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a  b  s  t  r  a  c  t   
 
The Upper Frasnian sequence of the  Namur–Dinant Basin  in southern Belgium consists of mixed siliclastic– 
carbonate  succession of  a  ramp setting, where  the   sequence spans the   rhenana–linguiformis  conodont 
zones. Earlier studies investigated the  chemostratigraphic variations during the  Frasnian–Famennian event, 
but  little has  been yet  known about the  nature of the  counterpart variations that immediately preceded 
that time interval. Despite the  scarcity of well-preserved brachiopods, sixty-one calcitic shells were collected 
mainly from beds of the  Neuville and Les Valisettes formations (Lower and Upper rhenana zones), to inves- 
tigate biochemostratigraphic profiles of oxygen-, carbon-isotope and rare earth element (REE) variations of 
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the   time  interval  immediately  before the   Frasnian–Famennian boundary.  The  δ O  and δ C  values  of 
the   well-preserved  shells range  from − 9.5  to   − 5.6‰  VPDB (− 7.7 ± 1.1,  n = 33)   and  from − 1.8  to 
3.8‰ VPDB (1.1 ± 1.7,  n = 33),  respectively, which are  within the  documented  global values. The  C- and 
O-isotope profiles  exhibit parallel shifts, particularly  at  the   top   of  the   Neuville Formation (top  of  the 
Lower  rhenana Zone), which are  associated with a sea-level rise  and shrinkage in the  brachiopod commu- 
nity.  Also, the  Th/U (0.9 ± 0.6, n = 16)  and Ce/Ce* (2.2 ± 0.5, n = 16) ratios suggest deposition under reduc- 
ing  conditions consistent with sea  transgression. 

© 2011 Elsevier B.V. All rights reserved. 
 

 
 
 

1. Introduction 
 

Biogenic allochems (e.g., brachiopods and conodonts) and some  of 
the  unaltered whole rock have  been used  as proxies for the  evolution 
of original seawater chemistry during the  Earth's geologic history. 
Geochemical studies  have   proven that  well-preserved low- 
magnesium calcite  (LMC) brachiopod shells  retain their primary sta- 
ble isotope and  trace element signatures that can be reliably utilized 
to study the  paleoenvironmental conditions (climate and  oceanogra- 
phy) and  construct high-resolution correlations of sequences from 
different depositional settings (e.g.  Veizer  et  al., 1999; Brand  et  al., 
2004, Came et al., 2007; Brand et al., 2011). This makes the  preserved 
brachiopod shells  of the  Upper   Frasnian marine carbonates in  the 
Namur–Dinant  Basin  (southern  Belgium) a  potential  material  for 
obtaining primary geochemical signatures to  investigate the  varia- 
tions  in the  paleoenvironmental conditions at high  resolution partic- 
ularly  during the  time interval immediately before the  global 
Frasnian–Famennian extinction  event  (Kellwasser event).  Despite 
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the   common  occurrence  of  brachiopods  in   the   investigated se- 
quences, the  well-preserved shells  that can  be used  for geochemical 
studies are  still rare  (e.g., Azmy et al., 2009a). 

The main  objectives of the  current study are: 
 

(1)   to  investigate the   primary biochemostratigraphic variations 
(O-  and  C-isotopes and  REE) in the  Upper  Frasnian sequence 
(rhenana Zone)  in the  Namur–Dinant Basin, and 

(2)  to better understand the  nature of the  paleoenvironmental 
variations  immediately  before  the   Frasnian–Famennian 
boundary in the  Namur–Dinant Basin and examine their global 
extension. 

 

 
2. Study area and geologic settings 
 

In southern Belgium,  the  Upper  Frasnian succession (rhenana–lin- 
guiformis  conodont zones) crops  out  extensively across  the  Namur 
Parautochtonous and in the Ardenne Autochtonous (Dinant Syncli- 
norium,  Philippeville Anticlinorium, Vesdre   Nappe,   Fig.  1).  These 
major Variscan  structural units constituted the  Namur–Dinant  Basin, 
which developed along  the  south-eastern margin of Laurussia during 
Devonian. In the course of the Frasnian, the facies succession reflected 
a  ramp  setting with  a  mixed  siliclastic–carbonate sedimentation 
(Fig.  2) and  several breaks of slope  as  well  as  the  development  of 
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Fig.  1.  Schematic geological map of  southern  Belgium with locations of  the four studied sections (modified  from Denayer and Poty, 2010). Post-Paleozoic sections are   not 
represented. 

 
 

carbonate buildups in  its  distal part (southern flank of the  Dinant 
Synclinorium) (e.g.,  Lecompte 1960,  1970; Tsien,  1975; Boulvain  et 
al., 2004). The brachiopod shells of the current investigation were col- 
lected from four sections located in different parts of the basin and re- 
covered from  the  Neuville,  Les Valisettes and  Aisemont formations. 
Brachiopod faunas from  these lithostratigraphic units were recently 
studied by Mottequin (2005, 2008a,b,c). 

The Neuville Formation (Lower  rhenana Zone, Figs. 2 and  3a) con- 
sists  of nodular limestone with intercalations of shales in  the  Phi- 
lippeville   Anticlinorium   where    its    thickness   is    always   low 
(15–25 m).  On  the  southern flank of the  Dinant Synclinorium, the 
shales with limestone nodules predominate and the formation attains 
up  to  110 m in thickness (Coen, 1977) but  the  latter lithofacies de- 
creases eastward. The reddish carbonate mud mounds (30  to  80 m 
thick), which developed within the formation and were earlier attrib- 
uted to  the   former  stratigraphic  subdivision ‘F2j’  (Maillieux and 

Demanet  1929),  are   now    assigned  to  the   Petit-Mont  Member 
(Boulvain et al., 1999a; Boulvain  et al., 2004). 

The Les Valisettes Formation (spanning the  top  of the  Lower  rhe- 
nana Zone  and  Upper   rhenana Zone,  Figs. 2  and  3b),  about 90 m 
thick  in the  Philippeville Anticlinorium, is rich  in shales.  Greenish to 
reddish   nodular   limestones  and    shales  are    locally    developed 
(Boulvain et  al., 1999b). It occurs  also  on  the  south-eastern border 
of the Dinant Synclinorium, between the Neuville and Barvaux forma- 
tions,  where its thickness is considerably reduced. 

The Aisemont Formation (about 20–35 m; Lower to basal part of the 
Upper rhenana Zone, Figs. 2 and 3c–d) comprises limestones and  argil- 
laceous limestones in its lower and upper parts (lower and upper mem- 
bers); the middle part (middle member) consists of shales and nodular 
shales (Lacroix, 1999). Both limestone horizons are  known in the Bel- 
gian  literature as the first and  second ‘biostromes with Phillipsastrea’ 
of Coen-Aubert and Lacroix (1979) but the ‘second biostrome’ is almost 
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Fig.  3. Plot  of the detailed δ O and δ C profiles of the studied sections at (a) Neuville railway station, (b) Biron, (c) La Mallieue, and (d) Baugnée. Solid  circles refer to preserved 
shells and open circles to matrix. 

 
devoid of biostromal units (Poty and Chevalier, 2007; Denayer and Poty, 
2010). The shales of the middle member are correlated with the Lower 
Kellwasser Horizon (Bultynck et al., 1998). 

The Neuville railway section (50°19′56.06″N; 4°29′49.95″E, Fig. 3a) is 
located south-west of the  village  of Neuville (Fig. 1) in a trench dug 
for  the  Couvin-Charleroi railway (e.g.,  Godefroid and  Helsen,  1998; 
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Bultynck  et al., 1998; Boulvain  et al., 1999a,  b; Mottequin, 2005), and 
is part of the  Philippeville Anticlinorium. It exposes an almost contin- 
uous   section ranging from   the   top  of  the   Philippeville  Formation 
(hassi s.l. to  lower part of the  lower rhenana Zone)  to  the  Famenne 
Formation (triangularis Zone). 

The Biron section (50°19′03.55″N; 5°28′37.59″E, Fig. 3b) is locat- 
ed  along  the south-western side  of the forest track  linking the vil- 
lage  to the disused halt  of Biron (Coen, 1999; Mottequin, 2005) on 
the south-eastern margin of the Dinant Synclinorium (Fig. 1). It ex- 
poses a continuous section ranging from  the top of the  Neuville  For- 
mation,  the Les  Valisettes  Formation  and  the base  of the Barvaux 
Formation. 

The  La  Mallieue section  in  Engis  (50°34′22.69″N;  5°22′53.24″E, 
Fig. 3c) is located along  the  north-western side  of the  road  from  Engis 
to  Amay  in Engis  (Fig.  1, Coen-Aubert  and  Lacroix,  1979; Mottequin, 
2005; Poty and  Chevalier, 2007; Denayer and  Poty, 2010) and  exposes 
the   top  of  the   Lustin  Formation  and   almost the  entire  Aisemont 
Formation. 

The  Baugnée section (50°30′30.22″N; 5°28′34.39″E) (Fig.  3d)  is 
located along   the   road   from   Nandrin to  Esneux   (Fig.  1,  northern 
flank of the  Dinant Synclinorium), north-west  of the  Tavier  stream 
(Mottequin,  2005;  Poty   and   Chevalier, 2007;  Denayer  and   Poty, 
2010) and  offers  a good  opportunity to study the  upper part of the 
Lustin  Formation, the   Aisemont Formation  and   the   lower part  of 
the  Famenne Formation, but  only  the  brachiopods from  the  lower 
carbonate member of  the   Aisemont Formation were  investigated 
herein. 

 
 

3. Methods 
 

Despite  their   great   abundance,  well-preserved   brachiopods, 

For elemental analyses, a subset of sample powder was digested in 
0.075 M pure HNO3  and analyzed for major (e.g., Ca, Mg), minor (e.g., 
Sr, Mn, Fe), and REE (Coleman et al. 1989) using  a HP 4500plus ICPMS 
at  Memorial University of Newfoundland. The relative uncertainties 
of these measurements are better than 3%. Normalization of REE con- 
centrations is based on  PAAS values (Post-Archean Australian Shale, 
McLennan, 1989),  and  CeSN   [(Ce/Ce*)SN = CeSN/(0.5LaSN + 0.5PrSN)] 
and  LaSN  [(Pr/Pr*)SN =PrSN/0.5CeSN + 0.5NdSN)] anomalies were cal- 
culated with the  equations of Bau and  Dulski (1996). All geochemical 
results are  listed in Appendix 1. 
 
4. Results 
 

Evaluation of the petrographic preservation of brachiopod shells is a 
cornerstone procedure before geochemical analyses in order to reveal 
hidden post-depositional diagenetic alterations in the  shell  ultrastruc- 
ture,  which might overprint the  primary  geochemical signatures. In 
the Neuville railway-station section (spanning the  Neuville Formation, 
Fig. 3a)  and   the Biron  section (spanning  Les  Valisettes Formation, 
Fig. 3b), the scanning electron microscope (SEM) images of the second- 
ary  layer   of  the sampled shells,   particularly those with the  most 

18 
enriched δ O signals,  show mainly clean calcite prisms of very good ul- 
trastructure preservation with smooth boundaries free  of diagenetic 
dissolution features (Fig. 4a)  except for few  samples that show some 
minor alterations (Fig.  4b).  On the contrary,  shells  with significantly 
poorer preservation (Fig. 4c)  are  more common in the samples from 
the La Mallieue (Engis,  spanning the Aisemont Formation, Fig. 3c) and 
Baugnée (spanning  lower  Aisemont   Formation,   Fig.  3d)  sections, 
which makes those shells  unreliable material for the  reconstruction of 
primary C- and  O-isotope profiles. 

Table 1 summarizes the statistics of the geochemical results of sta- 
ble  isotope and  trace element compositions of the  analyzed shells. 

18 13 

which may   retain  their  primary geochemical signatures, are   not 
common in  the   Upper   Frasnian interval  outcrops  in  the   Namur– 
Dinant Basin of Belgium.  However, 70 samples (60  brachiopod shells 
and  10 matrix) were collected at  high-resolution (narrow sampling 
interval at  times as small  as 10 cm)  from  beds  spanning the  Upper 
Frasnian in the  Namur–Dinant Basin (Fig. 2). The samples were col- 

The δ O values and  δ C values of all analyzed shells  from  the  4 sec- 
tions  (Appendix 1 and  Fig. 5a,b)  vary  from  − 10.3  to  − 5.6‰ VPDB 
(− 8.2 ± 1.1‰ VPDB, n = 60)  and  − 1.8  to  4.1‰ VPDB (1.5 ± 1.8‰ 
VPDB, n = 60),  respectively. The  O-  and  C-isotope compositions  of 
the  shells  from  the  Neuville and  Les Valisettes formations, that were 
utilized to  reconstruct the  compiled isotope profiles, have  slightly 

lected from   the   four  sections briefly described earlier (Fig.  3a–d, 18 
enriched  δ O 

13 

(− 7.7 ± 1.1‰  VPDB, = 33)   and   δ C  (1.1 ± 1.7‰ 
Appendix 1). VPDB, n = 33)  signatures (Table 1) and  form  two  distinctive clusters 

13 18 

Samples were cut  into  slabs  and  smashed under a binocular mi- 
croscope  to   separate  the   brachiopod  shells   from   the   enclosing 
whole rock  matrix. The  brachiopod shell  consists, in  most cases,  of 
three layers: a)  the  outermost (periostracum), which is organic and 
decomposes  during  fossilization, b)  the   primary layer  is  granular, 
few-micron thick  calcite  and  always altered,  and  c)  the  secondary 
layer  is prismatic LMC that,  in  many cases,  resists diagenetic alter- 
ations during burial history and  retains the  original chemical signal 
of seawater (cf. Al-Aasm and  Veizer, 1982; Azmy et al., 1998; Veizer 
et al., 1999). The secondary LMC layers  of the  brachiopod shells  usu- 
ally spalled off the matrix, although occasionally traces of the primary 
layer  needed to be removed by a dental pick, and  the  shell  fragments 
of  the  secondary layer  were picked by  forceps and  cleaned in  an 
ultrasonic bath.  A shell  fragment was  randomly selected from  each 
sample, coated with gold, and examined for the  preservation of ultra- 
structure using  a  scanning electron microscope (SEM).  The  rest  of 
each  sample was  powdered for chemical analyses. 

About 200 μg of powder of each sample was reacted in an inert atmo- 
sphere with ultrapure concentrated (100%)  orthophosphoric acid  at 
50 °C in a Thermo-Finnigan Gasbench II. The produced CO2 was automat- 
ically delivered to a Thermo-Finnigan DELTA V plus  isotope ratio  mass 
spectrometer to be measured for C- and  O-isotope ratios. Uncertainties 
of better than 0.1‰ (2σ) for the analyses were determined by repeated 

(Figs. 5b and  6).  The Neuville cluster has  lower δ C and  wider δ O 
ranges of values (− 1.8 to 1.5‰ VPDB and  − 8.7 to − 5.6‰ VPDB, re- 
spectively) compared to their Les Valisettes counterparts (2.3 to 3.8‰ 
VPDB and  − 9.5 to − 7.4‰ VPDB, respectively). 

The shells  (n = 16) have  mean Sr, Mn, Th and U contents (Table 1) 
of  1186 ± 384 ppm,   151 ± 101 ppm,   0.07 ± 0.09 ppm,   and   0.10 ± 
0.13 ppm,  respectively. The matrix samples (n = 10)  are significantly 
depleted in Sr (125 ± 73 ppm) but  enriched in Mn, Th and  U (752 ± 
664 ppm,  1.6 ± 1.3 ppm,  and  0.4 ± 1.3 ppm,  respectively) compared 
with those of the  preserved shells.  The total rare  earth element con- 
centrations (∑ REE, Table 1 and  Appendix 1) are  significantly more 
enriched  in   matrix  (31.6 ± 10.9 ppm,    n = 8)   relative  to   well- 
preserved brachiopod shells  (3.5 ± 3.7 ppm,  n = 16). 
 
5. Discussion 
 
5.1. Shell preservation 
 

Brachiopods are generally abundant in Paleozoic marine carbonates 
of warm shallow-water settings and  the  geochemistry of their shells 
has been extensively used  as a proxy for the evolution of ancient oceans 
(e.g.  Lowenstam, 1961; Veizer  et al., 1986; Bates  and  Brand,  1991; 
Grossman  et   al.,  1991;  Wadleigh  and   Veizer,   1992;  Wenzel  and 

18  13 

measurements  of  NBS-19  (δ  O= − 2.20‰  and   δ C= + 1.95‰  vs. Joachimski, 1996; Azmy et al., 1998; Bruckschen et al., 1999; Mii et al., 
18  13 

VPDB) and  L-SVECS (δ  O= − 26.64‰ and  δ C= − 46.48‰ vs. VPDB) 
as well as internal standards. 

1999; Veizer  et  al.,  1999; Brand  and  Brenckle,   2001) and  for  high- 
resolution   stratigraphic   correlations   of   sequences  from    different 



K. Azmy et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 93–106 97  

T
ab

le
 1

 
S

ta
ti

st
is

ti
cs

 o
f 

is
ot

op
e 

an
d 

tr
ac

e 
el

em
en

t 
an

d 
R

EE
 c

om
po

si
ti

on
s 

of
 p

re
se

rv
ed

 s
he

ll
s,

 a
nd

 m
at

ri
x,

 u
ti

li
ze

d 
in

 t
he

 r
ec

on
st

ru
ct

io
n 

of
 t

he
 l

at
e 

F
ra

sn
ia

n 
ch

em
os

tr
at

ig
ra

ph
ic

 p
ro

fil
e 

of
 t

he
 N

am
ur

-D
in

an
t B

as
in

  (
B

el
gi

um
).

 E
le

m
en

t c
on

ce
nt

ra
ti

on
s 

ar
e 

no
te

d 
in

 p
pm

. 

δ1
8O

‰
 V

PD
B

 
 A

ll 
sh

el
ls

 

δ1
3C

‰
 V

PD
B

 
C

a 
M

g 
M

n 
Sr

 
La

 
C

e 
Pr

 
N

d 
Sm

 
E

u 
G

d 
Tb

 
D

y 
H

o 
E

r 
T

m
 

Y
b 

Lu
 

Σ
R

EE
 

T
h 

U
 

n M
ea

n 
St

de
v 

M
ax

 
M

in
 

60
 

−
 8

.2
 

1.
1 

−
 5

.6
 

−
 1

0.
3 

60
 1.
5 

1.
8 

4.
1 

−
 1

.8
 

M
at

ri
x 

n M
ea

n 
St

de
v 

M
ax

 
M

in
 

6 
−

 7
.7

 
1.

2 
−

 5
.7

 
−

 8
.9

 

6 
−

 0
.6

 
1.

3 
0.

4 
−

 3
.2

 

8 20
55

57
 

83
66

5 
28

81
88

 
74

69
3 

8 24
66

 
80

5 
35

39
 

12
90

 

8 93
9 

60
5 

21
18

 
12

90
 

8 15
6 

37
 

18
0 

67
 

8 4.
27

02
 

1.
23

96
 

7.
05

31
 

2.
89

48
 

8 10
.2

94
0 

4.
30

12
 

20
.4

31
6 

7.
83

82
 

8 1.
44

45
 

0.
50

50
 

2.
66

33
 

1.
11

35
 

8 6.
92

02
 

2.
46

90
 

12
.8

12
3 

5.
15

90
 

8 2.
16

47
 

0.
85

81
 

4.
17

39
 

1.
46

97
 

8 0.
48

96
 

0.
20

12
 

0.
96

46
 

0.
33

88
 

8 2.
10

63
 

0.
74

12
 

3.
82

99
 

1.
49

88
 

8 0.
32

39
 

0.
10

17
 

0.
55

53
 

0.
23

03
 

8 1.
69

38
 

0.
45

23
 

2.
70

53
 

1.
22

44
 

8 0.
29

91
 

0.
06

93
 

0.
45

64
 

0.
23

33
 

8 0.
79

90
 

0.
16

20
 

1.
16

14
 

0.
63

26
 

8 0.
10

27
 

0.
01

97
 

0.
14

14
 

0.
08

13
 

8 0.
63

93
 

0.
12

04
 

0.
87

05
 

0.
52

56
 

8 0.
09

57
 

0.
01

84
 

0.
13

09
 

0.
08

01
 

8 31
.6

 
10

.9
 

58
.0

 
24

.8
 

8 1.
98

59
 

1.
09

49
 

4.
18

22
 

0.
82

95
 

8 0.
55

27
 

0.
24

24
 

0.
80

20
 

0.
28

32
 

C
om

po
si

te
 c

ur
ve

 s
he

lls
 

n M
ea

n 
St

de
v 

M
ax

 
M

in
 

33
 

−
 7

.7
 

1.
1 

−
 5

.6
 

−
 9

.5
 

33
 1.
1 

1.
7 

3.
8 

−
 1

.8
 

16
 

40
05

97
 

31
26

9 
44

34
54

 
35

05
28

 

16
 

11
61

 
40

7 
23

99
 

76
8 

16
 

15
1 

10
1 

39
1 

53
 

16
 

11
68

 
38

4 
16

03
 

49
6 

16
 

0.
44

57
 

0.
51

08
 

2.
06

51
 

0.
03

00
 

16
 

1.
05

15
 

1.
15

10
 

4.
05

04
 

0.
06

30
 

16
 

0.
15

85
 

0.
16

64
 

0.
63

57
 

0.
01

14
 

16
 

0.
76

53
 

0.
75

65
 

2.
76

78
 

0.
05

50
 

16
 

0.
26

51
 

0.
27

14
 

1.
05

35
 

0.
03

18
 

16
 

0.
07

27
 

0.
08

02
 

0.
33

20
 

0.
00

85
 

16
 

0.
28

03
 

0.
30

05
 

1.
22

70
 

0.
03

26
 

16
 

0.
04

34
 

0.
04

86
 

0.
19

95
 

0.
00

42
 

16
 

0.
22

67
 

0.
23

92
 

1.
01

20
 

0.
03

39
 

16
 

0.
03

65
 

0.
03

94
 

0.
16

44
 

0.
00

38
 

16
 

0.
09

98
 

0.
09

97
 

0.
41

35
 

0.
01

31
 

16
 

0.
01

32
 

0.
01

19
 

0.
05

20
 

0.
00

25
 

16
 

0.
07

91
 

0.
07

53
 

0.
31

74
 

0.
00

59
 

16
 

0.
01

21
 

0.
01

10
 

0.
04

60
 

0.
00

01
 

16
 

3.
5 

3.
7 

14
.3

 
0.

3 

16
 

0.
07

35
 

0.
09

50
 

0.
33

60
 

0.
00

46
 

16
 

0.
09

83
 

0.
12

80
 

0.
52

62
 

0.
01

40
 

 
a 

b 

c 

 
Fig.  4.  Scanning Electron Microscopy photomicrographs  of  secondary shell layers of 
brachiopods from the investigated sections showing (a) very good preservation with 
clean calcite-prism boundaries (Sample invert-30880-0089,  Neuville Formation, 
Appendix 1),  (b) minor alteration (Sample invert-30880-0094, Neuville Formation, 
Appendix 1) along some of the prisms (arrows), and (c) significant alteration with dis- 
torted   prisms  (Sample  invert-30880-00110,   Aisemont  Formation,  Appendix  1). 
Geochemical attributes in Appendix 1. 

 
 

sedimentary basins (e.g. Mii et al., 1999; Veizer et al., 1999; Brand  and 
Bruckschen, 2002; Joachimski and  Buggisch,  2002; Brand  et al., 2004; 
van Geldern et al., 2006; Brand  et al., 2011). Well-preserved articulated 
fossil brachiopod shells  are among the  best materials, which may retain 
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Fig. 6. Composite C-, and O-isotope profiles of the late Frasnian (rhenana Zone) across 
the Dinant Basin  profiles. The  gray shades refer to the range of documented global iso- 
tope values of counterpart sections across the approximate stratigraphic levels of the 
correlated  rhenana  Zone in  Urals, Belgium, Poland and  China (after  Yudina et  al., 
2002; da  Silva  and Boulvain, 2008; Ma  et al., 2008). 

 
 

-4 
 

Fig.  5. Oxygen- vs. carbon-isotope values for  (a) all  the analyzed shells and (b) shells 
used for  the construction of the Dinant late Frasnian composite profile (Neuville and 
Les Valisettes formations from the Neuville railway station and Biron sections, respec- 
tively), showing no  diagenetic trend. Detail in text. 

 
 

the   primary  geochemical signatures  because they  precipitate  their 
shells,  particularly the prismatic secondary layer,  as LMC that at times 
may   resist  alteration  except  for   aggressive  diagenetic  processes 
(Brand and Veizer, 1980, Brand et al., 2011). A multitechnique screening 
protocol has been utilized in the current study to assess the degree of 
preservation of each individual sample that included visual, microstruc- 
ture (SEM),  and  stable isotope and  trace element distribution (e.g. 
Brand  et al., 2011). 

The  prestine preservation of the  analyzed shells  is reflected  by 
their SEM images, which show stacked clean  calcite  prisms with no 
or insignificant alteration features (Fig. 4a,b)  such  as dissolution pits 
(e.g., Azmy et al. 1998; Brand  et al., 2004). 

The Sr, and  Mn contents of the  analyzed fossil  shells  are  mainly 
within the range of composition documented for those of modern en- 
vironment counterparts (Fig. 7a)  and  compositions of the  matrix ex- 
hibit  an outsider cluster without overlap. This suggests a high  degree 
of preservation of primary geochemical signatures, which is also sup- 

18 
ported by the  lack of diagenetic trend exhibited by Mn/Sr vs. δ O and 

13 

δ C (Figs. 7b,c). 

(Brand et al., 2011), which is reflected by the  alteration of elemental 
18 

composition of the  matrix (Fig. 7a–c). The δ O values of the  studied 
shells  are  depleted relative to  those of their modern (~  0‰ VPDB) 
counterparts (Brand et  al., 2003) due  to  the  fact  that the  Paleozoic 
ocean waters were significantly depleted in 

18
O compared with mod- 

ern  oceans (Veizer et  al., 1999) but  the  fossil  values are  generally 
within the  range documented for the  global  middle Devonian, partic- 
ularly  around Late Frasnian, in  South  China,  Siberia,  Europe and  N. 
America (Joachimski and  Buggisch,  1993,  1996; Veizer  et  al., 1999; 
Chen  et  al., 2002; Yudina  et  al., 2002; Joachimski et  al., 2004; da 
Silva and  Boulvain,  2008; Ma et al., 2008; Izokh et al., 2009). 

The REE composition of the  LMC brachiopod shells  has been prov- 
en to be a possible proxy of the  composition of the  ambient seawater 
(Azmy et al., 2011). Therefore, the  preservation of the  fossil shells  in 
the  current study has  been also  examined by comparing their ΣREE 
and  REESN  trends with those of the  matrix (diagenetic phase). The 
mean ∑ REE value of the lime mudstone matrix of internal sediments 
(31.6 ± 10.9 ppm, n =8, Table 1) is almost 10 times higher than that of 
the  fossil shells  (3.5 ± 3.7 ppm,  n = 16),  which strongly supports the 
high degree of preservation of shells that was reflected by their petro- 
graphic features, and  major and  minor elements and  stable isotope 
signatures (e.g.,  Azmy  et  al., 2011). Also, the  strong  correlation  of 

18 
∑ REE with δ O of matrix (Fig. 8), relative to its insigni   cant counter- 
part of shells, argues for the preservation of shell primary geochemical 
signatures. The shale-normalized (REESN) pattern  of mean values of 
REE contents of matrix is also  enriched by approximately one  order 

18 13
 

The δ O and  δ C values (Fig. 5b)  show a very  insignificant corre- 
lation (R2 = 0.001) suggesting high degree of preservation of primary 
isotopic  signatures.  Although the   isotopic  composition  of  matrix 
(lime mudstone) from  inside the  brachiopod shells  plots  within the 
range of the  preserved shells' counterpart, this  still  does  not  argue 
against the  shell  primary signatures because it is possible that the  al- 
teration of the internal lime mudstones matrix occurred at low water/ 
rock  interaction ratio  and  by diagenetic fluids of precursor seawater 

of magnitude (Fig. 9) compared with the  preserved shell counterpart. 
However, despite these differences in  the  ΣREE values and  REESN 

trends of the  preserved brachiopod shells  (LMC) and  of the  altered 
lime  mudstones matrix (now diagenetic low-Mg calcite), they  have 
the  same patterns which may  suggest that the  diagenetic fluids had 
a precursor marine seawater, an  interpretation consistent with the 
overlap between the  C- and  O-isotope compositions of matrix and 
those of some  of preserved shells. 
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5.2. Upper Frasnian biochemostratigraphy (Namur–Dinant Basin vs. global) 
 

The isotopic evolution of the  seawater around the  Frasnian– 
Famennian boundary, which covers  the  major extinction by the 
Kellwasser event, has  been studied globally  by several authors (e.g. 
Joachimski and  Buggisch,  1993,  1996; Veizer  et al., 1999; Chen  et al., 
2002;  Yudina   et   al.,  2002;  Joachimski  et  al.,  2004;  da   Silva  and 
Boulvain, 2008; Ma et al., 2008; Izokh et al., 2009). Although some stud- 
ies utilized well preserved low-Mg calcitic brachiopod shells  and phos- 
phatic  conodonts  (e.g., Veizer  et  al.,  1999; Joachimski  et  al.,  2004), 
others involved frequently whole-rock samples of variable degrees of 
preservation, and at times low-resolution sampling (big sampling inter- 
vals),  which likely masked some significant variations around the 
boundary. However, little  attention was given  to the  pre-event isotopic 
variations during late Frasnian immediately before the major event. This 
requires high-resolution sampling (i.e., closely spaced intervals and hav- 
ing few samples from each individual horizon) in order to cover the pre- 

18 13 
event missing part of the global Devonian δ O and δ C profiles, which is 

13 18
 

shells = 0.01 
4 

 
 

2 
 
 

0 

maintained in this study. The δ C and δ O profiles of the Upper Frasnian 
marine carbonates of the Namur–Dinant Basin in the current investiga- 
tion are re-constructed from well preserved brachiopod shells that were 
collected at small sampling intervals, at times as small as 10 cm (Fig. 3a– 
b), and they reveal some reliable isotopic shifts, thus reflecting possible 
changes in climate and  ocean water primary productivity. 

The Upper  Frasnian (rhenana Zone)  of the  southern margin of the 
Dinant Synclinorium (Belgium, Fig. 2) spans the Neuville and Les Vali- 

18 13
 

0  5 10 15 

Mn/Sr 
-2 

settes  formations and   its  δ O  and   δ C profiles  exhibit covariant 
swings particularly in the  Neuville Formation (Fig. 6) that vary  from 
2.5 to 3.0‰ VPDB and  from  1.8 to 2.0‰ VPDB, respectively. However, 

18 13
 

 

shells 
matrix 

-4 
 

18 13 

Fig. 7. Scatter diagrams of (a) Mn vs. Sr, (b) Mn/Sr vs. δ O, and (c) Mn/Sr vs. δ C for the 
brachiopod shells of the composite profile. The box  represents the composition of mod- 
ern brachiopods based on  Lowenstam (1961) and Brand et al. (2003). 

δ O and  δ C profiles of the  Les Valisettes are generally invariant and 
exhibit no  significant variations. The  general depletion in  the  δ

13
C 

values of the Neuville Formation is followed by a considerable enrich- 
ment of up to 4‰ VPDB (Fig. 6), thus suggesting a significant change in 
organic primary productivity possibly due  to changes in sea-level (da 
Silva and Boulvain, 2008) and/or climate and surface seawater temper- 

18 

ature, which is consistent with the correlated δ O shifts shown by O- 
isotope profile of the  same formation (Fig. 6). The isotopic shifts in the 

18 13
 

Based on the  evaluation of the  petrographic and  geochemical 
preservation of the  investigated brachiopod shells  and  due  to  com- 
mon  alteration in the  ultrastructure of the  shells  collected from  the 
Aisemont Formation (of  the  La Mallieue and  Baugnée sections), the 
compiled isotope profile (Fig. 6) of the  Late Frasnian in the  Dinant– 
Namur Basin (Belgium) in the  current investigation is only  based on 
the  signatures of the  best  preserved shells  from  the  Neuville and  the 
Les  Valisettes  formations  from   the   Neuville railway-station and 
Biron sections, respectively. 

Neuville Formation δ O and δ C profiles seem to correlate with a trans- 
gression cycle which started around the Lower rhenana Zone after a re- 
gression during the  immediately underlying jamieae Zone (Joachimski 
et al., 2004; Poty and  Chevalier, 2007; da  Silva and  Boulvain,  2008). 
This is also  consistent with a drop in the brachiopod diversity at the 
top of the Neuville Formation in  the Neuville  railway section where 
Bed 21 (Fig. 3a) is marked by the first appearance of a particular assem- 
blage of thin and smooth-shelled to weakly ornamented rhynchonellids 
(Navalicria   compacta   and    Flabellulirostrum   sp.)   and    athyridides 
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the  δ O and  δ C values of carbonates of the Upper Frasnian might at 
times vary  from  basin  to basin  depending on  the local paleoenviron- 
mental controls such as redox conditions and local organic primary pro- 
ductivity in the basin (e.g., Brand et al., 2004; Immenhauser et al., 2008), 
those values from  the investigated sections (Fig.  6, Table  1) are  still 
within the  range of the  globally  documented signatures. 

Some  REE's (e.g., U) are  sensitive to redox conditions, which influ- 
ence their oxidation state and selectively control their solubility in sea- 
water and  fractionation in marine carbonates (e.g., Myers and  Wignall, 
1987;  Wignall and   Twitchett,  1996;  Arnaboldi  and   Meyers,   2007, 
Wignall et al., 2007, Azmy et al., 2009b). In oxidizing environment, ura- 
nium ions  maintain the  higher oxidation state (U+6) and  form  uranyl 
carbonate, which is soluble in water whereas in reducing conditions, 
they retain the lower oxidation state (U+4) and form the insoluble ura- 
nous  fluoride which is trapped into marine carbonates (Wignall and 
Twitchett, 1996). On the contrary, thorium (Th) is not affected by the 
redox conditions of water column and occurs permanently in the insol- 

Fig. 9. Mean REESN  trends of preserved shells and matrix showing parallel patterns but 
significantly different values. Detail in text. 

 
 

(Biernatella abunda) that were probably adapted to poor  oxygenation 
conditions (Mottequin, 2005). In the  same section, the lowest part of 
the overlying Les Valisettes Formation (Beds 26 to 29, Fig. 3a) is charac- 
terized by an impoverished fauna including small solitary rugose corals, 
bivalves (Buchiolidae) and  only  two brachiopod species (Cyrtospirifer 
sp.  and  an  unidentified chonetidine species).  The  rest of the lower 
part of the Les Valisettes Formation, i.e. about 50 m of dark green shales, 
has almost no macrofauna (only few fragments of spiriferides were col- 
lected) and corresponds to the Lower Kellwasser Horizon (lower part of 
the  Upper  rhenana Zone) according to Bultynck et al. (1998); macro- 
fauna   only  reoccur and  diversify at  the top of  the  lower part,  just 
below the first occurrence of a thick  sequence of nodular shales, lime- 
stones and  nodular limestones corresponding to  the middle part of 
the  Les Valisettes Formation. 

uble  Th+4   state.  Accordingly, sediments  of anoxic  environments are 
richer in  uranium and  have  lower  Th/U than  those  of oxic  environ- 
ments. Therefore, the  Th/U ratio  has  been used  as a proxy  of environ- 
mental redox conditions, with ratios b 2 in anoxic  marine sediments, 2 
to 7 in oxic sediments, and > 7 in intensely oxidizing terrestrial environ- 
ments (cf. Wignall and  Twitchett, 1996). Thus, the mean Th/U ratio of 
the investigated shells  (0.9 ± 0.6, n =16, Table 1) reflects an oxygen- 
depleted environment,  which is consistent with fossil  evidence and 
the implied scenario of poor  oxygenation indicated by the  drop in the 
brachiopod population (Mottequin, 2005). 

The CeSN  and  LaSN  anomaly values have  been also utilized as indi- 
cators of redox conditions (cf. Elderfield, 1988; Lee and  Byrne, 1993; 
Webb  and  Kamber, 2000). The CeSN  and  LaSN  values of the preserved 
brachiopods shells  are  positive (Fig. 10), thus suggesting oxygen-poor 
conditions, which is consistent with Th/U values and  the shrink in bra- 
chiopod populations associated with transgression and  sea-level rise. 

18 
An  earlier  study  of  the   global   Middle   to  Late   Devonian  δ O 

profile included some data points, of suggested primary signatures, be- 
tween ~−4.5 and  − 6.8‰ VPDB that clustered at a stratigraphic level 
around the Lower rhenana Zone but they showed poor stratigraphic res- 
olution and   no  distinguishable shifts   (Joachimski et al,  2004,  their 
Fig. 2). The occurrence of this cluster around a comparable stratigraphic 

6. Conclusions 
 

Despite the  scarcity of well-preserved brachiopod shells  for geo- 
chemical investigations in the  Upper  Frasnian marine succession 
(spanning the  rhenana conodont Zone)  in  the  Namur–Dinant  Basin 
(southern  Belgium), the  LMC of  secondary layers   of  the  collected 

18  13 

level (Lower rhenana Zone) to that of the shifts on the δ O and δ C pro- 
files (Fig. 6) of the Neuville  Formation (Dinant Synclinorium, Belgium) 
may  imply  a possible global  pre-Kellwasser  event associated with a 
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Fig.  10.  Ce (Ce/Ce*SN) La (Pr/Pr*SN) anomaly evaluation of the investigated preserved 
fossil shell and matrix. The  equations of Bau and Dulski (1996) were used to calculate 
the values, and to define the positive and negative Ce and La anomaly fields. Preserved 
shells exhibit predominantly positive Ce and La anomalies. 

shells  from  the  Neuville and  Les Valisettes formations exhibits SEM 
images of high degree ultrastructure preservation, which is supported 
by their stable isotope and  trace element compositions. 

The  investigated  sections  span   the   time  interval immediately 
below the  Frasnian–Famennian boundary (Upper Kellwasser event). 
The C- and  O-isotope profiles of the  composite succession are covari- 
ant  and  exhibit shifts  up to 2 and  3‰, respectively. The isotope shifts 
are  associated with Th/U (b 2)  and  Ce/Ce* (> 1)  ratios,  which imply 
oxygen poor  conditions.  This  is consistent with a general sea-level 
rise supported by drop in the  brachiopod community population. 

Correlations of the primary C-, and O-isotope variations of the Upper 
Frasnian marine carbonates from  the Namur-Dinant Basin  (Belgium) 
with counterparts from  other basins on  different landmasses suggest 
that their variations were likely caused by a global Frasnian–Famennian 
pre-event. 
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Table  1 

Appendix 1. Geochemistry (trace  element,  isotopes)  of  brachiopods and  whole rock (matrix)  from the  Neuville railway-station,  the  Biron, Engis (La  Mallieue) and  Baugnée 
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sections,  Belgium. Trace  elements are noted in ppm and stable isotope signatures in ‰  VPDB 

 
Sample id 
# 

identification  locality Formation    bed or 
sample 

δ18O  δ18C Ca  Mg  Mn  Sr La  Ce  Pr  Nd  Sm  Eu Gd  Tb  Dy  Ho  Er  Tm  Yb  Lu Th  U 

 
Invert- 

30880- 
0047 

 
Invert- 

30880- 
0048 

 
Costatrypa sp.  La 

Mallieue 
 
 
Costatrypa sp.  La 

Mallieue 

 
Aisemont    last bed 

of the 
first 
biostrome 

Aisemont    last bed 
of the 
first 
biostrome 

 
− 8.15     2.28 
 
 
 
− 7.22     1.90 

Invert- 
30880- 
0036 

Invert- 
30880- 
0037 

Invert- 
30880- 
0044 

Invert- 
30880- 
0039 

Invert- 
30880- 
0040 

C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

La 
Mallieue 
 
La 
Mallieue 
 
La 
Mallieue 
 
La 
Mallieue 
 
La 
Mallieue 

Aisemont    sample 1  − 8.27     1.84 
 
 
Aisemont    sample 1  − 8.41     2.42 
 
 
Aisemont    sample 5  − 7.82     3.04 
 
 
Aisemont    sample 9  − 9.72     3.86 
 
 
Aisemont    sample 9  − 9.10     3.27 

Invert- 
30880- 
0046 

Productella sp.  La 
Mallieue 

Aisemont    sample 16  − 8.91     2.66 

Invert- 
30880- 
0043 

Invert- 
30880- 
0041 

Invert- 
30880- 
0042 

C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

La 
Mallieue 
 
La 
Mallieue 
 
La 
Mallieue 

Aisemont    sample 18  − 9.41     4.14 
 
 
Aisemont    sample 19  − 9.14     2.82 
 
 
Aisemont    sample 19  − 9.94     2.61 

Invert- 
30880- 
0035 

Cyrtospirifer sp.  La 
Mallieue 

Aisemont    first bed of 
the 
second 
biostrome 

− 9.57     4.05 

Invert- 
30880- 
0058 

Invert- 
30880- 
0059 

C. 
condrusorum 

 
C. 
condrusorum 

Biron  Barvaux sample 15  − 7.76     1.83 
 
 
Biron  Barvaux sample 15  − 8.67     1.94 

Invert- 
30880- 
0055 

Invert- 
30880- 
0056 

C. 
condrusorum 

 
C. 
condrusorum 

Biron  Les 
Valisettes 

 
Biron  Les 

Valisettes 

sample 14  − 7.75     2.25 384062   1117   117     1247   0.140   0.291      0.058    0.257     0.126   0.037   0.149   0.023   0.141   0.024   0.053   0.008   0.031   0.004   0.055   0.038 

sample 14  − 7.99     3.35 



(continued on next  page) 

 

 

0078 
Invert- 

 
C. verneuili 

station 
Neuville 

 
Neuville 

 
bed 4a 

 
−8.66 

 
−0.17 

30880-  railway 
0079  station     

Invert- P. godefroidi Neuville Neuville bed 6 −6.72 0.38 
30880-  railway 
0081  station     

Invert- 
30880- 

P. godefroidi Neuville 
railway 

Neuville bed 6 −6.31 0.39 

0082  station     
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Appendix 1 (continued) 
 

Sample id 
# 

identification locality Formation  bed or 
sample 

δ18O  δ18C Ca  Mg  Mn  Sr La  Ce  Pr  Nd Sm  Eu Gd  Tb  Dy  Ho  Er  Tm  Yb  Lu Th  U 

 
Invert- 

30880- 
0057 

 
C. 
condrusorum 

 
Biron Les 

Valisettes 

 
sample 14  −8.91      2.25 

Invert- 
30880- 
0053 

Invert- 
30880- 
0054 

Cyrtospirifer sp.  Biron Les 
Valisettes 

 
Cyrtospirifer sp.  Biron Les 

Valisettes 

sample 12  −7.40      2.99 433118   2399   391     1370   2.065   4.050     0.636   2.768     1.053    0.332   1.227   0.200   1.012   0.164   0.414   0.052   0.317   0.046   0.034   0.049 
 
 
sample 12  −7.98      2.64 

Invert- 
30880- 
0068 

Invert- 
30880- 
0070 

Invert- 
30880- 
0050 

Invert- 
30880- 
0051 

Invert- 
30880- 
0065 

Invert- 
30880- 
0066 

Invert- 
30880- 
0067 

Invert- 
30880- 
0062 

C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

 
C. 
condrusorum 

Biron Les 
Valisettes 

 
Biron Les 

Valisettes 
 
Biron Les 

Valisettes 
 
Biron Les 

Valisettes 
 
Biron Les 

Valisettes 
 
Biron Les 

Valisettes 
 
Biron Les 

Valisettes 
 
Biron Les 

Valisettes 

sample 11  −7.73      3.11 366651   1335   95  1310   0.231   0.359     0.069   0.350     0.125    0.040   0.174   0.025   0.148   0.024   0.053   0.008   0.054   0.008   0.075   0.048 

sample 11  −7.90      2.90 

sample 10  −7.63      3.72 443454   1164   53  1449   0.130   0.160     0.045   0.216     0.064    0.018   0.092   0.014   0.075   0.012   0.027   0.006   0.035   0.005   0.017   0.020 

sample 10  −9.46      3.04 

sample 9  −9.00      2.84 
 
 
sample 9  −7.45      3.04 360748   1415   229     1248   0.153   0.298     0.048   0.213     0.079    0.021   0.081   0.014   0.080   0.011   0.032   0.006   0.027   0.004   0.072   0.050 

sample 9  −8.15      3.56 

sample 7  −8.20      3.76 367489   801     65  1189   0.030   0.063     0.011   0.055     0.032    0.010   0.033   0.004   0.034   0.004   0.013   0.003   0.006   0.000   0.037   0.031 

Invert- 
30880- 
0060 

Invert- 
30880- 
0061 

Invert- 
30880- 
0052 

C. sp. Biron Neuville sample 5  −9.57      2.12 
 
 
C. sp. Biron Neuville sample 5  −8.78      3.66 
 
 
Costatrypa sp. Biron Neuville sample 1  −7.42      0.24 

Invert- 
30880- 
0071 

Douvillina 
dutertrei 

Neuville 
railway 
station 

Neuville bed 1  −8.61      −0.32 

Invert- 
30880- 

C. verneuili  Neuville 
railway 

Neuville bed 4a  −8.24      −0.35    384649   1236   151     1601   0.900   2.959     0.382   1.865     0.596    0.153   0.623   0.092   0.444   0.070   0.180   0.022   0.134   0.021   0.125   0.179 



 

 

 
Appendix 1 (continued) 

Sample id      identification  locality Formation    bed or  δ18O  δ18C Ca  Mg  Mn  Sr La  Ce  Pr  Nd  Sm  Eu Gd  Tb  Dy  Ho  Er  Tm  Yb  Lu Th  U 
# sample 

0085  station  
Invert- P. godefroidi Neuville Neuville bed 8 − 6.08 0.71 

30880-  railway 
0086  station     

Invert- T. bironensis Neuville Neuville bed 9 − 8.60 −0.58 

 

0102 
Invert- 

 
C. 

station 
Neuville 

 
Les 

 
bed 28 

 
− 9.38 

 
3.54 

30880-     condrusorum railway  Valisettes 
0090  station     

Invert- C. Neuville Les bed 28 − 8.37 3.67 
30880-     condrusorum railway  Valisettes 
0091  station     

Invert- C. Neuville Les bed 29 − 9.13 3.71 
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Invert- 
30880 
-0083 

Invert- 
30880- 
0084 

Invert- 
30880- 

P. godefroidi  Neuville 
railway 
station 

P. godefroidi  Neuville 
railway 
station 

P. godefroidi  Neuville 
railway 

Neuville bed 6  − 6.24     −0.18    392188   835     346     496     0.391   0.935      0.143    0.794     0.272   0.085   0.314   0.046   0.261   0.048   0.133   0.017   0.099   0.014   0.039   0.526 
 
 
Neuville bed 6  − 6.06     0.59 
 
 
Neuville bed 8  − 5.97     0.27 408715   768     164     602     0.487   0.990      0.147    0.724     0.240   0.050   0.230   0.038   0.206   0.035   0.103   0.013   0.094   0.013   0.025   0.202 

 
 
 
 

30880- 
0087 

Invert- 
30880- 
0088 

Invert- 
30880- 
0072 

Invert- 
30880- 
0073 

Invert- 
30880- 
0074 

Invert- 
30880- 
0075 

Invert- 
30880- 
0094 

Invert- 
30880- 
\0095 

railway 
station 

T. bironensis  Neuville 
railway 
station 

T. bironensis  Neuville 
railway 
station 

T. bironensis  Neuville 
railway 
station 

T. bironensis  Neuville 
railway 
station 

T. bironensis  Neuville 
railway 
station 

T. bironensis  Neuville 
railway 
station 

Costatrypa sp. Neuville 
railway 
station 

 
 
Neuville bed 9  − 8.60     −0.53    418400   850     125     1603   0.182   0.512      0.091    0.503     0.157   0.067   0.151   0.020   0.115   0.020   0.046   0.007   0.040   0.007   0.015   0.064 
 
 
Neuville bed 10  − 9.13     −1.24 
 
 
Neuville bed 10  − 7.79     −0.50    350528   993     103     1381   0.979   2.596      0.363    1.834     0.587   0.120   0.509   0.079   0.364   0.066   0.187   0.019   0.124   0.021   0.267   0.111 
 
 
Neuville bed 10  − 8.44     −0.80 
 
 
Neuville bed 12  − 8.65     −0.90    377774   1212   74  1466   0.450   0.928      0.140    0.633     0.173   0.041   0.181   0.026   0.150   0.025   0.067   0.011   0.063   0.011   0.016   0.015 
 
 
Neuville bed 15  − 7.79     −1.19    416769   1557   145     1266   0.460   1.221      0.176    0.863     0.303   0.069   0.301   0.053   0.245   0.036   0.125   0.017   0.108   0.017   0.027   0.131 
 
 
Neuville bed 19  − 6.99     0.30 442087   992     76  604     0.149   0.374      0.065    0.314     0.099   0.023   0.084   0.011   0.068   0.006   0.035   0.006   0.016   0.006   0.005   0.014 

Invert- 
30880- 
0096 

Invert- 
30880- 
0089 

Invert- 
30880- 

Navalicria 
compacta 

 
C. 
condrusorum 

 
Flabellulirostrum 
sp. 

Neuville 
railway 
station 
Neuville 
railway 
station 
Neuville 
railway 

Neuville bed 20  − 5.78     0.00 
 
 
Neuville bed 21  − 8.78     −1.79    435851   1133   231     1343   0.269   0.799      0.131    0.701     0.294   0.089   0.291   0.044   0.243   0.033   0.101   0.012   0.091   0.011   0.057   0.081 
 
 
Neuville bed 24  − 5.57     1.52 427062   776     56  519     0.115   0.287      0.031    0.154     0.039   0.009   0.046   0.006   0.042   0.006   0.030   0.004   0.025   0.004   0.009   0.015 

 
 
 
 
 
 
 

30880- 
0092 

Invert- 
30880- 
0093 

condrusorum 
 
C. 
condrusorum 

railway 
station 
Neuville 
railway 
station 

Valisettes 
 
Les 
Valisettes 

 
 
bed 29  − 9.20     3.86 



(continued on next  page) 
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Appendix 1 (continued) 

 
Sample id 
# 

identification  locality Formation    bed or 
sample 

δ18O  δ18C Ca  Mg  Mn  Sr La  Ce  Pr  Nd  Sm  Eu Gd  Tb  Dy  Ho  Er  Tm  Yb  Lu Th  U 

 
Invert- 

30880- 
0109 

Invert- 
30880- 
0110 

Invert- 
30880- 
0111 

Invert- 
30880- 
0112 

Invert- 
30880- 
0113 

Invert- 
30880- 
0114 

 
Schizophoria sp.  Baugnée Aisemont     bed 1A  − 8.62     −0.95 
 
 
Schizophoria sp.  Baugnée Aisemont     bed 1A  − 7.83     −1.14 
 
 
T. bironensis  Baugnée Aisemont     bed 1B  − 9.72     −0.53 
 
 
T. bironensis  Baugnée Aisemont     bed 1B  − 10.03   −1.02 
 
 
Cyrtospirifer sp.  Baugnée Aisemont    bed 7  − 9.51     −1.49 
 
 
Cyrtospirifer sp.  Baugnée Aisemont    bed 7  − 10.27   −1.01 

1-74m  matrix  Neuville 
railway 
station 

1-75m  matrix  Neuville 
railway 
station 

1-76m  matrix  Neuville 
railway 
station 

1-79m  matrix  Neuville 
railway 
station 

1-81m  matrix  Neuville 
railway 
station 

1-85m  matrix  Neuville 
railway 
station 

Neuville bed 10  − 9.14     0.09 221297   2320   918     158     5.190   11.016    1.612    7.490     2.217   0.463   2.331   0.398   2.284   0.447   1.321   0.187   1.272   0.189   2.546   2.927 
 
 
Neuville bed 12  − 10.47   −0.22 
 
 
Neuville bed 3  − 5.74     −3.21 
 
 
Neuville bed 4a  − 8.29     −0.73    288188   2730   2118   158     7.053   20.432    2.663    12.812    4.174   0.965   3.830   0.555   2.705   0.456   1.161   0.141   0.871   0.131   1.251   0.694 
 
 
Neuville bed 6  − 7.26     −0.12    74693     1388   621     67  3.835   11.747    1.375    6.381     1.942   0.419   1.957   0.313   1.627   0.298   0.765   0.096   0.614   0.089   1.540   0.300 
 
 
Neuville bed 8  − 7.38     −0.17    286044   2814   551     175     4.174   9.630      1.458    7.127     2.116   0.445   2.094   0.313   1.620   0.280   0.735   0.091   0.538   0.081   0.830   0.799 

1-90m  matrix  Neuville 
railway 
station 

1-95m  matrix  Neuville 
railway 
station 

Les 
Valisettes 
 
Les 
Valisettes 

bed 28  − 8.56     0.41 90055     1290   489     167     2.895   7.838      1.245    6.408     2.234   0.527   2.232   0.347   1.781   0.304   0.772   0.094   0.596   0.080   4.182   0.436 
 
 
bed 28  201712   3539   515     159     3.617   8.242      1.263    6.297     2.038   0.447   1.916   0.311   1.684   0.295   0.840   0.117   0.710   0.110   2.578   0.283 

1-97m  matrix  Neuville 
railway 
station 

1-102m  matrix  Neuville 
railway 
station 

Neuville bed 3  − 8.89     0.04 
 
 
Neuville bed 24  257580   2353   1367   180     4.609   8.098      1.146    5.187     1.470   0.342   1.529   0.237   1.224   0.235   0.669   0.088   0.537   0.087   1.426   0.797 
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