Silurian strontium isotope stratigraphy
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ABSTRACT

A sample set of 164 calcitic brachiopod
shells, covering the entire Silurian Period (~ 30
m.y.) with a resolution of about 0.7 m.y., was
collected from stratotype sections at Anticosti
Island (Canada), Wales (United Kingdom),
Gotland (Sweden), Podolia (Ukraine), Latvia,
and Lithuania. They show 87Sr/®Sr values
ranging from 0.707930 to 0.708792 that pro-
gressively increase with time. This may indicate
an increasing riverine flux of radiogenic Sr into
the ocean from weathering of continental sialic
rocks due to progressive warming of the cli-
mate. Exceptionally high increases if’Sr/%6Sr
values were observed in early Llandovery
(Rhuddanian), late Llandovery (Telychian),
and late Ludlow (Gorstian-Ludfordian bound-
ary) samples. Partial linear regressions, based
on a stepwise climbing pattern, with local drops
around the Llandovery-Wenlock boundary
and in latest Ludlow time, were used to esti-
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Burke et al., 1982; Veizer, 1989; McArthur, 1994) condition is that the tempor&lSreeSr trends are

to understand continental weathering processebaracterized by steep slopes. This was the case

and mid-oceanic ridge hydrothermal circulatiorfor several intervals of Phanerozoic time, and

(cf. Hodell et al., 1990; Richter et al., 1992; Farrelparticularly in Cenozoic time (e.g., Mead and

etal., 1995), and to correlate and date marine sddedell, 1995).

imentary rocks (e.qg., Elderfield, 1986; Quinn etal., The main objectives of this study are to (1) re-

1991; McArthur, 1994). The dominant drivingfine the Sr-isotope curve for the Silurian seawa-

forces causing the changes in seawater isotopic ter, (2) utilize such a refined curve for high-reso-

tios are suggested to be (1) continental runoff arddtion stratigraphic correlation, and (3) improve

ground-water runout, both of which supply radiunderstanding of geochemical cycling for Sr dur-

ogenic strontium to the oceans, and (2) se#&g Silurian time.

water—oceanic crust interaction, particularly hy-

drothermal rift—related activities, supplying aGEOLOGICAL SETTING

less-radiogenic strontium (Palmer and Elderfield,

1985). Other factors, such as diagenetic flux and The samples for this study were selected from

carbonate recycling, may account for a minor cordiverse depositional settings on different paleo-

tribution (Elderfield, 1986; Veizer, 1989). continents. Paleogeographic reconstructions (cf.
Low-Mg calcite brachiopod shells, particularlyMcKerrow et al., 1991) place all these basins

if nonluminescent, have been documented to frevithin the tropical paleolatitudes and they in-

quently retain the primary Sr-isotope signals oflude Anticosti Island, Québec, Canada (Lauren-

ambient seawater (Popp et al., 1986; Banner atid), England, Sweden, Lithuania, Latvia, and

Kaufman, 1994; Diener et al., 1996). When bioPodolia in the Ukraine (Baltica). The lithology

mate relative ages with a resolution of about+2 genic marine carbonate forms, t&rf°Sr of  of the studied sequences comprised mainly lime-
biozones (~1.5-2 m.y.). The Sr-isotope curve ocean water is incorporated into its structure withstones of shallow shelf environments, frequently
shows distinct inflection points in earliest Wen-  out fractionation. Oceanic uniformity ®SrfSr  associated with reefs. The stratigraphic assign-
lock and mid-P¥idoli time. These may be used at any given time is expected, because the resient of these sections (Fig. 1) follows the global
to correlate the Llandovery-Wenlock boundary  dence time of Sr in the oceans (¥ € is much  Silurian standard time scale. For further details
in the United Kingdom, Gotland, and Lithua-  longer than the time it takes for currents to mix thef geology and samples see Azmy (1996), Azmy
nia, and the Kaugatuma-Ohesaare boundary oceans (Faure, 1986). However, for highly stratiet al. (1998), Wenzel and Joachimski (1996), and
in the Baltic states and Podolia. fied oceans, the response may be different due\éenzel (1997).

possible mixing rates of bottom waters approach-

ing the residence times for Sr in seawateWlETHODOLOGY

(McArthur, 1994).

Variations in seawatéfSrf8Sr over geologic  Variations irf’SrfSr composition of past sea-  The selected brachiopods were identified and
time, particularly for Phanerozoic time, have beewater, resolvable on a short-time scale dftb0 two identical slabs (~1.5 mm thick) were cut lon-
used to reconstruct the evolutionary history of ark0® yr, may be utilized for high-resolution strati-gitudinally through the umbo zone, using an
cient seawater (e.g., Veizer and Compston, 197draphic correlations with an accuracy compardSOMET low-speed saw. The slabs were gently
ble to, and perhaps higher than, that of biostratigrolished on a glass plate using,@} powder
raphy, the latter usually being 1 to 5 m.y. Thésize 9.5um). A thin section of the sample, made

INTRODUCTION
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Data Repository item 9933 contains additional material related to this article.
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Figure 1. Sampled Silurian sections and their stratigraphic assignments (modified from Basset et al., 1989; Siveter et al., 19i8%t al., 1990;
Kaminskas and Musteikis, 1994; Long and Copper, 1994).

from one of the slabs, was studied under a polaat the University of Ottawa, to test for shell chemen a tantalum filament. The strontium isotope ra-
izing microscope to examine the preservation afal preservation (Azmy, 1996). tio was measured using the Finnigan MAT 261
the calcite fibers. The thin section and the other For Sr-isotope analysis, about 1 mg of thenulticollector thermal ionization mass spectro-
polished slab were viewed under cathodolumipowdered sample was dissolved for 30 min in 1.&eter at Carleton University. The laboratory stan-
nescence, with the operating conditions at ~10 tol of 2.5N suprapure HCI at room temperaturegard used was NBS 98%'6rféSr = 0.710249)
11 kv, gun current of 350 to 400 mA, and vacuunand Sr was extracted via a clean 10 ml columwith a (2) precision calculated from 30 mea-
of ~0.03 Torr. filled with Dowex AG50-X8 cation resin. The surements of + 0.000017. The blanks were 0.4 to
Carbonate material from the nonluminescergluent was dried at 125 °C for 2 hr. The drie®.8 ng. The measured Sr isotope data are listed in
parts of the secondary layer was microsampleshmple was dissolved in 0.01N HCI for a fewfable DR1, GSA Data Repositotor further
from the slab under a binocular microscope bgninutes and passed through a clean 10 ml sepietails of geology, samples, and analytical and se-
smashing the shell with a stainless steel dentadtion column filled with Teflon resin to trap Calection procedures, see Azmy (1996) and Azmy
pick. The fragments were cleaned in an ultrathat may not have been separated from Sr by first al. (1998).
sonic bath. column. The collected sample was evaporated atAnother set of brachiopod samples, from Got-
A fragment from each sample was studied urt25 °C for 2 hr to be ready for running on thdand, was prepared and measured independently at
der a scanning electron microscope to examimeass spectrometer. Blank samples were fréie laboratory of Ruhr Universitat in Bochum fol-
the preservation of the calcite crystals. The rest ghiently run and spiked usiftfr to measure any —— ——
the sample was ground in an acid-washed agatentamination that might occur during théavailla?bslg Er?t?eRﬁggfitf?griteS:)SSri%r;l;asblge?je]iéirs
mortar'and ~ 3 mg were used for trace elemeptocess of separatlon._ _ GSA. P.O. Box 81401 Boulder, CO 80301 E-mail:y’
analysis by a Thermo Jarrell Ash-AtomScan 25 The sample was dissolved in 0.4 ml of 1Nggiting@geosociety.org. Web: http://www.geosociety
inductively coupled plasma source spectrometer],PO, for 2 min and about half of it was loadec.org/pubs/ftpyrs.htm.
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Figure 2. The evolution of’Sr/88Sr ratios throughout the Silurian Period based on this study, with comparison to published results of Burke et al.
(1982), Bertram et al. (1992), Ruppel et al. (1996), and Denison et al. (1997). Boxes and bars refer to(sthndard deviations) and to the ranges of
data for single biozone, respectively. Biozonation (1 to 41) and numerical ages are as in Figure 1. All avail&i$e/2°Sr data were normalized to
0.710249 for the NBS 987 standard. There is a spread of data within a single biozone despite the high quality of the databesé-{g. 4). Since the bio-
zone is the smallest correlatable unit, the observed spread could be resolved into temporal succession only if all good sacaplieshave been collected
from the same complete section, a requirement generally beyond geological reality. This is the reason for boxes.

lowing the procedure of Diener et al. (1996). Onlyvas extracted with quartz glass exchange columMAT 262 multicollector mass spectrometer. The
splinters from nonluminescent shells that exhibfilled with Bio Rad AG50Wx8 ion-exchange resin.NBS 987 value was 0.710244 + 0.000008. The
ited well-preserved fibrous microstructure werd hen, 150-250 ng Sr were loaded on Re filamentseasured isotope data are highlighted in Table
picked. A sample of 0.5 to 2 mg was dissolved insing a TgO,~HNO,~HF-H,PO, solution. DR (see footnote 1). For further details of geol-
2.5 N suprapure HCI and, after evaporation, Svleasurements were performed with a Finnigaagy, samples, and analytical and selection proce-
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dures, see Wenzel (1997). (All data shown in fic
ures in this paper are normalized to the NBS 9¢
standard, 0.710249.)

AZMY ET AL.

TABLE 1. MEAN, STANDARD DEVIATION, MAXIMUM, AND MINIMUM Sr-ISOTOPE VALUES

CALCULATED FOR EACH GRAPTOLITE BIOZONE
IN THE BIOCORRELATION OF SILURIAN PERIOD

Biozone Age n 87SI/88SI  an * 10 Maximum  Minimum
(Ma)
PREVIOUS WORK 41 transgrediens 408.7 2 0.708740 £ 0.000017 0.70875 0.70873
40 permeri 409.0 2 0.708715 + 0.000008 0.70872 0.70871
— . : : 39 pouceki 409.3 1 0.708755
The temporal oscillations in the Srisotopit s j,cpkovensis 409.6 3 0.708779+0.000012  0.70879  0.70877
composition of the Phanerozoic seawater we 37 pridoliensis 409.9 1 0.708713
outlined by Burke et al. (1982), but their work 36 ultlmu_s 410.2 4 0.708706 + 0.000021 0.70873 0.70868
35 parultimus 410.5 4 0.708719 + 0.000025 0.70874 0.70869
was based mostly on whole-rock samples (e.( 3 papicus 411.0 5 0.708762 +0.000005  0.70871  0.7087
Denison et al., 1997). Due to possible distortio 22 kozlowskii 411.6 2 0.708759 + 0.000003 0.70876 0.70876
i 7 6 ; R ; _ inexpectatus 412.3 2 0.708713 + 0.000006 0.70872 0.70875
of th? originaP’StP S,r signal by diagenetic al 29 hohemicus 4142 4 0.708726 + 0.000015 0.70874 0.70871
teration, other materials have been suggested 28 jejntwardinensis 4148 9 0.708681 +0.000038  0.70873  0.70862
development of a seawater curve, including eva 2 hemiaversus 416.0 5 0.708613 + 0.000046 0.70865 0.70856
oritic minerals, biogenic carbonates, marinc 5, "vertus 4178 1 0.708625
' J 25 scanicus 419.6 4 0.708537 + 0.000013 0.70855 0.70852
barite, apatite (conodonts, fish teeth, and bone: 23 pjjssoni 423.1 4 0.708436 + 0.000025 0.70847 0.70842
and marine carbonate cements (Burke et a 2 ludensis 424.4 8 0.708464 + 0.000020 0.7085 0.70844
982- L 1986 d f 21 nassa 4251 17 0.708434 + 0.000015 0.70847 0.70841
1982; Popp et al., 1986; Banner and Kaufmai 20 jpggren 425.8 10 0.708440 + 0.000028  0.70849  0.70838
1994; Bertram et al., 1992; Ruppel et al., 199¢ iz ellesae 426.5 6 0.708362 + 0.000018 0.70838 0.70834
. : : flexilis 427.2 1 0.708393
Montanez et al., 199(.5’ Demsc_m etal, 1997 rigidus 427.9 3 0.708369 + 0.000136 0.70837 0.70837
Among these more refined studies, only Bertrat 16 riccartonensis 428.6 16 0.708364 + 0.000015  0.7084 0.70833
et al. (1992) and Ruppel et al. (1996) provide ﬁ murci;isoni 458-8 g 8'782323%8'8888;6 8-73223 8-78221
TR . . centrifugus 430. 7 7+0. 5 .7 .70834
data for the Silurian Period, based on phospha 15 (onyiara 114 centrifugus 430.4 2 0.708339 £ 0.000000  0.708339  0.70834
fossil conodonts. These data have less scatter¢ 13 crenulata 430.7 9 0.708366 + 0.000034 0.70844 0.70834
crispus 4317 5 0.708182 + 0.000031 0.70821 0.70813
et al. (1982) trend; Ruppel et al. (1996) measur 10 yyicuiatus 4323 1 0.708167
ments generally have the least radiogenic valu  ° sedgwickii 433.0 3 0.708143 + 0.000031 0.70818 0.70812
; ; ; 8 convolutus 433.9 5 0.708159 + 0.000008 0.70817 0.70815
(Fig. 2). The ob_served Scfitter In the p_Ub“ShE 7 leptotheca 4348 2 0.708120 + 0.000016 0.70816 0.70808
data may be attributed to either partial diagenet s triangulatus 4365 6 0.708077 +0.000022  0.70811  0.70805
alteration of the analyzed samples or to unce 4 Cyphqs 437.2 2 0.708065 + 0.000021 0.70808 0.70805
1 acuminatus 438.7 2 0.707941 + 0.000015 0.70795 0.70793
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TABLE 2. THE ERROR IN AGE CALCULATED FOR EACH
SEGMENT OF THE SILURIAN REGRESSION PLOT BASED
ON CONFIDENCE INTERVAL AT THE 95% LEVEL

Segment Error Error Covered epoch
(in Ma) (in biozones)
Vi +2.1t02.2 5 PFidoli
\% +0.81t00.9 2 Late Ludlow
v +2.1t025 2 Ludlow
\Y +2.1t025 4 Wenlock
1] +0.9t0 1.0 2 Late Llandovery
1] +2.3t02.5 3 Mid-Llandovery
| +1.1t01.2 2 Early Llandovery
87 86
Sr/”Sr
Graptolite 0.7080 0.7082 0.7084 0.7086 0.7088
Biozones || | ! I ] | J
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Figure 4. The Silurian
87Sr/88Sr values vs. age. Heavy
lines are the best-fit regression
lines. Biozonation and numerical
ages were generated using the
same parameters as in Figures 1
and 2. The 2 bar in the upper
left corner refers to an error bar
typical for a single point. In the
conodont set of Ruppel et al.
(1996), 30 measurements (in-
cluding 9 duplicates) are consid-
erably offset from our brachio-
pod data. Only 32 of their close
samples are, therefore, utilized
as a stratigraphic test set (see
Table 3).
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tainties in their age assignment. The incorpora
impurities may also contribute to the distortion :
the87SreSr values. Ruppel et al. (1996) report %ﬁgggﬁgg 8gr/ gy
some cyclic trends on the égr time scale, but

the amplitudes of these oscillations (0.00001 | 405 5 Mma 0-79870 0.7Q874 0-79878 ‘0-70882|
are within the documentédSrSSr intraspeci-
men variations for conodonts. The publishs
Silurian data reveal a general trend of increas
87SrpéSr values with time (Fig. 2).

20

SILURIAN STRONTIUM-ISOTOPE
CURVE BASED ON BRACHIOPODS
The current Sr-isotope curve for the Silurian F 40
riod (Fig. 2 and Table 1) covers the entire peric
estimated to have lasted about 30 m.y., from 43
710 408.5 + 4 Ma (Harland et al., 1990). This tin
span includes 41 graptolite biozones (Figs. 1¢
2), each with an estimated duration of less tha
m.y., except for Gorstian time (early Ludlow
which includes biozones lasting to 2 m.y. Tt
shape of the curve is mainly controlled by (1) &
curacy of the relative age model used to calibr
the isotope curve, (2) temporal variations in t
87SrpSr value of Silurian seawater, (3) postdeg
sitional alteration of brachiopod shells, and (4) ¢
alytical errors (cf. McArthur, 1994).
Postdepositional alteration was discussed in
tail in Azmy (1996), Azmy et al. (1998), Wenze
and Joachimski (1996), and Wenzel (1997), w
the conclusion that petrographic (cathodolumin
cence and SEM) and chemical properties of -
studied shells all demonstrated an outstanding
gree of preservation of the shell ultrastructure. T
relatively low variability of Sr concentrations an

| Ohesaare Stage (Dzwinogorod)

| i

Prid

Kaugatuma Stage (Rashkov)

36 77770" A, A

the weak correlation between Sr content a -@-- L_atvia )
87SrfSsr (Fig. 3) are also consistentwithsuch | | | || = E<8 w3 T |7 D L'tr:ju?:n'a
interpretation and the measurements probably —0— Podolia

flect the range of original values. Analytical erro | 410.7 Ma
account for only about 0.000015 of the signal (
McArthur, 1994) and thus are probably negligible
As a result, the data based on brachiopods ha
less scatter and are typically less radiogenic thi
the published data from coeval whole rock:
(Burke et al., 1982; Denison et al., 1997) and pho
phatic conodonts (Bertram et al., 1992; Ruppe
etal., 1996). The present scatter for the majority o1
biozones is small, with ac2range of less than The reasons for this discrepancy are not clear, bthiemical weathering due to progressive warming
0.00003 (Fig. 2). an explanation may be based on a correlatiaf the climate (cf. McKerrow et al., 1991).
Taking into account these clarifications, themismatch (Fig. 2).
band is considered to reflect mainly temporal Variations in the Sr-isotope composition ofSTRONTIUM-ISOTOPE STRATIGRAPHY
changes in Sr-isotopic composition of Siluriarseawater are mainly a function of balance be-
seawater, with the proviso that the assigned ntween inputs of radiogenf¢SrféSr from sialic High-resolution strontium-isotope stratigra-
merical ages depend on extrapolation from gragontinental crust and low’Srf5Sr from hy- phy is a potential tool for correlation and dating
tolite zones. drothermal sources. During Silurian time, the hyef marine samples (cf. Hodell, 1994; McArthur,
Although most of the previously publisheddrothermal input is assumed to have been less é894). For this task, the trendB8rFeSr varia-
data are more radiogenic than the present briective than the continental input due to relativelyions can be approximated by regressions that are
chiopod values, two conodont measurements dbrmant volcanic activity. The progressiveeither linear (e.g., Hodell et al., 1989, 1990;
Ruppel et al. (1996) and one of Bertram et af’Srf5Sr increase in Silurian seawater (Fig. 2) i©slick et al., 1994; Mead and Hodell, 1995) or
(1992) plot below the brachiopod trend (Fig. 2)easier to explain by enhanced mechanical amdirvilinear (Miller et al., 1991; Hodell and

Figure 5. The inflection points (A, B, and C) revealed by comparison &fSr/%6Sr curves of
P¥idoli for Latvia, Lithuania, and Podolia. Error bars for 87Sr/86Sr refer to + 1o values. The er-
ror bars for age are based on estimated duration of the biozones. Biozonation and numerical
ages were generated using the same parameters as in Figures 1 and 2.
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Woodruff, 1994; Oslick et al., 1994). For the cur-

AZMY ET AL.

TABLE 3. TEST SET FROM RUPPEL ET AL. (1996)

rent data set, modeling by simple linear regres Sample 1.D. 87Sr/86Sr + 20 Known age Estimated age Error
sions for specific time segments fits #8rASr (in biozones)
; il in 77-34A 0.708705 + 0.000010 33 kozlowskii 33 kozlowskii None
d.a ta well ('.:Ig' 4). The Silurian data set Contalr?‘Hickory Ck-13 0.708726 + 0.000013 32 inexpectatus 33 kozlowskii 1
six regression segments (Table 2). The regressiyyes 3 0.708718 + 0.000011 32 jnexpectatus 33 kozlowskii 1
lines I, lll, and V, of Rhuddaniara¢uminatuso ~ 77-27 0.708725 + 0.000009 jj inexpectatus jf parultimus 3
; ; : 77-310 0.708693 + 0.000010 auriculatus auriculatus None
Cyphl.JSbIOZOI’les), TelyChlam(ISPUSto CI’EDU- 77-307 0.708683 + 0.000011 28 |eintwardinensis 28 |eintwardinensis None
lata biozones), and early Ludfordiabghemicus  77-25 0.708692 + 0.000008 28 leintwardinensis  2° leintwardinensis None
to auricu|atusbiozones) ages, have Signiﬁcanﬂy England 4.8 0.708690 + 0.000010 27 ljemiaversus 2 le{nnmard{nens{s 1
t | d highehl > 0.7) th 77-305 0.708665 + 0.000011 26 jnvertus 28 leintwardinensis 2
steeper slopes and hig ues (> 0.7) than 7730, 0.708653 + 0.000012 2 invertus 27 hemiaversus 1
the other three segments. These steep lines m77-303 0.708602 + 0.000015 25 scanicus 28 leintwardinensis 2
; ; Clifton 13 0.708525 + 0.000010 4 progenitor 5 scanicus 1
provide temporal resolution of 1 m.y. or better‘77—301 0.708543 + 0.000012 24 progenitor 25 scanicus 1
Such a steep slope may reflect slow rates of seqy.1 0.708457 + 0.000011 23 pjssoni 23 pjfssoni None
mentation, a condensed sedimentary record, or77-24 0.708483 + 0.000027 23 pilssoni 23 pilssoni None
- i 77-22 0.708440 + 0.000009 22 Judensis 22 Judensis None
stratigraphic hiatus. _ _Clifton 11 0.708426 + 0.000011 21 passa 21 passa None
The regression lines depict a general stepwisHaragan ck 9 0.708422 + 0.000011 21 passa 21 nassa None
climb 0f87Sr,868r values with decreasing age, bui77-16 0.708468 + 0.000012 jz lundgreni ji nilssoni 3
. 77-20A 0.708343 + 0.000010 flexilis murchisoni 3
local drops appear to exist at the COMMENCecenieryile-9 0.708343 + 0.000012 18 flexilis 15 murchisoni 3
ments of segments IV and VI, the Llandovery-Haragan Ck 4 0.708364 + 0.000015 17 regidus 17 regidus None
i CA-103 0.708373 + 0.000018 15 murchisoni 17 regidus 2
Wenlc.)Ck boundary and latesj[ Ludlow tlmes.’ re Haragan Ck 2 0.708343 + 0.000011 15 murchisoni 15 murchisoni None
spectively (Fig. 4). The earlier drop coincidesz7.1oa 0.708371 + 0.000020 14 centrifugus 16 riccartonensis 2
with Barrandian (Rheic) volcanism during Iatesi77-1hlI ) 8.78222525 + 8.88880525 jj centrlj;ugus j;’ centrifugus N02ne
. - Hughly Brook F 7 £0. 1 centrifugus riccartonensis
Llandovery time and the latter may correlate witf. " 0.708359 + 0.000010 13 crenulata 13 crenulata None
late Ludlow volcanic activity documented in ca-101A 0.708357 + 0.000010 13 crenulata 13 crenulata None
Poland (cf. Neuman and Kershaw, 1991). Santa Fel 12656 0.708313 + 0.000010 13 crenulata 13 crenulata None
E t for the high s ts. th Love Hollow 0.708147 + 0.000008 11 crispus 8 convolutus 3
xceptior the high slope segments, the regre; g7 0.708303 + 0.000011 12 grestonensis 12 grestonensis None
sion lines are almost parallel, at a similar gentl2e4 0.708261 + 0.000011 12 grestonensis 12 grestonensis None
; ; i ; in 260 0.708230 + 0.000011 11 crispus 12 grestonensis 1
slope (.Flg' 4 SUQ.gesm.]g a uniformly InCl’easmgGullet 2 0.708262 + 0.000010 10 turriculatus 12 grestonensis 2
rate of input of radiogenic Sr, presumably reflectzg, 0.708242 + 0.000010 10 tyrriculatus 12 grestonensis 2
ing a similar increase in the riverine runoff. Thez81 0.708214 + 0.000012 12 turriculatus 1; crispus 1
; 238 0.708166 + 0.000009 convolutus sedgwekii 1
generally !OW sca_tter of data pomts for seQmemBrassfield 0.708043 + 0.000008 4 cyphus 4 cyphus None
I to V provides reliable age estimates. In contraspegasus 12005 0.707980 + 0.000011 2 avatus 2 avatus None
the youngest segment, VI, of Ludfordian (late96573 0.707888 + 0.000011 Ordovician-Silurian Ordovician-Silurian None
Ludl to Ridoli h | tt dis 0.707886 + 0.000011 Ordovician-Silurian Ordovician-Silurian None
udlow) to Hidoli age, has a large scatter and igg5s; 0.707880 + 0.000011 Ordovician-Silurian ~ Ordovician-Silurian ~ None

therefore (_)f doubtful value for chemostratlgra- Notes: The 87Sr/36Sr values were normalized to the NBS 987 value of 0.710249. the superscript numbers, prior
phy. This high scatter of data may be due to erroto biozones, refer to the same pattern of biozonation as in Figure 2. Duplicates, the outliers in the Landovery and

in correlation of biozones, to postdepositiona‘he Pridoli samples were excluded from the test.
overprinting off’SrA8Sr values, to nonuniform
rate of sedimentation, or to a combination of al.
of these. It is also possible that there are shoi@orrelation Based on Inflections
term oscillations in the Sr isotopic composition Kaugatuma-Ohesaare stage boundary in the
of seawater. Points of inflection in the Sr-isotope curve carBaltic sections (Latvia and Lithuania) and of the
The regression lines can be utilized to estimaterve as reliable tie points that can be used for cétashkov-Dzwingorod formation boundary in the
the ages for the studied graptolite biozones. Threlation (cf. McArthur, 1994), particularly when Podolian section. This is in agreement with the
uncertainty for the estimated ages is controllesamples are taken at short intervals. Such trenlithostratigraphic record for the Podolian and
by the degree of scatter of the data points aroudn also be generated by postdepositional altdrithuanian sections (Fig. 1), but in the Latvian
the regression lines, and by the slope. Howevaation, but excellent preservation of the samplesection (Kolka 54) the inflection is in the lower
the largest uncertainty for the absolute (numerbrachiopods appears to exclude the possibility giortion of the upper Kaugatuma stage (Fig. 6).
cal) estimate of the age is due to the large erréalse signals. Stratigraphic hiatuses, when they dderefore, it is possible that the stratigraphic po-
associated with the calibration tie points. For thiaot include the inflection point, usually cause &ition of the Kaugatuma-Ohesaare boundary in
reason, numerical values should be viewed onbhift in the position of inflections (McArthur, the Latvian section may be shifted downward to a
as relative superposition of biozones. In that cas&994), and correlation of such tie points may helfgvel of approximately the presenghtll K3bL2
the87SrPeSr values can be utilized as a correlato estimate the duration of the hiatus. bed boundary (Figs. 5 and 6), but more work on
tion tool, but with differing 95% confidence lev- The Ridolian sections of Latvia (Kolka 54), stratigraphy and geochemistry is required to vali-
els (Table 2). Excluding segment VI, where th&ithuania (Taurage 11), and Ukraine (Podoliaflate this proposition.
scatter of data is high, the error in estimated agesntain minor unconformities, yet their Sr-isotope The Wenlockian Sr-isotope curves for Wales
is equivalent to about + 2 biozones, but can be asrves all show three main inflections (Fig. 5) thatUnited Kingdom), Gotland (Sweden), and
high as + 4 biozones in the lower part of the segorrelate with thé8ultimus 38 lochkovensisand  Lithuania follow similar patterns (Fig. 7), with
ment IV (Wenlock); the latter is characterized by° permeribiozones, respectively. The most sigthe 87SrféSr inflection correlated with the
more scattered data (Fig. 4). nificant inflection is the one in tf€lochkovensis 1®murchisonibiozone, where the decline that

biozone, this biozone being characteristic of the
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