, in general, but there was also a significant 

interaction (F (1, 30) = 16.6, MSE = 0.019, p < 0.001, ηp
2 = 0.36). Old items from 

Repeated categories were categorized better than old items from Diverse categories, but 

there was no difference between category types in performance on new items. However, 

as we found in Experiment 1, there is a numeric trend in the predicted direction (new 

items from Diverse categories being categorized better than Repeated categories). 
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Table 3.1 Trial-by-Trial Accuracy Contingencies during Learning Trials and 

Corresponding Changes in Category Learning Judgments (CLJs) in Experiment 2 

Note: Numbers in parentheses are standard deviations. 

3.3.2 Learning Phase. Classification accuracy and CLJs across the learning phase 

are displayed in Figure3.1. Similar to Figure 2.1, participants’ CLJs were again much 

closer to their actual performance on Diverse categories than Repeated categories, even as 

they were performing much better on the Repeated category items. 

 Trial Type 

 Correct-

Correct 

Correct-

Incorrect 

Incorrect-

Correct 

Incorrect-

Incorrect 

Proportion of Learning 

Trials 

    

Diverse 0.45 

(0.033) 

0.17 

(0.0091) 

0.19 

(0.0092) 

0.19 

(0.022) 

Repeated 0.56 

(0.029) 

0.14 

(0.0098) 

0.17 

(0.01) 

0.13 

(0.013) 

Change in CLJs     

 Block 1     

Diverse +4.01 

(0.66) 

-11.75 

(2.06) 

+15.22 

(1.92) 

+0.12 

(0.66) 

Repeated +4.94 

(1.002) 

-11.95  

(1.22) 

+13.51 

(1.47) 

-0.29 

(0.83) 

 Block 2     

Diverse   +2.15 

(0.58) 

-7.16 

(1.54) 

+7.93 

(1.41) 

-0.54 

(1.08) 

Repeated +1.88 

(0.38) 

-5.40 

(1.00) 

+6.50 

(1.39) 

-1.17 

(1.30) 
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Figure 3.1 Mean classification accuracy and CLJs for Diverse and Repeated categories 

across both blocks of learning trials in Experiment 2. Each trial bin includes nine trials. 

 

3.3.2.1 Mean Performance. Mean CLJs following correct vs. incorrect responses 

(displayed in Table 2.1) were analyzed using a 2 (Block: 1 vs. 2) x 2 (category type: 

diverse vs. repeated) x 2 (response: correct vs. incorrect) repeated measures ANOVA. 

There were main effects of Block (F (1, 25) = 38.11, MSE = 506.66, p < 0.001, ηp
2 = 

0.60) and response (F (1, 25) = 149.42, MSE = 127.75, p < 0.001, ηp
2 = 0.86), but no 

main effect of category type (p = 0.39), and no significant interactions (all ps > 0.125). 

This means that CLJs for both correct and incorrect responses increased from Block 1 to 

Block 2 and CLJs for correct responses were higher than CLJs for incorrect responses.  

3.3.2.2 Trial-by-trial Accuracy. Responses were binned and analyzed exactly as 

in Experiment 1 (see Table 3.1). For Repeated categories, correct-correct differed from 
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correct-incorrect (Z = -6.34, p < 0.001). Incorrect-correct also differed from incorrect-

incorrect (Z - -2.63, p = 0.009). When the same analysis was performed for Diverse 

categories, correct-correct differed from correct-incorrect (Z = -5.98, p < 0.001), while 

incorrect-correct did not differ from incorrect-incorrect (Z = -1.53, p = 0.13).  

 3.3.2.3 Trial-by-trial CLJs. The mean change in CLJ for each of the eight bins 

(see Table 3.1) were analyzed using a 2 (Block: 1 & 2) x 4 (bin: correct-correct, correct-

incorrect, incorrect-correct, incorrect-incorrect) repeated measures ANOVA. There was a 

significant main effect of Block (F (1, 30) = 7.08, MSE = 12.69, p < .012, ηp
2 =0.19), Bin 

(F (3, 90) = 85.78, MSE = 49.23, p < .001, ηp
2 = 0.74), and a Block x Bin interaction (F 

(3, 90) = 11.76, MSE = 36.47, p<.001, ηp
2 = 0.28). 

 Because the Block x Bin interaction was significant, follow-up analyses on 

differences among bins were conducted separately for Block 1 and Block 2. In Block 1, 

an initial one-way ANOVA was significant (F (3, 120) = 86.56, MSE = 41.41, p<.001, ηp
2 

= 0.69). Follow-up pairwise comparisons (using the Bonferroni correction for multiple 

comparisons) showed that all four bins were significantly different from one another (all 

ps < .036). Participants increased their CLJs the most on correct trials when the previous 

trial had been incorrect, whereas correct responses following correct responses resulted in 

a significantly smaller increase in CLJs (t (30) = 9.32, p < .001, t (30) = 6.59, p < .001, 

respectively) When participants were incorrect and had been incorrect on the previous 

trial, CLJs did not increase or decrease significantly (p = .87), and when an incorrect 

response followed a correct response, CLJs decreased significantly (t (30) = -7.98, p < 

.001). A similar analysis of Block 2 also showed that all bins, except bins 1 and 4, were 

significantly different from one another (all ps < .001). Changes in CLJs across bins 
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followed the same pattern as in Block 1, but the magnitude of the increase or decrease in 

CLJs was smaller for Incorrect-Correct bins ( t (30) = 5.93, p < .001), Correct-Incorrect (t 

(30) = -6.12, p = .001) and Correct-Correct (t (30) = 4.47, p < .001), relative to Block 1. 

3.3.2.4 Calibration of CLJs. Calibration scores for Experiment 2 were first 

calculated the same way as Experiment 1 (i.e., averaging the final three CLJs per category 

and subtracting the corresponding accuracy score). Calibration scores for diverse and 

repeated categories can be seen in Figure 3.2. Calibration scores for diverse and repeated 

categories were analyzed using a 2 (Item status: Old vs. New) x 2 (Category type: diverse 

vs. repeated) repeated measures ANOVA. There was a main effect of item status (F (1, 

30) = 146.198, MSE = 0.009, ηp
2 = 0.830, p < 0.001), but no main effect of category type 

(p = 0.555). This means that CLJs more accurately predicted performance on old items 

than on new items. There was also a significant interaction (F (1, 30) = 16.095, MSE = 

0.019, ηp
2 = 0.349, p < 0.001). One-sample t-tests indicated that calibration scores for old 

(t (30) = -4.085, p < 0.001) and new items (t (30) = 2.360, p = 0.025) in Repeated 

categories were different from zero, indicating significant overconfidence. Once again 

this was not true for the Diverse condition (p = 0.214 for new items and p = 0.255 for old 

items).  

With the inclusion of global CLJ ratings another calculation for calibration scores 

was obtained by simply taking the global CLJ ratings and subtracting the corresponding 

accuracy measure (e.g., CLJs for old items – accuracy on old items). These new 

calibration scores for diverse and repeated categories can be seen in Figure 3.3. 

Calibration scores for Diverse and Repeated categories were analyzed using a 2 (Item  



 
 

33 
 

Figure 3.2 Calibration scores (average of last 3 CLJs minus test accuracy) for Diverse 

and Repeated categories in Experiment 2. Error bars represent standard errors of the 

means. 

 

status: Old vs. New) x 2 (Category type: Diverse vs. Repeated) repeated measures 

ANOVA. There was a main effect of item status (F (1, 30) = 7.960, MSE = 0.024, ηp
2 =  

0.21, p < 0.008), but no main effect of category type (p = 0.512). There was also a 

significant interaction (F (1, 30) = 14.802, MSE = 0.02, ηp
2 = 0.33, p = 0.001). A one-

sample t-test indicated that calibration scores for old items (t (30) = -4.272, p < 0.001) in 

Repeated categories were different from zero (i.e., significantly overconfident), but none 

of the other calibration scores were different from zero (all ps > 0.417).  
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Figure 3.3 Calibration scores (global-level CLJs minus test accuracy) for Diverse and 

Repeated categories in Experiment 2. Error bars represent standard errors of the means. 

 

3.4 Discussion 

 Experiment 2 was designed to replicate the results of Experiment 1, as well as 

extend them to a different set of stimuli. Performance during the test phase demonstrated 

that old items from repeated categories were better classified than old items from diverse 

categories. There was no difference between category types on new items. As in 

Experiment 1, this result demonstrates a benefit of repetition on classification accuracy 

and a non-significant trend for variability (new items from diverse categories were better 

classified than new items from repeated categories (p = 0.123)). CLJs increased as 

learning went on; they were greater following correct versus incorrect responses, and they 

did not differ based on category type. Once again, “variability neglect” as described by  
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Wahlheim et al. (2012) was not found, however calibration scores did replicate the 

finding that participants were overconfident for repeated categories in terms of classifying 

new items. The finding that participants were underconfident for old items for repeated 

categories was not replicated when using global CLJs, which suggests that item CLJs 

were not appropriate for predicting performance on old items. However, the finding of 

overconfidence for new items for repeated categories remained, demonstrating a robust 

effect of repetition on participants’ judgments that persists even when participants are 

explicitly asked to globally judge their future performance on repeated categories. 

The trial-by-trial accuracy pattern was similar to Experiment 1. A correct trial was 

more likely to be followed by another correct trial than by an incorrect trial and an 

incorrect trial was more likely to be followed by another incorrect trial than by a correct 

trial. This again suggests that a trial was more likely to be correct if the previous trial 

(from the same category) was also correct. This is in line with the direction selectivity 

effect (Histed et al., 2009), but the fact that an incorrect trial was likely to be followed by 

an incorrect trial suggests that participants were not learning from their mistakes.   

The result found in Experiment 1 that changes in CLJ magnitudes differ as a result 

of feedback was replicated in Experiment 2. This supports the idea that participants 

actively try and change their CLJs based on the perceptions of their own learning and by 

the feedback they are given. A more detailed account of why this occurs is discussed 

further below. 

4.1 General Discussion 

The purpose of the current thesis was to examine how people perceive their own 

learning after success compared to after failure, and to determine how metacognitive 
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assessments of category learning change in response to feedback during learning. The 

novel contribution of the current study was the analysis of how CLJs change during the 

process of category learning. An analysis of participants’ CLJs revealed that people gave 

higher CLJs following correct trials than following incorrect trials. Looking at trial-by-

trial learning for each category during study showed that a trial was more likely to be 

correct if the previous trial was correct; therefore success did affect subsequent 

behaviour. In other words, people identify success, rather than failure, as being a greater 

determinant of learning. Critically, the way in which CLJs changed across trials speaks to 

how we perceive our own learning.  

During both blocks of the study phase, participants increased their CLJs 

significantly (relative to the last trial with that category) only if they were correct. 

Contrary to what was predicted, the largest increases in perceived learning occurred on 

successful trials that followed a previous incorrect response, not a correct response, as the 

trial-by-trial performance would suggest. While participants’ performance on a given trial 

was more likely to be correct if the previous trial was correct, within a category, their 

CLJs did not reflect this pattern. Instead, changes in CLJs indicated that participants view 

correct feedback as indicative of a substantial increase in learning only when that correct 

response immediately follows an incorrect response. That is, while CLJs did increase on 

correct trials when the previous trial had also been correct, the change was much smaller 

in magnitude than when the previous trial had been incorrect. Participants may view 

repeated successes with a particular category as reflective of only a small increment in 

learning (and thus increase CLJs moderately), whereas a correct response that follows an 

incorrect response may be viewed as resulting from the learner gaining significant insight 
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into that category. Similarly, CLJs on incorrect trials did not change if the previous trial 

had also been incorrect, but actually decreased if the previous trial had been correct. This 

pattern is consistent with the idea that repeated incorrect responses reflect no change in 

learning, but making an error with a category that had previously been correct may reflect 

a misunderstanding of category membership. Thus, participants’ CLJs were reflective of a 

sophisticated strategy of assessing one’s own learning in response to specific feedback 

about success versus failure. 

Wahlheim et al., (2012) define variability neglect as participants’ CLJs not 

accounting for a variability effect, where high variability leads to better performance on 

novel items (e.g., Dukes & Bevan, 1967). According to this definition, the results of the 

test phases in both Experiments 1 and 2 failed to replicate the variability effect in 

category learning: New items from Repeated categories were classified just as well as 

new items from Diverse categories. This may have resulted from Diverse categories not 

being learned well enough during study, as the results from both experiments showed that 

accuracy in the last bin of the learning phase for Diverse categories was 56% for 

Experiment 1 and 76% for Experiment 2 (see Figures 1 and 2). Importantly, this was 

reflected by participants’ calibrated CLJs for Diverse items, which were almost identical 

to actual performance. That is, for both old and new items, participants’ CLJs were much 

closer to their performance on Diverse categories than Repeated categories, for which 

participants overestimated their ability to classify novel exemplars. Wahlheim et al. did 

not analyze calibration scores, however they did find that participants’ CLJs were 

overconfident compared to their actual performance on novel items for repeated 

categories. Additionally, in Experiment 2 of the current study, participants’ global level 
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CLJs for new items did not differ between diverse (M = 64.8, SD = 3.29) and Repeated 

categories (M = 62.92, SD = 3.05). Therefore, even though the current set of experiments 

did not show variability neglect as defined by Wahlheim et al., they did show that 

participants do not account for variability in their item- or global-level CLJs. 

Similarly, during the learning phase, participants gave higher average CLJs for 

Repeated items than for Diverse items, suggesting that they perceived performance on 

Repeated items as reflecting their overall understanding of the categories. This finding 

may be explained by the fluency heuristic, which suggests that people give judgments 

based on how fast information comes to mind (Van Overschelde, 2008). For example, if 

judging the likelihood of remembering people’s names, a higher judgment would be 

given if the name can be easily recalled at the time the judgment is made. According to 

this heuristic, CLJs could have been influenced by how easily ‘correct’ information is 

retrieved when making a CLJ. After a correct response, the ability to recall an example of 

the category is much easier than if an incorrect response was made. Given that more 

incorrect responses were made for Diverse items, lower CLJs for Diverse items might 

reflect the difficulty of recalling a correct exemplar of that category following incorrect 

responses.  

The fact that CLJs were much greater for Repeated categories throughout the 

learning phase also suggests that participants prefer repetition to variability when the goal 

is to classify novel items. Contrary to this prediction, Wahlheim and DeSoto (2016) found 

that when given the choice of studying a category using high or low variability for a 

categorization test, most participants chose the high variability option. This finding 

replicated when the test condition contained only novel items and when participants’ pre-
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existing familiarity was taken into account. One reason why participants in the current 

study might have given higher CLJs for Repeated categories than Diverse categories is 

because they were not aware of how variability would affect performance on the test. In 

other words, if participants were made aware of the fact that the test would have both old 

and new items, they may have changed their CLJs accordingly. The results of Wahlheim 

and DeSoto’s (2016) Experiment 4 support this possibility, as they demonstrated that 

when participants were asked about their preference for studying for old and new items, 

most participants chose variability over repetition, but when asked about their study 

preference for new items only, most participants chose repetition over variability. This 

discrepancy seems to suggest that people understand the benefit of variability (also 

supported by Experiments 2 and 3 from Wahlheim et al., 2012), but only when they are 

told that there will be old and new items on the test; when they are not informed about the 

test composition, they do not adjust their metacognitive judgments for variability. 

The current results regarding variability demonstrate support for both an exemplar 

model and a prototype model. As was mentioned previously, the focus on natural 

categories led to the formation of exemplar based models (Rosch & Mervis, 1975), 

because natural categories are more difficult to learn using specific rules for categorizing 

exemplars. This is true as well for the set of stimuli used in Experiments 1 (birds) and 2 

(paintings) of the current thesis. However the current set of findings cannot rule out the 

possibility that participants were forming a prototype from a set of criterion rules 

throughout the learning phase. One finding that would argue against this idea is that old 

items were categorized better for Repeated categories than Diverse categories. This 

means that people were better at categorizing studied categories if the exemplars were 



 
 

40 
 

presented repeatedly rather than if a greater number of exemplars were presented. It is 

unclear whether prototype models would be able to account for this finding, whereas 

exemplar models specifically mention memory traces for exemplars as being integral to 

category learning (e.g., Hintzman’s Minerva 2 model, 1986). 

Generally, prototype models are supported by the finding that new items for 

diverse categories are better categorized than new items for repeated categories; this 

result was not replicated in the present study. A diverse category would lead to a better 

prototype representation, which would explain why novels items would be easier to 

categorize. Given that the current study and two experiments by Wahlheim and DeSoto 

(2016) also did not find a benefit for variability for novel items, future studies are needed 

to understand the conditions needed for variability to have an effect on classification of 

new exemplars in natural categories. 

A procedural difference between present study and that of Wahlheim et al. (2012) 

was that in the present study, participants were provided with immediate feedback 

following each classification choice, whereas Wahlheim et al.’s experiments did not 

provide immediate feedback. Their experiment involved participants studying bird 

families (with restricted study time per bird), followed by confidence judgments given on 

each bird family individually and finally, participants’ learning was tested with a 

recognition of ‘old’ vs. ‘new’ items. The present study gave participants unrestricted time 

to study each bird before giving a response and providing feedback. Confidence 

judgments were collected after each bird was shown and participants were tested on their 

ability to actually identify category membership for both old and new birds. It is possible 

that artefacts, such as the use of unrestricted time during learning, or when CLJs were 
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collected, could explain the difference in results between the present study and those of 

Wahlheim et al. (2012). Clapper (2015) examined a similar procedural difference in 

sequencing studies, which he referred to as supervised versus unsupervised learning; the 

former involves having participants categorize items and giving them feedback, while the 

latter simply gives them a certain amount of time to study items for each category. 

Clapper found that the usual spacing effect (spaced study results in better learning than 

massed study) was reversed when participants were given a supervised learning period 

than when they were unsupervised. While the current study did not find completely 

different results than previous studies on variability by using supervised rather than 

unsupervised learning, Clapper’s study demonstrates that using these two different 

procedures may have some unexpected effects (such as changing the level of 

categorization difficulty).  

Considering the learning phase of the current study in more detail, the analysis of 

trial-by-trial learning indicated that, for the repeated categories, a trial was more likely to 

be correct if the previous trial was correct, but trials for diverse categories did not follow 

this pattern. These results were partially consistent with the study by Histed et al. (2009), 

in which the researchers used an association task to show that a correct trial directly 

influenced the subsequent trial. One possible explanation for the current study`s results 

might be that only repeated categories were similar to the association task used by Histed 

et al., which might be why they replicated their results. 

An alternative interpretation of the trial-by-trial learning data is that participants 

may have been using an error discounting method during learning. Error discounting is 

when people slow down their rate of learning in order to account for a certain amount of 
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errors (Craig, Lewandowsky, & Little, 2011). In both of the experiments by Craig et al., 

participants had to categorize four items into two categories (A and B) on a probabilistic 

basis (items belonging to category A changed periodically from probabilities of .8 to .6 to 

.4). An analysis of trial-by-trial response patterns showed that for trials following an 

incorrect trial, where stimuli were the same, participants were more likely to make a 

different response, but following incorrect trials where the stimuli were different they 

were likely to make the same response. Craig and his colleagues interpreted their findings 

as indicating that when a certain amount of error is unavoidable, people gradually 

discount errors as they contribute less to learning. In terms of the present study, error 

discounting may explain why classification of repeated categories were more likely to be 

correct following a correct trial, but the same finding was not true for diverse categories. 

When participants made a wrong classification for an item in a repeated category, then 

the next time it may have been more likely that they changed their response. On the other 

hand, after making a wrong classification for an item in a diverse category, participants 

may have been more likely to make the same response. Future studies may look into 

whether increasing the number of study trials affects the response patterns of diverse 

categories. If error discounting does explain the different results found for repeated and 

diverse categories, then future studies should show the same results regardless of the 

amount of trials people are given. 

 The goal of the present thesis was to examine how people think they learn, 

following success versus failure. Participants tended to rate their category knowledge 

based on whether they had just classified a member correctly, regardless of whether the 

category type was diverse or repeated. Participants also tended to give higher CLJs for 
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repeated categories, which suggests that they believed repetition helps category learning 

more than it actually did. Critically, the overall pattern of changes in CLJs was responsive 

to changes in classification accuracy.  

Research into metacognitive judgments and learning are applicable to students and 

also education in general. Being aware that variability neglect occurs during learning can 

make the difference between accurately and inaccurately assessing your understanding of 

a given topic. Although variability neglect was not replicated in the current study, 

overconfidence in the benefits of repetition for classifying new items was observed; 

therefore, study strategies for a large amount of diverse material should attempt to 

minimize or eliminate the use of repetition. In a similar way, the finding that correct 

responses led to a greater chance of another correct response occurring can be applied to 

allocation of study time. In particular, the focus should be on learning from correct 

responses rather than paying attention to mistakes. While it is important to learn from 

your mistakes, the implication of the present study is that success is a better indication of 

how much one has learned. 
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