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Abstract

Pipelined statistical cipher feedback (PSCFB) mode is a new mode of operation for
block cipher encryption. It is an improved version of conventional SCFB mode with
higher throughput. SCFB mode has the mechanism of self-synchronization to
recover from bit slips during transmission in a communication channel. To improve
the throughput, PSCFB is a modified version of SCFB that combines Counter
mode and Cipher Feedback (CFB) mode and allows for the pipelining of the
underlying block cipher while still preserving the efficiency and self-synchronizing
capabilities.

In this thesis, the hardware architecture of PSCFB mode is presented, resulting in
a fully implemented PSCFB encryption/decryption system for the first time. No
previous implementations of PSCFB has achieved maximum data width and high
throughput. In this thesis, several PSCFB system implementations with different
size and input/output rate are investigated. The Advanced Encryption Standard
(AES) with a pipeline architecture is used as the block cipher in PSCFB. The

PSCFB system is designed, simulated and synthesized targeted to an Altera
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Cyclone IV FPGA and TSMC 180 nm CMOS process. System performance is
analyzed. The PSCFB encryption and decryption systems can reach throughputs
of 10 Gbps in FPGA and 23 Gbps in CMOS, which is suitable for high speed optical
larger communication like SONET/SDH. This PSCFB system reaches the
theoretical maximum data width, thus achieving maximum efficiency. Not only is
the system designed to work in high frequency, but also optimized to reduce area
cost. Compared with pipelined AES, which is the block cipher, the PSCFB system
itself only costs about 20% of the combinational logic functions and 55% of the
registers in the FPGA, and costs about 20% of the total equivalent gate count in

CMOS.
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Chapter 1

Introduction

Cryptography is widely applied in software and hardware so as to provide security.
In the modern age, data security sometimes matters more than data itself.
Important information has to be kept safe without letting others know about it. It
is the fact that there are always people who want to steal the secret information
from others and make profit. In the domains of business, politics and the military,
information leakage will cause serious consequences. Based on this, important
information should not only be kept in a safe place, but also be encrypted.
Encryption is one of the many ways to keep information secure. During the Second
World War, some cipher machines were invented to encrypt and decrypt messages.
Cryptography was applied on radio transmission during the war, because radio
frequencies can be received by anyone with a radio receiver.

There are five concepts describing security objectives: confidentiality, integrity,

availability, authenticity and accountability [1|. Confidentiality is the process of



preserving private information from being seen by unauthorized people. Integrity
means the content of information is correct, so that if someone is able to maliciously
modify the information, this is detected. Availability is the property that allows
important information to be accessed without any denial. Authenticity ensures the
validity of wuser’s identity and the data source of information received.
Accountability means every user in the system has the responsibility for every
single action they take. With the complexity resulting from the need for all five
security objectives, it is often not easy to establish a secure system.

The action of attempting to acquire the unauthorized information can be regarded
as a security attack. There are two general categories of attacks: passive attack
and active attack [1]. In a passive attack a third party can acquire the message in
transmission, or even find the pattern of the encrypted message. An active attack
contains actions like pretending to be an authorized person, receiving the message
and then sending it to the original receiver. The message content may be modified
in an active attack. The attacker could also stop the network service by attacking
the server.

In cryptography, a symmetric key cipher is the cryptographic system where
encryption and decryption use the same secret key. The plaintext is the original
message and the ciphertext is the encrypted message. In a block cipher, the
encryption or decryption system operates on a single block of data, which contains
a fixed number of bits. Different from the block cipher, a stream cipher encrypts

only one bit at a time. It generates the key stream, which is to be XORed with the



incoming plaintext stream. Although block ciphers encrypt a whole block of data,
modes of operation are defined as various ways for encryption with the same block
cipher.

There are some special requirements for modes of operation. Based on the natural
characteristic of the communication channel, one or more bits may be lost during
transmission, so that the decryption process will be affected and the message cannot
be successfully recovered. Hence, a cipher system with self-synchronization is
needed to solve the problem. A successful system is able to automatically self-
synchronize frequently on both encryption and decryption. Even if the bit slip
occurs in ciphertext during transmission, only one or several blocks of data are
affected before next self-synchronization and it will not have influence on further
blocks.

As a solution to the problem discussed above, the Statistical Cipher Feedback
(SCFB) mode [2] is proposed. SCFB mode scans the ciphertext for a specific bit
pattern and regards it as a sign of self-synchronizing. The mechanism of SCFB
mode resembles a combination of output feedback (OFB) mode and cipher feedback
(CFB) mode. However, it has self-synchronization that OFB mode does not and

has higher efficiency than CFB mode.

1.1 Motivation

In the context of a passive attack, an insecure communication channel will allow a

message to be eavesdropped. One such insecure channel might be in an optical



network using the protocol of Synchronous Optical Networking (SONET) and
Synchronous Digital Hierarchy (SDH). Such network channels can reach 40 Gbit/s
or even 100 Gbit/s speed. Providing security to transmission lines with such a high
speed is a challenge. Our goal is to provide communication security in physical
layer of high speed networks.

In our work, we investigate the hardware implementation of Pipelined Statistical
Cipher Feedback (PSCFB), a high speed, self-synchronizing cipher mode. PSCFB
is based on SCFB mode, which is designed to effectively achieve self-
synchronization. Hence, with high speed and self-synchronization, PSCFB mode
can be applied to high speed SONET /SDH to provide security.

In an SCFB system, a well-known block cipher, the Advanced Encryption Standard
(AES) [3] would be typically used. AES has a 128, 192 or 256-bit key, which
provides high security. Since AES has at least 10 rounds of operations to
encrypt/decrypt one block of data, it takes a long time to generate desired output.
In order to be efficiently implemented in hardware, pipelining can be used in a
block cipher. To make changes for block ciphers with pipelining architecture, SCFB
mode is modified and a new mode, the Pipelined Statistical Cipher Feedback
(PSCFB) mode [4], was recently proposed. In [4], the structure and algorithm of
PSCFB is explained. It is simulated for performance analysis and security is also
investigated.

In this thesis, PSCFB mode hardware implementation will be discussed and

analyzed. In particular, the digital hardware design and implementation will be



presented. Simulation and synthesis are conducted in FPGA and CMOS

environments.

1.2 Thesis Outline

The thesis organization is as follows.

Chapter 2 is the cryptography background. Basic knowledge of cryptography is
introduced, including block ciphers and stream ciphers. Some well-known modes of
operation will also be introduced. As the most applied block cipher today, the
Advanced Encryption Standard (AES) [3| is the major algorithm in this chapter.
Statistical Cipher Feedback (SCFB) mode [2] and Pipelined Statistical Cipher
Feedback (PSCFB) mode [4] are the focus of this thesis and are also introduced in
Chapter 2.

Chapter 3 describes the detail of pipelining architecture of block ciphers and the
implementation of pipelined AES in a PSCFB system.

Chapter 4 describes the hardware design of a PSCFB mode. The architecture of
PSCFB must meet the requirement of high speed, low latency and capability of
self-synchronization. The plaintext queue and ciphertext queue components are two
significant aspects of the design which can influence the performance of whole
PSCFB system. Another component, the sync pattern scanner is used to search the
ciphertext stream for a pattern. A pipelined AES implementation is used in PSCFB
to reach high throughput. A Linear Feedback Shift Register (LFSR) is applied to

a counter mode configuration for AES.



Chapter 5 discusses the implementation of PSCFB targeted to Altera Cyclone IV
FPGA and TSMC 180 nm CMOS process environments. The synthesis result is
presented and compared. Based on pipelined AES, there is a small modification to
PSCFB mode itself.

Chapter 6 is the conclusion and future work.



Chapter 2

Background

In this chapter, some cryptography knowledge is introduced.

2.1 Symmetric Key Ciphers

A symmetric key cipher uses the same secret key for both encryption and
decryption. In encryption, the plaintext, which is the original data, is processed
with the encryption algorithm. The encryption process can be written as
Y=E(K.X) (21)

where X represents the original data or message, F is the encryption function, K is
the key and Y is the generated ciphertext. The ciphertext is the unreadable code
and it appears to be random.

On the contrary, decryption is the process that ciphertext is converted back to the

original plaintext message. It can be written as



X=D(K.Y) (22)
where D is the decryption function. Together, the algorithm to realize the
encryption and decryption functions are referred to as a cipher. Figure 2-1 shows
the symmetric key cipher with encryption and decryption, where Y’ is the received

ciphertext and X’ is the recovered plaintext.

K K
Y Y
X _ E Communication Channel D X

Figure 2-1 Symmetric Key Cipher
In order to securely apply a symmetric key cipher, a strong algorithm is a must.
An attacker may know the algorithm and one or more ciphertexts (and even
possibly the corresponding plaintexts), but cannot determine the secure key. Hence,
a strong algorithm will stop the opponent, who does not know the key, from
decrypting the ciphertext. In addition, since encryption and decryption require the

same key, a secure mechanism is necessary to distribute the secret key to both sides.

2.2 Block Ciphers and Stream Ciphers

A block cipher operates on a single block of data, which contains a fixed number
of bits. Typical block sizes might be 64, 80 or 128 bits. AES and the Data
Encryption Standard (DES) [5] are two well-known block ciphers, and they are also

symmetric key ciphers. Since the block cipher processes a whole block of data at a



time, the message which is not the multiple of a block size may have to be padded.
Figure 2-2 is the diagram of a block cipher with encryption and decryption.

Plaintext X and ciphertext Y are both B bits. The key consists of x bits.

X Y
B B

k—> B k= D
1? 1?

Y X

Figure 2-2 Block Cipher
In contrast, a stream cipher operates on a single bit of data. Unlike a block cipher,
in a stream cipher, the plaintext bit is usually XORed with a keystream bit to
produce a ciphertext bit. The keystream is a pseudorandom sequence, and this is
generated using a keyed pseudorandom bit generator. For decryption, in order to
recover the plaintext, the keystream must be identical to the encryption keystream,
and synchronized so that when a keystream bit is XORed with a ciphertext bit,
the correct plaintext bit is produced. A keystream generator should have a long
cycle period so that the keystream is not expected to repeat and the pseudorandom
keystream should also appear to be similar to a random bit stream. Figure 2-3 is
the diagram of a stream cipher. The initialization vector (IV) is used to initialize

the keystream generator (KSG). In the encryption part, the keystream is XORed
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with incoming the plaintext stream, producing ciphertext Y. Y’ is the received

ciphertext stream via communication channel and X’ is the recovered plaintext.

|4 1V

! !

K—> KSG KSG —K

\)« Y Communication Y \) « > x
"% Channel V -

Figure 2-3 Stream Cipher

2.3 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) was been announced by NIST in 2001
[3]. AES is a symmetric key block cipher. It was shown that DES [5] is no longer
secure for many applications when it was broken in 1998 [1|. AES was designed to
take the place of DES, and now it has been used worldwide. In this section, only
AES encryption is described. As for our work, we do not need to use the decryption
process.

AES can have 128-bit, 192-bit or 256-bit key, with 10, 12 or 14 rounds, respectively.
The AES encryption process with 128-bit key and 10-round iteration is referred to
as AES-128 and is shown in Figure 2-4. There is an initial key mixing, which uses

the first round key. It only contains one transformation, AddRoundKey. Letting R



Plaintext 128 bits

_________ —_———
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Figure 2-4 AES-128 Encryption Process
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represent the final round number, the first R - 1 rounds (i.e. 9 rounds out of 10
rounds in AES-128) have four transformations, and they are in the same order.
These are SubBytes, ShiftRows, MixColumns and AddRoundKey. The final round

only has three transformations, which are SubBytes, ShiftRows and AddRoundKey.

S00 | So1 | So2 | o3

Sio | St | Si2 | Si3

S0 | S21 | S22 | 523

S30 | 31 | 832 | 933

Figure 2-5 AES State Array
In AES, all the 128 bits of data are processed based on the two-dimensional state
array. It contains 16 bytes, which are placed in 16 cells. The byte mapping is based
on the equation
S (row, column) = data (row + 4 x column) (2-3)
where S is the byte cell in the state array, data is the 16-byte input/output data,

and row and column range from 0 to 3.

2.3.1 SubBytes

In the transformation of SubBytes, a 16x16 lookup table is used to perform the
byte-by-byte substitution. Each byte in the state array is replaced by a value in
the S-box. The mapping rule is to use left hexadecimal value (z) as the row and

right hexadecimal value (y) as the column. For example, the hexadecimal value A7
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at the input of an S-box means row A and column 7, which will lead us to the S-

box’s output value 5C.

Y
0(1]2(3([4]|]5[6]|]7]|8|]9[A|B[(C|DJE|F
63 |7C| 77 |7B[F2[6B|6F |C5[ 30| 01 | 67 |2B [FE [D7|AB| 76
CA[82[CI9|7D|FA|59|47|F0|AD|D4|A2[AF|9C|A4[72]CO
B7|FD| 93 |26 [36 [3F |F7|CC[34 |[AS|E5|F1[71[D8]|31]15
04 |C7[23 [C3|18]|96]|05]|9A |07 | 12|80 |E2|EB|27 |B2([75
09 |83 |2C |IA|IB|6E|5A[A0[ 52 |3B|D6[B3[29|E3|2F |84
53 [D1] 00 [ED|[20 |[FC[B1|5B|6A |CB|BE|[39[4A|4C |58 |CF
DO [EF|AA[FB [43 |4D[33| 85| 45| F9 [ 02 [ 7F [ 50 | 3C | 9F | A8
51 |A3]140 | 8F [92 [9D[38 |F5 |[BC|B6 [DA| 21|10 |FF|F3|D2
CD|OC[ 13 |[EC|5F|97|44[17|C4|A7|7E[3D|64|5D[19]73
60 | 81 | 4F |DC[22 [2A[90| 88 | 46 [EE [B8 | 14 [DE| 5E | 0B |DB
EO0|32|3A|0A[49[06]24|5C[C2 |D3|AC|62[91[95|E4 |79
E7[C8]| 37 |6D [8D |D5|4E|A9[6C | 56 | F4 [EA[ 65 |7A |AE]| 08
BA|78 [ 25 |2E | 1C[A6|B4|C6| E8 |[DD| 74 | IF | 4B [BD| 8B [ 8A
70 [BE|B5[66 [48 |03 [F6|0E| 61 | 35|57 [B9[86 |C1|1D |9E
E1|F8] 98|11 [69[D9|8E|94 (9B |1E | 87 |E9|CE| 55|28 |DF
S8C[A1[ 89 |OD |BF|E6|42|68]41)99|2D |0F |BO|54 |BB]| 16

m(m|T(A|E P |e|e|g|a|n|s|w|n|=]e

Figure 2-6 AES S-box

2.3.2 ShiftRows

In the ShiftRows transformation, a circular byte shift is conducted on each row.
Assume ¢ represents row number from 0 to 3. Row ¢ is rotated ¢ bytes to the left.
The first row stays the same. The second row is shifted by 1 byte. The third row

shifts by 2 bytes and 3 bytes circular left shift is performed on the fourth row.

2.3.3 MixColumns

In the state array, the MixColumns transformation mixes data within columns. The

calculation is performed on column data with the following matrix multiplication.
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W

! !
So,1 So2 So3

02 03 01 O01][So0 So1 Soz So3 [(’),0
01 02 03 O01(]|S,0 S11 Si12 S13 :|51,0 S1,1 S1.2 51,3| (2-4)
01 01 02 03||S20 S21 S22 S23 lsé,o S21 S22 Sé,3J
03 02 01 O01f1S30 S31 S32 S33 Sho Sh1 Sha Shs
The matrix multiplication can be expressed as following equations.
S0,j = (2 50,)B(3 - 51,;))Ds; ;jDs3
s1,j = So,;®(2 - 51))BB - 55,)Ds3
(2-5)

Spj = S0,/ D2 - 5,,)B(3 - 53;)

53,5 = (3 50;)®s1,/®s5,;0(2 - 53)
Note that the addition and multiplication are performed in Galois Field GF(2%)
based on generator polynomial m(x)=x®+x*+x*+x+1, where addition can be
regarded as bit-wise exclusive-or (XOR). From (2-5) it can be seen that there are
only multiplications by 2 and 3. Because 3x =2x +x, multiplication by 3 can be
simplified so that we only need to implement multiplication by 2 followed by an
addition. Moreover, multiplication by 2 can be simplified by implementing left shift
by 1 bit. If the most significant bit of the original value is 1, then it should also be

XORed with a binary value 00011011 to produce the resulting product in GF(28%).
2.3.4 AddRoundKey
In the AddRoundKey transformation, the state array is XORed with the round key.

Each column of state array is XORed bit-by-bit with one word of the round key,

which is w[i].
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2.3.5 Key Expansion

For AES-128, the key expansion algorithm produces 44 words (4 words for each
round plus the initial key mixing). Each word is to be XORed with one column of
the state array. As shown in the Figure 2-7, the beginning four words are created
by concatenating four consecutive bytes in the state array. That is, every word is
originally a column in the AES key. Then every subsequent word w[i] (4 <i<43) is
produced based on w[i-1] and w[i-4]. For the three right most words, they are
generated with the follow equation.
wli]=w[i- 1] ® w[i - 4] (2-6)

However, for the left most word, for which ¢ is a multiple of 4, the function g in
Figure 2-7 can be expressed as the following equation.

wli] =wli- 1] @ (SubWord (RotWord (w[i - 4])) @ Rcon[i/4]) (2-7)
The function RotWord( ) performs circular left shift on a word and SubWord( )
performs SubBytes on four bytes using the S-box. Then the result is XORed with
Rcon]j], which is called the round constant. The round constants in hexadecimal
are listed in the Table 2-1.

Table 2-1 AES Round Constants

Rcon | 01 02 04 08 10 20 40 80 1B 36
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wil | whi1] | whi2] | wli+3] (¢)

& D DB

wlj+4] | wlj+5] | wlj+6] | wlj+7]

Figure 2-7 AES Key Expansion

2.4 Conventional Modes of Operation

When encrypting a message which is longer than one block, straightforward use of
a block cipher can lead to security issues. As a result, various modes of operation
are defined to work with block ciphers. In 1980, the National Institute of Standards
and Technology (NIST) defined four modes of operation for block ciphers,
specifically DES, including ECB, CBC, CFB and OFB mode in the Federal
Information Processing Standards Publication 81 (FIPS PUB 81) [6]. Then in the
NIST Special Publication 800-38A 2001 Edition (SP 800-38A), block cipher modes

of operation were expanded to include counter (CTR) mode [7].

2.4.1 Electronic Codebook (ECB) Mode

Electronic codebook (ECB) mode [7] straightforwardly uses the block cipher to

directly encrypt, or decrypt, each block of size B bits. For messages longer than
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one block, the message will be broken into B bit blocks. The last block will be
padded if it is not B bits. Figure 2-8 shows both encryption and decryption of ECB
mode, where P is plaintext, C'is ciphertext, K is key, £ means encryption and D
represents decryption. ECB mode uses the same key for a piece of message, so that
every plaintext block corresponds to a unique ciphertext block (and vice versa).
This characteristic makes it work like a ¢ odebook.

ECB mode is typically used to transmit small amounts of data, such as cipher keys.
For long messages, its codebook characteristic will be a disadvantage. Two identical

plaintext blocks will lead to same ciphertext blocks, which may cause a problem if

L~ 1 [P ] [Py ]

r— E r— E o k—> F

L ¢ 1[G ] [ & ]

k— k— e k—> )

L~ 1 [P ] [~y ]

Figure 2-8 Electronic Code (ECB) Mode
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the message has a certain pattern. Also, if a 1 bit error occurs in the ciphertext
block in the communication channel, the entire decrypted block is corrupted with
about 1/2 bits in the recovered plaintext of the block being in error.

2.4.2 Cipher Block Chaining (CBC) Mode

Cipher block chaining (CBC) mode [7], as shown in Figure 2-9, is a chain structure,
which is designed to eliminate the repeated ciphertext problem of ECB mode. The
first plaintext block is XORed with an initialization vector (IV) before being

encrypted. The second block of plaintext is XORed with the output block of the

——> o b

r— E — E e k— E

¢+ [ & F—— [ & ]
[ ¢ [ & F—— [ &y ]

«—= D ||+ D| =+ D
s X 2
[ p 1] [P ] [Py ]

Figure 2-9 Cipher Block Chaining (CBC) Mode
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first encryption. This chain mode avoids the possibility that the same plaintext
blocks will have the same ciphertext, thus improving security. Block padding is also
needed in CBC mode. Decryption needs the same IV and key. We can also use
ECB mode to transmit IV and secret keys. In CBC, a 1 bit error in the
communication channel leads to corruption of the corresponding recovered
plaintext block and a 1 bit error in the next block.

2.4.3 Cipher Feedback (CFB) Mode

Cipher feedback (CFB) mode [7] is used to configure a block cipher as a stream
cipher. The block cipher is used to generate the keystream and the ciphertext is
produced by XORing plaintext with the keystream. The ciphertext is sent back as
the input of the block cipher. The plaintext is divided into several blocks of s bits.
An IV is also used to initialize the encryption process. The most significant s bits
of the B bit output of the block cipher is XORed with the s bit plaintext block. In
CFB, a shift register is used to store the IV and fedback ciphertext. This shift
register left shifts by s bits, and is then loaded with the s bit ciphertext block at
the least significant position.

In the decryption process, the encryption algorithm of the block cipher is used
instead of the decryption algorithm. This is because neither plaintext nor ciphertext
has a direct relationship with the block cipher. Received ciphertext is XORed with
the most significant s bits from block cipher’s output, thus recovering the plaintext.
The ciphertext block is also fed to a shift register similar to the process for

encryption. For error propagation, a 1 bit error in the ciphertext block results in a
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1 bit error in the recovered plaintext block and the entire next block is also

corrupted.

K —>

K—>

s bits s bits
[C/— [CF—
s bits s bits
Shift register
<
Ji4 B-s | S
K % E K% E LI
7
e 1)
s bits s bits
[~,] [P.]
s bits s bits

B-s S
t— E
K B-s
>
s bits
[Cy]
s bits
Shift regis ter
B-s S
t—> E
B-s
(e
s bits
[Py]
s bits

Figure 2-10 Cipher Feedback (CFB) Mode
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The CFB mode manipulates the block cipher in a stream cipher way. It is a self-
synchronizing cipher because CFB can recover from bit slips. A bit slip refers to
one or more bits being lost during the data transmission. CFB mode can recover
from bit slips for which the number of lost bits is a multiple of s. To enable the
self-synchronization capable of recovery from any number of bits, only one bit can
be fed back to the input of block cipher, which means s = 1. However, this will
greatly reduce the efficiency comparing with ECB and CBC mode because only s
= 1 bit of data is encrypted or decrypted for each block of data passed through the
block cipher. In ECB and CBC mode, the whole block of B bits is processed in a
unit time. Assuming that the encryption function is AES with a 128 bit block size,
the efficiency can only reach 1/128 = 0.78%.

2.4.4 Output Feedback (OFB) Mode

Output feedback (OFB) mode is another method of configuring a block cipher to
operate as a stream cipher [7]. However, instead of feeding back ciphertext as in
CFB mode, OFB mode feeds the block cipher’s output back as its input. OFB mode
can feedback the whole block of data most efficiently, but can also be configured
to feedback any number of bits s (s < B), as shown in Figure 2-11. At the beginning
of encryption, an IV is sent to the block cipher, to produce the first block. Then, s
bits of this block is then XORed with the plaintext to generate the ciphertext. In
addition, s bits of the block are used as the input of the block cipher for the next
block. As with CFB, the block cipher encryption algorithm is also employed in the

decryption process. Using the same key and IV could produce the same keystream
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block, and then the plaintext is recovered by XORing the block with ciphertext. If
a 1 bit error occurs in ciphertext block during transmission, the recovered plaintext

block has only a 1 bit error.

kr— E r— E o k— E

B-s B-s B-s
P> > P>
s bits s bits s bits

C g C 2 C i/
s bits s bits s bits
Shift register Shift regis ter

L v 1|  [Bs Is] [ B-s T[]

K —> E K—> E — el > E

! B-s B-s B-s
e e (e
s bits s bits s bits

[~,] [P,] [Py]

s bits s bits s bits

Figure 2-11 Output Feedback (OFB) Mode
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The OFB mode is also controlling a block cipher as a stream cipher. The block
generated by the block cipher is actually a keystream block. XORing the keystream
with plaintext is just like what a stream cipher does. One advantage of OFB mode
is that bit errors will not propagate. The bit errors in the ciphertext block will only
reflect on the corresponding recovered plaintext bits.

However, OFB mode cannot recover from bit slips and is not self-synchronizing. If
one or more bits are lost, what is received at decryption part is not a full block of
ciphertext. In the decryption process, the system will use some bits of the
subsequent block to make up a full block. Hence, all the recovered plaintext after
the bit slip is corrupted. Since OFB cannot self-synchronize, an extra module is
needed for synchronization in the implementation, which will cost some additional

resources.

2.4.5 Counter (CTR) Mode

Similar to CFB mode and OFB mode, counter (CTR) mode [7] also makes a block
cipher work like a stream cipher. In CTR mode, a counter is used as the input for
the block cipher. The counter is initialized with a value and then encrypted. The
generated keystream block is XORed with the incoming plaintext block. The
counter is increased by 1 each time, thus producing different keystream blocks. In
decryption, CTR mode uses the encryption function of the block cipher, which is
similar to CFB mode and OFB mode. The counter in decryption must be

synchronized to the counter in encryption and, hence, CTR is not self-synchronizing
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and cannot recover from bit slips. As for the error propagation issue, a 1 bit error
in ciphertext will result in 1 bit error in recovered plaintext.

CTR mode is easier than ECB and CBC mode for implementation. Both the
encryption and decryption needs only the encryption algorithm. Another major
advantage is that CTR mode is suitable for pipelining. There is no feedback in

CTR mode, thus a block cipher can be modified to a pipelined architecture.

Counter 1 Counter 2 Counter N

r— E r— K o k—> F

C > B ) 5

L ¢ 1 [L& ] [ & ]

Counter 1 Counter 2 Counter N

r— E —{ E o k— FE

o1 o) )
] ] )

Figure 2-12 Counter (CTR) Mode
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2.5 Statistical Self-Synchronization

Due to the inefficiency of CFB mode with self-synchronizing and OFB without self-
synchronizing, a mode is necessary to provide both high speed and self-
synchronizing. In this section, a statistical self-synchronizing mode is introduced

and discussed.

2.5.1 Statistical Cipher Feedback (SCFB) Mode

Statistical self-synchronization is proposed in [8] and Statistical Cipher Feedback
(SCFB) mode is analyzed in [2]| as a way to solve the efficiency problems associated
with the self-synchronization approach of CFB. This mode of operation is designed
for use in high speed communication channels. Nowadays, the synchronous optical
network (SONET/SDH) has the data rate from 40 Gbps up to even 100 Gbps and
it is commonly used around the world. It is not easy to implement an encryption
system to reach such a high throughput in a SONET /SDN environment. Bit slips
are another major situation needed to be considered in all kinds of communication
channels, which means one or more bits are eliminated from the received data
stream. If a bit slip occurs and the encryption and decryption systems cannot self-
synchronize, the received ciphertext stream will be decrypted to perpetually
random data until a costly resynchronizing procedure is undertaken. However, a
system with self-synchronization can recover from bit slips by automatically

resynchronizing based on received ciphertext data.



26

As proposed in [2], SCFB mode operates as OFB or CFB under different conditions.
When the system is scanning for an n bit sync pattern in ciphertext, it works as
OFB mode. When the sync pattern is found, the B bit ciphertext following the sync
pattern will be loaded as a new IV as in CFB mode. Figure 2-13 shows the whole

process of a synchronization cycle on the ciphertext stream.

sync v scanning sync

n bits B bits n bits
<«— Synchronization cycle ———»

Figure 2-13 SCFB Synchronization Cycle
In detail, both of the encryption and decryption system search for the sync pattern
in ciphertext stream during the scanning period. The system runs as OFB mode
since the output of the block cipher is fed back to the input. When there is a pattern
in ciphertext stream exactly the same as the given sync pattern, a new
synchronization cycle begins. The subsequent B bits of ciphertext are collected and
loaded to the input of the block cipher as a new IV. Obviously, this process is CFB
mode. Also, during this ciphertext collecting process, any newly recognized sync
pattern will be ignored. After the new IV has been loaded, the scanning is turned

on again and the system will return to OFB mode. Figure 2-14 shows the diagram

of SCFB mode.
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Figure 2-14 Architecture of SCFB Mode

Note that there are some output bits from the block cipher to be discarded. Once

the new IV is loaded, the new generated output is to XOR with plaintext, which

means the unused bits from last output block must be discarded. Figure 2-15 shows

the synchronization cycle from the perspective of the block cipher output. Note

that the number of discarded bits can be from 0 to B - 1.

Block cipher
output
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g
-
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" blttst SYIC - New IV To be
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Figure 2-15 SCFB Synchronization Cycle Based on Blocks
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2.5.2 SCFB Mode with Counter Mode

In SCFB, OFB mode can also be replaced by CTR mode [4]. As shown in Figure
2-16, the counter continuously generates input for the block cipher. If a sync pattern
is found, the subsequent B bit ciphertext will be loaded to the counter as a new IV
block. During the scanning period, the counter increases by one for each block

encryption.

| l

counter counter

! }

<« Sync <— Sync
I |: X paTm? X pa'Trn? I |:

B B
n n
B - . B
! Register Register
Plaintext f"\ Plaintext
L/ Ciphertext Communications Ciphertext N '
channel

Figure 2-16 Architecture of SCFB Mode with Counter

2.5.3 PSCFB Mode

Pipelining leads to high speed, which means high throughput in network
communication. However, although SCFB is efficient in terms of the number of
ciphertext bits produced per execution of the block cipher, conventional SCFB
mode does not support a pipeline structure for the underlying block cipher. This is
because OFB mode cannot be pipelined and SCFB mode was initially defined to

operate as OFB mode.
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Even with the CTR mode replacing OFB in SCFB, it is still difficult to implement
pipelining. Assume 128 bit AES with 10-stage pipelining is used as the block cipher
in SCFB with CTR mode. The corresponding output of the block cipher is expected
10 clock cycles later than an IV being loaded. The problem is that, when the newly
collected IV is immediately loaded to AES, the remaining data still in the pipeline
becomes useless and the outputs will be discarded. As a result, the data stream
through the cipher has to stall and wait for the expected output from the pipelined
AES. Hence, there is substantial time delay and pipelining is not suitable for SCFB
mode. It is also a big challenge for the queue size of an implementation since the
system has to absorb incoming data while waiting for the pipelined AES output.

However, the advantage of CTR mode is that it is possible to implement a pipeline
structure in a modified version of SCFB mode. Hence, Pipelined Statistical Cipher
Feedback (PSCFB) mode was proposed in [4]. It can be regarded as a generalized

version based off SCFB mode with counter.

|<— Blackout period (scan disabled) 4>|

sync v scanning sync

n bits B bits B bits B bits n bits

|A

N Synchronization cycle g

Figure 2-17 PSCFB Synchronization Cycle
As is shown in Figure 2-17, PSCFB mode works similarly to SCFB mode. It scans
the ciphertext for an n bit sync pattern. Once the matched pattern appears, it
starts to collect IV bits. During this collecting period, the scanning is disabled.

However, assuming that PSCFB is using an L-stage pipelined AES, the output
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corresponding to newly loaded IV will only be available L clock cycles later. That
is, only the output after L clock cycles can be scanned again for sync pattern. Hence,
the period during which scanning is disabled is named the blackout period [4]. The
length of the blackout period is L clock cycles, and the amount of processed bits is
LB.

Note that there are some output bits of the block cipher to be discarded at the end
of blackout period, just as in SCFB [4]. First of all, sync pattern is found with a B
bit block of ciphertext, which is the result of B bit output of block cipher XORing
with B bit plaintext. Also, the blackout period processes LB bits of data. These
two facts make some unused bits left in the output of block cipher. To clarify,
neither plaintext nor ciphertext will be eliminated from the stream. At the end of
the blackout period, only the output of block cipher has 0 to B - 1 discarded bits.
Figure 2-18 shows the synchronization cycle from the perspective of block cipher
output.

Block cipher
output

7N

l<——B bits——>}——B bits—>)
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7 bits sync |

attem ew IV To be
p L . . discarded
< n+LB bits 2

Figure 2-18 PSCFB Synchronization Cycle Based on Blocks
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2.6 Target Technologies

In this section, we will give introduction to Application-Specific Integrated Circuits
(ASICs) and Field-Programmable Gate Arrays (FPGAs) and discuss the difference.
ASIC and FPGA are our targeted synthesis environments and ASIC is our final

goal.

2.6.1 Application-Specific Integrated Circuit (ASIC)

An ASIC is an integrated circuit for applications like a microprocessor, digital signal
processor, wireless module and so on. There are different methodologies: full-custom,
standard-cell, gate array and structured design [9]. In a full-custom design, each
function is manually done by transistor level design, which costs the highest in the
development process. In order to reduce the initial investment in design and
manufacturing, standard-cell components have been created and contained in a
library file, including commonly used gates, flip-flops and logic functions. However,
standard-cell design may still be expensive, so gate-array based design is developed.
An IC chip is initially fabricated with gate arrays and design engineers just need
to define the gate types and interconnections. Structured design is a new concept,
in which ASIC chips are designed with pre-defined metal layers, thus reducing cost
and development time. ASIC design flow contains some major procedures: design
specification, HDL coding, synthesis, floorplanning, place and route, fabrication and

post-silicon validation.
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2.6.2 Field-Programmable Gate Array (FPGA)

An FPGA is a logic device which can be programmed for different applications.
Altera FPGAs contain logic elements (LEs) which are the basic logic components.
A logic element has one lookup table (LUT) as combinational logic function and
one flip-flop as sequential logic. Similar to gate array based ASICs, each LE in an
FPGA can be connected with others. Hence, logic elements and interconnections
can be programmed by the engineers to implement different circuits. A typical
FPGA such as the Altera Cyclone IV FPGA offers an embedded RAM block. In
our implementation of PSCFB, we will not use RAM.

FPGA design flow contains major procedures: design specification, HDL coding,
synthesis, place and route, and final programming to FPGA. Compared with ASIC

design flow, FPGA requires less time and human resources, thus reducing the cost.

2.6.3 ASIC vs. FPGA

ASICs have several advantages over FPGAs. Compared with FPGA, ASICs can
reach a faster clock frequency. An FPGA is an already produced chip with limited
area. However, an ASIC chip can be designed to be either small or big depending
on requirements. ASICs typically have lower power consumption than FPGAs.
From economic perspective, ASICs have the lowest price for high-volume
production.

However, ASICs do have disadvantages. Because an ASIC is a one-shot industry,

which means ASIC chips will be put into market once after being fabricated. This



33

requires longer design cycle to guarantee there is no errors in logic and circuits,
including long verification period to ensure functionality. Electronic Design
Automation (EDA) tools are relatively expensive compared to FPGA tools. There
are also high costs for buying Intellectual Property (IP) cores for some specific
application areas, such as IP cores for SONET /SDH. The non-recurring engineering
(NRE) [9] cost can be as high as billions of dollars. NRE is the charges to develop,
design, test and manufacture. Hence, a company will not start to produce an ASIC
chip unless it is expected to have significant profit.

FPGA has lower cost than ASIC for low to medium volume production. The design
flow is really simple and it only requires one or two tools from the FPGA company,
such as Quartus II from Altera. There are no NRE costs. The FPGA is a standard
product thereby allowing engineers to have shorter design cycles. Due to FPGA’s
programmable feature, engineers can fix bugs and update quickly with less cost
than ASIC.

FPGAs also have disadvantages. FPGAs typically have lower speed, thus leading
to lower performance than ASIC. The overall FPGA is a digital circuit except for
phase lock loops (PLLs) which are analog circuits. A design on FPGA consumes
more power than on ASIC because FPGA does not has a better power optimization.

A design on ASIC can be optimized for lower power.



34

2.7 Previous Work of PSCFB

One hardware implementation of PSCFB is described in [10]. The pipelined AES
with 128-bit key is implemented. There are three clocks in this PSCFB system. The
first clk1 is the internal system clock, which is for data transfer between plaintext
queue and ciphertext queue. The plaintext queue and ciphertext queue are used as
two buffers to receive plaintext and send ciphertext because of the different clock
frequency between the system and other devices. The second clk2 is used for data
transfer between the system and other devices. Signal clk! is set to twice the rate
of clk2 to ensure the plaintext queue does not overflow. The third clock, clk3, is
used for the block cipher.

In this implementation, the output of AES is stored in one of two identical 128 bit
shift registers, which are used to save output from AES. The data transfer rate
inside the system is 8 bits and it is based on clock clk1. The shift register sends out
8 bits of data out to XOR with 8 bits of plaintext, and then the ciphertext is
received by the ciphertext queue. The queueing system is based on asynchronous
FIFO, which has a write part and a read part due to two different clocks. For the
plaintext queue, the write part is clocked by clk2, which deals with incoming data
from other devices. The read part is clocked by clk1, which is in charge of sending
data to the ciphertext queue. The ciphertext queue is reversed, with write part
clocked by clk! and read part clocked by clk2. An IV Shift Register, which is used

to scan ciphertext and collect IV, receives the generated 8 bit ciphertext and scans
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it for sync pattern. When the pattern matches, the IV Shift Register will start to
collect the new IV for the counter.

This PSCFB implementation is synthesized in an ASIC environment with TSMC
180 nm CMOS standard cell. The clock period of clk2 is 24 ns, which is equal to
41.67 MHz as frequency. The clk2 is related to the write part of plaintext queue
and read part of ciphertext queue, which means the input and output of PSCFB
system. Hence, the final throughput of PSCFB system is 41.67 MHz x 8 bits = 333
Mbps, which is far too small compared with the ideal throughput of AES with 5.333

Gbps at the corresponding clock rate.

2.8 Summary

In this chapter, the necessary cryptography background is introduced, including
symmetric key cipher, block cipher, stream cipher, modes of operation and AES.
The self-synchronizing modes of operation, SCFB and PSCFB mode, are described
and discussed. Hardware concepts of FPGA and ASIC are briefly introduced as
this thesis is about hardware implementation of PSCFB. A previous work on

hardware implementation of PSCFB mode is briefly introduced.
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Chapter 3

Pipelined AES

In this section, a 10 stage pipelined implementation of AES used in the study of
PSCFB mode is described. In addition, several structures of block cipher

implementation are introduced, compared and analyzed.

3.1 Basic Architecture Without Pipelining

The basic way to implement a block cipher is to use an iterative architecture [11].
Figure 3-1 shows the iterative architecture of a block cipher. It is a single round
with multiplexer, register and combinational logic. The combinational logic
contains operations for each round, such as S-box, key mixing, SubBytes,
MixColumns, ShiftRows and AddRoundKey. In the beginning round, the input
data is sent to the register and then combinational logic. In the subsequent rounds,

the output of combinational logic is fed back through the multiplexer into the
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register, until the final round which presents the output from the combinational

logic. Note that the structure for the round key is not illustrated in the figure.

Input

l

o/

Register

Round Key —> Combinational Logic

Output

Figure 3-1 Basic Iterative Architecture

It is obvious that basic iterative architecture has a major disadvantage for
throughput. For AES with 128 bit key, assuming initial key mixing is integrated
into the first round, it needs R = 10 rounds of iteration, which means a single block
occupies the block cipher for 10 clock cycles.

The throughput and latency are given in [11] as follows, where B is the block size,

R is the number of rounds of AES and Ter is the clock period.

B
Throughputiterative = RxT i bpS ( 3-1 )
c
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Latency =R x T, seconds (3-2)

iterative

3.2 Loop Unrolling

Loop unrolling is an effective way to reduce the number of clock cycles occupied by
a data block. As shown in Figure 3-2, AES is fully unrolled by implementing and

connecting the combinational logic parts of every round. In this case, the

Input

Register

Combinational Logic

Round 1 )

<— Round Key 1

Combinational Logic

Round 2 )

<— Round Key 2

Combinational Logic

Round R R

<— Round Key R

Output

Figure 3-2 Loop Unrolling
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multiplexer is removed and all round keys must be generated simultaneously. Note
that the round key structure is not shown.

However, employing the resulting large combinational logic leads to potentially a
very long critical path. The clock period will increase due to the long critical path.
If the synthesis tool optimizes the clock period Teik(ioop unroliing to be smaller than
R x T in iterative architecture, the loop unrolling architecture may have slightly

lower latency and higher throughput.

B
Thr Oughputloop_unrolling = Tclk(loop wnrolling) bpS ( 3-3 )

Latency,,,, nroiiing = Teiktoop_unrotiing) S€cONds (3-4)

3.3 Pipelining

Pipelining can be used to increase throughput by inserting registers in any part of
the combinational logic of Figure 3-2. As a result, the length of critical path is
reduced. There are two types of pipelining for AES, inner-round and outer-round
[11].

3.3.1 Outer-Round Pipelining

Outer-round pipelining only inserts registers between rounds. In Figure 3-3, the
pipeline register is inserted between each two rounds in the block cipher. Note that
the key structure is not shown. Based on this, the latency is the same as in the

iterative architecture. Although it also takes R clock cycles to get the output, this
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architecture can simultaneously process R blocks of data, thus increasing the

throughput.

Input

l

Register
v

Combinational Logic
1

|

Register
v

Combinational Logic
2

Round 1 <— Round Key 1

Round 2 <— Round Key 2

Register
v

Combinational Logic
R

!

Output

Round R <— Round Key R

Figure 3-3 Outer-round Pipelining

The throughput and latency of pipelined structure is given as follows in [11].

B
Throughputouter—mund = T_ bpS ( 3-5 )
clk
Latency outer_round - Latency iterative ( 3-6 )

In this equation, Ter is the clock period of one round, which is similar to the clock

period in an iterative architecture. We can conclude that fully outer-round
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pipelined structure has an R-fold increase in throughput, compared with an
iterative implementation. Hence, for a 10 round pipeline of AES, this gives a 10

fold increase.

3.3.2 Inner-Round Pipelining

As the names states, the inner-round pipelining is the technique for which registers
are inserted inside the round of a block cipher. For example, a single round of AES
includes SubBytes, ShiftRows, MixColumns and AddRoundKey. The register can
be inserted between any of these operations, and even in the middle of an operation.
Figure 3-4 is an iterative structure with inner-round pipelining. Note that the key
structure is not shown in this figure. The equations of throughput and latency of

inner-round pipelining architecture are shown below.

Throughput Bk 5 b 3-7
. = = S -
ronsnpPy inner_round R x e x T, clk(inner_round) RxT clk(inner_round) P ( )
Latencyinner—mun 0= RXkX TepkCinner rounay S€CONAS (3-8)

Teik(inner round) is the clock period of a stage in an inner-round pipelining, and %
means the number of stages of the inner-round pipelining. Although the equations
look to be lower throughput than outer-round pipelining, 7Teik(inner round) is much
smaller than a round clock period Tk, thus resulting in higher throughput.
However, as shown in equation ( 3-8 ), the latency is uncertain. If the synthesis
tool is able to shorten the critical path to make k X Tcik(inner round) smaller than a

round clock period Tex, the inner-round pipelining will reach lower latency.
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Figure 3-4 Inner-round Pipelining

3.4 Pipelined AES in PSCFB

In this thesis, only outer-round pipelining is applied to AES. Figure 3-5 is the
architecture of pipelined AES. An AES implementation with a 128 bit key has 10
rounds, so that 10 pipeline registers are inserted between rounds. Note that as

assumed above, the first pipeline stage includes initial key mixing plus round 1.
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Figure 3-5 Pipelined AES in PSCFB
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Unlike the method in the outer-round pipelining in Figure 3-3, the registers are put

after each round. An LFSR counter is placed at the input of AES, so that there is
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no need to put another register between the LFSR counter and the AddRoundKey
combinational logic. In the last round of AES, we have SubBytes, ShiftRows and
AddRoundKey. In addition, from the overall perspective, in our design of PSCFB
mode, the output of AES will pass through a barrel shifter, which contains layers
of multiplexers, and XOR gates. Hence, it is reasonable to place the pipeline register
between the last AddRoundKey and barrel shifter. As shown in Figure 3-6, the
critical path is shortened and the system will have better performance. This will be

discussed in Section 4.6.

Register

v

SubBytes

v

Round ShiftRows

10 ¢

AddRoundKey

Register b——> l

Barrel Shifter

Plaintex @ Ciphertext—»

Figure 3-6 Register Insertion



45

3.5 Modified Blackout Period

As will be discussed in Chapter 4, in our implementation of PSCFB mode, when
a new IV is collected by the sync pattern scanner and sent to LFSR counter, it
will take one more clock cycle for AES to receive the IV. If we consider the LFSR
counter as an extra pipeline stage, the pipelining is then increased to 11 stages.
For an 11 stage pipeline, it will take 11 clock cycles to get the desired output.
Hence, the blackout period for PSCFB mode is extended to L = 11 blocks of B

bits.

3.6 Summary

This chapter has discussed how the pipelined AES is implemented for our
implementation of PSCFB mode. The description is started from showing the
basic iterative architecture of block ciphers. The basic iterative architecture is
then unfolded, which is called loop unrolling. The pipeline architecture is achieved
by inserting registers between rounds. Although there are inner and outer-round
pipelining architectures for block ciphers, only outer-round pipelining is discussed
and implemented. Because an LFSR is used and connected with a 10 stage
pipelined AES, the length of the blackout period for PSCFB is extended to 11

blocks.
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Chapter 4

Design of PSCFB

In this chapter, the hardware design of the PSCFB mode of operation will be
investigated. Pipelined AES with a 128 bit key has been applied as the block cipher.
In studying the algorithm of PSCFB, we propose several different structures for
data queues and other components. Each new structure has fewer hardware
resources and smaller latency, thus achieving higher performance. The higher
throughput can be reached by increasing bit width and improving frequency, which
results from lower delay of the critical path. Since PSCFB mode is designed for use
in high speed networks, the goal is to reduce the hardware resource usage as much

as possible without affecting the throughput.

4.1 Design Considerations

As discussed in the last chapter, a partial block generated by the block cipher may

be processed at the end of a blackout period. The amount of data, which is needed
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from plaintext or generated as ciphertext, can be less than the data width at the
input and output ports. Based on that, two data queues, the plaintext queue and
the ciphertext queue, are necessary as buffers to temporarily store the input

plaintext and newly produced ciphertext [4].

v
counter
Pipelined Block Stage |
Cipher in Sync
Counter Mode Stage 2 A pattern?
B
Stage L n
R ) Sync Pattern
B Register Scanner
D B B . D
—~4» Plaintext queue S\, » Ciphertext queue <>

Figure 4-1 Architecture of PSCFB Encryption [4]

Figure 4-1 shows the encryption part of PSCFB. From the figure, B represents the
block size inside the PSCFB system and D stands for data width in bits entering
and leaving the system in every clock cycle. In other words, D effectively represents
the data rate at which flows data through the system in terms of bits per clock
cycle.

Data transfer between the plaintext queue and the ciphertext queue is split into
three separate cases in [4]. In the first case, a whole block of data is being processed

when the sync pattern is being scanned for, when the new IV is being collected and
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when in the blackout period, which means B bits of data are transferred. In the
second case, the queue pauses when there is not sufficient data for transfer. The
third case exactly comes from partial block at the end of the blackout period, and
the number of bits ranges from 1 to 127 since for AES B = 128.

If we set d to represent the number of bits to be processed, we have the following
tables.

Table 4-1 Cases in Data Transmission for Plaintext Queue

Plaintext
Queue Case 1 Case 2 Case 3
Process
Enqueued bits D D D
Dequeued bits d= B d= 0 1<d<B

Table 4-2 Cases in Data Transmission for Ciphertext Queue

Ciphertext
Queue Case 1 Case 2 Case 3
Process
Enqueued bits d= B d=10 1<d<B
Dequeued bits D D D

These tables are based on the operation of a data queue as described in [4]. Taking
the plaintext queue as an example, D bits are enqueued at every clock cycle. As
long as the queue has more than B bits data (cases 1 and 3), it dequeues d bits and
XORs these bits with the output of the block cipher. The ciphertext queue has the
reversed input/output compared with plaintext queue. It enqueues d bits from the

XOR gates and dequeues D bits.
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In addition, overflow and underflow are to be considered. Assume pipelined AES is
used so that B = 128 bits. To ensure a stable queue and to avoid overflow in a

plaintext queue or underflow in a ciphertext queue, D must be less than B. From
[4], we can know that D < LBTLl =116 when using pipelined AES with B = 128 and

L = 10 to ensure that the plaintext (ciphertext) queue does not overflow
(underflow). Hence, the minimum queue size, M, can be calculated from the
equation M > B + 3D - 2 = 474 bits!.

As a result, a FIFO structure with the above properties is a primary design issue
and will affect the other parts of the PSCFB system, including the state machine.

The resulting throughput of PSCFB system is determined by the data queues.

4.2 Overall Structure

Figure 4-2 and Figure 4-3 represent the two overall structures of the PSCFB
encryption and decryption datapaths, with Design 3 of the queueing system (which
will be discussed in the upcoming sections). There are 7 major components in a
single PSCFB system. AES with 128 bit key is implemented with a 10 stage pipeline.
The queueing system works as a buffer necessary due to the different data widths,
D and B. The LFSR works as the counter in the CTR mode in PSCFB. The sync
pattern scanner is used to search the ciphertext blocks in order to self-synchronize.

There are two barrel shifters for shifting data to the designated positions.

! Note that this is a correction to the constraint M > B + 2D — 2 given in [3].



v

LFSR
v
Pipelined AES Sync
128 Xpattern?
» Barrel
M-128| Shifter [] 128
00...0 (Right Shift) v
/TN 2% | Sync Pattern
\AJ g Scanner
Barrel _"768
Shifter
(Left Shift)
M
) 4
] M ™ M _ D
Plaintext queue SNV » Ciphertext queue 4
Figure 4-2 Structure of Encryption System (Datapath)
v
LFSR
v
Pipelined AES
%
128 « Syne
pattern?
» Barrel
M-128| Shifter [
00...0 +> (Right Shift) 128
Barrel L Sync Pattern
Shifter 128 Scanner
(Left Shift)
M
) 4
] M ™ M ) D
Ciphertext queue SN » Plaintext queue 4>

Figure 4-3 Structure of Decryption System (Datapath)



51

The structural difference between encryption and decryption is that decryption
does not have the 128 bit XOR logic before the input of sync pattern scanner. The
plaintext queue in encryption and ciphertext queue in decryption are exactly the
same in structure. The ciphertext queue in encryption and plaintext queue in

decryption are also the same.

4.3 Plaintext and Ciphertext Queue

A FIFO is a typical method to implement a data buffer. However, the FIFO in our
system is quite different than a typical FIFO with fixed input and output width.
According to the design considerations and architecture of PSCFB, for encryption
the plaintext queue must have a D bit input and variable width output of d bits
for scenarios where 0 < d < 128 bits are necessary. The ciphertext queue can be
regarded as reversed queue to the plaintext queue, and it has variable width input
of d bits and fixed D bit output. Although D and B are two different parameters,
there is no padding in the queueing system.

In addition, the plaintext queue and ciphertext queue are set to be complementary
to each other [4]. If the plaintext queue is being filled up, the ciphertext queue is
being evacuated at the same time. In this way the system is balanced so that D
bits can enter and D bits can exit the system every clock cycle. When the system
is initialized, the plaintext queue is empty and ciphertext queue is full of random
data. Every clock cycle, the plaintext queue receives D bits of data from an external

device and ciphertext queue sends out D bits of data. At the same time, d bits (0
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< d < 128 for three cases) of data is transferred from the plaintext queue to
ciphertext queue, with XORing with the AES output (which is the keystream). The
sum of the number of bits in the plaintext queue and the number of bits in the
ciphertext queue is constant and equals M.

Figure 4-4 shows the I/O diagram of the final version of the plaintext queue and
ciphertext queue in PSCFB. The signals wr and rd mean enable signals for writing
and reading, respectively. The empty signal means the plaintext queue does not
have enough data to send and full means the cipheretxt queue has no more space
to save. The data ports, w_data and r_data, for writing and reading are different

in the two queues.

clk —> <— rd
reset —>  Plaintext <— code[6:0]
wr —> empty
w data —> Queue r data
[B-1:0] > [M-1:0]
clk —> <— rd
reset ——> : <— code[6:0]
o —S) Ciphertext = S
w_data —> Queue > r data
[M-1:0] [B-1:0]

Figure 4-4 I/O Diagram of Queueing System
4.3.1 Design 1: Basic Structure With Reduced Hardware
Resource Usage

In this research, the data queues have simplified structure. The plaintext queue is
firstly designed for a small scale system, which is easy to modify and test. Note

that part of this content is presented as [12].
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Either synchronous or asynchronous, a normal FIFO has fixed width input/output.
However, such a queue cannot be used as a data queue in PSCFB. Basically, a
general FIFO has registers as a data buffer, which has two parameters, width and
depth. The width is usually the same as, or a multiple of, the input/output width.
The depth means how many data elements (compared of a number of bits defined
by the width) can be stored. The size of the FIFO in bits can be calculated by

multiplication of width and depth.

S Width =
000 ~
001
010
é 011 .
2 100 =2
101
110
11 M

Figure 4-5 General FIFO
As shown in Figure 4-5, in the general FIFO, the data is saved and fetched as

individual data elements. For example, in a FIFO with 8-bit width, the data is
saved byte by byte, which is easy to implement in digital hardware.

4.3.1.1 Plaintext Queue: A Small Scale Example

In the PSCFB system, the variable output width in the plaintext queue has caused
the issue that the data manipulation is based on the units of bit, thus causing

difficulties in the implementation of the queueing system. In this section, the
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queueing system is similar to the one dimensional data array, rather than an array

with given width and depth.

Write: 01
Read: 101

—_——— e —_——

Address: 0 1 2 3 o0 1 2 3 O 1 2 3

Figure 4-6 Reading and Writing Process in PSCFB

Consider an example queue where the read width is 0 < d < 3 since B = 3 bits,
while the write width is D = 2 bits. The data processing is shown in Figure 4-6.
This imbalance in the input and output processes leads to unpredictability in the
data manipulation. Hence, fixed width and depth have no use and two-dimensional
register array will not be applied in a PSCFB implementation. The PSCFB queue
of data is not difficult to implement in one dimension in a software programming
language. The registers align along a straight line, so that the array is one
dimensional and circular, where it is necessary to keep track of the queue head and
tail, which are pointers used to select the position of where data is removed and
where data is added, respectively.

We now consider the design of a simple plaintext queueing system with B = 3, D
= 2 and M = 4 in hardware. In the system, a fixed number of D = 2 bits is written
in every clock cycle, and a variable number of bits are read, 0 < d <3, when B =

3. In digital circuits, a 2-to-1 multiplexer (mux) and a 1-to-2 demultiplexer (demux)



55

can perform selection by selecting one out of two inputs (mux) or outputs (demux).
As shown in Figure 4-7, a mux can be expanded to be a 3-bit mux, which means

the data width of each port is 3 bits.

A[2:0] 0
Z[2:0]
B[2:0]— 1

Figure 4-7 3-bit 2-to-1 Multiplexer
By piling up the 3-bit 2-to-1 muxes, a cascading structure can select the data from
4 inputs with 2 address lines. In Figure 4-8, the cascading structure is used at the
output part of the queue. (Since the connections are complex, they have not been
drawn.) Three muxes are piled up to perform as a 4-to-1 mux and connect four
registers to 3 output bits. Assume four register bits are marked as 0, 1, 2 and 3
from top to the bottom, and Qn, 0<n <3, is the output of each D flip-flop. The
connecting method is as follows.
(1) Qo, Q1 and Q2 are connected to the first input of pyramid structure.
(2) Q1, Q2 and Q3 are connected to the second input of pyramid structure.
(3) Q2, Qs and Qo are connected to the third input of pyramid structure.
(4) Qs, Qo and Q1 are connected to the fourth input.
The connection method is reasonable since we can find four possible combinations

of three consecutive numbers among 4 register bits. By using this connection
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method and pyramid structure, it is guaranteed that each three consecutive bits

can be selected.
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Figure 4-8 Architecture of Plaintext Queue

In Figure 4-8, we illustrate a small scale plaintext queue (M = 4, B = 3, and D =

2) with the cascading structure used as the output part. For the input side of the

queue, a simplified hardware structure is used by making the number of queue bits

a multiple of the input width (in this case, M = 2 x D). For this small queue with

the relationship between M and D, there are only two cases: (1) the write address

starts at 00 and data is written to 00 and 01, and (2) the write address starts at 10

and data is written to 10 and 11. The higher bit of address is enough to select the

placement of the 2 incoming data bits. The inputs will be sent to either DoD1 or
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D2Ds. Since there is no combinational logic to route data input bits to register bits
in this simple design (only appropriate wiring), the resource cost and propagation
delay of the combinational logic on the input side is zero.

4.3.1.2 Design Considerations for Full Scale System

The cascading structure can also be applied on the input part of plaintext queue,
with demultiplexers instead. This would be necessary if the queue size M was not
a multiple of D. However, too many muxes and demuxes will increase the hardware
resources, area and even propagation delay of the critical path. This can be proven

by a simple calculation as follows.

{>—

In2 M
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-

Figure 4-9 Multiplexer (Gate Level)

1
—

In
Out 0

Out 1

Figure 4-10 Demultiplexer (Gate Level)
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The gate level implementations of a 2-to-1 mux and a 1-to-2 demux are shown in
Figure 4-9 and Figure 4-10, respectively.

For a 3-bit mux (since B = 3) and 2-bit demux (since D = 2), assume they cost
three times and two times more gates. For a queue with a 256 bit size, 128 + 64 +
32 +16 + 8 +4 + 2 4+ 1 = 255 demuxes will be needed at the input part, using 8
layers of 1-to-2 demuxes. A similar number of muxes are needed at output of queue.
In general, the number of demuxes is equal to M - 1, where M is the queue size.
In area, it needs 255 x 2 x 3 = 1530 gates for input and 255 x 3 x 4 = 3060 gates
for output. This is a large resource cost compared with 256 registers, which is
equivalent to 256 x 6 = 1536 gates (assuming 6 gates for a register [9]).

4.3.1.3 Ciphertext Queue: A Small Scale Example

Consider now the ciphertext queue, which has a variable sized input of d, 0 < d <
B, and fixed size output of D. Figure 4-11 shows the structure of a single ciphertext
queue for which B = 3 and D = 2. According to the design considerations, the
ciphertext queue can be functionally regarded as the reversed plaintext queue. One
difference is that the enable signal must be considered. Similar to the output part
of the plaintext queue, the input part of ciphertext queue consists of a demux
pyramid. Each demux is a 4 bit 1-to-2 demux, involving 3 bits of data and a 1 bit
enable signal. Two 3-input OR gates are connected to each D flip-flop, and each
OR gate receives data from different outputs, which ensures that there will be only
one high signal among three. For example, if the write address is 01, that means

data is available at B in Figure 4-11. We have B[0]=1 and A[0]=C|0]=D]0]=0, so
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that registers 1, 2 and 3 are enabled. Moreover, based on the property of a demux,
a 4 bit net of A, C and D have low level signal and B takes on values of the
incoming bit. For three enabled registers, input D1 = BJ3], D2 = B[2] and D3 = BJ[1].
Hence, input data is successfully stored at the right place.

Since M = 4 is also the multiple of D = 2, the output part of the ciphertext queue
is similar to the input part of the plaintext queue and can be very simple. However,
two 2-to-1 muxes are necessary. One mux reads data from Q3 and Q1, and another

mux takes data from Q2 and Qo. As with the plaintext queue input, there are only

Cl1]
A[3] 3
Data (3 bits) + C[0] P 3
Enable(1 bit) D[0] o @
=4 bits 0 Oupt
X4 1 Data[l]
> 2
4 0 §>_" CIR —Q
1
N
D Er Q—r\-
> 1
= e N
0 Output
Data[0]
Address[1]  Address[0] C[0]3:>—._ | Read Address1]

Figure 4-11 Architecture of Ciphertext Queue
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two cases for output: (1) output is QoQ: with read address 00, and (2) output is
Q2Q3 with read address 10. Hence, only 1 bit of address is enough. Similar principles
can be applied in scaling up the design to a full scale system, as long as M is a
multiple of D.

We can conclude that the queue size M must satisfy the two conditions for this
simplified version of design: (1) M > B + 3D - 2, which is the requirement to avoid
overflow /underflow [4], and (2) M is a multiple of D, which is for hardware
simplification at the input to the plaintext queue and the output of the ciphertext
queue.

4.3.2 Variable Width Transmission Between Two Queues

Assume the same small scale system in Figure 4-8 and Figure 4-11, with B = 3, M
= 4, and D = 2. In the output part of plaintext queue, all the muxes in different
layers are controlled by the read address, that is, the read pointer in the control
unit. Although 3 bits data are always provided at the output, the increment in
address is not always the same. Assume only 1 bit is needed at the end of blackout
period. The output part provides 3 bits of data but the read address will only
increase by 1. This means the downstream ciphertext queue will only take first bit
from the plaintext queue. The remaining 2 bits will be kept in the plaintext queue.
For the ciphertext queue, all 3 bits of data will be received and loaded into 3
register bits. However, the control unit in the ciphertext queue will only increase
by 1. In this way, only valid data will be kept, and invalid data will be written over

by the incoming data bits in next clock cycle. Similarly in the full scale system, if
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d bits (0 < d < B) are to be transferred, as discussed above in cases 2 and 3, the
read address will only increase by d regardless of B bits always being at the output
of the plaintext queue.

Based on this variable width transmission method, at the end of blackout period,
the number of bits that are actually saved in the ciphertext queue register bits is
more than the bits recorded in control unit. There will not be data overflow in the
ciphertext queue as long as the queue size satisfies M > B + 3D - 2. The plaintext
queue dequeue operation is activated only if the number of bits in plaintext queue
is equal or greater than B.

As discussed previously, the number of empty bits in ciphertext queue is equal to
the number of valid bits in plaintext queue, and vice versa. Since the two queues
work in a complementary manner, the number of empty bits in the ciphertext queue
is also equal or greater than B when data is transferred from the plaintext queue.
The above example with B = 3, M = 4, D = 2 does not meet the requirement of
minimum queue size B + 3D — 2 = 7 bits and, hence, would encounter plaintext
(ciphertext) queue overflow (underflow). It is only used here as an explanation of

the queue logical structure.

4.3.3 Design 2: An Updated Version of Queues

In this section, a queue structure with less resource usage and lower path delay is
proposed. Note that some of the content is also presented in [13].
During data transmission between two queues, the signal passes through a fair

amount of combinational logic. The data from the D flip-flop Q outputs of the
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plaintext queue passes through 8 layers of muxes, an XOR gate layer (to XOR with
AES generated keystream) and 8 layers of demuxes at ciphertext queue. Hence, the
propagation delay will be high if the cascading multiplexer /demultiplexer structure
is applied between queue registers. The resulting propagation delay on critical path

limits the maximum speed of the whole system.
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Figure 4-12 Updated Version of Plaintext Queue
An improved design is shown in Figure 4-12 illustrated for the small scale queueing
system with M = 4, B = 3, and D = 2. The output logic in the plaintext queue has
been removed. Each register output Q of the plaintext queue is connected to the D
input of register bits in the ciphertext queue. Since the plaintext queue and

ciphertext queue work in a complementary way, the read address of plaintext queue
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and write address of ciphertext queue are always the same. Only the read pointer

in the control unit changes.
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Figure 4-13 Updated Version of Ciphertext Queue

Figure 4-13 shows the new structure of the ciphertext queue for the small scale

system. All of the demuxes are reduced to 1-bit width, since register D inputs are

directly connected to the Q outputs of plaintext queue. Demuxes and 3-input OR

gates are only used for the enable signal. The output side of the queue remains the

salme.
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The cascading demultiplexers can also be interpreted as a decoder with enable, as
the following equations:
A=w;-Wy-Enable
B=w;-wy-Enable
(4-1)
C=w,-Wy-Enable
D=w;-wy-Enable

where wy and wy are Write Address [1] and Write Address |0], respectively.

4.3.4 Design 3: A Further Improved Ciphertext Queue With
Barrel Shifter

In this section, a further improved ciphertext queue is presented, which uses a
barrel shifter resulting in lower latency and less resource usage for the enable signal
wiring.

4.3.4.1 Barrel Shifter in Ciphertext Queue

A barrel shifter can accomplish a cyclic shift using minimum hardware resources
and delay. A data sequence can be shifted by the specified number of positions in
one clock cycle. Figure 4-14 shows a simple 4 bit barrel shifter, which can left shift
the data by 0 to 3 positions. Figure 4-15 is the barrel shifter for right shift. In the
first layer, the Address|0| can shift data by 1 bit. In the second layer, the Address|1]
can shift data by 2 positions. Hence, for a 2 bit address of 00, 01, 10 or 11, the

barrel shifter can shift input data by 0, 1, 2 or 3 positions.
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For a barrel shifter operating on M bits, we would need [log2 M] layers of muxes.
In the full scale system, for example, with B = 128, D = 64 and M = 320, the size
of the barrel shifter is 320 bits. It uses 9 layers and each layer can shift the data

by 1, 2, 4, 8, 16, 32, 64, 128 and 256 positions.

3" | S

il |
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Figure 4-14 Left Shift Barrel Shifter
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Figure 4-15 Right Shift Barrel Shifter
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4.3.4.2 A Small Scale Example

Figure 4-16 is a small scale ciphertext queue, with B =3, M =4, D = 2 and a 4
bit barrel shifter. It is an improved version of the ciphertext queue in Figure 4-13.
The figure clearly shows the structure. Since B = 3, we have three registers enabled

each time, so that the enable signal is connected to in|3], in|2] and in[l] of the
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> 3
v Q
0 Output
1 Data[1]
—I " o
> 2
v @
p——) QT
D> 1
.9 N
0 Output
Data[0]
in[0] L R 1
0 \1 | . | g
0 out[3] S 0
in[3] 9 :[ w 0| Read Address[1]
< A TS

out[2]

Enable in

0
ol L

in[2 :[
1

0

in[1] (
_| 1
0

0—

m[O]T

Write Address[0] Write Address[1]

out[1]

out[0]

Figure 4-16 Improved Ciphertext Queue with Barrel Shifter
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barrel shifter. For example, if the write address is 01, the first layer will perform a
right circular shift and the enable will be presented at out|2|, out[1] and out|0].
4.3.4.3 Design Considerations for Full Scale System

Although the path delay from ciphertext queue to plaintext queue is largely reduced,
there is delay on the path to enable ports of the ciphertext queue. Assume D=116
and B=128, which reaches the maximum efficiency at « = D/B =90.625%. Then
the minimum required queue size is M = B + 3D — 2 = 474. Assume a 512 bit size
queue is used. For Design 2, the number of demuxes is 256 + 128 + 64 + 32 + 16
+8+4+ 2+ 1= 511 and 116-input OR gate is needed for each register bit. A
single path contains 9 layers of demuxes and a 116-input OR gate. A gate with a
large number of inputs may cause large area and high delay.

In a full scale system, the barrel shifter approach of Design 3 has better result than
the demux and OR gate combination of Design 2. For 512 registers, the barrel
shifter should have a 512 bit width. It needs 9 layers with 512 2-to-1 muxes for
each layer. The enable signal is connected to the 128 most significant inputs of the
barrel shifter and the signal can be shifted to any position.

We can compare the gate count of the above two structures. For the demux and
OR gate combination (Design 2), assume a demux costs 3 gates and a 116-input
OR gate with cascading structure costs 115 2-input OR gates. We have 1533 gates
for 511 demuxes and H8880 gates for 511 OR gates. In total, the architecture of

Design 2 costs 60413 gates.
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Consider now Design 3. Assume a mux costs 4 gates. In the barrel shifter, we have
9 layers of 512 muxes. Hence, the architecture of Design 3 costs 18432 gates, much
less than the cost of Design 2.

Design 3 has advantage not only in area, but also in speed. In Design 2, the enable
signal passes through 9 demuxes and 7 OR gates at least, if 116-input OR gate has
a tree structure. However, in Design 3, the enable signal only needs to pass through

9 muxes.

4.3.5 Pointer Calculator

The write and read addresses of the two queues are calculated by the pointer
calculator. It is implemented in RTL level coding with VHDL. There is write
pointer and read pointer in the control unit. The pointer is actually a counter, and
the bit width is decided by the queue size. Unlike the counter in normal FIFO, this
counter can increase by value d (0 < d<128). This is because of the three cases of
data transfer discussed earlier. This complexity results in increased area and path
delay because special logic is applied to perform addition, multiplication and the
modulo operation.

Every clock cycle, the control unit calculates the values of read and write pointers
for the next clock cycle. This part is designed as combinational logic. In the first
combinational logic part, the difference of two pointers is calculated based on the
following formulas.

w_pointer - r_pointer ,W_pointer >r_pointer

M —r pointer + w_pointer ,others (42)

difference = {
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When the difference is 0, the queue is either empty or full. According to the dequeue
operation, the plaintext queue immediately sends out the data once there is more
than B bits of data [4]. Thus, the plaintext queue will never become full. Also, the
ciphertext queue will never become empty, since the two queues are complementary
to each other [4]. When the plaintext queue has less than B bits, the ciphertext
queue will become close to the full state. To avoid overflow and underflow, the data
transmission between queues is paused. Hence, the whole system, including other
components, will also pause. Data is still put in plaintext queue and removed from
ciphertext queue.
The second combinational logic part determines if the queue is full or empty. For
the plaintext queue, if the difference from the equation ( 4-2 ) is less than 128, the
queue is set to be empty. For the ciphertext queue, if the difference is greater than
(M - B) or equal to 0, which means the ciphertext queue does not have enough
space and the queue is set to be full.
Then the read and write pointer for the next clock cycle will be calculated. In the
plaintext queue, the following formulas are for write pointer and read pointer:
next w_pointer = (w_pointer + D) mod M (4-3)
next_r_pointer = (r_pointer + d ) mod M (4-4)
The modulus ensures that the result will not exceed M. In the ciphertext queue,
the write and read pointers are as follows:

next w_pointer = (w_pointer + d) mod M (4-5)
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next_r_pointer = (r_pointer + D ) mod M (4-6)
Since binary representation of the pointers is used in the hardware, the bit width

of [log2 M] is required for each pointer.

4.4 Counter (LFSR)

The counter component is used in CTR mode in order to replace OFB mode and
to allow for pipelining of the block cipher. A general binary counter increments by
1 in each clock cycle. For CTR mode in cryptography, the counter is loaded with
an IV and then incremented by 1 for each block encryption. However, implementing
and applying “add 1” logic to a 128-bit register will lead to large delay in the
combinational logic.

In our system, a linear feedback shift register (LFSR) is used to replace the binary
counter. Several bits are XORed to generate a feedback bit to be shifted into
register. For a 128 bit register, a feedback expression with only 4 bits can be used:
Flo7=T20 @11, ®r, ®r, [14]. In this expression, r;, 0 <i< 127 , represents a register bit,
with the shift moving from higher number bits to lower number bits and |,
represents the next value of bit to be shifted into position rj,7. The 128 bit LFSR
covers 2128 - 1 states taking on all values of 128 bits except for the all zero state. If
the register has all zero bits, r,,,=0 and it is stuck in the all zero state.

Although the LFSR will never enter the all zero state from any other states, there
is the possibility that generated ciphertext is accidentally all zero and it is loaded

as new IV to the LFSR. In [14], a structure is presented for which the all zero state
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is inserted between “00...01” and “10...00” states. The feedback expression is
modified to be r'127 =ry9@Pr;,Dr,ProPz and z=1 when the 127 register bits from
r1o7 to rq are all zero.

In the state “00...017, z=1 because rjy;r26-7; is all zero. Then we have
r'm =0D0D 0D 1D 1=0 and the register enters “00...00” state. In this all zero
state, riy77126° 77 is also all zero, so z=1 Then r1,, =0 @D 0D 0D 0P 1 =1 and the
LFSR will enter “10...00” state.

When the new IV is collected, the sync pattern scanner (to be discussed in the next
section) sends out a high signal, informing the LFSR counter that everything is
ready. Then the new IV is loaded to the LFSR in the next clock cycle, and the
logic in the LFSR counter asserts signal new v back to the sync pattern scanner,
indicating that IV is successfully loaded and informing the sync pattern scanner to

clear all the register bits in it.

clk —>
reset —> —=>  new iv
enable —> LFSR
valid_lf:gr % % data_out
data in —> [127:0]
[127:0]

Figure 4-17 I/O Diagram of LESR

The I/O diagram of the LFSR is shown in Figure 4-17. In addition to the general
signals and data input/output port, the LFSR also has two control signals. The

valid_ Ifsr signal is used to enable the LFSR to receive IV from the sync pattern
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scanner, and new_ v is used to inform the sync pattern scanner that the new IV

has been successfully loaded.

4.5 Sync Pattern Scanner

In PSCFB, the system scans the ciphertext stream for an n bit sync pattern. For
our implementation, the sync pattern is set to be n = 8 bits and the format is
arbitrarily chosen to be 10000110. In this chapter, the sync pattern scanner is

designed and described for a full scale system.

4.5.1 Structure

Figure 4-18 shows the I/O diagram of the sync pattern scanner. The empty signal
comes from the plaintext queue. Since two queues work complementarily to each
other, only one flag signal is enough. The transfer in signal is actually an inverted
empty signal, which are both useful in the design. Since a pipelined AES is
implemented in PSCFB, we need the aes walid signal to inform the system that
the first useful output of AES is generated. The wvalid_[fsr signal is used to enable
the LFSR to store the collected IV, and new v is a signal from LFSR meaning the
IV is successfully loaded. The 7 bit code is the generated signal for the variable
width transfer between two queues.

A block diagram of the sync pattern scanner is presented in Figure 4-19. The
bottom 128 bit register receives 128 bit ciphertext as it is being transferred from
the plaintext queue to the ciphertext queue and the top register receives the data

from the bottom one, thus making up a 256 bit register with 128 bit input width.
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In most cases, it takes 2 blocks of ciphertext to collect a new IV after the sync

pattern. Hence, it is a necessary to have the double registers.

data_out
clk —> —> -
reset = —> [127:0]
emp?/ —>
transfer —>
des valid —S Sync Pattern N co.de
new iv —>  Scanner [6:0]
data_in
[127:0] )
' —>valid Ifsr

Figure 4-18 I/O Diagram of Sync Pattern Scanner

Scanning the 8 bit sync pattern bit-by-bit has low efficiency and will slow down
the whole system. In order to scan the whole block of input in one clock cycle, it
needs 128 + n - 1 = 135 bits data. That is, it takes a full block of data from the
first register and lower 7 bits from the second register, as shown in Figure 4-20.

The scan logic contains the combinational logic shown in Figure 4-21 and Figure
4-22, which is replicated 128 times. When the 8 bit sync pattern is matched to a
single scan logic, the output is 1. Figure 4-21 is a fixed pattern solution, it scans
the ciphertext for the pattern “10000110”. Figure 4-22 is a general solution for any
defined sync pattern. In the general solution, the scan logic compares the ciphertext
with the user input pattern. An XNOR gate can be used to compare two inputs.
From the truth table of XNOR gate (shown in Table 4-3), the output is high when

two inputs are both 1 and 0.
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Figure 4-20 Data Reading from Registers
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Figure 4-21 Single Scan Logic Part (Fixed)

(L]



76

Ciphertext[7]
Sync pattern|[7]
Ciphertext[6]
Sync pattern|[6]
Ciphertext|5]
Sync pattern[5]
Ciphertext[4]
Sync pattern[4]
Ciphertext|3]
Sync pattern[3]
Ciphertext|2]
Sync pattern|2]
Ciphertext[1]
Sync pattern[1]
Ciphertext[0]
Sync pattern[0]

-

AL

Figure 4-22 Single Scan Logic Part (General Purpose)

Table 4-3 Truth Table of XNOR Gate

A B Z
0 1
0 1 0
1 0 0
1 1 1

With the single scan logic part (either the fixed or general approach) replicated 128
times, the scan logic sends out 128 bit result to indicate if the sync pattern is
detected. If there is any matched patterns within the 135 bit input, there will be a
high level logic in at least one of the 128 bit outputs. However, it is likely to have
more than one sync pattern found in a block, that is, more than one high may
appear at the output of the scan logic. According to the PSCFB algorithm [4], the

scanning is described with bit-by-bit transfer. Hence, the matched sequence from
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the upper bits has higher priority so that the first matched pattern should be
accepted.

A typical priority encoder receives all 128 bits but takes the uppermost high level
bit and then encodes it. Unlike the typical priority encoder, the priority encoder in
our implementation is reversed. For example, when only the least significant bit
in|0] = 1, which means input sequence is in[127 : 0] = 0...0001, the output of the
priority encoder is out|6 : 0] = 1111111. If the most significant bit in[127] = 1, the
output of the priority encoder will be out|6 : 0] = 0000000. This encoding will make
it easier for the two queues and the sync pattern scanner itself. The number of bits

d to be transferred at the end of blackout period exactly equals to the output code

— —in[127] ouff6]—
] — - our{6:0]
, Priority outf 0=
127:0] —
nl ] Encoder
valid —
] in[0] enable

!

Figure 4-23 I/O Diagram of 128 bit Priority Encoder
of the priority encoder plus 1, that is, d = code + 1. Figure 4-23 shows the 1/O

diagram of the priority encoder.
The 7-bit code is firstly sent to a 7 bit register, and then to a 7 bit 2-to-1 multiplexer,

which is labeled as Bits Controller in Figure 4-19. According to the control unit
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definition, the two queues are continuously receiving a 7 bit code. Hence, a bit
controller is needed to hold the data in a 7 bit register. The component only outputs
a 7 bit code for partial block at the end of the blackout period. At other times, it
outputs “1111111”, which is 127 in decimal number, to the plaintext queue and
ciphertext queue. The number is incremented by 1 in the queue’s controller so that
d =127 + 1 = 128, resulting in a full block transfer.

There is also a barrel shifter in the sync pattern scanner. In order to output the
correct IV, the code will also be sent to the selector as a 7 bit selection signal. The
selector is based on barrel shifter architecture. It receives 256 bits data from the
registers and left shifts the selected 128 bits to fixed positions from 254 to 127. For
example, if a sync pattern is found as register]7 : 0] = 10000110, the input of the
priority encoder will be in[127 : 0] = 0...0001 and the output will be out|6 : 0] =
1111111 = code. Since the 128 bit new IV is right after the sync pattern, in the
next clock cycle, the incoming block at the bottom register is the new IV. The
selector will left shift data register{127 : 0] by 127 positions, which will be presented

at the output as selector output|[254 : 127].

4.5.2 Control Unit

All system control is achieved using a control unit located within the sync pattern
scanner component. The control unit is the most important part in PSCFB, and
not only controls the data process in the sync pattern scanner, but also manages
other modules. Figure 4-24 is the algorithmic state machine (ASM) chart of the

control unit. It is a Moore Machine, where the output is dependent only on the
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Figure 4-24 State Machine of Control Unit
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current state.

Figure 4-25 shows the I/O diagram of the control unit. As discussed above, the
transfer in signal is the inverted empty signal. The enable signal count en is
determined by sync and transfer in. When there is not enough data within

plaintext queue, transfer in is deasserted so that the counter pauses.

clk

reset
new iv State

count done| Machine
em—gtgj ' J )—bcount_en

transfer _in

— count Id

Figure 4-25 I/O Diagram of Control Unit

There are six states, including onreset, scanning, loading, blackout, pause 1 and
pause_ 2. Each state will be described in the following content.

onreset state:

At the beginning, when the asynchronous reset is asserted, the state machine enters
a state which is used to set all outputs to zero. Outputs count Ild and count en
are two signals to control a 4-bit counter. The counter keeps track of the step in
the blackout period. It counts from 0 to 9, which corresponds to 10 stages. The
count_ld is an asynchronous clear signal and all register bits in the counter are set
to 0 when count ldis asserted. The count en enables the counter to start counting.

When the counter register bits reach “1001”, which is 9 in decimal, it outputs a
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high signal indicating the counting is finished. When the next clock edge comes,
the state machine exits the onreset state and unconditionally enters pause I state.
pause_ 1 state:

This state is the waiting state when there is not enough data in the plaintext queue
to be scanned. As we discussed above, the plaintext queue only dequeues when
there are more than 128 bits. That is, when the amount of data in the plaintext
queue is less than 128 bits, the empty signal is set to high in the queues pointer
calculator. This empty signal also enables the LFSR counter and pipelined AES. In
this state, only the count Id, which is 4-bit counter’s clear, is set high. This means
the sync pattern scanner is prepared for any matched pattern to be found and to
start counting. When the plaintext queue is ready to output data and the empty
signal is set back to 0, the state machine turns into scanning state. Otherwise, the
state machine stays in this state until empty is 0.

scanning state:

As its name indicates, the scanner is scanning the ciphertext for the sync pattern.
First, the state machine is waiting for the wvalid signal to be asserted. If a sync
pattern is found in the ciphertext block, the priority encoder will output the valid
signal with value 1. The controller receives this signal and will enter the loading
state in the next clock cycle.

If walid is 0, the sync pattern scanner checks if empty is high. If it is 1, which means
the plaintext queue does not have enough data to transfer, the state machine will

go back to pause 1 state again.
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If none of the above two conditions are triggered, the sync pattern scanner
continues on scanning. As depicted in Figure 4-24, the outputs of this state are the
same as those in state pause 1, keeping the counter to be cleared and preparing
for the new pattern to be found.

loading state:

This state indicates that the ciphertext has matched the preset sync pattern format
10000110, and it is collecting the new initialization vector (IV) for the counter. To
best understand the loading state, consider the follow sequence.

Assume the first clock cycle is the time when the sync pattern is found while the
state machine is in the scanning state. Signal wvalid is asserted, and the priority
encoder outputs the encoded result, which is 7 bit code. The state machine
calculates the next state to be the loading state, as shown in Figure 4-26.

In the second clock cycle, the state machine enters the loading state. Also, the 7
bit code is stored in the 7 bit register, thus making the selector output the new IV.
The count Ild and count en are both high, thus keeping the counter in a clear
state.

In the third clock cycle, the LFSR has loaded the new IV and presented it at the
output port. Hence, pipelined AES is getting the new IV. The LFSR sends back
the new v signal, informing that the IV is successfully loaded.

In the fourth clock cycle, the state machine exits loading state and enters blackout
state. The sync signal is high, meaning the PSCFB system is self-synchronizing.

The count ld signal is deasserted and the 4 bit counter starts to count.
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S N o O

empty (from plaintext queue)

valid (from priority encoder) j

code (from priority encoder) 0 }{ 18 }{ 0

7 bit register 0 4 18
new_iv (from LFSR) f \
count_en f

count_|d "l\
counter 0 }{ 1 ){ 2 }{ 3
cound_done_in
sync /
current state  scanning }{ loading X blackout
next state scan.. }{ loading }{ blackout

Figure 4-26 Timing Diagram for Loading State

The last process is triggered by the signal from the LFSR counter, new v, which
indicates the new IV is successfully loaded. The reason why this action is controlled
by the LFSR counter is that we cannot ensure the new IV is loaded right after the
pattern being found. It is possible that empty = 1 at the second clock cycle, so that
the whole system will pause. As a result, in this case this state lasts for 3 clock
cycles instead of 2.

blackout state:

In this state, count Ild = 0 and count en = 1, so that the counter starts to count

10 steps, from 0 to 9. The addition of the one extra clock cycle for the LFSR counter
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to save the new IV results in 11 steps is consistent with the L = 11 stages
requirement for pipelined AES. The sync signal remains high in this state.

While in the blackout state, the empty signal has the highest priority. The state
machine checks this signal first, and if it is high, it enters pause_ 2 state in the next
clock cycle. The counter enable signal count en is determined by the equation
count_en = sync AND (NOT empty). Hence, the enable will immediately become
0 when transfer in = 0, that is, empty = 1. If the first check point is passed, the
second check point is count done_ in signal, indicating whether the counter is done.
If count done_in = 1, the state machine will enter the scanning state again. If
nothing happens, it will stay in blackout state.

pause_ 2 state:

Unlike the pause 1 state, the pause 2 state is for the blackout period and the
operations in this state are also different. The count [d and sync are unchanged.
As shown in Figure 4-27, the empty is asserted when the counter is at count 2, so
that the counter is paused by deasserting the count en. The state machine sets
the next state as pause 2 state. In the next clock cycle, the state machine enters
the pause 2 state. The 4 bit counter receives the low level count en signal and
keeps at count 2. In the third clock cycle, the count done in = 0 and empty = 0,
so that the state machine reenters the blackout state.

The state machine also checks count done in, meaning the counting is finished at
count 9. This is necessary when count done_in and empty are both high, which

means the plaintext queue is nearly empty, and at the same time, the counter is at
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count 9. When this happens, the current state is still blackout but the state machine
will make empty signal higher priority. In the next clock cycle, the state machine
enters the pause 2 state and the plaintext queue is ready to output data. So the
state machine will process the count done_in signal and prepare to enter scanning

state. Figure 4-28 shows the pause at the last block in blackout period.

SYNC

count_en

count_Id

A3 h4ns5)6h7

S
%]

counter 1

cound_done_in

current state  blackout }(pau..}( blackout

next state black.. Kpau..,‘.’( blackout

Figure 4-27 Pause in Blackout Period

sync \
count_en \
count_Id f
counter 8 }( 9 }’( 0
cound_done_in 4/—\
current state  blackout }(pau..}( scanning
next state black.. Kpau..,‘.’( scanning

Figure 4-28 Pause at the Last Block in Blackout Period
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4.6 Barrel Shifters

There are four barrel shifters in the PSCFB system of Design 3. The first one is in
the ciphertext queue to shift the enable signal. The second one is the output selector
in the sync pattern scanner to shift and present the new IV to the LEFSR. The other
two barrel shifters are independent components in the PSCFB system.

Based on the specification of PSCFB and design of data queues, the sync pattern
scanner needs to receive data from XOR gates, which XOR the plaintext with AES
output. Based on Design 2 and Design 3, although the connecting wires between
the two queues has bit width equal to queue size M, it is inefficient to implement
M registers in the sync pattern scanner. Given this, the barrel shifter can be used
to provide fixed input for the sync pattern scanner. For example, consider a system
with M = 580, D = 116 and B = 128. The queue size M meets the necessary
conditions for efficient implementation with no queue overflow /underflow since M
=580> B+ 3D 2 =474 and M = 4D.

A left shift barrel shifter with a 580 bit width can be used to provide fixed position
output. It takes the 580 bits of data from the plaintext queue and left shifts the
data by using the read address. Hence, the valid B = 128 bits of data are placed
the most significant bits of output port. As shown in Figure 4-29, in the encryption
system, B = 128 XOR gates are applied to implement XORing the plaintext with
AES output. Due to the fact that ciphertext is to be scanned, the decryption system

needs no XOR gates in front of sync pattern scanner. Figure 4-30 is the barrel



87

shifter and its relationship with ciphertext queue and the sync pattern scanner in
decryption system. Note that some hardware in the barrel shifter can be removed

due to only 128 bits being used at output, although our implementation has not

done so.
Pipelined AES
' B=128
M-lw 128 ‘fv\ 128 | Sync Pattern
M_lng 1/ Scanner
) M Barrel
Plaintext queue > Shifter
0

Figure 4-29 Barrel Shifter in PSCFB Encryption System

M-1

B=128 Sync Pattern
Scanner

A\ 4

!
J

M-128

Barrel
Shifter

Ciphertext queue >

Figure 4-30 Barrel Shifter in PSCFB Decryption System
Another barrel shifter is for the data transmission between two queues. In order to
generate ciphertext, the plaintext needs to be XORed with AES output, and vice
versa, while in the decryption system, the ciphertext is XORed with AES output

to recover plaintext. Different from other barrel shifters discussed above, this one
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is a right shift barrel shifter. The barrel shifter is needed because the interface
between two queues is M bits wide. As is shown in Figure 4-31, in the encryption
system, it takes 128 bits of data from pipelined AES and shifts it to the same
position as the data to be transmitted from the plaintext queue on the left. The
128 bit AES output should be presented at fixed position, which is from M - 1 to
M - 128. Other input pins are connected to logic 0. The barrel shifter, the output
part of plaintext queue and the input part of ciphertext queue share the same
address. Hence, the 128 bits of data are simultaneously presented at output port of
the barrel shifter and the output port of plaintext queue. Then the output of
plaintext queue and barrel shifter are XORed and received by ciphertext queue on
the right. Although M XOR gates are applied here, only d bits of data are sent to

the same position at the input port of ciphertext queue. Since only 128 bits are

Pipelined AES
B=128 1 M-1
> M-128
Barrel |
o Shifter
N
M
M f"\ M
Plaintext/Ciphertext queue SN » Ciphertext/Plaintext queue

Figure 4-31 Right Shift Barrel Shifter in PSCFB
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useful at the input, some of the structure could be removed to reduce area cost,
although in our implementation we have not done so.

There is an alternative for the barrel shifters placement in PSCFB system. As
shown in Figure 4-32, two barrel shifters are placed such that they align with the
128 bit XOR gates. The left shift barrel shifter is on the left and the right shift
barrel shifter is on the right. The 128 bit AES output is XORed with the 128 bit
plaintext. The 128 bit result is sent to the sync pattern scanner and the second
barrel shifter. In the right shift barrel shifter, incoming data is shifted to the same
position where the data should be saved in the ciphertext queue.

However, this is not chosen for the timing considerations. The combinational logic
path is longer between plaintext queue and ciphertext queue. For the PSCFB
system with M = 580, B = 128 and D = 116, there are 16 layers of muxes (8 layers
for each barrel shifter) and 1 layer of XOR gates. Also, the delays of different paths

are imbalanced, which may cause timing issues.

Pipelined AES
B=128 Sync Pattern
i Scanner
wiN s R B A
M-128 J \\j 7 M-128
Plaintext| | Barrel Barrel M Ciphertext
Queue | Shifter 00 M-128 Shifter Queue
0 NLO

Figure 4-32 Alternative Option to Place Barrel Shifters in Encryption System
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4.7 Summary

In this chapter, the detailed design of PSCFB system is illustrated. There are three
different versions of the queueing system but Design 3 has the better performance.
The CTR mode is using an LFSR as the counter. The sync pattern scanner is the
most complex component in PSCFB system, which scans the ciphertext blocks for
8 bit sync pattern. Barrel shifters are used in PSCFB to shift the data to the
designated positions between the system queues. In the next chapter, we discuss

the implementation and analysis of the PSCFB system with different parameters.
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Chapter 5

Implementation and Analysis

The PSCFB system described in Chapter 4 is implemented with VHDL. The
functional simulation results using ModelSim [15] show that encryption and
decryption work correctly. In the synthesis, the design is synthesized targeted to
two environments, FPGA and CMOS. For FPGA, Altera Quartus II [16] is used
targeted to Altera Cyclone IV FPGA. For CMOS, Synopsys Design Compiler [17]
have been used for the TSMC 180-nm CMOS process [18], which is supported by
Canadian Microelectronics Corporation (CMC). During the development, several
structures have been proposed as discussed in Chapter 4. These structures were
tested and compared. In this chapter, some of them are selected and discussed for
demonstration. Note that some content has already been presented in [13|. Since
this thesis focuses on PSCFB mode itself, the pipelined AES implementation is

modified based on the basic AES example from [19].
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In the early stage of development, several programs was written in C programming
language to compare with the functional simulation of PSCFB components in
VHDL, such as AES, with and without pipelining, and the PSCFB system. Another
small program was written to calculate all the possible combinations of M and D,
which was set to satisfy three requirements: (1) B + 3D — 2 < M <1024, (2) M
mod D = 0, meaning M is the multiple of D, and (3) 64 < D < 116. Because the
small scale queueing system has been proved successful, the third requirement is
set for larger size system. Table 5-1 shows some of the combinations of M and D,
and all possible combinations are in Appendix B.

Table 5-1 M and D Satisfying Constraints

M D
320 64
384 64
460 92
510 102
580 116

The PSCFB system was firstly set as M = 256, B = 128 and D = 64. Although
this system does not meet the requirement of M > B + 3D — 2 and will have
overflow problems after running for a while, this prototype was compared with the
results from C program and used to make sure all the components worked as
designed. As well, the encryption and decryption systems were connected together
to run the test, and the recovered plaintext text verified to be the same as the
original plaintext. As shown in Figure 5-1, the encryption and decryption systems

are connected together in the test. For clear illustration, the plaintext block is set



93

to be all zero for every encryption operation. The recovered plaintext was also

found to be all zero.
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Figure 5-1 Timing Diagram of Testing Encryption and Decryption Systems

The systems we have investigated look at various design options outlined in
Chapter 4 with different parameter values for D and M. Note that B = 128, since
AES is used as the block cipher. As shown in Table 5-2, four implementations are
analyzed in this chapter, which use two combinations of M and D which satisfy the
required constraints.

Table 5-2 Implementations with Different Parameters

System | Queueing System | M D | Technology

1A Design 2 320 | 64 FPGA
1B Design 3 320 | 64 FPGA
2 Design 3 580 | 116 FPGA

3 Design 3 580 | 116 CMOS
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There are also other size systems that have been implemented during the
development, such as M = 384 and D = 64, and M = 510 and D = 102. However,

these systems were not synthesized.

5.1 System 1A

In the early stage of development, the system is set to be not too large in order to
be easily implemented, modified and tested. The System 1A is specified using
Design 2 of the queueing system. The data rate D = 64 bits is chosen based on the
criterion. Queue size M is set to be 320 bits to meet the requirements: (1) M is the
multiple of D, and (2) M> B + 3D — 2 = 318.

The data queues in PSCFB are firstly implemented based on the Section 4.3.3.
Since it is a full scale system, some details are changed from the small scale system
described in Chapter 4. In the plaintext queue, a 3-to-8 decoder is implemented to
enable the D flip-flops. Because M = 5D, there are only five addresses to store data:
(1) address 0, which starts at 0 and ends at 63, (2) address 64, ranging from 64 to
127, (3) address 128, ranging from 128 to 191, (4) address 192, which starts from
192 and ends at 255, and (5) address 256, ranging from 256 to 319. If we list these
addresses in binary, it is obvious that only the left three bits are enough to represent
the locations where the enable signals are asserted. Although the decoder has eight
outputs, only 5 are useful. Five output bits are connected to each group of D flip-

flops according to the address range. The address decoding and mapping is listed
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in Table 5-3. It is also feasible to implement a customized decoder which can receive

3-bit input for only 5 cases and have a 5-bit output.

Table 5-3 Address Decoding and Mapping

(gji;elzsl) (?3?2;3;8) Decoder input | Decoder output | D flip-flops

0 000000000 000 00000001 0-63

64 001000000 001 00000010 64-127
128 010000000 010 00000100 128-191
192 011000000 011 00001000 192-255
256 100000000 100 00010000 256-319
N/A N/A 101 00100000 N/A
N/A N/A 110 01000000 N/A
N/A N/A 111 10000000 N/A

Figure 5-2 First Four Layers of Cascading Demultiplexers in Ciphertext Queue

Addr[8] Addr[7]

Addr[6]

Addr(5]

In the ciphertext queue, since M = 320 bits, we have 319 demultiplexers to build

up a cascading structure. Although 320 is not a power of 2, each layer has 1, 1, 2,
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5, 10, 20, 40, 80 and 160 demultiplexers for 9 layers in total. Figure 5-2 shows the
first four layers. In addition, 128-input OR gates are implemented for each D flip-
flop because B = 128. For the output part, M / D = 5 resulting in the need for 64
5-to-1 multiplexers.

This PSCFB system with D = 64 and M = 320 is simulated with ModelSim [15],
and synthesized using Quartus II [16]| targeted to Altera Cyclone IV FPGA [20].
Table 5-4 is a summary of hardware resource usage by component from the
systhesis tool Quartus II. The Altera FPGA is based on logic elements (LEs), and
a logic element contains a lookup table (LUT) for combinational logic function, and
a register [20].

Table 5-4 Resource Usage of System 1A on FPGA

System EII;I(;gelg ts Component LCo C;?éb%‘?iltég(lis Registers
AES 45042 1280
LFSR 378 129
53908 Plaintext Queue o8 329
Encryption LEs Ciphertext Queue 2258 332
Sync Pattern Scanner 1632 276
Barrel Shifter (Right Shift) 1259 0
Barrel Shifter (Left Shift) 2241 0
AES 45048 1280
LFSR 378 129
53185 Ciphertext Queue 58 329
Decryption I Es Plaintext Queue 2367 332
Sync Pattern Scanner 1646 276
Barrel Shifter (Right Shift) 1235 0
Barrel Shifter (Left Shift) 2370 0

In encryption, the pipelined AES component costs 85% of the combinational logic

functions and 54% of the registers. There are 11 AddRoundKeys, 10 SubBytes, 10
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ShiftRows and 9 MixColumns because of pipelining, thus greatly increasing the
resource usage. Since no memory is applied, the key expansion and the SubBytes
operation cost the most combinational logic functions in AES. There are ten
SubBytes operations with each costing 3328 combinational logic functions. Key
expansion costs 8861 combinational logic functions. Also, 10 stages of registers cost
1280 registers.

In comparison to AES, the hardware components associated with PSCFB take
considerably fewer resources. The plaintext queue with 320 bits of register costs
only 58 combinational logic functions. However, the ciphertext queue costs more
resources. The ciphertext queue with 320 bits of register costs 2258 combinational
logic functions. From the design described above, it is obvious that demultiplexers
and OR gates for the enable signal are a significant cost. The sync pattern scanner
requires 1632 combinational logic functions and 276 registers. The second and third
barrel shifters need 1259 and 2241 combinational logic functions, respectively. The

decryption part has similar resource usage.

Table 5-5 Performance of System 1A on FPGA

Max Performance
System Frequency Throughput (Throughput /LE)
Encryption | 87.43 MHz | 5.60 Gbps 0.105
Decryption | 88.08 MHz 5.64 Gbps 0.106

Timing analysis is also conducted using TimeQuest Timing Analyzer [21] in
Quartus II. The result is based on the worst case operating condition, slow 85°,

which provides slow silicon, low voltage and high temperature [22] and results in
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the slowest speed for the FPGA. For the encryption part, the maximum speed is
87.43 MHz and the throughput is 5.60 Gbps. For the decryption part, it can reach
the maximum frequency at 88.08 MHz and the throughput is 5.64 Gbps. Although
system efficiency is only D / B = 50%, it is still much higher than the efficiency of
bit-by-bit stream ciphers or a self-synchronizing mode like CFB. The critical path,
which has the highest delay, occurs from the read pointer in the plaintext queue,
producing the empty signal, and finally to enable pin of register in ciphertext queue.
The empty signal is controlling the pause of whole system. We can define a metric
by calculating throughput (Mbps) over number of LEs, so that the performance

metric are 0.105 and 0.106 in encryption and decryption, respectively.

5.2 System 1B

The ciphertext queue in PSCFB encryption system is modified according to Design
3 in Section 4.3.4. In decryption, the plaintext queue is the same as ciphertext
queue in encryption. As discussed previously, the enable signal passes through only
9 layers of multiplexers, compared with 9 layers of multiplexers and at least 7 OR-
gates.

Table 5-6 shows the hardware resource usage on the FPGA chip. In the PSCFB
encryption system, the ciphertext queue decreases by 20% for combinational logic
functions. However, the right shift barrel shifter increases by about 22%.

Decryption has the same results. The plaintext queue’s area has reduced by about
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22% but the right shift barrel shifter has increased about 24% on area. In total, the

enceyption costs 53298 LEs and the decryption costs 53185 LEs.

Table 5-6 Resource Usage of System 1B on FPGA

System Elgff;rcl ts Component S) zib%iagég:jlls Registers
AES 45052 1280
LFSR 378 129
Plaintext Queue o8 329
Encryption | 53298 LEs Ciphertext Queue 1810 332
Sync Pattern Scanner 1644 276
Barrel Shifter (Right Shift) 1537 0
Barrel Shifter (Left Shift) 2190 0
AES 45051 1280
LFSR 378 129
Ciphertext Queue 58 329
Decryption | 53185 LEs Plaintext Queue 1843 332
Sync Pattern Scanner 1655 276
Barrel Shifter (Right Shift) 1530 0
Barrel Shifter (Left Shift) 2369 0

Table 5-7 is the maximum clock frequency given by synthesis tool. The performance

is improved by 23% in encryption and 21% in decryption. As discussed in the

System 1A, the critical path is the empty signal from plaintext queue to the enable

of register bits in ciphertext queue. The improved result is because System 1B is

using Design 3 in the queueing system, which has better performance than Design

2. The performance metric, which is 0.129 for both encryption and decryption, also

shows the improvement.

Table 5-7 Performance of System 1B on FPGA

System Max Frequency | Throughput (Tirfizzrgi?fila)
Encryption 107.28 MHz 6.87 Gbps 0.129
Decryption 106.80 MHz 6.84 Gbps 0.129
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To increase the efficiency up to 90.625% in [4], the system is implemented with the

maximum allowable value of D. For D = 116 bits, we can have M = 580 so that M

is the multiple of 116 and greater than B + 3D - 2=474. In this system, the

ciphertext queue in encryption uses the barrel shifter approach of Design 3, and so

does the plaintext queue in the decryption system.

Table 5-8 shows the resource usage. Compared with Table 5-7 in the last section,

the total resource cost of encryption is 57543 LEs and resource cost of decryption

is 57784 LEs. The left shift barrel shifters increase the most, with 95% of increase

in encryption and 85% of increase in decryption. In theory, a 320 bit barrel shifter

Table 5-8 Resource Usage of System 2 on FPGA

System Ellefr{ljelg ts Component S)Ogrincbﬁi&zr;%i Registers
AES 45095 1280
LEFSR 379 129
Plaintext Queue 76 590
Encryption | 57543 LEs Ciphertext Queue 3361 598
Sync Pattern Scanner 1818 277
Barrel Shifter (Right Shift) 2221 0
Barrel Shifter (Left Shift) 4262 0
AES 45094 1280
LFSR 379 129
Ciphertext Queue 76 590
Decryption | 57784 LEs Plaintext Queue 3300 598
Sync Pattern Scanner 2293 285
Barrel Shifter (Right Shift) 1969 0
Barrel Shifter (Left Shift) 4390 0
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costs 9 x 320 = 2880 muxes and a 580 bit barrel shifter costs 10 x 580 = 5800
muxes, which increases by 101%. Theoretical calculations proves the rise in the
resource is reasonable. The ciphertext queue and sync pattern scanner, which

contain barrel shifters inside, have significant growth.

Table 5-9 Performance of System 2 on FPGA

System Max Frequency Throughput (Tire;ni(;lillgi?ciE)
Encryption 92.95 MHz 10.78 Gbps 0.187
Decryption 91.84 MHz 10.65 Gbps 0.184

Table 5-9 shows the performance of the System 2. The performance metric is 0.187
for encryption system and 0.184 for decryption system. Although the maximum
frequency slightly decreases and number of cost LEs increases, when comparing
with the throughput of D = 64 bit system, the throughput has greatly increased

and the performance metric is still higher than the previous systems.

5.4 System 3

The final goal of this thesis is to implemented PSCFB system into ASIC. Since
ASICs can reach higher performance and lower unit costs, PSCFB system is
synthesized using TSMC 180 nm CMOS standard library. Both functional
simulation and post-synthesis simulation are conducted with Cadence NCSim tool
[23], which is provided by CMC. Synthesis is conducted with Synopsys DC and DC
Ultra [17]. DC Ultra has better results for a high performance design, which is strict

on timing [24].



102

If we separately synthesize every component, we can get area reports in Table 5-10.
The area is calculated and shown with unit um?. The area is normally examined
with the term equivalent gate count, by dividing area in ym? by the area of a 2-
input NAND gate. As shown in Table 5-10, the area of a single 2-input NAND gate

is 12.197 pm?.

Table 5-10 Area Report of System 3 on CMOS 180 nm

Equivalent
Component Area (um?) Gate Count
2-input NAND 12.197 1
AES 2025079.372 166031
LFSR 23112.947 1895
Plaintext Queue 89236.210 7317
Ciphertext Queue 142068.005 11648
Sync Pattern Scanner | 195677.864 16044
Barrel shifter (right) 289503.176 23736
Barrel shifter (left) 240321.591 19704

If we directly synthesize the top level entity, the area report is shown in Table 5-11.
The synthesis tool will automatically unflatten some of the components in the
design, thus reducing the path delay. Therefore, we cannot get detailed area report
for every single component in the final PSCFB system. We can only have total area

for encryption and decryption, and resource usage of AES in both systems.

Table 5-11 System Area on CMOS 180 nm (D=116, M=580)

Entity Area (um?) gg& l\gcl)irllrft Percentage
Encryption 2397497.226 196565 100%
AES in Encryption 1888516.355 154835 78.77%
Decryption 2385414.455 195574 100%
AES in Decryption 1890423.169 154991 79.25%
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It is obvious that overall area is much smaller than the area of adding up all
components. Pipelined AES takes almost 80% of the system. We can estimate
PSCFB itself, without the block cipher, only costs about 42000 gates.

As for performance, the PSCFB system, both encryption and decryption, can work
on 200 MHz clock frequency. Hence, the throughput reaches up to 23.2 Gbps.
However, many ASIC designers over-constrain the clock frequency by 20%, which
means the PSCFB system can work on 160 MHz for a safer consideration, resulting
in a throughput of 18.56 Gbps. Previous work in [10] has 333 Mbps throughput
with tentatively 8 bit parallel transfer. Using D = 8 bits has limited the performance
of the system in that work. The structure of PSCFB system in [10]| has only the
clock speed of 41.67 MHz to process the incoming and outgoing data, which also
limits the performance.

A pipelined AES implementation with the 11 stage outer-round pipelining in CTR
mode of operation is presented in [25|. The synthesis result is shown in Table 5-12,
which is targeted to 180 nm CMOS technology. The throughput varies between
31.5 to 48.2 Gbps. As a comparison, our AES in PSCFB costs 155K gates, which
is less than the gate count in [25]. However, our implementation reaches 200 MHz
with 25.6 Gbps throughput.

Table 5-12 Synthesis Result in [25]

Maximum Frequency (MHz) | 377 | 346 | 325 | 277 | 246
Throughput (Gbps) 48.2 | 44.3 | 41.6 | 354 | 31.5
Area (Kgates) 372 | 297 | 265 | 227 | 211
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Another implementation of pipelined AES is presented in [26]. The AES is
implemented with 10 stage outer-round pipelining and synthesized targeted to 180
nm CMOS environment. The design has only 32 bit data/key input, so that the
total throughput is limited. It reaches 8 Gbps at 250 MHz clock frequency.

However, these CTR mode implementations in [25] and [26] are not self-
synchronizing. Our implementation is the first full scale implementation of PSCFB
mode with pipelined AES. This comparison of AES is to demonstrate that our AES
implementation is capable of providing high throughput for PSCFB in high speed
networks, and also to show that there is room for improvement of our design of

pipelined AES.

5.5 Summary

In this chapter, we investigated the implementation of a PSCFB system with
pipelined AES. Several systems with different parameters and environments are
presented and analyzed. Three systems are implemented targeted to FPGA
environment showing the performance improvement by applying different designs
of queueing systems. In the final implementation towards 180 nm CMOS standard
cell, both the encryption and decryption systems achieve 23.2 Gbps at 200 MHz
clock. Compared with previous tentative implementation of PSCFB system with 8

bit transfer, our design shows a large boost in performance.
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Chapter 6

Conclusions

In this thesis, the hardware design of a full scale PSCFB encryption and decryption
system has been investigated. SCFB mode is self-synchronizing block cipher mode
of operation and is proposed to combine the advantages of OFB mode and CFB
mode. Compared with SCFB mode, PSCFB mode uses a pipelined block cipher,
thus greatly enhancing the system throughput. In our work, an 11-stage pipelined
AES with 128-bit key is applied in the PSCFB system.

The simulation results show that the system works successfully. During the
development, the design is firstly synthesized targeted to Altera FPGA. In the
system with 320 bit queues and 64 bit input/output width, the throughput can
reach 6.8 Gbps. Although the efficiency is down to 50%, it is still higher than the
efficiency of bit-by-bit stream ciphers or a self-synchronizing mode like CFB. Then
the system with 580 bit queues and 116 bit input/output width is designed. The

system has the efficiency of 90.625% and the throughput of 10.7 Gbps. The final
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goal in this thesis is to implement the PSCFB mode on ASIC. Synthesis is
conducted with Design Compiler and TSMC 180 nm CMOS process, which are
provided by CMC. The same system with 116 bit width and 580 bit queues is
synthesized. It can reach as high as 23.2 Gbps with 200 MHz clock, and 18.56 Gbps
when the clock frequency is over-constrained. Compared with FPGA, the ASIC
system can have higher speed and better performance.

Since there is no previous work on fully implemented PSCFB system, some future
work is possible. New architectures with lower latency can be investigated for the
queueing system and sync pattern scanner, which are the most complex components
in PSCFB. As discussed in the previous section, some hardware in the barrel shifter
can be removed in order to reduce area cost. The architecture of pipelined AES can
also be improved to achieve higher throughput. Moreover, 180 nm CMOS
technology is no longer the mainstream in IC industry, and new semiconductor

manufacturing processes can be used, such as 90 nm, 65 nm and even lower.
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Appendix A

Some codes of PSCFB Systems

A.1 Sync Pattern Scanner

library ieee;

use ieee.std logic 1164.all;

entity sync pattern is
port( clk :in std _logic;
rstb :in std_logic;
data_in  :instd logic vector(127 downto 0);
empty p_in :in std logic;
new _iv :in std_logic;
aes out valid: in std logic;

transfer in : in std_logic;



pattern_in : in std logic vector(7 downto 0);
data_out : out std_logic_vector(127 downto 0);
number _bits : out std_logic_vector(6 downto 0);
valid : out std_logic;

valid_Ifsr : out std_logic);

end sync_pattern;

architecture struct of sync_pattern is
component priority encoder 128
port( sel :in std logic vector(0 to 127);
enable : in std logic;
valid : out std logic;
code :out std logic vector(6 downto 0));
end component;
component reg
port ( clk :in std_ logic;
rstb  :in std logic;
enable :in std logic;
data_in :in std logic;
data_out : out std_logic);
end component;

component pipeline 2 stages
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port( clk: in std logic;
rstb: in std_logic;
data_in: in std _logic;
data out_sl: out std logic;
data out_s2: out std_logic);
end component;
component sync_pattern controller
port( clk, rsth: in std_logic;
empty p: in std_logic;
valid: in std _logic;
new iv: in std_logic;
count done in: in std_logic;
count ld: out std logic;
sync: out std_logic);
end component;

component counter 4bit

PORT ( clk : IN std_logic;
rstb : IN std_logic;
count_en  :IN std logic;

count_1d : IN std_logic;

done : OUT std_logic;

count_number : OUT std_logic_vector (3 DOWNTO 0));
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end component;
component register 7bits
port( clk: in std logic;
rstb: in std_logic;
enable in: in std logic;
data_in: in std_logic_vector(6 downto 0);
data_out: out std_logic_vector(6 downto 0));
end component;
component bits controller 7
port( count done in : in std _logic;
bits in :in std_logic_vector(6 downto 0);
transfer in :in std logic;
bits _out : out std_logic vector(6 downto 0));
end component;
component mux_ 2
port (sel :in std_logic;
mux_in_a :in std logic;
mux_in_b :in std logic;
mux_out : out std_logic);
end component;
component mux 14 7

port (sel :in std_logic;
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mux_in_a:in std_logic_vector(0 to 6);
mux_in_b :in std_logic_vector(0 to 6);
mux_out :out std_logic vector(0 to 6));

end component;

signal mux_1_out_ wire: std_logic_ vector(127 downto 0);

type wire_array 2x128 is array (0 to 1) of std_logic_vector(0 to 127);

signal mux 2 out wire: wire array 2x128;

type wire_array 4x128 is array (0 to 3) of std_logic_vector(0 to 127);

signal mux 3 out wire: wire array 4x128;

type wire_array 8x128 is array (0 to 7) of std_logic_vector(0 to 127);

signal mux_4 out wire: wire array 8x128;

type wire array 16x128 is array (0 to 15) of std logic vector(0 to 127);

signal mux 5 out wire: wire array 16x128;

type wire_array 32x128 is array (0 to 31) of std_logic_vector(0 to 127);

signal mux_6_ out wire: wire array 32x128;
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type wire_array 64x128 is array (0 to 63) of std_logic_vector(0 to 127);

signal mux 7 out wire: wire array 64x128;

type wire_array 128x128 is array (0 to 127) of std_logic_vector(0 to 127);

signal mux_ 8 out wire: wire array 128x128;

type wire_array 256x128 is array (0 to 255) of std_logic vector(0 to 127);

signal reg _out wire: wire array 256x128;

signal mux_out_layer 1:std logic vector(255 downto 0);
signal mux_out_layer 2: std logic_vector(255 downto 0);
signal mux_out_layer 3:std logic_vector(255 downto 0);
signal mux_out_layer 4: std logic_vector(255 downto 0);
signal mux_out_layer 5:std logic_vector(255 downto 0);
signal mux_out_layer 6: std logic_vector(255 downto 0);
signal data_out_temp: std_logic_vector(255 downto 0);
signal reg_out: std_logic_vector(255 downto 0);

signal data_scan: std_logic_vector(127 downto 0);

signal vdd: std logic;

signal gnd: std logic;

signal valid 2: std logic;
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signal valid _signal: std _logic;

signal valid pipelined sl: std logic;

signal valid pipelined s2: std_logic;

signal code 2: std_logic_vector(6 downto 0);
signal priority encoder enable: std logic;

signal select signal: std logic;

signal bits_signal: std_logic_vector(6 downto 0);
signal register 7bits enable: std logic;

signal register 7bits out: std logic_vector(6 downto 0);
signal count _number_signal: std_logic_vector(3 downto 0);
signal count ld_signal: std logic;

signal count en_signal: std logic;

signal sync_signal: std logic;

signal sync_pipelined sl: std logic;

signal sync_ pipelined s2: std logic;

signal count done_signal: std logic;

signal reg_enable in: std logic;

signal reg clr: std_logic;

signal loading _signal: std logic;

signal mux out temp: std logic;

signal sample hold clr: std logic;

signal sample hold out: std logic;
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signal reg_out temp 1:std logic;
signal reg _out temp 2:std logic;
signal reg_out temp 3:std logic;
signal reg _in temp 3:std logic;
signal registered reset: std logic;

signal pattern _signal: std logic_vector(7 downto 0);

begin
loading _signal <= transfer in and (valid signal or valid pipelined sl);

________________ edge detector

a3: reg port map ( clk => clk,

rstb  => rstb,

enable => vdd,

data in => loading signal,

data_out => reg out_ temp 2);
reg _in_temp 3 <= loading signal and (not reg out temp 2);
ad: reg port map ( clk => clk,

rstb  => rstb,

enable => vdd,

data _in => reg in temp 3,

data_out => reg_out_ temp 3);

valid lfsr <= reg out temp 3;



---------------- 256 registers

reg_enable in <= '0" when (sync_signal and sync_pipelined s1)='1" else
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(transfer _in and (valid signal or valid pipelined sl)) when

(valid _signal or valid _pipelined s1)='1" else
transfer in;
reg clr <= registered reset and (not new _iv);
reg for reset: reg port map ( clk => clk,
rstb => rstb,
enable => vdd,
data_in => vdd,
data_out => registered reset);
s01: for x in 255 downto 128 generate
sl: reg port map ( clk => clk,
rstb  => reg clr,
enable => reg enable in,
data in => reg out(x-128),
data_out => reg out(x));

end generate;

s02: for x in 127 downto 0 generate
s2: reg port map ( clk => clk,

rstb  => reg clr,
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enable => reg enable in,

data_in => data_in(x),

data_out => reg out(x));
end generate;

----------------- sync pattern scanner

s03: for x in 127 downto 0 generate --scan logic for CMOS
--some tools do not support XNOR
--so we use NOT gate and XOR gate together
data_scan(x) <= (not (pattern signal(7) xor reg_ out(x+7))) and
(not (pattern signal(6) xor reg out(x-+6))) and
(not (pattern _signal(5) xor reg_out(x-+5))) and
(not (pattern signal(4) xor reg_out(x+4))) and
(not (pattern signal(3) xor reg out(x+3))) and
(not (pattern_signal(2) xor reg_out(x+2))) and
(not (pattern _signal(1) xor reg_out(x+1))) and
(not (pattern signal(0) xor reg out(x)));
end generate;
s03 reg: for x in 7 downto 0 generate
--registers for the input pattern in(7 downto 0)
s3_reg: reg port map ( clk => clk,
rstb  => rsth,

enable => vdd,



data_in => pattern_in(x),
data_out => pattern signal(x));

end generate;

----------------- output part layer 1
s04: for x in 255 downto 0 generate
s4: mux_ 2 port map ( sel => register _7hits_out(0),

mux_in_a => reg_out(x),

mux_in_b => reg_out((x+256-1)mod 256),

mux_out => mux_out_layer 1(x));

end generate;

————————————————— output part layer 2
s05: for x in 255 downto 0 generate
sH: mux_ 2 port map ( sel => register 7bits_out(1),

mux_in_a => mux_out_layer 1(x),

mux_in_b => mux_out_layer 1((x+256-2)mod 256),

mux_out => mux_out_layer 2(x));
end generate;

_________________ output part layer 3

s06: for x in 255 downto O generate
s6: mux_ 2 port map ( sel => register Thits out(2),

mux_in_a => mux_out_layer 2(x),
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mux_in_b => mux_out_layer 2((x+256-4)mod 256),
mux_out => mux_out_layer 3(x));
end generate;

_________________ output part layer 4

s07: for x in 255 downto 0 generate
s7: mux_ 2 port map ( sel => register _7Thits__out(3),
mux_in_a => mux_out_layer 3(x),
mux_in_b => mux_out_layer 3((x+256-8)mod 256),
mux_out => mux_out_layer 4(x));

end generate;

————————————————— output part layer 5
s08: for x in 255 downto 0 generate
s8: mux_ 2 port map ( sel => register Tbits out(4),
mux_in_a => mux_out_layer 4(x),
mux_in_b => mux_out_layer 4((x+256-16)mod 256),
mux_out => mux_out_layer 5(x));

end generate;

————————————————— output part layer 6
s09: for x in 255 downto 0 generate
$9: mux_ 2 port map ( sel => register _7hits _out(5),
mux_in_a => mux_out_layer 5(x),

mux_in_b => mux_out_layer 5((x+256-32)mod 256),
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mux_out => mux_out_layer 6(x));

end generate;

----------------- output part layer 7
s010: for x in 255 downto 0 generate
$10: mux_ 2 port map ( sel => register 7hits_out(6),
mux_in_a => mux_out_layer 6(x),
mux_in_b => mux_out_layer 6((x+256-64)mod 256),
mux_out => data_ out temp(x)); -mux_out layer 7(x));
end generate;

_________________ 128 priority encoder - 2

priority encoder enable <= '0' when (sync_signal or sync pipelined s2)='1'
else '1";
s13: priority encoder 128 port map ( sel ~=> data_scan(127 downto 0),
enable => priority encoder enable,
valid => valid 2,
code => code 2);

_________________ 2 to 1 mux

select signal <= sync_signal or sync_pipelined s1;

s14: mux_ 2 port map ( sel => select _signal,
mux_in_ a => valid 2,

mux_in_b => gnd,
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mux_out => valid _signal);

_________________ 7 bit 2 to 1 mux

s15: mux 14 7 port map ( sel => gelect _signal,
mux_in_a => code_ 2,
mux_in_b(0) => gnd,
mux_in_b(l) => gnd,
mux_in_b(2) => gnd,
mux_in_b(3) => gnd,
mux_in_b(4) => gnd,
mux_in_b(5) => gnd,
mux_in_b(6) => gnd,

mux_out => bits_signal);

_________________ pipelined valid signal

s16: pipeline_ 2 stages port map ( clk => clk,
rstb => rsth,
data _in  => valid signal,

data_out sl => valid pipelined _sl,
data_out_s2 => valid_pipelined _s2);

_________________ control unit

s17: sync_ pattern _controller port map ( clk => clk,
rstb => rsth,

empty p => empty p_in,
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valid ~ => valid_signal,

new_iv. = => new_iv,

count done in => count done_signal,
count ld => count Id_signal,

sync => sync_ signal);

————————————————— pipelined sync signal
s18: pipeline 2 stages port map ( clk => clk,
rstb => rstb,
data _in  => sync_signal,
data out sl => sync_pipelined _sl,
data_out s2 => sync_pipelined _s2);

4-bit counter

count en signal <= sync_signal and transfer in;

s19: counter _4bit port map ( clk => clk,
rstb => rsth,
count en => count_en_signal,
count ld  => count ld_signal,
done => count_ done_signal,

count _number => count number_signal);

_________________ 8-bit register

s20: register 7bits port map ( clk => clk,
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rstb  => rstb,

enable in=> register 7bits enable,
data_in => bits_signal,

data_out => register 7bits_out);

----------------- 8-bit 2-to-1 mux

$22: bits__controller 7 port map ( count _done in => count done_signal,

bits in => register 7bits_out,
transfer in => transfer in,
bits out => number_ bits);
vdd <=""
gnd <="0"
valid <= valid_signal,

register 7hits _enable <= valid _signal and (not sync_ signal);
data_out <= data_out_temp(254 downto 127);

end struct;

A.2 State Machine of Sync Pattern Scanner

library ieee;
use ieee.std logic 1164.all;

use ieee.numeric _std.all;
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entity sync pattern controller is

port( clk, rstb: in std_logic;
empty p:in std_logic;
valid: in std _logic;
new iv: in std logic;
count done in: in std_logic;
count 1d: out std_logic;
sync: out std_logic);

end sync_pattern controller;

architecture rtl of sync_pattern controller is

type state type is (onreset, pause 1, pause 2, scanning, blackout, loading);

signal state, next state: state type;

begin
clock _state machine: process(clk, rstb)
begin
if (rstb/="1") then
state <<= onreset;

elsif (clk='"1" and clk'event) then
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state <= next _state;
else

null;
end if;

end process clock state machine;

next state decode: process(state, empty p, count done in, valid, new _iv)

begin

case state is

when onreset =>

next state <= pause 1;

when scanning =>

if (valid='1") then
next state <= loading;
elsif (empty p='1") then
next state <= pause 1;
else

next state <= scanning;
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end if;

when loading =>

if (new iv='1") then
next state <= blackout;
else

next state <= loading;

end if;

when blackout =>

if (empty p="'1") then
next state <— pause 2;
elsif (count _done in='1") then
next state <= scanning;
else
next state <= blackout;

end if;

when pause 1 =>



if (empty p='0") then
next state <= scanning;
else
next state <— pause 1;

end if;

when pause 2 —=>

if (count done in='1") then
next state <= scanning;
elsif (empty p='0") then
next state <= blackout;
else
next state <— pause 2;

end if;

when others =>

null;

end case;

end process next state decode;
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combinational: process(state)
begin
case state is
when onreset —=>
count 1d <="0"
sync  <="0"
when pause 1 =>
count 1d <= "1
sync <= "0"
when scanning =>
count ld <= "1"
sync <= "0"
when loading =>
count 1ld <= "1"
sync  <="1"
when blackout =>
count ld <= "0"
sync  <="1"
when pause 2 =>
count 1ld <= "'0"
sync  <="1"

when others=>
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null;
end case;

end process combinational;

end rtl;
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Appendix B
Combinations of M and D

Satisfying Constraints

M=320,D—64 M—2384,D—64 M~—448, D64 M~ 512, D — 64
M=576,D =64 M=640,D =64 M=704, D—=64 M=768, D~ 64
M=832,D—64 M=896, D64 M=0960,D—64 M= 1024, D — 64
M=390,D=65 M=455,D=65 M= 520, D= 65
M=58,D=65 M=650,D=65 M=715D=65 M="780,D =65
M=910,D=65 M=0975,D=65 M=330,D =66

6 M

M = 396, D = 66 — 462, D = 66 — 528, D =66 M — 594, D — 66
M=660,D =66 M=1726,D=66 M="1792D=66 M=858 D= =66
M=924, D=66 M=990,D =66 M=2335 D=67 M=402, D= 67
M=469,D =67 M=536,D=67 M=603,D=67 M=670,D =67
M=737,D=67 M=804, D67 M=871,D~67 M=0938, D= 67
M=1005,D =67 M=2340,D =68 M—=408, D =68 M = 476, D — 68
M=544, D =68 M=612, D =68 M=680, D =68 M=T48, D = 68
M = 816, D = 68 — 884, D =68 M=0952,D=68 M= 1020, D = 68

M=345,D =69 M—=414,D =69 M =483, D =69 M= 552, D = 69
=690, D=69 M=79,D=69 M=2828 D =69

M =350,D =70 M= 420, D = 70
=560, D =70 M=630,D =70 M="700,D =70
= M=910,D =70 M=980,D =70



M= 365,D =13
M =657, D =173
M =949, D = 73
M =518, D = 74
M =814, D — 74
M = 450, D = 75
M =1750,D =175
M = 380, D = 76
M =684, D = 76
M = 988, D = 76
M = 616, D = 77
M =924, D =177
M = 546, D = 78
M = 858, D — 78
M= 474, D — 79
M =790, D = 79
M = 480, D = 80
M = 800, D = 80
M = 486, D — 81
M = 810, D = 81
M =492, D — 82
M = 820, D — 82
M = 498, D — 83
M = 830, D — 83
M =504, D = 84
M = 840, D — 84
M = 510, D = 85
M = 850, D = 85
M = 516, D = 86
M = 860, D — 86
M = 609, D — 87
M = 957, D — 87
M = 704, D — 88
M = 445, D = 89
M = 801, D — 89
M = 540, D = 90

M = 426, D = 71
M =710, D =71
M =994, D = 71
M = 576, D = 72
M = 864, D = 72
M =438, D =173
M =730, D =173

M =1022, D =73

M =592, D =174
M =888, D = 74
M =525, D =175
M=2825,D=175
M = 456, D = 76
M = 760, D = 76
M = 385, D =77
M =693, D =17

M = 1001, D = 77

M = 624, D — 78
M = 936, D — 78
M =553, D =179
M = 869, D = 79
M = 560, D = 80
M = 880, D = 80
M = 567, D — 81
M = 891, D = 81
M = 574, D = 82
M =902, D = 82
M = 581, D — 83
M =913, D — 83
M = 588, D — 84
M =924, D = 84
M = 595, D = 85
M = 935, D — 85
M = 602, D — 86
M = 946, D — 86
M = 696, D — 87
M = 440, D — 88
M =792, D — 88
M = 534, D — 89
M = 890, D — 89
M = 630, D = 90

M = 360, D = 72
M = 648, D = 72
M = 936, D = 72
M=511,D =173
M =803, D173
M =370,D =74
M = 666, D — 74
M =962, D= T4
M = 600, D = 75
M =900, D = 75
M =532, D =176
M =836, D = 76

M =770, D = 77
M = 390, D = 78
M =702, D =78

M= 1014, D = 78

M=632,D="179
M= 948, D = 79
M = 640, D = 80
M = 960, D = 80
M = 648, D — 81
M =972, D = 81
M = 656, D — 82
M =984, D — 82
M = 664, D — 83
M = 996, D — 83
M= 672, D — 84

M = 1008, D = 84

M = 680, D = 85

M = 1020, D — 85

M = 688, D — 86
M = 435, D = 87
M =783, D = 87
M = 528, D = 88
M = 880, D = 88
M =623, D = 89
M =979, D =89
M = 720, D = 90
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M = 568, D = 71
M =852, D =Tl
M =432, D =172
M =1720,D =72
M = 1008, D = 72
M=158,D="173
M = 876, D = 73
M= 444, D — 74
M = 740, D = 74
M=375,D="175
M =675, D =175
M =975, D =175
M = 608, D = 76
M =912, D = 76
M =539, D = 77
M =847, D = 77
M = 468, D — 78
M = 780, D = 78
M =395, D =179
M="T11,D =179
M = 400, D = 80
M = 720, D = 80
M = 405, D = 81
M =729, D = 81
M = 410, D = 82
M = 738, D — 82
M = 415, D = 83
M =747, D = 83
M = 420, D — 84
M = 756, D — 84
M = 425, D = 85
M = 765, D — 85
M = 430, D = 86
M =774, D = 86
M = 522, D — 87
M = 870, D — 87
M = 616, D — 88
M = 968, D — 88
M =712, D = 89
M = 450, D = 90
M = 810, D = 90



M = 900, D = 90
M =637, D = 91
M = 1001, D = 91
M =736, D= 92
M = 465, D = 93
M =837,D =93
M = 564, D = 94
M =940, D = 94
M = 760, D = 95
M = 576, D = 96
M = 960, D = 96
M =776, D = 97
M = 588, D — 98
M = 980, D = 98
M =792, D = 99
M = 600, D = 100
M = 1000, D = 100
M = 808, D = 101
M =612, D = 102
M = 1020, D = 102
M = 824, D = 103
M = 728, D = 104
M = 630, D = 105
M = 530, D = 106
M = 954, D = 106
M = 856, D = 107
M = 756, D = 108
M = 654, D = 109
M = 550, D = 110
M =990, D = 110
M = 888, D = 111
M =784, D = 112
M = 678, D = 113
M =570, D = 114
M = 575, D = 115
M = 580, D = 116

M = 990, D = 90
M =728, D =91
M = 460, D — 92
M = 828, D = 92
M = 558, D = 93
M =930, D = 93
M = 658, D — 94
M = 475, D = 95
M = 855, D = 95
M =672, D = 96
M = 485, D = 97
M =873, D = 97
M = 686, D — 98
M = 495, D — 99
M = 891, D = 99
M = 700, D = 100
M = 505, D = 101
M = 909, D = 101
M= 714, D = 102
M = 515, D = 103
M = 927, D = 103
M = 832, D = 104
M = 735, D = 105
M = 636, D — 106
M = 535, D = 107
M = 963, D — 107
M = 864, D = 108
M = 763, D — 109
M = 660, D = 110
M = 555, D = 111
M =999, D = 111
M = 896, D — 112
M =791, D= 113
M = 684, D — 114
M = 690, D = 115
M = 696, D — 116

M = 455, D = 91
M =819, D = 91
M = 552, D = 92
M =920, D = 92
M = 651, D = 93
M= 1023, D = 93
M =752, D= 94
M = 570, D = 95
M = 950, D — 95
M = 768, D = 96
M = 582, D = 97
M = 970, D = 97
M = 784, D — 98
M =594, D = 99
M = 990, D — 99
M = 800, D = 100
M = 606, D = 101
M= 1010, D = 101
M = 816, D = 102
M = 618, D = 103
M = 520, D = 104
M = 936, D = 104
M = 840, D = 105
M = 742, D = 106
M = 642, D = 107
M = 540, D = 108
M =972, D = 108
M = 872, D — 109
M = 770, D = 110
M = 666, D — 111
M = 560, D = 112
M = 1008, D = 112
M =904, D = 113
M =798, D — 114
M = 805, D = 115
M =812, D = 116
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M = 546, D = 91
M = 910, D = 91
M = 644, D = 92
M= 1012, D = 92
M = 744, D = 93
M = 470, D = 94
M = 846, D — 94
M = 665, D = 95
M = 480, D = 96
M = 864, D = 96
M = 679, D = 97
M = 490, D = 98
M = 882, D — 98
M = 693, D = 99
M = 500, D = 100
M = 900, D = 100
M = 707, D = 101
M = 510, D = 102
M = 918, D = 102
M =721, D = 103
M = 624, D = 104
M = 525, D = 105
M = 945, D = 105
M = 848, D — 106
M = 749, D = 107
M = 648, D — 108
M = 545, D = 109
M = 981, D — 109
M = 880, D = 110
M =777, D = 111
M= 672, D = 112
M = 565, D — 113
M=1017, D = 113
M =912, D= 114
M =920, D = 115
M= 928, D = 116



