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Abstract

Ring foundations are often adopted for large and tall structures to resist lateral loads

and to increase tbe stability against ovenurning. They have been used worldwide under

various structures, including telecommunication towers, liquid stoCll£e tanks. bridges

and offshore structures. However, the behaviour of these foundations bas not been well

understood. A..D accepted method for estimating the bearing capacity is not available.

In the design of ring foundations, "ery crude simplifications have to be made. Therefore.

developing a raliooal and practical procedure for estimating the bearing capacity of

ring foundations is of great importance.

This thesis presents research on the bearing capacity of ring footings 00 a dense sand

under wnicaJ loads. The effects of footing me, ring radii ratio and load eccentricity

have been investigated by means of centrifuge modelling, the method of characteristics

and the finite element technique. To support the research, triaxial and oedometer

compression tests have been conducted to determine the soil friction angles. in situ

stress ratios, and plastic and elastic behaviour of the sand. The peak and critical state

l'riction angles of the sand from triaxial tests are reduced by 4° to 5- with a log-cycle

increase of confining pressure.

Over 40 centrifuge tests of ring footings have been conducted at ~Ieration levels

from 10 to 160 gravities. High quality sand test samples with density ind6: of 90% were

prepared. using a developed raining technique. The alwninum model footings with a

constant area of 15 em' and with riDg radii ratios from 0 to 0.9 vrere tested under load

eccentricity ratios from 0 to 0.375. Test results indicate that the bearing capacity is

significantly affected by footing size, ring radii ratio and load eccentricity. It is found

that The hearing capacity of circular footings increases linearly with footing diameter

in a double-log scale diagram. The bearing capacity of a venically loaded ring footing

can be expressed in terms of a bearing capacity ratio (BF ), a reduction factor (R.) and



the bearing capacity of an a.xia1ly loaded cittu1ar footing with the same area. Test

results show that the value of B~ is related only to tbe ring radii ratio (n), independent

of footing size; when n is from 0 to 0.35, B~ increases slightly with n. Further increase

of n beyond 0.35 results in significant decrease of B~. The value of ~ decreases with

load eccentricity and is independent of ring radii ratio. The procedure presented for

evaluating the bearing capacity of ring foundatioas is very practical.

Circular footings under axisymmetric conditioas have been analyzed by the method

of characteristics to further study the effect of footing size on bearing capacity. In the

analysis, the soil friction angle can be variable or assumed to be constant. The bearing

capacities calculated also increase linearly with footing diameter in a double-log scale

diagram and are close to the centrifuge test results. The compatibility of bearing

capacities obtained from both va.ri&ble and constant friction angle analysis provides a

basis for the FE analysis using an equivalent constant friction angle for each footing.

The FE teclmique has been applied to circular and ring footings on the dense sand

under axial vertical loads. In the analysis, a footing is represented by a rigid body

consisting of rigid surface elements. Interface elements are used to model the interaction

between the footing and soil. The elast~plastic: behaviour of soil is simulated by

the Drucker.Prager/Cap constitutive model. Compared with centrifuge test data, the

analytical results regarding the effect of footing si2e and ring radii ratio OD bearing

capacity are satisfaetary. When calibrated with experiment&! data, the FE t«:hnique

is very useful for analysis of very large foundatioas or (or cases when experimental data

are not available or difficult to obtain.
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Chapter 1

Introduction

1.1 Background and Previous Research

Ring foundations are often used for large and tall structures to resist lateral loads

and to increase the stability against overturning. They have been applied worldwide

for various structures, including liquid storage tanks (Bhushan and Boniadi. 1988),

towu structures (Clark, 1972; and Daspupta and Sengupta, 1989) and radar stations

(Veletsos and Tang, 1987). Many imponant structures in the world have been built on

ring foundations. In the construction of the Northumberland Strait Crossing between

Prince Edward Island and mainland Canada, ring·sbaped piers with outside diameter

of 22 m and inside diameter of 14 m have been adopted (Kosar et al., 1994). The

Manifold gravity platform MCP-Ol in the North Sea resting on dense sand has a ring

foundation of 101 m in diameter (Lacasse and Olsen, 1988). In Kuwait City, a 370 m

high telecommunication toWer is founded on a 55 m diameter ring foundatioo resting

on dense calcareous sand (Brenner d aL, 1990; AJ-Sanad et aL, 1993). The Leaning

Tower of Pisa also bas a ring foundation of 19.58 m in outside diameter and 4.50 m

in inside diameter (Mitchell et 01., 1977). In Canada, a large number of agricultural

silos for storing crops have been built on ring foundations providing increased stability

against failure (Bozozuk. 1974; Bozozuk. 1979a,b; La and Becker. 1979; Morin and



Table 1.1: Settlement in8uence factor wen) of Egorov (1965)

wen) 1.0

0.2

1.0

0.4

1.02

0.6

1.04

0.8

1.14

0.9

1.20

0.95

1.30

Bozozuk, 1983; and Morin and Gervais, 1985).

Egorov (1965) presents a method for calculating the settlement and reaction pres

sure of a rigid ring footing resting on elastic foundation under an axially symmetrical

load. The settlement, .t, is apressed as

" = 2P(~; v2) wen) (Ll)

in which P is the load applied, E is the elastic modulus, v is the Poisson's ratio, D is

the outside diameter of the ring, wen) is an in8uence factor related to the ring radii

ratio, n, defined as the ratio of the inside diameter to the outside diameter of the

ring. The variation of wen) is listed in Table 1.1. It is shown that the settlements of

circular and ring foundations are in the same order when n is within 0 to 0.60. After

Egorov (1965), the behaviour of ring foundations on elastic media has been analyzed in

many ways. Using the finite element method, Milovic (1973, 1982), Bowles (1977) and

Kathroli d aI. (1982) have studied the behaviour of ring footings on elastic foundations.

Other elastic analyses of ring foundations have also been carried out by Bowles (1975),

and Tassoulas and K&usel (1984). In the analysis of a ring footing on a layer of

finite thickness, Madhav (1980) derived the aIlowahle bearing capacity by utilizing the

ultimate bearing capacity of a circular footing and the elastic settlement of circular and

ring footings. In another analysis, Madhav and Karmarkar (1982) introduced a very

simple method with restricted conditions for l!S\im.ating the elasto-plastic settlement

of ring foundation on cohesive soil. It is shown tbat for the same contacting pressure,



the settlement of ring footings is smaller tban that of cin::ular footings.

In situ loading tests of smail scale ring plates on dense. cemented caicar!Ous sands

have been carried out by ."-'-Sanad et aL (1993) and Ismael (1996). using a set of

plates with the same outside diameter of 0.6 m and different ring radii ratios. defined

by Equation (1.2), of 0, 0.25, 0.5 and 0.75, Ismael (1996) bas found that under applied

pressure the settlement of tbe plates decreases with increasing ring radii ratio. while

the ultimate bearing capacity of ring plates is dose to that of tbe solid circular plate.

In spite of the continued effort in the investigation of ring foundation behaviour,

a rational method for evaluating the bearing capacity of ring foundations is not avail

able. In the design of ring foundations, simplifications have to be made. For instance,

in the stability analysis of the afOI'f:mentioned North Sea platform (Lacasse and Olsen,

1988) using Brinch-Hansen's method of limiting equilibrium, the ring-shaped base was

represented by 4 independent rectangular base elements; the external loads were dis

tributed so that the 4 bases mobilize the same safety factor and the total 4 base system

was in equilibrium with the external loads. A similar procedure has been followed in

the stability analysis of the ring-shaped piers of the Northumberland Strait Crossing

(Kosar et aL, 1994). TheI'f:foI'f:, conducting research on the bearing capacity of ring

foundations and developing a practical procedure for engineering design are of great

importance.

1.2 Scope of This Study

For a ring footing resting on soil, as shown in Figure 1.1, the ring radii ratio, n, is

defined as

d
n=i5 (1.2)

where d is the inside diameter of the ring footing and D is the outside diameter. The
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Figure 1.1: Geometry and load. pattern of ring footing

area. A. c:an be expressed as

(1.31

When the vertical load Q and moment M applied to the ring footing are increased,

the footing will eventually fail. The vertical load Q and moment M in Figure l.l can

be replaced by an ecce.ntric vert.icalload, P, which has the same magnitude as Q but

locates from the cuter of the footing by a distance, e, c:alculated by

M
e=Q (1.4)

where e is called load eccentricity. When e=O, the footing is under axial loading

conditions otherwise it is under eccentric loading conditions.

The purpose of this study is to provide a practical procedure for evaluating the

beariDg capacity of ring footings on the swface of a dense sand subjected to vertic:al



axial and eccentric loads. Thl! behaviour of ring footings undl!r various combinations

of footing diaml!ter D. ring radii ratio n. Vl!nical load Q and moment .\1 will be

investigated by expl!rimeot and numerical analyses.

1.3 Methodology

Thl! bearing capacity of foundations can be ml!asured by laboratory experiml!nt or

field testing. In addition, various bearing capacity theories haVl! been deyelopl!d. 1D tht'

past. decades. the ~ntrifuge test technique has~ utilized to determine the bearing

capacity of foundations. It is especially efficient to investigate the effect of foundation

size. The limit equilibrium method assumes failure surfaces and seeks an approximate

solution of failure loads; the method of characteristics is used for solving the equilibrium

equations with tbe Caulomb yield criterion in the uncontained plastic zone under a

footing; the upper.bound method derives the failure load by equating the external

work done to the internal work dissipated in a kinematically admissible ~locity field.

These three numerical methods, assuming a rigid·perfect plasticity soil response. have

been widely used in the development of classical bearing capacity theories. However,

they can only be adopted in the cases of simple boundary and loading conditions. The

finite element technique can model the elasto-plastic response of soil and can be applied

to various boundary and loading conditions.

tn this work, centrifuge tests of axially and eccentrically loaded ring footings on a

deDSl! sand are conducted to investigate the influence of footing size, ring shape and

loading pattern on bearing capacity. The method of characteristics is employed for ax·

ially loaded circular Footings to further study the footing size effect. The finite element

approach is adopted for ring footings under axial loading conditions. A procedure for

evaluating the bearing capacity of ring footings under vertical loads is developed.



Chapter 2

Fundamentals of Bearing Capacity:
A Review

Foundations can be classified as shallow foundations (footings) and deep. founda

tions. The design of a shallow foundation must take into consideration tbe requirements

of tolerable deformation and safety against failure. The soil supporting tbe foundation

should not undergo significant shear failure. During the performan~of tbe foundation.

the loading from superstruetUrl!S should limit tbe corresponding displacement of the

foundation to tolerable levels. The allowable bearing capacity of a foundation may be

controlled by either the ultimate bearing capacity or the deformation.

This study deals primarily with tbe problem of ultimate bearing capacity; the

term "bearing capacity" used herein refers to the ultimate bearing capacity. This

chapter presents the theories and experimental observations of bearing capacity, mast

of which relate to strip footings under plane strain conditions. A good understanding

or the behaviour or strip rootings is essential to conducting this research on the bearing

capacity or ring rootings.

2.1 Failure Modes of Soil

A roundation subj@Cted to aD incrl!aSed vertical loading tends to penetrate into the



soil supponing it. When the loading is increased to sum a value that the penetration

is out of control or it exceeds an aBowable value. the foundation is said to have failed.

The behaviour of foundations indicates that the failure of foundations is usually due

to insufficient shear strength of the soiL The three principal modes of such failure are

general shear failure. local shear failure and punching shear failure (Vesic. 19;3: and

De Beer, 1987).

In the case of general shear failure. there usually exists a continuous slip failure

surface from one edge of the footing to the ground surface. When the load applied to

the foundation is increased to the failure load, the failure of the soil supporting the

foundation is sudden and catastrophic under stre5S-COntrolled conditions. In strain·

controlled conditiOns, a decrease of load with increasing settlement of the foundation

can be observed after failure. The penetration of the foundation causes lateral and

upward expulsion of soil and the soil adjacent to the foundation tends to heave. The

ultimate bearing capacity (q.) of this kind offailure is the maximum unit load applied.

In contrast to general shear failure, the punching shear failure is characterized by a

failure pattern that is not distinct. The foundation penetrates due to the compression

and shear distortion of the soil immediately beneath the foundation and the soil outside

the immediate foundation is relatively less affected. The penetration increases as the

loading is increased and there is no peak load.

Local shear failure is a transitional mode between general failure and punching

failure. The failure pattern consists of a wedge and slip surfaces and is clearly defined

only immediately beneath the foundation. There is a visible bulging of the soil adj&C1!nt

to the foundation. The slip surfaces end in the soil mass; only under the condition of

a substantial vertical settlement of the foundation may they appear at the ground

surface. Using the load·settlement curve, the ultimate load. can be determined at a

point at which the slope of the curve first reaches a steady, minimum value {Vesk,



1973).

The failure mode of a foundation depends upon a number of factors. panicularly

upon the soil compressibility, stress state, foundation geometry and loading conditions.

A strip footing on the swface of a very dense sand or stiff clay will fail in generaJ shear.

In contrast. this footing 00 the surface of a loose sand will fail in punching shear.

However, soil compressibility alone can oot dl!:termine the failure mode. For iostance.

the footing mentioned above 00 a dense sand may fail in punching shear if it is placed

at a great depth (Vesic. 1963) or if it is subjected to a transient or dynamic load (Selig

and McKee, 1961; aod Vesic el. al, 1965). A footing resting on a saturated normaJl~'

consolidated clay may fail in general shear if the loading is so rapid that no drainage

of the day can occur, while it will fail in punching shear if it is loaded so slow thai

thl!: clay is sheared under drained condition. The failure mode depends also upon the

shape and dimension of foundations. By increasing the dimeosion of a footing, the

failure mode tends to move from general shear failure to punching shear failure (De

Beer. 1987). Figure 2.1 presents tbe failure mode of foundations on sand, which is

inftuenced by sand density, foundation dimensioo and depth.

There are 110 reliable numerical criteria for predicting the failure mode of soil su~

porting foundations. Vesic (1965. 1973) has proposed a rigidity index, l~, for evaluating

the relative compressibility of soil, expressed as

(2.1)

where G is the shear modulus of soil. c is the cohesion, q is the overburden pressure

and 6 is the friction angll!:. This rigidity index is associated with the assumption that

the soil is of elastic·ideal plasticity. To take into consideration the average volumetric

strain in the plastic zone (.6), it is suggested (Vesic. 1973) that [~ is replaced by a
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Figure 2.1: Effect of relative depth offoundation (DI/ BO) and density of sand on failure
mode (after Vesic. 1973; BO = B for squ~ or circular footi..ll.p; BO = 2BL/(B + L)
for rectangular footings)

reduced rigidity index, 1fT , defined as

(2.2)

It is related to the stress levd in the soil and the character of loading. A high value

of IPT (e.g. over 250) implies that the soil is relatively incompressible while when I .... is

small than 10, the compressibility of the soil is high. In practice it is inconvenient to

use 1fT to evaluate the failure mode of soil, because it is difficult to estimate the value

of the average volumetric strain ~ in the plastic zone.

2.2 Basic Methods for Bearing Capacity

Stability problems of soil mechanics deal with the conditions of ultimate failure

of a soil mass, such as bearing capacity of foundations, stability of slopes and earth

pressure on retain.ing walls. These problems are often solved by applying the theory of



perfect plasticity. The main methods using rigid-perfect plasticity for bearing capacity

problems are the method ofcharacteristics, limit equilibrium method and limit analysis

method. 10 tbe cases of el~plastic responses and under some loading conditions.

the finite element method is usually applied.

2.2.1 Limit analysis method

A valid complete solution in mechanics of a soil mass requires three conditions:

Stress equilibrium equatiollS. Stres:Htrain relationships and c=ompatibility equations of

strains and displacements. To simplify the procedure of analysis, limit analysis method

has been developed to bound the c=ollapse load without carrying out full elasto-plastic

analysis. The soil Stress-strain relationship is idealized with rigid-perfect plasticity.

Using this method, the lower and upper bounds of the collapse load may be obtained.

Upptr-bound mdhod:

An assumed velocity field (deformation mode) of a soil mass which satisfies: (1) the

velocity boundary conditions; and (2) the strain and velocity compatibility conditions,

is termed a kinematically admissible velocity field. The loads. determined by equating

the external rate of work to the internal work rate of dissipation in a kinematically

admissible velocity field, are not less than the actual collapse load. This upper-bound

theorem states that if a kinematically admissible velocity field can be found, tbe unCOD

tained plastic Bow must impend or have taken place previously. Using the upper·bound

~nique. the stn:ss distribution need not be in equilibrium.

Chen (1975) presents upper-bound solutions of a strip footing on a general C-~7

soil using the Prandtl mechanism and tbe Hill mechanism. In the Prandtl mechanism

tbere is only one rigid wedge-shaped zone immediately under the footing while the Hill

mechanism bas two symmetrical rigid ~shaped zones. The Prandtl mechanism

assumes that no sliding 0CCW'lII between the footing and the soil; it does not take into

10



account th@ @ffl!ct of th@ footing~ roughness. Solutions by the Prandtl mechanism

are rigorous upper bounds for perll!ctly rough to pe.rfKtly smooth footings. For footings

with small base friction, a better upper bound can be obtained using th@ Hill mechanism

which permits sliding between footing base and soil and takes into account the energy

dissipation due to the sliding. The analysis indicates that when both the soil internal

friction angl@ (¢) and the friction angle between soil and footing base (0) are greater

than 15° , the Prandtl mechanism yields better (smaller) upper bound solutions: at

smaller 6 values, the Hill mechanism is better. When,p is no more than 15°, the Hill

mechanism may control both smooth and rougb footings. For a surface footing on a

weightless soil, the Prandtl mechanism and the Hill mechanism (6 =0) yield the same

bearing capacity faetQr Ne• Th@ bearing capacity factor Ne due to soil cohesion and

the factor Nt du@ to surcharge derived by Chen (1975) are identical to those obtained

by Prandtl (1921) and R.eissDer (1924) respectively when the footing base is assumed

to be perfectly rough. For a surface footing on cohesionless soil, the bearing capacity

factor N, by Hill mechanism (smooth base) is only about one half of that by Prandtl

mechanism, which is in accordance with tbe experimental results of Meyerhof (1955).

Lower-bound method:

Th@ assumed stress distribution of a soil mass which satisfies: (I) the equilibrium

equation; (2) the stress boundasy conditions; and (3) nowhere violates the yield crite

rion, is t@rmed a statically admissible stress field. The loads determined from such a

stress field are not greater tban tbe actual collapse load. This lower-bound theorem

states that if a statically admissible stress field can be found, the uncontained plastic

Row will not occur at a lower load. The lower-bound ttthnique only gives considera

tion to equilibrium. and yield. It does not consider the soil kinematics. Although Chen

(1975) presents some lower-bound solutions of bearing capacity problems, the use of

tbe lower-bound technique for bearing capaci~ evaluation in engineering practice is

11



limited.

2.2.2 Limit equilibrium method

Terzaghi (1943). Taylor (1948) and Meyerhof (1951) present many examples of limit

equilibrium method for obtaining the solutions of stability problems. This method is an

approximate approach and generally assumes failure surfaces of various simple shapes:

plane. circular or 10gspiraJ. With the assumption of failure surface, the approximate

solution of a stability problem can be obtained by findiIlg the most critical position of

tbe failure surface and by fiDding an overall equilibrium of stress resultants of the soil

mass inside the failure surface.

Using this method, the overall force equilibrium conditions are satisfied across the

failure surface. It is not required that the stress distributions inside and outside the

failure surface are in equilibrium or satisfy the yield COndition. Meanwhile. although

this technique assumes failure surface and seeks a least answer. it does not necessarily

satisfy all the requirements of tbe upper·bound tbeoffin. Therefore. tbe solution ob

tained using the limit equilibrium method is not necessarily a lower bound or an upper

bound.

2.2.3 Method of characteristics

In the study of soil plasticity, the method of characteristics (slip-line method) is

introduced to obtain a set of differential equations of plastic equilibrium and transfonn

them to curvilinear coordinates (Sokolovslrii. 1960; and Cben, 1975). At the instant of

impending uncontained plastic 8ow, equilibrium, yield condition (normally Coulomb

criterion) and stress boundary conditions are satisfied and a set of differential equa

tions of plastic equilibrium can be established to investigate the stresses in the soil.

For convenience, this set of equations is transformed to curvilinear coordinates whose

12



directions at eva)' point in the plastic zones coincide with the direc:tions of slip plane.

Using this method, many researchers obtained closed form solutions of some bearing

capacity problems of footings on weightless soils, .....hen at least one family of the slip

lines are straight (Chen, 1975). To take into account the soil weight, Sokolovskii (1965)

adopted a finite difference approximation of the slip-line equations and solved a number

of bearing capacity problems.

In the method of eharac:teristics, the stres;-stram relationship of rigid-perfect plas

ticity is assumed. The equilibrium, yield criterion and stress boundary conditions are

satisfied only in the plastic zones. The stress field in the plastic zones determined from

slip-line equations is termed partial stress field. The stress distribution outSide this

partial stress field region is not defined. The bearing capacity of a footing obtained

from the method of characteristics is not necessarily a lower-bound or an upper-bound

solution.

2.2.4 Finite element method

The aforementioned methods for bearing capacity can only be used in the cases of

rigid-perfect plasticity under some simple boundary and loading conditions. To take

into account the elast~plasticresponse of soils and to solve bearing capacity problems

of general boundary conditions and loading patterns, the finite element method has

been maployed (Chen, 1975; Christian, 1977; Griffith, 1982; and Britto and Gunn.

1987). The most importaDt aspect in using finite element method to solw bearing

capacity problems is 10 choose a rational constitutive model of soil.

2.3 Terzaghi's Bearing Capacity Theory

Tenaghi (1943) defined a shallow strip footing as one whose width, B, is equal to

or greater than the embedment depth, D/. With this condition. the shear resistance

13
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Figure 2.2: Bearing capacity failure in soil under a rigid strip footing

of the m-erburden soil located above the level of the footing base can be neglected and

the overburden soil is replaced by an equivalent surcharge equal to

(2.3)

where 7 is the unit weight of the soil. The error of this assumption is on the safe side.

The failure pattern of this footing is shown in Figure 2.2. The failure zone under

the Cooting can be divided into three partS: (1) a wedge-shaped zone acd beneath the

Cooting; (2) two radial shear zones ad! and cde; and (3) two passive Rankine zones

cfh and ceg. Terzaghi (1943) indicat!! that the angle T/J of the wedge adc in Figure

2 depends on the roughness of the footing base; for a perfectly smooth base which

eliminates completely the friction and adhesion between the base and the soil, the

value of '" is equal to 45° + ~/2; for a rough base, Wcan be assumed equal to the angle

of internal friction of the soil, ¢.

Assum.ing T/J=¢ and the soil is perfectly rigid-plastic (general shear failure), the

bearing capacity can be estimated using plasticity theory. The problem is solved in

two steps: (1) assuming the soil is weightless to derive the bearing capacity due to soil

14



cohesion (c) and surcharge (q); and (2) assuming the footing is resting on the surface

of a cohesionless soil (c=0, q=O) to derive the bearing capacity due to the weight of

the soiL The total bearing capacity is supposed to be the sum of the two cases.

For a weightless soil (,=0), failure of the soll occurs along the surface of ck2!h in

Figure 2.2. TheC~ ck2 is a logarithmic spiral whose center is at point c. expressed

(2AI

where TG represents the length of cd. The shape of the curve ck2 is related on1)' to the

value of dJ. For d>=0, it becomes an arc of a circle. Using limit equilibrium method.

the bearing capacity due to c and q is expressed as

where

qCf = cNc+ qN,

Nc = (N,-l)ootdl
,;'0.3"/4-_121 .... _

N, = 2cos2 (../4+t/I/2)

(2.5)

(2.61

(2.71

(2.91

When c=O, q=O and l' is greater than zero. the failure surface is approximately

along ck l9t. The bearing capacity due to the soil weight is determined by

(2.8)

in which

N., = ~tant/l(~~ -1)

where K P., is the coefficient of passive earth pressure.

When the values of c, q and ,. are greater than zero, the failure surface is along deg.

The ultimate bearing capacity, q., due to c, q and ,. is supposed to be the sum of qC4

and q." expressed as

(2.10)
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where the bearing capacit)' £actors Nt::. N, and N., are determined using Equations

(2.6), (2.7) and (2.9) respectively. It can be seen that q. increases \~..ith footing width

B.

There exists an obvious eJTOr associated with Equation (2.10). As shown in Figure

2.2, the ultimate hearing capacity q. due to c, q and "Y corresponds to the failure

surface dey while the bearing capacities qq due to c and q and q., due to "'f correspond

to de292 and de\g\ respectively. Terzagbi (1943) realized tbat tbe bearing capacity

associated witb tbe failure surface ckg is greater tban tbat determined by Equation

(2.10). However, tbe difference is 1f!SS than 10 per cent and tbe error is on tbe safe side.

Equation (2.10) can be modified for tbe estimatioo of bearing capacity of circular

and square footings. Based 00 experimental data it is assumed that for square footing

and for circular footing

q" = 1.3cNt:: + qN, + 0.3"'(DN'I

('.II)

('.l2)

where B is the width of the square footing, D represents the diameter of the circular

footing.

2.4 Development of Bearing Capacity Theories

In tbe past 50 years. the well known exprf!SSion

['.13)

termed as Tenaghi's equation has been widely accepted as a basic formula for tbe

estimation of bearing capacity. It has been demonstrated that the bearing capacity

derived by superposition is conservative and the error is not more than 20% (Hansen,

16



1970; and Bolton and Lau, 1993). For cohesionless soils, Lundgren and Mortensen

(19a3) have proposed that the actual bearing capacity should be

(2.14)

where Jj~1 is a superposition factor related to footing depth. For surface (D/=O) and

very deep footings. Jj=1. Hansen and Christensen (1969) and Tan (1990) show tbat the

maximum value of Jj of up to 1.2 occurs when B/(B + D,) is approximately between

0.6 and 0.8.

Experimental data (Vesic. 1973) indicate that the value of t!J in Figure 2.2 is approx

imatelyequal to 45°+41/2 rather thaD equal to 41 as suggested by Tenaghi (1943). With

the assumption of 1/1=45°+41/2, Vesic (1973) recommends to use the bearing capacity

factors

Ne =(N, - l)oot<6

N, = ertao -tan'(45° +~)

N., =2{N,+ l)tant;6

(2.15)

(2.16)

(2.17)

where Ne and N, are the rigorous solutions for weightless soil by Prandtl (1921) and

Reissner( 1924) respectively, while N., is the numerical estimation by Caquot and Kerisel

(1953) with an error on the safe side (less than 10%).

In the literature there are a variety of proposed solutions to the problem shown in

Figure 2.2. Many researchers agree that the values of Ne and N, can be represented by

Equations (2.15) and (2.16) respectively (M~rbof. 1963; Vesic. 1973; De Beer, 1987;

and Das, 1990). The variations in the N.,·vaIues are, however, substantial. A closed

a.oalytical solution of N.., bas not yet been found. The values of N.., by Meyerbof (1963)

and Hansen (1970) are derived respectively from

N.., = (N, - I) tan(1.4..p)

17
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N, =1.5(N,-I)tanrb (2.19)

where N, is defined by Equation (2.16). It should be mentioned herein that the Prandtl·

Reissner and Caquot-Kerisel £actors given by Equations (2.15). (2.16) and (2.li) are

considered to be most reliable (Vesic, 1973). The variations of some important bearing

capacity factors with soil friction angle (¢J) are listed in Table 2.1.

It is very important to correctly aso;ess the ~ value of soils. Tbere exist difficulties

in selecting a representative value of 41 for the computation of the ultimate bearing

capacity. Soils supporting strip lootings are essentially in plane strain conditions. The

th value is, however, usually determi..ned by triaxial tests. Bishop (1961. 1966) found

that the ~ value of a sand in plane strain tests is approximately 10% greater than

that found in triaxial compression tests. Although the bearing capacity factor N, of

Tl!rZaghi (1943) is considered to be conservative when rp is determined by triaxial test·

ing, it becomes non..conservative when ~ is detennined by plain strain testing (Chen.

1975). Meyerhof (1963) and Hansen (1970) suggest that a dJ value which is 10% greater

tban that obtained from triaxial tests sbould be used for tbe bearing capacity of strip

footings. For a rectangular footing with width or B and length of L. Meyerhor (1963)

suggests using

(2.20)

where I/)t.r is the angle of internal friction found in triaxial testing.

Another argument is that in rea.lity the shear failure or the footing in Figure 2.2

is the phenomenon of progressive rupture (Mubs, 1965; and Chen. 1975). The slip

line atkg begins at point a and develops gradually to point g. Therefore when sbear

failure occurs the soil at 9 is just mobilized to its peak strength while the strength of

the soil at 11 may be as low as the strength at critical state. In addition. the stress

levels at different locations of the failure surface are different. To uke into acx:ount the

curvature of Mohr's envelope, it is suggested that the value of ; corresponding to the

18



Table 2.1: Bearing capacity factoIS

• N, N. N, N, N,
(d.,.,.,.,) Prandtl Reissner Caquot et aL Meverhof H."..,n

(1921) (1924) (1953) (1·963) (1970)
Eq.(2.15) Eq.(2.16) Eq.(2.17) Eq.(2.18) Eq.(2.19)

0 5.14 1.00 0.00 0.00 0.00

2 5.63 1.20 0.15 0.01 0.01

4 6.19 1.43 0.34 0.04 0.05

6 6.81 1.72 0.57 0.11 0.11

8 7.53 2.06 0.86 0.21 0.22

10 8.35 2.47 1.22 0.37 0.39
12 9.28 2.97 1.69 0.60 0.63

14 10.37 3.59 2.29 0.92 0.97
16 11.63 4.34 3.06 1.31 1.43

18 13.10 5.26 4.01 2.00 2.08

20 14.83 6.40 5.39 2.87 2.95
21 15.82 7.07 6.20 3.42 3.50
22 16.88 7.82 7.13 4.07 4.13
23 18.05 8.66 8.20 4.82 4.88
24 19.32 9.60 9.44 5.72 5.75
25 20.12 10.66 10.88 6.n 6.76
26 22.25 11.85 12.54 8.00 7.94
27 23.94 13.20 14,47 9046 9.32
28 25.80 14.12 16.72 11.19 10.94
29 21.86 16.44 19.34 13.24 12.84
30 30.14 18.40 22.40 15.67 15.07
31 32.67 20.63 25.99 18.56 17.69
32 35,49 23.18 30.21 22.03 20.79
33 38.64 26.09 35.19 26.17 24.44
34 42.16 29.44 41.06 31.15 28.n
35 46.12 33.30 48.03 37.15 33.92
36 50.59 31.75 56.31 44.43 40.05
37 55.63 42.92 66.19 53.27 47.38
38 61.35 48.93 78.02 64.07 56.17
39 67.87 5-5.96 92.25 n.33 66.76
40 75.31 64.20 109.4 93.69 79.54
42 93.71 85.37 155.5 139.3 114.0
44 118,4 115.3 224.6 211.4 165.6
45 133.9 134.9 271.7 262.7 200.8
46 152.1 158.5 330.3 328.7 244.6
48 199.3 222.3 496.0 526.5 368.7
50 266.9 319.1 762.9 873.9 568.6
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mUD value of normal stress (IT",) &long the failure surface should be used. Meyerbof

(1950) suggests that
q.

IT", = 10

while the value of a... proposed by De Beer (1965a) is

a... = q.. ~3q(I-sintP)

(2.21)

(2.22)

in which q represents the overhurden pressure.

Equation (2.13) is for the evaluation of ultimate bearing capacity of strip footings

under vertical loading, ignoring the shear resistance of overburden soil. To take into

account the influences of the loading inclination, the shear strength of overburden soil

and the footing shape, Meyerhof (1963) and Hansen (1970) introduce a general bearing

capacity equation expressed as

(2.23)

where 8", 8•• s, are shape factors; d.c, 4, cL, are depth factors; and i", i., 4 are

load inclination factors. The bearing capacity factors N" and N. are detennined by

Equations (15) and (16) respectively while N, may be the solution of Caquot and

Kerisel of Equation (17) or it may be the solutions of other researchers as described

above.

The shape factors of rectangular foundations have been fOUDd by Meyerhof (1963)

and De Beer (1970). Meyerhof's shape factors are given by

S"=I+~~

Sq=S"

S,=1-0.4,z

where L represents the length of rectangular fouodatioDS.
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The depth factors have been proposed by Ml!:yerbof (1963) aDd Hansen (1970). For

shallow foundations, Hansen '5 depth factors all!:

de = 1 +O.4!jf

r4 =1 + 2 tan 6(1 - SintP)21f

d, = I

(2.")

(2.2S)

(2.291

(2.32)

The load inclination factors have bl!:en derivl!:d by Hansen (1970), Meyerhof (1963).

and Hanna and Meyerbof (1981). Thl!: factors proposed by Meyerhof (19631 are ex

pressed by

(2.30)

(2.31)

i,= (l-~)'
where P is the inclination angle of load with respect to the vertical.

For a vertically loaded strip or circular footing resting on the surface of cohesionless

soils, the bl!:aring capacity is expressed as

q.. = ~'YBN..,8.., (2.33)

where B represents the width of a strip footing or the diameter of a circular footing,

and s,. is a shapl!: factor. For a strip footing, 8.,=1. Terozaghi (1943) and Vesic (1973,

1975) proposed. that s,.=0.6 for circular footings. Using the ml!:thod of characteristics,

Tan (1990) obtainl!:d "..,==0.63 when 41=30" is used for the circular footing and 41=330

(10% increase) for the strip footing. When 41=30" is used for both footings, 5,.=1.04.

It is stressed that 8,. is not constant with q,.
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2.5 Factors Affecting Bearing Capacity

2.5.1 Soil compressibility and footing scale

The aforemention!d analyses of bearing capacity of foundations assume that soils

arf! of rigid-perfect plasticity and general failure occurs. This assumption can oDI~' be

most reasonably applied to dense sands or stiff clays. There is no rational method (or

computing the bearing capacity in the two other failure modes. To utili2e the bearing

capacity equation and factors in general shear failure for the evaluation of bearing

capacity in local shear and punching shear modes, Terzaghi (1943) proposes to use

reduced strength parameters cPo and c· defined by

(2.34)

c· = ~c (2.35)

instead of cP and c. Altbough this approac:h is not always on the safe side (Vesic and

Johnson, 1963), tbe reduction of ¢ of sand in tbe case of loeal or punch shear raHUll!

m.ay be too conservative (Vesic, 1973). In addition, it leads to a jump in bearing

capacity on transition from local failure to general failure.

Based. on test results of small footings on sands, Vesic (1973) suggests that for the

evaluation of hearing capacity of sand in local and punching shear failures, the value

of ¢- should be expressed as

in which

Ie ::= 0.67 + 10 - 0.75I~

(2.36)

(2.37)

where 10 is density index in the range 0 $ 10 $ 0.67.

Studies of De Beer (196Sa.) and Yesic (1965) indicate that the average shear strength

mobilization along the failure surface of soil supporting a shallow foundation decreases

22



witb footing size. The decrease of tbe mobilized streDgtb is due to tbe CUf\'3.ture of

Mobr's strengtb envelope (Meyerbof, 1950; and De Beer, 1965&) and tbe progressive

rupture along the failure surface (De Beer, 1965b; and Muhs. 1965). The relath-e

compressibility of soils increases witb footing sUe. Vesic (1969) shows that the values

of N., of large footi.D.gs may be much lower tban those conventionally assumed and

postulates tbat tbe bearing capacity of large surface footings could Dot be greater tban

that of deep footings on tbe same soil. This postulate suggests that very large footings

sbould fail exclusively in puncbiDg sbear mode.

2.5.2 Roughness of footing base

The failure pattern of soil supporting foundations relates to the roughness of tbe

bases ofthe foundations (Terzaghi, 1943; and Meyerhof, 1955). It has been argued tbat

the Prandtl mechanism requim! perfectly rough foundation base: for smooth founda

tions, the Hill mechanism should be used. According to theoretical analyses and small

scale footing tests, Meyechof (1955) concludes that the bearing capacity of a perfectly

smooth foundation On the surface of a sand is only one half of that of a rough founda

tion. Vesic (1973) indicates, however, that it is impossible to reproduce experimentally

a ~wedge failure pattern suggested by Me)'l!:rhof (1955); the tM>wedge pattern is

fictitious and should not be used in bearing capacity evaluation. in reality there is DO

perfectly smooth footing used in any test. Upper·bound analysis of Chen (1975) shows

that for a strip footing resting on a cohesionle:ss soil with an internal friction angle (6)

greater than ISO, when the friction angle between the footing base and soil (d) is greater

than 15°, the bearing capacity obtained. usi.D.g the Prandtl mechanism is smaller (more

reasonable) than that using the Hill mechanism. In engineering practice foundation

bases are usually rough (Meyerhof, 1955). For vertically loaded. foundations, the base

roughness has little influence on the bearing capacity (Vesic, 1973).
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2.5.3 Rate of loading

The preceding analysis of bearing capacity assumes that foundations are loaded so

slowly that no viscous or inertia effects occur. Under these conditions. the bearing

capacity may be affected by the rate of loading only due to the rate of drainage of

excess pore pressu.re. However. the buring capacity of foundations subjectM to high.

rate loading may be affected by the viscous, drainage and inertia effects induced in

the soil supporting the foundations. Under impact loads, a foundation on both dense

sand and stiff clay will fail in punching shear mode (Vesic et. at, 1965); the effect

of soil inertia is similar to that of overburden pressure. Vesic (1973) indicates that

foundations on stiff clay show an increase of bearing capacity with the rate of loading

£rom static to impact loading conditions, while the bearing capacity of foundations on

dense sand decreases first with loading rate to a minimum. value and tben increases

with loading rate. The data of De Beer (1987) shows that for a footing with a width

of 100 mm resting on a dense sand, the bearing capacity reaches the lowest value and

does not change much when the loading rate is 0.01 to 1 mm per second.

2.6 Bearing Capacity in Practice

The aforementioned theories employ soil strength parameters for evaluating the

bearing capacity by using the Equation (2.13) or a more general formula as given by

Equation (2.23). In addition to the selection ofsoilstlUgth parameters, the difference

in the estimated bearing capacity usually results from the method for calculating N."

because it is widely recognized that the bearing capacity factors Ne and N, should be

calculated using Equation (2.15) and (2.16). Canadian Geotechnical Society (1992)

has proposed using the bearing capacity factor N., of Hansen (1970) as expressed by

Equation (2.19). In this case, a factor of safety of 3 should be selected for determining
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the allowable bearing capacity.

In practice, the bearing capacity of in situ soils is often derived from the results of

field tests. The methods recommended by the Canadian Geotechnical Society (1992)

for the evaluation of bearing capacity from the data of standard penetration tests

(SPT), static cone penetration testS (CPT), pressuremeter tests and vane shear tests

are described as foUows.

The bearing capacity of a foot.i.ng on sand can be !Stimated by means of the SPT

blO1'l' count, N, defined as the required number of blows of a 63.5 kg weight having a free

fall of 760 mm for driving a standardized split sampler 51 nun in diameter a distance of

300 rom into soil, after an initial penetration of ISO mm. Meyerhof (1956) has proposed

the fonnulas for the allowable bearing capacity, q., of shallow strip footings as

q. = 12NK~, B < L2m

q. =8NK~(O.3;B)1,B~ L2m

(2.38)

(2.39)

where q. is in kPa, B is footing width in meter and Kd, is a depth coefficient given by

(2.40)

in which D1 is the embedment depth. It should be cautious against using SPT blow

count for bearing capacity evaluation. because the SPT results are subject to many

errors. The cornlation between the SPT blow count and soil friction angle is very

poor. It is considered that the SPT data are not suitable for the bearing capacity of

cohesive soils.

In simple cases, the allowable bearing capacity of commonly used shallow footings

with an embedment depth of about 1 m can be roughly estimated from cone penetration

test (CPT) results using

(2.41)



where qc is the cooe tip resistance. Meyerhof (1956) presents a more detailed prOCft1ure

for the bearing capacity from CPT data by considering the influence of footing width

and depth. The allowable bearing capacity is about 1 to 10% of the c:one tip resistance.

Generally, CPT data are considered more reliable than SPT results. However. it is

difficult to use CPT results for evaluating the bearing capacity of dense or mixed soil

deposits.

The bearing capacity of foundations on days is cootroUed by shon-tenn stability

conditions. The bearing capacity of rectangular foundations can be determined using

vane shear results by

q,,:::: 5JlT,,{1 +0.2!?j:Hl +0.27-) +q (2.42)

where B is the width of foundations, L is the length, q is the overburden pressure at

the foundation level, T. is the undrained shear strength measured from in situ vane

shear tests, and I/o is a strength reduction fac:tor. The value of j.J given by Bjerrum

(1973) is related to soil plasticity index (lp). For 11'::::20, Jl. is approximately 1.0: for

11'=80, 1J is reduced to about 0.65.

The results of the Menard pressuremeter tests (Menard, 1965) c:an be used to es

timate the bearing capacity of shallow foundations 00 soils. The bearing c:apacity is

expressed as

q. =K,lPt -Po) +q (2.43)

where 1'1 is the pressuremeter limit pressure at which the volume tends to increase

rapidly with pressure, Po is the total homontal pressure at the foundation level, K, is

a capacity c:oefficient and q is the overburden pressure at foundation level. To obtain

the allowable bearing capacity, a fac:tor of safety of at least 3 should be applied to the

term K,(PI - Po) caUed the net limit pressure. The capacity factor K, is related to the

width, length and depth of foundations and the type of soil. For shallow strip footings:,
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K, ranges from 0.8 to about 1.5, increasing with soil strength and the value or a depth

ractOr Df!B.
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Chapter 3

Soil Properties and Behaviour

This work prl!SeDts a research on the bearing capacity of ring foundations on a dense

sand. The behaviour and properties of the sand described in this chapter are used in the

centrifuge modelling and numerical analysis of the ring footings in subsequent chapters.

Triaxial compression, oedometer compression, direct shear. and other conventional

laboratory tests are conducted to detumine the soil pacameters cl!garding the physical

properties. friction angles, plasticity and elasticity. in situ stress conditions. and friction

against an aluminum surface. Because the sand used in various tests and Dumerical

analysis in this study is dry (drained conditions), all stress parameters used in tbis

thesis refer to effective stresses.

3.1 Physical Properties

The soil u~ in this study was a clean silica sand named gl&SS sand purchased

from Shaw Resources in Nova Scotia. Conventional laboratory tests were conducted to

determine the physical properties. The sand with little fines bad a specific gravity of

2.66, a maximum void ratio of 1.06, a minimum void ratio of 0.65, a mean grain size of

0.22 rom, an effective grain size of 0.14 rom and a uniformity coefficient of 1.69. The

main physical properties of the sand ace summarized in Table 3.1 and the grain size

distribution is shown in Figure 3.1.



With a mean grain size of 0.22 mm and a uniformity coefficient of 1.69. the soil is

considered as a uniformly-graded medium sand.

Table 3.1: Soil physical properties

Parameter name:

Specmc gravity, G,:

Maximum dry unit weight, 1'.m...:.:

Minimum dry unit weight• ...,....... ;

Maximum void ratio, ~;

MiniJDum void ratio, e...n.:

Mean grain size, d~;

Effective grain size, dlo:

Uniformity coefficient, C.:

Unit Parameter value

2.66

15.8

12.7

1.06

0.65

0.22

0.14

1.69

3.2 In situ Stress and Elasticity

3.2.1 In situ stresses

In a soil, which has not experienced lateral (bornontal) strain, the ratio of lateral

stress, CTIl, to vertical stress, CT•• is defined as tbe coefficient. or earth pressure at rest,

K., expressed as

(3.1)

K. is related to soil physical properties (Andrawes and EI.Sohby, 1973) and stress

history (Brooker and Ireland, 1965; and Mayne and Kulhawy, 1982). Laboratory
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investigations indicate that K. of soils remains constant during loading and increases

during unloading with increasing overconsolidation ratio (OCR). A widely accept«!.

empirical relationship between K tJ and the internal friction angle of soil pro~ by

Mayne and Kulhawy (1982) is

(3.2)

where'; is the pu.k metion angle. A difficulty in using this equation is bow to properly

select. the pealc frictioD angle (fll. because it decreases with stnss leveL

The in situ lateral stress of soil can be measured in the laboratory using triaxial

cells or modified oedometer rings (Ofer, 1981). In this study an o~ometer ring (Zhu

d a1., 1995) was used. The oedometer riDg had an inside diameter of 61.3 mm, an

outside diameter of 94.0 mm and a height of 70.0 mm. The thickness of the tbin wall

was 1.5 mat. Strain gauges were cemented on the thin wall to measure the hoop strain
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of the ring caused by the lateral stress in the sand. Dry sand samples in the oedometel'"

were prepared using a rai.n.ing technique reru.lting in a density index (1D) of 90% {see

chapter 4 for details}.

The measuud in situ lateral stress of the sand during loading and unloading are

shown in Figure 3.2(a). The relationship between the vertical stress and the lateral

stress is approximately linear during loading and the K.. in Figure 3.2(b) remains a

constant value of 0.42. During unloading, the value of K o increases with decreasing

vertical stress. The value of K o is about 2.7 when the vertical stress is reduced from

800 to 33 kPa. The K. value of 0.42 during loading will be used to determine the

initial stress conditions of soil for finite element analysis of ring foundations described

in chapter" 6.

3.2.2 Soil elastic moduli

The elastic moduli of soil can be described hy Poisson's ratio (v) and Young's

modulus (E) or bulk modulus (K). Their relationship is in the form of

E=3(1- 2v)K (3.3)

Under K. conditions, the value of Poisson's ratio during initial loading can be

derived using (Britto and Cuan, 1987)

v=~
I+K.

The measured K. value of 0.42 results in V=O.30 for the dense sand.

(3.4)

For the sand under K. conditions, both the vertical stress, a•• and the lateral stress,

all, are principal stresses. The mean principal stress is given by

The volumetric strain is

p = ~(a. + 20'11)
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in whidJ. £1 is the vertical strain.

Table 3.2: Stress and main in sand under K. conditions

Mean
Vertical stress Lateral stress principal stress Volumetric strain

tr. (kPa) tr/l. (kPa) p (kPa) e. (%)

0.0 0.0 0.0

100 42.8 61.9 0.132

33 24.1 27.1 0.110

300 126 184 o.m

167 96.3 120 0.256

800 339 493 0.511

433 256 315 0.476

1600 561 974 0.764

1067 562 730 0.717

In order to measure the elastic modulus E or K, a sand sample in the oedometer ring

with a density index of 90% was vertically loaded, unload@d and reloadl!d several times

at differe.nt stress levels, while lateral stress and vertical deformation were measured.

The verticaJ. loading sequence was from 0, 100, 33, 300, 167, BOO, 433, 1600 to 1067

kPa. During each loading or unloading, the load was increased or reduced in steps.

The measured stresses and strains are listed in Table 3.2.

During each unloading, the change of strain is considered to be solely elastic. The

bulk modulus can be obtained by

(3.7)
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Figure 3.3: Elastic bulk modulus (K) versus mean principal stress (P)

where Jp is the mean. principal stress increment and 6~ is tbe volumetric strain incre

ment during unloading.

Using Equation (3.7) and the data in Table 3.2, the calculated bulk modulus. K.

increases with the level of principal stress which is the value of p immediately before

unloading. When the values of p are 61.9, 184. 493 and 974 kPa, the values of K

are 158, 305, 434 and 519 MFa respectively. As shown in Figure 3.3, the relationship

between elastic bulk modulus, K, and mean principal stress, p, can be expressed as

(3.B)

and using Equation (3.3), the Young's modulus is given by

(3.9)

wh~pisin kPa, K and Eare in MPa..
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The elastic shear modulus (G) of soils is expressed in terms of Young's modulus

and Poisson '5 ratio as

G~_E_
2(1+v)

(3.10)

Using Equation (3.9) and v=O.30. the shear modulus of the dense sand in the

present study is given by

G = 13.3po.n (3.il)

(3.[2)

where p is in kPa and G is in MPa.

An empirical equation propo5ed by Hardin and Richart (l963) for estimating the

shear modulus of sands is

G =3.27(2.~7+-ee)' po.:.

where e is the void ratio of sands. p is in kPa and G is in MPa..

For the sand in this study. using the initial void ratio of 0.69 corTl!sponding to

10 =90%. Equation (3.12) ~mes

G= IO.Ipo.s (3.13)

The values of G calculated using Equations (3.11) and (3.13) are given in Figure

3.4. The value of G obtained in the present study is close to that estimated by the

empirical equation of Hardin and Richart (1963).

3.3 Triaxial Behaviour

Triaxial tests are often carried out for the determination ofsoi] strength parameters.

especially for measuring the friction angle (¢). Compared with direct shear box testing,

triaxial testing has the foUowing advantages; (1) the drainage conditions <:aD be well

controlled according to test p~; (2) pore water pressure can be monitored in

undrained tests; (3) volume change can be measured in drained tests; (4) back pressure
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can be applied on soil samples to increase the degree of saturation; and (5) the stress

and strain in a soil sample is more uniform and failUlt! may occur in any plane depending

on stress conditions.

In drained compression testmg, the cell pressure (uJ) is the minor principal stress;

the axial stress (ud is the major principal stress. The mean principal stress (P) and

the deviator stress (q) are in the fonn of

(3.141

(3.15)

For this work, triaxial tests of the silica sand described above were conducted under

drained conditions, at cdl pressures of up to 2500 kPa. Sand samples, with a density

index of approximately 90%. were prepared using a raining teclmique similar to that

described in Chapter 4. The height of the sand samples was typically 85 mm and the
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diameter was about 38 mm. The axial loading rate of each sample was 1 mm per

minute.

3.3.1 Stress and strain

In the triaxial compression teSts conducted, the stress-strain relationship and the

volumetric behaviour~ dependent on cell pressure, as typic:aI.Iy shown in figure 3.5.

for the curve when O'J::=l00 kPa, point M corresponds to the peak shear strength while

point C to the critical state strength. The critical state is a condition under which the

soil will continue to deform without further change in stresses and volume (Roscoe d

oJ., 1958; Schofield and Wroth, 1968; and Woods, 1990). It can be seen from Figure

3.5(a) that the deviator stress ratio

(3.l5)

of different samples at a given axial strain decreases with increasing cell pressure.

The strain required to reach the peak strength as well as the critical state strength

increases with stress level. figure 3.5(b) indicates that the dilation of the sand during

shearing decreases significantly with cell presson. At a high pressure of O'J::=2500 kPa,

the dilatant behaviour of the sand is suppressed.

3.3.2 Soil friction angles

For each sample of the dense sand under dnined triaxial compression shearing, the

shear stress increases with strain until a peak strength is reached. After the peak value.

the shear stress decreases with shear strain. With the further increase of shear strain,

the soil will reach the critical state where the shear stress keeps constant. For the sand

sample with 0'3::=100 kPa as shown in Figure 3.5, the peak friction angle (41'.....,) and the

critical state friction angle (¢u) can be derived using the stress parameters at points
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M and C respectively. The friction angles obtained from test data of sand samples at

cell pressures from 25 to 2500 kPa are given in Figure 3.6.

The peak friction angle decreases with stress level, which is in accordance with the

test data. reported by Meyerhof (1950), De Beer (l965a), Ladd et ai. (1977) and Bolton

(1986). When the cell pressure is increased from 25 to 2500 kPa, the peak friction

angle is reduced from approximately 46.9 to 37.3°. This means that the Mohr's failure

envelope is a curve rather than a straight line. Similar to the test results of Cbu (1995),

the critical state friction angle shown in Figure 3.6 also decreases with stress. The peak

friction angle is apressed as

I/JJttIU: = 53.6 - 4.181og10 0'3

while the critical state friction angle is

tPa = 45.8 - 4.09log10 03
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in which~ and I/Ic. are in degrees; the ceU pressure. 0'3 is in kPa.

The difference betweeo the peak frictioo angle and the critical state friction angle

can be written as

(3.19)

which decreases slightly 9li.th stress leveL

The peak and critical state friction angles can also be apressed in term of mean

stress(s) as

dJfn4Z = 57.0 - 5.291oglo S

in which the mean stress, s, is in kPa and is in the form. of

(3.20)

(3.21)

(3.22)

The results indicate that the friction angle of the dense sand decreases linearly with

stress in a semi·log scaJe diagram. For a log-cycle increase of stress, the soil friction

angle is reduced by about 5 degrees.

3.3.3 Plastic volumetric strain

A sand sample with density index of 90% was isotropically compressed in the trio

axial cell under drained conditions to observe the volumetric behaviour. At isotropic

compression conditions, the mean principal stress is

P=0'3 (3.23)

where 0'3 is the cell pressure.

The sample was compressed from 10 kPa to 2500 kPa while the volume change was

measured. The relationship between the plastic volumetric strain E: obtained and the

mean principal stress is shown in Figure 3.7. The plastic volumetric strain at a given
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Figure 3.7: Plastic volumetric strain €: versus mean principal stress p in isotropic
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p~ can be obtained by subtracting the elastic strain rrom the total volumetric

strain measured. That is

(3.241

where €. is the total volumetric strain measured. and €; is the elastic volum~tricstrain

COl'1l!SpOoding to pressure p, given by

(3.25)

in which the bulk modulus K can be calcuJated using Equation (3.8).

3.4 Friction between Sand and Footings

3.4.1 Test device

The proper estimation of friction between soils and construction materials is impor

tant in soil-structure interaction problems such as piles, footings and retaining walls.
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Vertical load

Figure 3.8; Direct shear apparatus for surface friction

Based on experimental results, Potyoody (1961) suggests that skin friction between

soils and construction materials can be expressed in a sum of the cohesion and the

normal stress-dependent component, similar to tbe Coulomb failure envelope of soils.

In the measurement of the skin friction, the direct shear apparatus bas been widely

adopted (Potyondy, 1961; Fed&. 1976; and Al-Hussaini and Perry, 1978). In addition,

ring torsion apparatus has also been used (Yoshimi and Kishida, 1981). in order to

overcome the disadvantages of direct shear apparatus, such as the Don-uniform distri

butions of shear strain and stress over the contact $Wface.

A direct shear box. shown in Figure 3.8. was used in this study to measure the

friction between the aluminum footings used in centrifuge tests and the dry silica sand

with a density index 0£90%. The sand samples had a diameter of 63.3 mm and a height

of 20 ttlm.. Shear for« to the sample was applied by horizontally pushing the upper

part of the shear box containing sa.nd, while the lower part of the shear box holding
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the aluminum specimen was motionless. The borizontal shearing fate of the samples

was 0.2 mm per minute.

3.4.2 Shear stress and displacement

It is observed that during shearing of each sample. shear stress increased with shear

displ~mentwben the vertical load was kept CODS\ant by applying a dead load of steel

weights. When the displacement is increased to certain extent, slip between the sand

surface and the aluminum surface occurs. Figure 3.9 shows the relationships between

tbe average shear stress (T) along the shear surface and shear displacement (X) of

4 samples at Donna.! (vertical) stresses of aD, 205, 299 and 411 kPa. It is seen that

the pattern of shear stress-displacement changes with vertical stress. In the range of

a small displacement. the 4 curves follow the same path. After the initial stage, they

begin to diverge wben tbe displacement is increased. The she&r displarement required
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Figure 3.10: Shear stress at failure versus vertical Stress

to rea.ch failure (sUp) increases with stress lewl.

3.4.3 Coefficient of skin friction

The relationship between vertical stress and shear stress at failure in Figure 3.10 is

approximately linear. The coefficient of the skin friction is defined in tenus of shear

stress at failure (TIl and vertical Stress (0",,) as

~/=~
<.

(3.26)

The data in Figure 3.10 result in Ji/=O.53. This is equivalent to a friction ansle of

28· between tbe sand and the aluminum. surface. Yoshima and Kishida (1981) State

that the coefficient of friction between sand and steel surfaces of various roughness is

typically from 0.3 to 0.7.
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Chapter 4

Centrifuge Modelling of Ring
Footings

4.1 Background and Principle

4.1.1 Introduction

Coulomb's model for soils is widely recognized by geotechnical engineers and re

searchers. The model treats soils as essentially frictional malerials and reveals that

the shear failure of soils is pressure-level dependent. This model is fundamental for

developing the criteria of soil failure in modern soil mechanics. As a result frictional

materials like soils are often tenned Coulomb materials.

The geotechnical centrifuge technique has been aimed at dealing with the stress

dependent behaviour of soils. In model tests of earth retaining structures, slopes and

foundations. the scaJe of the model is a very important factor influencing the results.

Large scale field tests are usually difficult or even impossible to perform and they

are costly. Laboratory tests, on the other hand, are easy to operate and the test

conditions can be well controlled (Mikasa and Talcad.a, 1973). However, under normal

gravity, the stress level in small scale models due to self-weight is much less than that in

the prototype. Therefore the stress-straio behaviour and the patterns of defonnations

will be quite different in the two cases. For model tests concerning soil strength. a
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key issue is to achieve the stress similarity between the model and the prototype. An

efficient way to do this is to use the centrifuge technique. In centrifuge modelling, the

self-weight stress distribution of the model can be simulat!d by applying a centrifugal

acceleration to simulate the stress conditions in the prototype.

In 1868, Edouard Phillips. an engineer in France, presented the idea of centrifuge

modelling and its possible use in bridge engineering (Craig. 1989). In the 1930's. f'e'o

searcllers in the United States and the former Soviet Union adopted this technique

to geotechnical engineering (Rowe. 1975). A paper in 1936 (Craig, 1989) related to

centrifuge work was presented by Pokorovskii and Fiodorov on the first International

Conference on Soil Mec:banics and Foundation Engineering (ICSMFE). Papers regard

ing centrifuge tests presented to the 7th ICSMFE held in Mexico in 1969 and to the 8th

ICSMFE in Moscow in 1973 brought wide recognization of centrifuge modelling as an

effective research tool. In the 1960's and 70·s. important development of the centrifuge

technique for geotechnical applications was made at the University of Manchester and

the University of Cambrige in the United Kingdom (Rowe, 1975; Schofield. 1980).

There are currently &bout 80 geotechnical centrifuge facilities in the USA. United

Kingdom, Russia, France, Japan. Canada, China and some other countries. The cen

trifuge technique has been effectively used for studies of soil consolidations (Kimura

et al., 1985), earth retaining struCtures (Schcherbina, 1988), embankments (Lee and

Schofield. 1988; Feng and Hu, 1988), foundations (Kutter d oJ., 1988). cone penetra

tion tests (Ferguson and Ko. 1985) and soil liquefaction potential (Hushmand et ai.

1988).

4.1.2 Principle and scaling law

In centrifuge testing, acceleration is applied to the soil model by spinning the model

in a centrifuge normally in a horizontal plane at a prescribed angular ve.lOOty. As
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Figure 4.1: Principle of centrifuge modelling

iUustrated in Figure 4.1, at a centrifuge radius T, the acceleration. c, that the model

experiences is

(4.1)

where w is the angular velocity of the centrifuge.

For a liN scale soil model subjected to a centrifuge acceleration of N times of

gravitational acceleration (9), that is

a=Ng (4.2)

the self-weight stress dismbution in this model is similar to that of the soil prototype

under gravitational acceleration, as shown in Figure 4.2. In this case, the acceleration

scale is given by

~=N...
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(4.4)

figure 4.2: Stress distribution in prototype and centrifuge model

where subscripts m and p represent model and prototype respectively. The geometric

scale is
L,. 1
-r;=!J

where L is geometric dimension. If the same material is used in the model and the

prototype, the soil unit mght scale is

(4.5)

where..., is unit weight. The centrifuge technique aims at obtaining tbe same mecl1anical

behaviour of a small-scale soil model as that of a large-scale prototype. A summary of

the scaling laws after Lee (1985) is presented in Table 4.1.

4.1.3 Effectiveness and accuracy of centrifuge modelling

A model test is designed to investigate the behaviour of a prototype. It is usu

ally inevitable that the prototype can not be exactly and accurately modeUed. The
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Table 4.1: Scaling laws in centrifuge tests

Parameter Modelled

Acceleration

Model dimension

Soil density

Soil unit weight

Force

Stress

Stra.i.n

Displacement

Void ratio

Degree of saturation

Time (Inertial events)

TlJD.e (Consolidation and diffusion)

Time (Viscous flow)
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(Prototype: Model at Ng)

I: N

1"IN

1:1

1: N

1: liAr'!

1:1

1:1

1, lIN

1:1

1: I

1, lIN

1, lIN'
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fundamental considerations for th@ design of modm are that (l) aU significant effects

should be modelled in similarity; (2) a.ll effects not modelled in similarity should be

consid@f@(f: and (3) any unknown inBuence should be r@vea1ed by aperimentaJ results.

In ce.ntrifug@ tests, there also aist inaccuracies and @rrors. The main scale effects and

errors involved in centrifuge mod@lling are discussed as follows.

Acct:lertltionfit:ld

The major consideration in c@ntrifuge tests is the similarity of self-weight vertical

stress between the model and the prototype. As illustrated in Figure 4.1. the radial

acceleration field in the centrifug@ model is not Wliform; the acceleration increases lin

early with the centrifuge radius. In contrast to the linear increase of vertical stress with

depth in the prototype as shOl'm in Figure 4.3, the slight variation of the acceleration

results in a nonlinear change of vertical stress (in radial direction in the centrifuge) in

the model, expressed as

(4.6)

where p is the density of the model material, z is the depth and TI is the centrifuge

radius at the top surface of the model. The stress distribution in the prototype is

0", = pgNz (4.7)

In order to minimize the difference of stress between the model and the prototype,

Schofield (1980) employed a rule that the under-stress ratio at the top portion of the

model should be equal to the over-stressed ratio at the bottom. Under this rule, the

vertical stress in the model is exact at two-thirds depth of interest in the modeL The

angular velocity, w, during the operation of centrifuge test should be calculated using

(4.8)

50



'. I"
j

VerticaJstress
-L

I

wol
I
I

-L
I

2WO

Maximum
over-stress

Figure 4.3: Vertical stress with depth in prototype and centrifuge model

where h is the depth of interest in the model. In this case. the maximum error of stress

in the model can be estimated by

(4.9)

where Te is the centrifuge radius at one-third depth of the model. For hlre$O.l, the

stress error is less than 1.7%.

In addition to the slight variation of acceleration with depth in a centrifuge model,

there is a change of acceleration in the horizontal plane. The horizontal acceleration

in the plane is

(4.10)

where a". is the vertical acceleration, r is the centrifuge radius at the center of the plane

and b represents the distance from the center orthe plane. The horizontal acceleration,

which is in the direction against the center of the model, may be significant if there is a

large area of activity. One way to eliminate the inBuence of the horizontal acceleration
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is to shape the surface of a model to take consideration of the radius nature of the

acceleration. This is, however, not the usual way in reality. A good practice is to

make major test events take place in the central part or a model wh~ the horizontal

acceleration is small.

Another factor causing error is the so-<:aJled Coriolis acceleration in the horizontal

direction due to the vertical movement of a particle in a model. The Coriolis accelera

tion is represented by

(4.11)

where v is the vertical velocity of the particle relative to the model. Coriolis effect. may

be significant in the centrifuge modelling of some dynamic events.

The effect. or earth gravity in some centrifuges has been discussed in detail h~'

Phillips (1995). For fixed &lJd restained platform centrifuges, the resultant acceleration

is inclined to the platform at n;l, where n is the centrifuge acceleration. For the swing

ing platform centrifuges, the resultant acceleration is always normal to the platform

surface, provided the hinge is frictionless.

ScoJeeflec.t:

10 centrifuge tests, a prototype of 5 m in size may be simulated, for instance, by a

model of 0.5 m at 10 g or a model of 0.05 m at 100 g. It is important that a proper

scale factor should be selected to obtain reliable resWts at a low cost. In practice, the

scale factor should be kept as low as possible, subjected to the limitation of the me

of the model due to payload capacity and the dimension of the centrifuge. The results

from a small model will be more sensitive to the presence of instrumentation and the

manner of model preparation. The selection of model size should also take into account

the effect of soil particle size.

The effectiveness of centrifuge modelling oC an event &lJd the appropriateness oC a
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scale factor" in cmtrifuge modelling can be ..-erifil!d using the tedlnique of modelling of

models (Schofield, 1980). To check the validity of using the model test results for the

prediction of a prototype behaviour, two model tests with different dimensions, namely

L I and ~, are repeated at two different acceleration levels of a\ and a2 respectively.

If the product of dimension times aa:eleration is identical, that is

«.12)

the same phenomenon is expected in the two tests when the models are well established.

Soil partide we:

In geotechnical centrifuge tests, tbe size ofsoil particles is not modelled in similarity.

It is commoDJy questioned if tbere is anything wrong when the particle size is not

reduced by a scale factor of N. U the similarity law were employed for particle size, a

day in a model at 100 g would be representing a fine sand. This is obviously Sawed

because tbe stress-strain and permeability behaviour of a day are quite different from

that of a fine sand.

Therefore tbe size of particles is a parameter which can not nonnally be scaled down

for similarity. The same material is often used in tbe centrifuge model as the prototype.

In tbe selection of the scale factor, the value of the ratio of a major dimension. 1m , of

tbe model to the mean particle size, d$O, of soil sbould be large enougb to eliminate

tbe effect of particle size on test results. The particle size effect has been discussed by

a number of researchers and some critical values of L,.,/d5/J are listed in Table 4.2.

4.1.4 Testing of foundations in centrifuge

In the past, due to the high cost and the difficulty of controlling testing conditions

of large scale in·situ tests, most of the tests for bearing capacity of foundations were

carried out in laboratories at normal gravity conditions or in fields using small bearing
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Table 4.2; Critical ratio of model dimension and particle size

Reference Criticall..../d~ Type of research
Mikasa &£ Takada Strip footings
(1973) 25 on sand

Cittular footing
0-.(1979) IS 00 sand
Gemperline &£ Ko Strip footings
(1984) 25 on sand slope

Phillip' (1995) 30 General summary
Fuglsang &£ Oveson
(1988) 30 Footing on sand

plates. These small-scale tests have played important roles in the development of

bearing capacity theories (Terzaghi, 1943; Meyerhof. 1951; De Beer, 1965a; and Vesic.

1973). It is realized, however, that the bearing capacity factor Ny of footings on

sand decreases with footing size. partly due to the fact that the iownal friction angle

of soils decreases with stress level (De Beer, 1965a; Kutter et al., 1988; and Lau,

1988). Therefore, bearing capacity tests modelling large-scale foundations become very

important in engineering practice. Centrifuge technique is considered to be an efficient

method for modelling large-scale foundations in the laboratory under well controlled

test conditions. 10 the past. this technique has been widely used for bearing capacity

studies (Kimura r:t tJl., 1985; Pu and Ko. 1988; and Bakir and Gainier, 1994). The

work of some researchers is briefly introduced below.

Aiban and ZDidarc:ic (1991):

In this work, 30g centrifuge tests were carried 00 a dense silica sand (/0=88%,

d~=O.18 mm. C.=L7) to examine the effect of load eccentricity and inclination and

initial embedment of footing under plane stra.i.n conditions. Sand was glued to the
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bottom to simulate rough base conditioDS. Grooves in th~ footing were mad~ so that

rotation of th~ footing is possibl~. The sand was pluviated using a hopper from a

height of about 760 mm. It was observed that under vertical central loading. a major

sliding wedg~ was formed and the failure surfaces were not symm~trical in both sides.

Increase in load Keentricity or inclination decreases both the width and depth of the

failure zon~.

The effect of initial embedment was examined by the tests. For obtaining N, and

NT' it is important to correct for settlement at peak load using a nonnalized form

(4.13)

where B is footing width, D, is embedment d~pth and ~ r~presenu settlement. The

test results are in good agreement with th~ theoretical values of Vesic (1975). Meyerhof

(1963) and Hansen (1970), with th~ best agreem~nt with Meyerhof's results.

Under eccentric loading, tests were conducted with e/B values of 1/12,116 and 1/4.

The results indicate that the effective width m~thod does not represent the behaviour

of the footing. A better agreement is achieved using the Meyerhofs reduction factor

method. Th~ factor which fits th~ results is expressed as

(4.14)

The results also indicate that assuming a linear distribution of pressure is a good

approximation for footings und~r eccentric loading.

Bakir and Garnier (1994);

Sand density is the most important factor affecting footing test results. Therefore,

an extensive study of the homogeneity of pluviated samples using an automatic raining

hopper was performed.. In addition, handling of sand may cause a decrease of t;; care

must be taken in re-using the same material in successive samples.
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For dense sand. the peak load is the ultimate bearing capacity corresponding to a

settlement of "r; "./B increases with N.,. The link between the loading device and the

footing must be rigorously coDtrolled. especially when the test results are compared

with numerical calculations. To allow the footing to move horizontally and rotate freely

so as to avoid moment and eccentricity of the load. two ball links were used. one was

on the footing and the other was on the top of the loading rod.

Cone d aL (1988),

Three laboratories wue involved in a test program to evaluate the wariability of

centrifuge test results. The reference tests were axially loaded circular shallow footings

on a saturated silica sand (dso=O.17 mm, CII=1.47); the footing with diameter of 56.6

mm was tested at 28.2g when ID=86%. A thin layer of sand was glued onto the base

so that the base was rough. The loading was so slow that DO acess pore pressure was

generated. It is found that loading rate did not have a large eff!ct. on results. The main

cause of the resulting .scatter appears to be the imperfections in the layering procedures.

Specimen preparation and density control are very important. The influence of other

factors, such as footing size, loading rate and proximity of boundaries, may be masked

by a small difference in density. CPT tests appear highly desirable to assess the model

state.

Gamier and Canepa (1991):

For the relatively undisturbed sand, 24 centrifuge tests at 14.5g of shallow foun

dations 50 mm square were performed, up to an embedment depth of DJ=2B. Loads

were applied hy shifting a mass. There was a baIl joint at the top of the footing for

loading. When O'5"DJ IB$.O.5, there is a large increase in bearing capacity with DJ,

followed by a slower increase up to DJIB=2. The effect of lateral friction of embedded

foundations was investigated when DJIB=2. The tip bearing capacity and the lateral
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friction were measured separately. It is concluded that the increase of total bearing

capacity in the case of rough footings is due to the lateral friction.

James and Shi (1988):

Centrifuge tests were performed on a dry coarse sand to study the behaviour of

spud-can type footings under vutical, horizontal and moment loads. The footing with

a small cone tip was 700mm in diameter. A horizontal load was applied above the

footing surface at a given height. The sand was poured from a hopper. The sample

density indixes (lo) were 95.4% and 46.2%. The loading system consisted of one main

jack for vertical load and two sub-jacks for horiroota.lload. The tests were conducted at

60 g and were stress controlled. By means of yield locus, the inftuence of horizontal load

00 the vertical bearing capacity may be described by a simple mathematical expression.

Kimura d at (1985):

The work presents the research of Tokyo Institute of Technology Soil Mechanics

group on shallow foundations in dense sand. Tests were conducted to explain De Beer's

scale effect and to investigate the effects of base roughness. soil anisotropy. embedment

and soil slopes. Radiographs were used to detect the slip surfaces. Progressive failure

is associated with wider footings, which is the main scale effect. A smooth footing

yielded two symmetrical wedges and smaller bearing capacity. A simple expression

for predicting the embedment effect is deduced. The results indicate that the bear

ing capacity was virtually nOt affected by panicle sizes in these three groups of test

conditions.

For De Beer's scale effect, tests were perform!d for rough footings with widths (8)

of20, 30 and 40mm, depth (Df ) of 0, 0.5B and LOB and accelerations of 1,10,20 and

40g. The hearing capacity factor is defined by

N.,.= ..,~7;2
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and a parameter

/1= 7 B N
E.

(4.16)

where q......,., and BN denote the bearing capacity and width in prototype scale, E. is

tbe Young's modulus of the pacent rock of the sand (De Beer, 1965a). Test results

show that N.,. decreases with fJ aDd that De Beer's scale effect becomes less marked

with a decrease of JD. The medlanism of the scale effect can be explained by the

observed shear strain distribution at the four stages of the footing settlement. For

smaller footings, the shear strain along the slip surface at failure is smaller.

Meyerhof (1951) extended the two-wedge failure mechanism of Hill (1950) and sug

gested that the bearing capacity of a smooth footing be one half that of a rough

Cooting. Test results of this study confinn that smooth footing does yield tWO sym

metrical wedges and yield smaller bearing capacity. However the difference becomes

smaller as width increases.

Okamura et (Ii.. (1997):

Centrifuge tests using a circular footing and rectangular footings with various aspect

ratio (LjB) values from 1.0 to 7.5 were conducted on a dense sand with relative density

of 85%. The acceleration levels were from 15 to 100 gravities. resulting in prototype

fqoting dimensions of up to 3.0 m. The results show that the nonnalized bearing

capacity decreases with footing size but iocruses with aspect ratio. It was found

that the shape factor, s..,. of recta.nguIar footings increases with both aspect ratio aDd

footing width. The finite element aDalysis carried out assuming el~perfect plasticity

indicates that the soil friction angle (.;) from triaxial test is valid for calculating the

bearing capacity of circular footings.

Oveson (1975):

The tests of footings on sands were done at University of Florida. The centrifuge
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had a radius of 1m and could hold a soil mass of 28 kg and produce an acceleration of

B5g. The load was applied by mercury fed into a load container. The diameteI$ of the

circular footings were 1.57cm, 2.47cm and 4.12cm while N values ~re 79. 51 and 30

respectively. The results of this study as weU as of Mikasa and Tabda (1973) indicate

that (I) A footing on sand with length scale 1/Nt and subjected to acceleration N1g

yields the same bearing capacity as a footing on sand with length scale 1/N2 and

subjected to acceleration N29, at least for 1 :5 Nt!N2 :5 3; (2) The rP value is not a

constant. it decreases with increasing stress level.

Pu and Ko (1988):

These tests were to investigate the influence of footing size, shape and depth

and sand density on bearing capacity. There were three aluminum footings: square

(2.54.x2.54 em), strip (2.54x 15.24 em) and rectangular (2.54x7.62 cm). The sand had

parameters as: d~ of 0.39 mm, C. of 1.68, 10 of 41 to 92% and '" of 33.2 to 38.5·.

For the strip footing on the surface of dense sand, the failure modes were gen·

era! shear at 25g, local shear at SOg and punching shear at 75g. For the dense sand

(10=92%) at 25g, a surface strip footing failed in general shear while the square and

the rectangular footings failed in local shear or punching. The bearing capacity is

proponion&l to the depth. The summary of the in.fI.uence of sand density, accel.eration

and d~tb on failure mode indicates that the credibility of small model tests at 19

conditions becomes questionable.

Conical and spud model footings of 28.3 mID in diameter were tested on sand

at an acceleration of 56.6 gravities to investigate the effect of footing roughness and

cone angle on bearing capacity. The test results indicate that the increase in footing

roughness is to increase the bearing capacity, especially when the footing roughness
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becomes greater. Within a particular value of cone angle between (25° to 450
). the

increase of cone angle will d~rease the bearing capacity of semi-rough footings: this

effect is not significant for rough footings. Funher increase in cone angle beyond this

particular value tends to increase the bearing capacity for both semi-rough and rough

footings.

Ueno d a.l. (1994):

The anisotropic initial stress condition is usually represented by Ko. In the tests.

the centrifuge radius was 1.18 m. The dry sand was pluviated from a height of 0.9

m. The initial density index was about 81%. The steel circular footing was 30 mm in

diameter and 40 mm in thickness. The footing was solidly fixed to the jack driven by a

motor. The settlement of sand surface was measured to obtain void ratio change. The

test results show that a noticeable void ratio change due to centrifuge acceleration was

observed. It is observed that the bearing capacity increases with increasing K o •

4.2 Preparation of Sand Samples

4.2.1 Introduction

Sand samples for centrifuge tests can be prepared by tamping or raining (pluvia.

tion). The tamping technique often results in nonuniform density sample (Cone d a.l.,

1988; and Phillips, 1995). High quality samples are essential to obtain reliable test re

sults of bearing capacity of footings on sands, because a slight variation in S8.Dd density

will cause a significant change in the bearing capacity (Corte d aI., 1988). Therefore,

the raining method was used for this work in preparation of dry sand samples for cen·

trifuge modelling. This technique was also employed for the small sample preparation

for the triaxial and lateral stress tests introduced in Chapter 3.

Almost half a century ago Kolbuszewski (1948a, b) introduc:ed the raining method

for preparing sand samples. Since then this technique has been widely used. A review of
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the development of this method has been presented by Eid (1987). The raining method

not oo.ly provides reasonably homogeneous samples with desired density but also closely

simulates the fabric of in situ soils formed by sedimentation. Other advantages of the

raining method are its simplicity, its flexibility and the fact that it can be employed

for makiog large or small samples with equal effectiveness. The principle of the raining

technique is schematically shown in Figure 4.4.

The basic equipment consists of a sand container above the shutter. a diffuser and

a sand collector. The shutter has distributed holes and the diffuser usually consists of

two or more sieves. The sand falling through the shutter is <iispened by the diffuser

and is evenly distributed on the surface of the sand in the sand coUector. As discussed

by Rae! and Tumay (1987), factors affecting the density of rained sand include depc>

sition intensity, £ailing height, diffuser sieve siu and the shutter·hole pattern. The

deposition intensity, defined as the weight of sand rained per unit area per unit time, is

a dominating factor. The influence of falling height, the diffuser sieve size and shuttC!r

hole pattern is limited under certain conditions selected. The influence of the distance

between the diffuser sieves, the distance between the shutter and the diffuser, and the

sand height in the top container on sand density is relatively negligible.

The sand rainers described by Eid (1987) and Rad and Thmay (1987) were used for

relative smaIJ sample preparation; the sand was rained over the whole area of the sand

collector in the same time. In this study, as the tub for holding the Sl.Dd samples was

as large as 1180 m.m in length and 940 m.m in width, constructing a rainer covering the

whole tub was difficult. The raining technique in this work was a modified one from

those employed by the researchers mentioned above.

4.2.2 Equipment

As shown by the photograph in Figure 4.5, the equipment for preparing the ceQ-
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Figure 4.4; Principle of raining technique
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trifuge sand mod~1 by raining consisted of a sand hopper. a plastic bucket with holes on

the bottom and three sieves attached to the bottom of the buclret. Th~ hopper could

hold sand of up to 0.11 mJ • Tb~ bottom of the plastic hucket is used as a shutter. Dif

ferent patterns of holes of th~ shutter were tried in tests in order to obtain designated

sand density of about 90%. The selected pattern of the holes is shown in Figure 4.6.

There were 19 holes distributed On the shutter. The diameter of the holes was 4.2 rom.

The shutter porosity, defined as the ratio of the total area of the holes to the area of

raining, was 0.84%.

The three sieves under the shutt~r were used as a diffuser. In a downward sequen~.

they were No. 10, No. 14 and No. 18 standard si~ves with apertures of 2.00, lAO and

1.00 tDIIl respectively. The diameter of the sieves was 200 mm. The height between the

shutter and the top sieve was 100 mm and the distance between two adjacent si~ves was

50 mm. To achieve the best diffusiDg result, each two adjacent sieves were turned 45°

horizontally with each other as suggested by Eid (1987) and Ra.d and Tumay (198;).

The shutter and the sieves were positioned horizontally parallel during sand raining.

4.2.3 Preparing sand samples

As indicated by Rad and Tumay (1987), th~ d~nsity of rained sand decreases sig.

nificantly with increasing d~position intensity. For th~ selected shutter-hol~ patt~rn in

Figur~ 4.6, th~ rate of sand falling through shutter was 1.95 kilograms per minute..4..5

the diam~t~r of th~ si~ves was 200 mm, the deposition intensity of the sand was about

0.103 g/cm2 per second. At this deposition int~nsity, the density of sand increased

with falling height between the bottom sieve and the surface of the rained sand, as

shown in Figure 4.7. The data in the figure were obtained when a circular container

250 in diameter and 310 mm in h~ight and a density cup 100 an"' in volume were used

as sand collectors. h <:aD be seen tbat when the falling beight is small the sand density
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Figurc 4.5: Equipmcnt for raining sand
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Figure 4.6: Shutter·hole pattern for raining sand
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Figure 4.7: Sand density versus falling height

increases with falling height. When the falling height is greater than 30 em. the density

index reaches a CODStant value of approximately 90%. This tendency is in accordance

with the observation of Rad and Tumay (1987). Accordingly, tbe falling height was

kept at a constant value of 50 em to obtain dense sand samples in the containers for

centrifuge U!Sts with a density index of about 90%.

In preparing the soil models, a container (tub) was put on a pallet cart. The cart

could be moved on the ground horizontally in any direction. It can also be used to

lift and lower the soil tub vertically in a range of about 11 an. During raining, the

raiDer (hopper, shutter and diffuser) was fixed in p~. The falling height was kept

about 50 em. By moving the tub 00 tbe pallet cart horizontally, sand was rained into

the tub layer by layer of which the thickness was about 10 mID each. When the sand

level in the tub was arising, the tub was being lowered using the pallet cart to keep

the COllSt&D.t falling height of 50 CID. A thin string hung &om the side of the diffuser to

66



about 20 mm from the sand surface iD the tub was used to control the falling height.

When the sand rained iD tub was about 20 mm thicker than required. the rainiDg of

sand was stopped. The extra sand was removed by a vacuum cleaner. Vacuuming was

applied to the sand through a small tube about 12 mm in diameter guided by two cross

beams positioned on the tub. The vacuum tube was flattened at the end in order that

the sand surface was smooth after the vacuuming. The thickness of the sand samples

was from 250 rom to 300 mm.

for a sample of about 430 kilograms in weight. it usually took 4 hours raining the

sand. The total time for preparing a sample. including equipment preparation. sand

raining and sample surface treatment by vacuuming was 7 to 9 bours.

4.2.4 Verification of sample quality

The density of the samples rained in the tubs was estimated by weighing the sand

and by measuring the volume of the samples. The density index of the dry sand

samples ranged from 88% to 91%. while the average density index was 90%. It bas

been evaluated that the error caused in weighing the sand and calculating the volume

of the samples for the density estimation was less than 1%. This means that the raining

technique developed for this investigation is effective a.nd reliable. The repeatability of

obtaining uniform and dense sand samples is ~ry good.

The quality of the sand samples was also verified by cone penetration testing (CPT)

during centrifuge flight. Typical cone tip resistances iD centrifuge at 40 g a.nd 100 g

are shown iD Figure 4.8. CPT is a teehni.que for the measurement of soil properties by

pushing an instrumented COne iDto soils at a constant rate. The main applications of

CPT are to determine the soil profile and identify soils and to evaluate soil engineering

parameters. In some cases, CPTs may he accompanied by borings to achieve more reli

able test results. The CPT can provide continuous measurement of ground conditions;
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it also causes less disturbance of soil layers associated with boring and sampling. The

CPT tech.n.ique has been widely used in resean::h and engineering practice. Because

of the complex changes of stress. strain and pore pressure during the cone penetra·

tion test, it is difficult to make a comprehensive theoretical analysis. 10 engin~ring

practice, the analysis of CPT is highly empirical (Meigh, 1987).

CPT data can be used for estimation of the rdative density of normally consol

idated sand (Jamiollrowslci, 1985) and overconsolidated sand (Schmenmann. 1975).

sand strength (Durgunoglu and Mitchell, 1975) and other parameters (Meigh. 1987).

Also, extensive investigations have been carried out for determining the properties of

clays using CPT, including undrained shear strength of normally consolidated clays

(Lunne and Kleven, 1981) and overconsolidated clays (Marsland and Quarterman.

1982), and deformability of clays (Meigh, 1987). 10 addition, CPT has also been used

for the estimation of pile bearing capacity (Meigh, 1987), for the control of ground

improvement (Juilie and Sherwood. 1983) and for the determination of liquefaction

potential of sand layers (Zhou, 1980). Centrifuge cone penetration tests have been

conduet@d by a number of researchers (Cone d aL, 1988, 1991i and Lin. 1995). The

CPT technique is an effective way to measure the strength of sand in centrifuge flight.

Ferguson and Ko (1985) used centrifuge CPT data to determine the internal friction

angle of sand.

The cone penetration tests during centrifuge Bight for this study were conducted

using a cone penetrometer apparatus developed by C-CORE (Cunard, 1993). This

apparatus is capable of moving at a constant speed to different positions along a fixed

direction through a borizontal driving system. It is fixed on the top of the tub at the

required position before the centrifuge testing is started.. The penetrometer used has a

cross-sectional area of 1.0 cm.2 with an apex angle of 600 . It measures tip resistance, qc,

through strain gauges mounted behind the cone tip. During centrifuge flight, the cone
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penetrometer was pushed vertically into the sand at a rate of 3 mm per second and the

response of the strain gauges was recorded by the data acquisition system. Movement

of the cone during the test can be observed through the camera mounted inside the

swinging basket.

In this study, the CPT technique is used to detennine the quality (uniformity) of

sand samples prepared by the raining method. Cone penetration tests in centrifugE.'

from 10 g to 160 g were conducted. For each sand sample. two cone tests were conducted

at different locations. It has been observed that the tip resistances of the two tests for

each sample are virtually identical. The cone penetration data, as typically shown in

Figure 4.8 indicate that the density of the samples were very uniform.

4.3 Test Program and Procedure

4.3.1 Centrifuge facilities

The footing tests for this study were undertaken in C-CORE Centrifuge Centre

located at Memorial University of Newfoundland. The centre houses an Acutronic

~2 centrifuge made in France. The centrifuge can carry masses of up to 22,000

kilogram! to 100 gravities or 650 kilograms to 200 gravities. The maximum centrifugal

rotationa.! speed is 189 r.p.m. while the maximum acceleration at an effective radius

of 5.0 m is 200 gravities. The data acquisition systm1 can provide 78 channels for data

sampling of electrical signals from transducers during tests. Figure 4.9 shows a view

of the C-CORE geotechnical centrifuge. The specifications of the centrifuge are tisted

in Table 4.3.

4.3.2 Test program

The tests were for footings on the surface of dense sand (lD=90%). Most of the

centrifuge tests woere conducted using a set of model ring footings with a constant area
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Figure 4.9: C-CORE geotechnical centrifuge
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Table 4.3: C-CORE centrifuge specification

Machine Acutronic 680-2

Platform radius 5.5m

Nominal radius 5.0m

Acceleration range 10-2002

Acceleration aecucacy 0.5'1\

Maximum speed 189 rpm

Payload at 100 g 22000 kg

Payload at 200 g 650 "

Platform width l.lm

Platform depth 1.4m

Container height l.lm

Maximum usable height 1.5 m

Sliprings 78

Fluid joints

lnsta1lod powe< 800 kVA

Maximum imbalance 100 kN
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of 15 em': when the ring radii r&tio were O. 0.2, 0.35. 0.5, 0.7. 0.8 and 0.9. the outside

diameters of the model rings were 43.7. 44.6, 46.7. 50.5, 61.2, 72.8 and 100.3 m.m

respectively. Table 4.4. shows the testS of ring (and circular) footings conducted under

axial load conditions. Test No. Al to :\23 were for the examination of variation of

bearing capacity of constant area footings with ring radii ratio at different acceleration

levels (namely 10. 40, 100 and 160 gravities). Test No. A24 to No. A27 were for

the study of modelling of mod~. Test No. A28 to A3O, together with AI . .-\8. A13.

A18. .'\24 and A25 were for the investigation of the effect of footing size on bearing

capacity. In Table 4.4, Am is the area of the model footings, Dm is the outside diameter

of the model footings, n is the ring radii ratio and Dp represents the outside diameter

of the prototype footings. It can be seen that the maximum outside diameters of the

prototype footings modelled are 7.0, 7.1, 7.5. 8.1. 9.8 and 11.6 m when the ring radii

ratio of the connant area footings are 0, 0.2. 0.35. 0.5. 0.7 and 0.8 respectively. The

bearing capacity of each footing obtained from centrifuge test is also given on the table.

In addition to the axially loaded footing tests aforementioned. 15 tests of footings

under ettentric loading listed in Table 4.5 were carried out at an acceleration level

of 100 g. numbered E1 to E15. The model footings also had a constant area of 15

cm'. The tests were divided into 5 groups with ring radii ratio of 0, 0.35, 0.5, 0.7

and 0.9 respectively. The ettentricity of loading. e, represents the distance between

the centre of a footing and the point wbere the concentrated vertical load was applied.

The loading eccentricity ratio is defined as a ratio of the eccentricity (e) to the outside

diameter of a ring footing (D), written as

,
Te=[j (4.17)

For different ring footings. tests were conducted at eccentricity ratios of 0. 0.075, 0.15,

0.25 and 0.375 to investigate the eft'ect. on bearing capacity.
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Table 4.4: Tests of ring footings under axial loading

No. A", (em2 ) D.(mm) n Gravity (g) D (m) q. (kPa)

Al 15 43.7 0 10 0.437 82D
A2 44.6 0.2 0.446 930

A3 46.7 0.35 0.467 1000
A4 SO.5 0.5 0.S05 82D

AS 61.2 0.7 0.612 650

A6 12.8 0.8 0.n8 570
A7 100.3 0.9 1.003 470

A8 15 43.7 0 40 1.748 2260
A9 46.7 0.35 1.868 2650

A10 50.5 0.5 2.020 2350
All 61.2 0.7 2.448 1740
A12 100.3 0.9 4.006 1170

A13 15 43.7 0 100 4.37 4250
A14 46.7 0.35 4.67 4700
A15 SO.5 0.5 5.05 4190

A16 61.2 0.7 6.12 3320
A17 100.3 0.9 10.03 2160

A18 15 43.7 0 160 6.99 6150
A19 44.6 0.2 7.14 6710
A2D 46.7 0.35 7.47 6890
A21 50.5 0.5 8.08 5780
A22 61.2 0.7 9.79 4350
A23 72.8 0.8 11.6 3660

A24 44.18 75.0 0 2D 1.50 1960
A25 11.04 37.5 0 40 1.50 192D
A26 33.14 75.0 0.5 2D 1.50 1340
A27 8.28 37.5 0.5 40 1.50 1310

A28 15 43.7 0 1 0.0437 160
A29 44.18 75.0 0 1 0.075 220
A30 3.14 2D.0 0 10 0.200 480
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4.3.3 Test equipment and procedure

The equipment for the footing tests in centrifuge includes soil containers. load cells

for measuring tbe load applied on the footing, load actuator and the supporting parts.

and transducers for measuring footing displacement and the deformation of soil during

testing. The test setup is shown by the photograph on Figure 4.10.

Two tubs were used in the centrifuge tests as soil containers: &.II aluminum rect&D

gular tub and a steel cin:u1ar tub. The rectangular tub was 1180 tom in length. 940

mm in width and 400 mm in depth. The cireu1ar tub had a diameter of 900 mm and

a depth of 500 mm. The tubs were stiff enough that the soil samples contained were

considered at K.. conditions.

The venicalload on the footing was applied by a 10 kN actuator. Two load cells

made of 6061-T6 aluminum were manufactured and used. Their load capacities were

8 k.N and 15 !tN. The smaller load cell was used for tests at low gravities while the

other was used at high gravities. The model footings listed in Table 4.4 and 4.5 were

also made of aluminum. The footings were vertically loaded at a rate of 0.1 mm per

second. A steel ball was positioned. on the footing to transfer toad from tbe load cell

so that the footing could rotate during loading. Three linear displacement transducers

(LOTs) were used. at three points on the footing to measure the vertical and rotational

displacements of tbe footing_ In addition, two otber LOTs were used to monitor the

settlement of the surface of the sand samples during centrifuge Bight and testing. For

each tub of sand sample, a maximum number of 9 Cooting tests could be carried out.

In order to reduce the inftuence of repeated centrifuge flights On tests results, each

sample was cyclically accelerated between 10 g and tbe required test acceleration 3

tim.!S before the first footing test was conducted. During test, signals from tbe load
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Table 4.5: Tests or eccentrically loaded ring rootings at 100 gravities

Test No. A... (em2
) D... (mm) e/D... Dim) q,. (kPa)

AI3 IS 43.7 0 4.37 4250

EI 0.075 3250

E2 0.15 2000
E3 0.25 2250
E4 0.375 1690

AI' 15 46.7 0.35 0 4.67 .700
E5 0.015 376<1
E6 0.375 1820

A15 15 50.5 0.5 0 5.05 4190
E7 0.075 3100
E8 0.15 2450
E9 0.375 1610

AI6 15 61.2 0.7 0 6.12 3320
EIO 0.15 2220
Ell 0.375 1330

AI7 15 100.3 0.9 0 10.0 216<1
EI2 0.075 1650
EI3 0.15 1.30
EI' 0.25 1130
EI5 0.375 940
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Figure 4.10: Equipment for footing tests in centrifuge
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cell and the LOTs were sampled at a frequency of 5 Hz by a persona! computer data

acquisition system.

4.3.4 Model test verification

In order to check the validity of the centrifuge modelling of footings. the princip[t>

of modeling of models, as introduced previously. is employed. To model tht> models,

two groups of tests have been carried out: (al the ring radii ratio (n) was equal to

zero; and (h) n was 0.5. There are two tests in each group; the fust test was conducted

when the centrifuge acceleration. a, was 20g and the footing outside diameter. D. was

75.Omm, while the second test was carried out when a was 40g and D was JT.5mm.

The relationships between the loading and the relative set.tlement of the footings are

shown in Figure 4.11. where 6 represents the vertical settlement of the footings. In

Figure 4.11(a). the bearing capacities of the two cireu1ar footings (n=O) are virtually

identical. the difference between the relative settlemeDts is also very small; the relative

settlements are 10 to 15 percent when the vertical load s reach the maximum values.

In Figure 4.11(b), the peak vertical loads (bearing capacities) of the two ring footings

with a ring radii ratio (n) of 0.5 are approximately the same. Before the peak loads,

the relative settlements of the two footings are very close. After the peak loads. the

difference between the re.J.ative settlements becomes greater, while the behavior of the

footings after the peak loads is considered less important.

The results in Figure 4.11 indicate the validity of centrifuge modeling oftbe bearing

capacity of the circular and ring footings. The relative settlements of the footings can

also be weU modeled. especially before the peak loads.
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4.4 Effect of Footing Size

4.4.1 Load, settlement and failure mode

There are three failure modes of soil supporting foundations: general shear failure.

local shear failure and punching shear failure (Vesic, 1973). In the case of general shear

failure, there usually exists a continuous failure surface from one edge of tbe footing

to the ground surface. The ultimate bearing capacity (qu) is the peak load applied.

In contrast, the punching shear (ailure is characterized by a failure pattern that is not

obvious. The foundation penetrates due to the compression of the soil immediately

beneath the foundation. The penetration increases as the loading is increased and

there is no peak load. Local shear failure is a transitional mode between g~era1 failure

and punching failure. There is a visible bulging of tbe soil adjacent to the foundation.

The failure surfaces usually end in the soiL The failure mode of a foundation depends

upon soil compressibility, foundation size and depth. By increasing the dimension of

a footing on dense sand, the failure mode tends to move from general shear failure to

punching shear failure.

Figure 4.12 shows the normalized pressure with the relative settlement of a model

footing 43.7 mm in diameter tested at accelerations of 1, 10, 40 and 160g, corresponding

to prototype footing diameters of 0.044, 0.44, 1.75 and 7.0 m respectively. In the figure,

s represents the settlement of the footings, and the loadiDg ratio, Rp, is given by

(4.18)

in which p is the averaged pressure applied, -y is the unit weight of soil and D represents

the diameter of circular footings.

It is obvious that the failure mode of the 0.044 m footing is general shear; the Jo;!d

reaches the maximum at a relative settlement of about 7%. It was observed that the

failure surface of approximately 18 em in diameter in the centrifuge model extended
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Figun 4.12: Normalized pressure (R,) versus relative settlement (5/D) of circular
footings

to the surf~ of the soil. For the 0.44 m footing, the load reaches the peak value at

a relative settlement of 10%; in the centrifuge model, there was a visible hut Dot very

obvious failure SUrfacil of about 20 em in diameter around the footing at the top of

the soil. The failure mode of this rooting is also general shear failure. For the 1.75 m

footing, the load becomes relatively constant after a relative settlement of about 12%.

A failure surface was not observed in the centrifuge model, but an obvious bulging of

soil around the (ooting was seen. The failure mode in this case is approaching local

shear failure. For the 7.0 m footing, the loads increase with settlement; there are no

peak loads; the failure mode is local shear failure. There was soil heave in the centrifuge

model hut the range was difficult to identify. The increase of footing diameter leads

the failure pattern to change from general shear mode to local shear mode.

It is seen from Figure 4.12 that when the (ooting diameters are 0.044. 0.44, 1.75 and

7.0 m, the normaliud footing pressures (R,) at £aiJure are approximately 240, 120. 80
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and 60 respectively, decreasing with footing size. The slope of the curves before failure

decreases with footing dimensiOD. This means that the relative compressibility of soil is

increased by the increase of footing size. It can also be seen that the relati\'e settlement

(!SfD) at which the failure load is reached increases with footing size. When D changes

from 0.044 to 7.0 m. the relative settlement at failure load is increased from about i

to 15%.

Comparison of the footing test results in Figure 4.12 and the data of triaxial tests

of the same sand in Figure 3.5 will provide a further understanding of the failure mode

feature. In the triaxial tests, the sand dilated significantly during shearing at low stress

level. At high confining pressure of 25OOkPa., the dilation phenomenon disappeared.

Both the relative compressibility of the sand and the strain at peak load increase with

stress level. For the small footing, since the stress level in the soil is low, the movement

and heave of soil around the footing is caused by both the dilation of soil during

shearing and the expulsion of soil due to the penetration of the footing. Because of the

high dilatancy and the low strain at failure of dense sand at low stress, the strength

mobilization at points A, B and C in Figure 4.13 along the failure surface of a small

footing is more uniform and the footing fails in general failure mode. The increase of

footing size results in the increase of stress level in the soil. The dilation of the soil

becomes smaller and the strain at failure becomes higher. To mobilize the strength

along the failure surface in the soil. larger displacement of the footing is required and

failure mode becomes less general. It should be empbasized that the volume change of

soil under footings must also be an important factor affecting the failure mode.

4.4.2 Bearing capacity of circular footings

The well !mown Terzagbi's equation, accepted widely as a basic formula for the
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bearing capacity of strip foundations. is given by

q. = cNc + qN, + ~1'BNT (4.19)

where q... is the ultimate bearing capacity, C is soil cohesion, q is overburden pressure•

..., is soil unit weight, B is the width of foundations, and Nc , N, and N, are bearing

capacity factors. In the literature there are a variety of bearing capacity theories. While

the be&ring capacity factors Nc and N, proposed by Prandtl (1921) and Rrissner (1924)

are widely accepted, the variation in N, is substantial (Terzaghi, 1943; Caquot and

Kerisel. 1953; Meyerhof. 1963; and Hansen, 1970). For strip foundations resting on the

surface of cohesionless soil, Equation (4.19) becomes

(4.201

and for cittular foundations, the bearing capacity is expressed by (Terzaghi, 1943)

(4.21)
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where D is the diameter of a circular foundatioD. In using the equations mentioned

above it is usually assumed that the value of N., is coostant and independent of footing

size. For a constant N." the bearing capacity expressed by Equations (4.19) to (4.21)

increases linearly with foundation dimension.

Experimental data collected by De Beer (l965a), however, show tbat the bearing

capacity factor N., decreases with foundation size. Centrifuge test results (Clark. 1998;

Zhu et ai.. 1996: and Kusakabe et ai., 1991) indicate that tbe bearing capacity increases

in proportion with foundation size when plotted on a log-log scale diagram. This

suggests that N., decreases linearly with footing size on a double-log scale diagram.

Studies of the effect of footing size by De Beer (1965&) and Vesic (1965) suggest that

the average shear strength mobilization along the failure surface of soil supporting a

shallow foundation decreases with footing size. The decrease of the mobilized strength

is due to the curvature of Mohr's strength envelope (Meyerhof, 1950; and De Beer,

1965a) and the progressive rupture along the failure surface (De Beer, 1965b: and

Mubs, 1965). The relative compressibility of soils increases with footing size.

To illustrate the effect of footing size on bearing capacity, test results of 9 circular

footings (n=O) listed in Table 4.4 are analyzed herein. For the footings tested, the

prototype diameters are 0.0«, 0.075, 0.20, 0.44, 1.50, 1.50, 1.75, 4.37 and 7.0 m;

the bearing capacities are 160, 220. 480, 820, 1920, 1960, 2260, 4250 and 6150 kPa

accordingly. The relationship bet'W'een tbe bearing capacity and footing diameter is

shown in Figure 4.14 and can be expressed by the equation of

q.. = 1480.00·1'2 ('.21)

in which q" is in !cPa and D is in meters. The figure also presents the centrifuge test

data of Kusakabe et aI. (1991). Their values are smaller than those of the present

study. This may be due to the fact that their experiments were carried out in sand at

a lower density index of 82%.
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Using EquatioD (4.21) and (4.22) and the test data in Figure 4.14, the calculated

values of bearing capacity factor N., of the sand with a unit weight of.., = 15.4 Iu'll/m~

are given in Figurt: 4.15. The relationship between N., and D is

N., =320D-G.a (4.23)

(4.24)

in which D is in meter. It can be seen that the value of N., decreases significantl)' with

D. due mainly to the decrease of soil friction angle (6) with increasing stress level and

the phenomenoo of progressive failure of soil.

In Figure 3.6, both the peak friction angle (tP~) and the critical state friction angle

(41",) of the sand from triaxial shearing decrease with stress level. Their relationships

with the mean stress

5 = ~(O"I +0"3)

are given by Equations (3.22) and (3.23), respec:tive.ly.

With the increase of footing size. the stress level in the soil supporting the footing

increases. The stress level increase leads to a decrease of soil friction angle and the

bearing capacity factor N., will be reduced. In order to take into account the curvature

of the Mohr's envelope of failure, Meyerhor (1950) and De Beer (1965&) suggest that

the value of ¢ corresponding to the mean nonnal stress along the failure surface should

be used. For surface footings, Meyerhof (1950) suggests

q.
(7"'=10 (4.25)

where (7... is the mean normal stress along the failure surface. Using the above equation

and the relationship among 0'""" (71 and (73 in the diagram of Mohr's envelope, the

average value of s along the failure surface can be given roughly by

5 = ~«(71 + (73) = q.(l +1~&n2¢)

where ¢ is the average mobilized friction angle.
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Table 4.6: Effect of footing size on values of average mobilized friction angle (6)

D(m) 0.1 0.2 o.s l.0 2.0 5.0 10.0

q. (kPa) 282 465 899 1480 2440 4720 7770

_Cd.....) 47.5 46.5 45.1 44.0 42.9 41.5 40.5

rPu (degree) 40.4 39.5 38.3 37.4 36.4 35.2 34.3

A rough quantitative evaluation of the effect of footing size on bearing capacity is

shown in Table 4.6. When the diameter of a footing is given. the bearing capacity

q.. can be calculated by Equation (4.22). Then using Equ&tion (3.22) and (3.23) for

friction angles. together with Equation (4.26) for estimating the mean stress level along

the failure surface, the average~ and tPu corresponding to the mean stress level

can be obtained, as in Table 4.6. When the footing diameter increases from 0.1 m to

10.0 m, the value of the mobilized peak friction angle (¢-:.:) decreases from 47.5· to

40.5· while the critical state frictiOn angle (6u ) decreases from 40.4· to 34.3". This is

due to the increase of stress level in the soil. For a log-<ycle increase of footing size.

the friction angle of the sand is reduced by about 3 to 3.5·. This reduction of I/J will

lead to a decrease of N., by about 50%. if the theories for N., as listed in Table 2.1 are

adopted. Therefore, the selection of the value of" according to footing size (or stress

level) is critical to evaluate tbe bearing capacity in practice.

In addition to stress level in soil, the phenomenon of progressive failure should also

significantly affect the bearing capacity. In the classic bearing theories (Terzaghi, 1943;

Meyerbof, 1950; and Sokolovslci, 1960), in which soil is assumed to be rigid-perfectly

plastic., the mobilization of shear strength along the failure surface is uniform. The soil

elements at points A, B, and C (Figure 4.13) fail simultaneously when the foundation
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coUapses. In reality. because soil is elasto-plastic. the failure of soil along the failure

swface is a progressi~ process (Mubs. 1965; and De Beer, 1965b). The failure surface

begins at point A and develops gradually to point C. The mobilization ofshear strength

is Dot uniform. When the foundation fails. the soil at C is just mobilized to its peak

strength while the strength of the soil at A may be as low as the critical state strength.

The average strength mobilization should be between the peak and the critical state

values. The inBuence of progressive failure on the bearing capacity depends on the

deformation before failure and will be more prominent when the settlement is large.

When the size of a footing is given and the mean stress level has been estimated. the

difference between the values of bearing capacity from tP- and 6" will be very large.

It should be mentioned herein that the values of ¢- and 6u in Table 4.6 are

only rough estimations. The purpose of the quantitative analysis above is intended

to provide a clearer understanding of the influence of footing size and stress level on

bearing capacity. [n engineering practice. the engineer must he very careful to select

soil strength parameter~. The error caused by improper selection of ~ in estimating

the bearing capacity may be very serious.

It is difficult to conduct bearing capacity tests of very large foundations. As seen in

Figure 4.14. the bearing capacity increases with foundation size. Conducting bearing

capacity tests for very large foundations is also very costly. To the best knowledge of

the author. only a few test results of ultimate bearing capacity of foundations with

dimensions over 7 m are available in the literature. IT Equation (4.22) obtained from

the test data in Figure 4.14 is used for very large footin,;>. the roughly estimated

bearing capacities will be 7.8,12.8.17.1 and 24.7 MPa when the footing diameters are

10. 20, 30 and 50 m respectively. Therefore. for conducting bearing capacity test of

a foundation with a dimension of over, say, 20 m; (1) It is difficult to apply and/or

react the huge load to cause the foundation to fail, even in a centrifuge at 16Og; (2)
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Because of the high pressure in the soil under the foundation. soil particles will be

crushed (Hardin, 1985; and Lade and Yamamuro, 1996) and will behave differentl)-:

(3) As the failure mode tends to move from general shear wlure to punching shear

failure with the increase of foundation size, the relative settlement of fouodations at

failure increases with foundation size. For very Large foundations, the ultimate bearing

capacity may Dot be a problem; the settlement may control the design.

4.5 Axially Loaded Ring Footings

The geometry of 8 ring footing (Figure 1.1) can be defined by the outside diameter

(D) and the inside diameter Cd), or by the outside diameter and the ring radii ratio (n).

Therefore, the behaviour of the footing depends on the combination of its geometric

parameters D and n and the value of vertical load, Q.

4.5.1 Load and settlement

In order to study the bearing capacity of ring footings, centrifuge tests at accelera

tions of 10, 40, 100 and 160g were conducted using 7 mod~ rings with a constant area

of 15.0 cm2
• The ring radii ratios (n) were 0, 0.2, 0.35, 0.5, 0.7, 0.8 and 0.9. and the

outside diameters of the model footings were 43.7, 44.6, 46.7, SO.5, 61.2, 72.8 and 100.3

mm respectively. For n=O, the prototype diameters (D) of the circular footings were

0.44,1.75,4.37 and 7.0 m when the centrifuge accelerations were 10,40,100 and 160g

respectively. Figures 4.16 to 4.19 present the relationships between the load and the

settlement of the constant area footings with various n tested. at the aforementioned

acceleration levels.

At an acceleration of lag, each curve in Figure 4.16 has a peak load; all the footings

at various values of n have failed in general shear. The failure load increases when n

changes from ato 0.35. After the maximum value at n:=O.35, the failure load decreases.
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Figure 4.16: Load versus settlement of ring £ooting$ of 15 c:m2 in area at 10 gravities

It is also seen tbat the settlement required to reach the failure load deo-eases with

increasing ring radii ratio. The failure mode becomes more and more general when the

value of n is increased. Those features of the in6.uence of n on the behaviour of load.

settlement and failure mode are also observed at acceleration levels of 40. 100 and 160g

as shown in Figure 4.17 to 4.19.

The failure mode is also affected by the level of acceleration (or footing size). For

the circular footings (n=O), the failure mode of the footing at 109 was general shear;

for the footings at 40, 100 and 160g, the failure mode is considered local shear failure.

For n::0.2, the footing at 109 fails in general shear (there is a peaJc load) while the

footing at 160g is in local shear failure. When the value of n is from 0.35 to 0.9, all

the footings are in general shear failure mode, regardless of the acceleration level. At

each value of n, the failure mode is more general for a footing at a smaller aceeleration

level.
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Figure: 4.17; Load 'Versus settlement of ring footings of 15 cm2 in acea at 40 gravities
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20

Figure 4.18: Load versus settlement of ring footings of 15 cm2 in area at 100 gravities

91



l0000~--~---~-------,
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Figure 4.19: Load versus settlement of riDg footings of 15 em' in area at 160 gravities

4.5.2 Bearing capacity with ring radii ratio

The bearing capacity of the ring footings with a constant area of 15 em' at different

acceleration levels are shown in Figure 4.20. It is observed that the bearing capacity

increases with acceleration level (footing size). At each acceleration level, the bearing

capacity increases with ring radii ratio until n reaches a value of approximately 0.35.

After this point, the bearing capacity decreases with n. It is noted that tbe bearing

capacity of a ring (ooting with n=O.9 is about one half of that of a circular footing

with the same MeL

The increase of bearing capacity in small n cases is believed to be due to the effect

of soil arching under the center part of a footing. When n is very small, the (ooting

with tbe soil in tbe center region behaves like a solid footing with a size equivalent

to the outside diameter of the ring footing. Hence the bearing capacity is increased.

With the increase of the ring radii ratio, the effect of a.rclting is reduced and finally
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Figure 4.20: Bearing capacity versus ring radii ratio
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Figure 4.21: Bearing capacity ratio versus ring radii ratio
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Table 4.7: Bearing capacity ratio of constant area ring footings

disappeared when n is increased to a certain extent. Therefore, the bearing capacit:!-·

becomes smaller.

The bearing capacity of a ring footing can be represented by a bearing capacity

ratio, Br • defined &S

(4.27)

where q" is the bearing capacity of a ring footing and q.., is the bearing capacity of a

circular footing with the same ana.. For a. circular footing (n=O), B r =1.

Values of Br of coosta.nt area ring footings plotted against ring radii ratio are

presented in Figure 4.21. They are also listed in Table 4.7 for convenience of use. It

is observed that the variation of Br at different acceleration lettls is very smaJl. This

suggests that Br is independent of acceleration level (or prototype size of footings).

The bearing capacity ratio has a maximum value of about 1.15 (average) when n is

approximately 0.35. At n=0.9, Br is about 0.52. Using the curve shown in Figure

4.21, the Br value can be estimated accorcJinl to the n value of a ring footing. The

bearing capacity of a ring footing can thus be calculated using Equation (4.27), once the

bearing capacity of the circular footing with the same area is known. This procedure

for estimating the bearing capacity of ring footings is practical because the bearing

capacity of circular footings can be obtained using generally accepted experimentaJ

data and theories available in the Literature.

94



4.6 Eccentrically Loaded Ring Footings

4.6.1 Background aod theory

For a strip footing subjected to a vertical load with an «<=entricity of e. when

the pressure distribution is assumed to be linear, tbe maximum and minimum Dormal

pressures on the footing (Oas, 1990) are in the forms of

('.29)

where B is the footing width, Q is the load applied on a unit length, and e is load

e<:centricity.

It is ooticed that wben e is equal to 816, P...m becomes zero. When e is greater than

8/6, p.,.,.. will be negative. There will be a separation between the footing and the soil

because soil cannot tab significant WlSion. In such a case, the maximum pressure is

calculated from

'Q
Pmaz = 3(8 _ 2e) (•.30)

and Pm;" is &SSumed to be zero in the area where Pmin obtained using Equation (4.29)

is negative.

The bearing capacity of an ea:eDtricaJ.ly loaded strip footing can be estimated by a

~led effective width method (Meyerhof, 1953). The effective width of the footing

B' =B-2e (•.31)

Using H' instead. of B in Equation (2.23), the bearing capacity of the footing can be

obtained (in calculating dc, d, and cL" B should be used). Theoretical and experimental

studies indicate that this metbod Cor taking into account load eccentricity is on the
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safe side for bearing capacity eslimation (Vesic. 1975). However. the effective- width

method is widely accepted in practice.

Another way to account for the eccentricity is to use Meyerhors reduction factor

method. The bearing capacity reduction factor (14) is defined as

where q. is the averaged bearing capacity of an eccentricaUy loaded footing, and q..., is

the bearing capacity of the same footing under axial loading. The relationship between

14 and eccentricity (e) can be expressed as

(4.33)

where B represents the width of a strip footing or the diameter of a circular footing; m

is a constant having a value of about 0.5. For a strip footing on a dense sand, Aiban

and Znidarcic (1991) obtained. m=0.42. It can be deduced that the effective width

method is equivalent to a reduction factor method when the value of 14 is equal to

(l-2ejB). The reduction factor method is more suitable to fit experimental data. It

will be used in the foUawing analysis.

4.6.2 Loading and settlement

When a footing on soil is load@d eccentrically, the footing will develop a vertical

displacement (,,) at the loading point and a rotatiOn angle (8), as shown in Figure 4.22.

With the eccentric loading of the footing, the rotation angle is expected to increase.

Figures A.I to A.20 in Appendix A show the the average vertical loading pressure

and the rotation angle with settlement of eccentrically as well as axially loaded ring

footings with a constant area of 15cm2 , tested in centrifuge at 100 gravities. It can he

seen that all the &Xially loaded footings (e=O) with ring radii raties (n) of 0,0.35,0.5,
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Load

Figure 4.22: Defonnation pattern of eccentrically loaded footing

0.7 and 0.9 have not rotated during loading; the rotation angles are about zero. The

footings were penetrated into sand without rotatiOn.

For the footings with eccentricity ratios (e/D) of 0.075,0.15,0.25 and 0.375, the

rotation angles increase with the penetration of the footings into sand. For most of the

footings, the rate of the incruse of rotation angle is increased after the points where the

failun Loads are approached. It can be seeD that the footing rotation angle at failure

increases slightly with ettentricity. For n=O, the rotation angles are about 6. 7, 7 and

10 degtftS wben the eccentricity ratios are 0.075, 0.15, 0.25 and 0.375 respectively. The

effect of ring radii ratio on tbe rotation angIe is more significant. The average rotation

angles at failure loads are roughly 8, 6, 3, 2 and 1 degrees for the footings with ring

radii ratios of 0, 0.35, 0.5, 0.7 and 0.9 respectively. When the value of n is greater than

0.5, the rotation angle of eccentrically loaded ring footings at failure is small.

The influence of eccentricity on the relationship between the average vertical loading
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Figure 4.23: Load and settlement of eccentrically loaded footings (n=O)

and the seul~ent is presented in Figure 4.23 to 4.25 when tbe ring radii ratios are

0, 0.5 and 0.9. It can be seen that for each n value, the vertical bearing capacity of

footings decreases significantly with increasing eccentricity. In Figure 4.23 where n=O,

the slope of the loading·settlement curves is reduced when the eccentricity is increased

from 0 to 0.375, while the bearing capacity has changed from approximately 4250 to

1700 kPa. The settlement required to reach the failure load decreases from about 6 to

3 mm. With the increase of eccentricity, the failure mode moves towards gener-aJ shear

failure.

In Figure 4.24 when n=O.5, the loading-settlement curves approximately foUo... tbe

sample path at the initial stage of loading. They begin to diverge when failure occurs.

The settlements at failure decrease from about 4 to 2 mm when tbe eccentricity ratio

(elD) is increased from 0 to 0.375. In Figure 4.25 for n=0.9, the loading-settlement

pattern is also different. For e/D=0.075, 0.15, 0.25 and 0.375, the footings fail at a
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Figure 4.24: Load and settlement of eccentrically loaded footings (n=O.5)
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Figure 4.25: Load and settlement of eccentrically loaded footings (n=0.9)
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same settlement of about 0.7 mID, while the footing with elD=O fails at a settlement

of about 1.7 mm. The loading·seulement pattern is inftuenced by the eccentricity of

loads and the ring radii ratio of footings.

4.6.3 Bearing capacity with eccentricity

Figures 4.23 to 4.25 indicate that the bearing capacity of ring footings decruses

with increasing ring radii ratio and increasing loading eccentricity. The variations of

bearing capacities of 20 footings listed in Table 4.5 with eccentricity at ring radii ratios

of 0, 0.35, 0.5, 0.7 and 0.9 are presented in Figure 4.26. Analysis of the data in tbis

figure indicates that the relationship of tbe bearing capacity and the eccentricity of tbe

ring footings can be well expressed using the reduction factor method. The bearing

capacity reduction factor (R.) calculated using Equation (4.32) at different values of

ring radii ratio (n) is shown in Figure 4.27. It can be seen that the relationship between

the reduction factor and the loading eccentricity ratio (elD) is independent of n. By

linear regression of the data in the figure, the reduction factor can be written as

(4.34)

for all footings with different ring radii ratio, where D represents the outside diameter

of a ring footing (a circular footing is treated as a special ring footing with n=O). As

seen in Figure 4.27, the reduction factor for the ring footings is slightly greater than

that obtained by Aiban and Znidarcic (1995) for strip footings.

Using the bearing capacity ratio (B.. ), the reduction factor (R.J. the bearing ca·

pacity of an eccentrically loaded footing on the dense sand with a given ring radii ratio

(n) can be evaluated. Using Equation (4.32), the bearing capacity of an eccentrically

loaded footing is given by

(4.35)
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Figure 4.26: Bearing capacity versus eccentricity ratio (e/D) of constant area ring
footings
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Figure 4.27: Bearing capacity reduction factor (R..) versus etteotricity ratio (e/D) of
constant area ring footings

where R.. is the reduction factor calculated by Equation (4.34) with a given (e/D); q""

is the bearing capacity of the ring footing under axial loading, which is given, using

Equation (4.27), by

(4.36)

A combination of the above two equations yields the bearing capacity of an eccentrically

loaded ring fooling as

(4.37)

in which the bearing capacity ratio (B~), depending 00 the value of A, is shown in

Figure 4.21; que is the bearing capacity of an axiaJly loaded circular footing with the

same area. which can be obtained using Equation (4.22). The procedure for estimating

the bearing capacity of a ring (ooting under eccentric loads using Re, Br and q"", is very

convenient and practicaL
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4.7 Concluding Remarks

This chapter has introduced the background and principle of ~Dtrifuge modelling

for g@Otedmical application_ The centrifuge test. equipment and procedure have been

presented. A raining t«hn.ique for the preparation of sand samples has been de\"eloped

and used in tests, resulting in a density index of 90%. The quality of sand samples bas

been monitored by centrifuge CODe penetration tests. Over 40 footing tests in centrifuge

with accelerations of up to 160 gravities have been conducted to invt!Stigate the effect

of footing size, ring radii ratio and loading eccentricity on bearing capacity. Model

tests have been verified using the principle of modelling of models.

For circular footings, the bearing capacity increases linearly with prototype footing

size in a double-log scale diagram. For a tested COOting with a prototype diameter of 7.0

m, the measured bearing capacity is as high as 6150 kPa. It is found that the bearing

capacity (actor N., decreases with footing size, due to the effect of progressive failure

aDd the reduction of soil friction angle with stress level. When the footing diameter is

increased from 0.1 to 10 m, the estimated value of N., is reduced from about 610 to 170.

For a log-cyde increase of footing size, the estimated reduction of average mobilized

soil friction angle is approximately 3 to 3.5-. It is observed that with the increase of

footing size, the failure mode of footings tends to move from general shear failure to

local shear failure.

Con.stant area ring footings, with ring radii ratios of 0, 0.2, 0.35, 0.5, 0.7, 0.8 and

0.9, have been tested in centrifuge at accelerations of 10, 40, 100 and 160 gravities.

For the axially loaded footings, the bearing capacity increases with prototype footing

size. At a certain acceleration level, the bearing capacity increase slightly with ring

radii ratio (n) when n is from 0 to about 0.35, due to the arching effect of soil under

the footing. When n is greater than 0.35, the hearing capacity decreases significantly
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with the ring radii ratio. For a Cooting with n=O.9, the bearing capacity is about 52%

of that of a circu1ar footing with the same area. It is shown that the bearing of a ring

footing can be related to the bearing capacity of a corresponding circu1ar footing with

the same area by using a bearing capacity ratio (Br ). The value of Br is related only

to the ring radii ratio, independent of footing size. Using the bearing capacity ratio.

it is very convenient to estimate the bearing capacity of a ring footing, because the

bearing capacity of a circular footing can be obtained using the available experimental

data and bearing capacity theories.

For the eccentrically loaded footings, the bearing capacity decreases with loading

eccentricity. It is shown that the bearing capacity of an eccentrically loaded ring footing

can be expressed in terms of a reduction factor and the bearing capacity of the footing

under axial loading. The bearing capacity reduction factor (R.J has been obtained by

analyzing the test data of footings loaded with eccentricities of 0, 0.015, 0.15. 0.25 and

0.375 at various ring radii ratios. It is found that the value of 14 is related only to

loading eccentricity, independent of the ring radii ratio of footings.

It is shown that the bearing capacity of an ec~ntrically loaded ring footing can be

estimated using a reduction factor (R.), a hearing capacity ratio (Br ) and the beariog

capacity of an axially loaded circular footing. This procedure is very practical. The

centrifuge test results are considered very satisfactory.

104



Chapter 5

Analysis of Footing Size Effect
using Method of Characteristics

5.1 Introduction

Using the method of cbaracuristics (slip-line method) for bearing capacity, equi

librium equations with yield condition (usually Mohr-Coulomb criterion) and stress

boundary conditions are satisfied in the soil domain of uncontained plastic flow near a

rooting. A set of differential equations of plastic equilibrium is established to investi

gate the stresses in the soil at the instant of impending failure. The equations can be

solved by finite difference approximation. The bearing capacity obtained is the average

vertical pressure acting on the rooting.

Sokolovskii (1960) used the method of characteristics for the solution of bearing

capacity of a strip footing. Shield (1955) extended this tee::hniqul!: for an axisymmetric

Cooting on a Ttesca materiaL Cox d aL (1961) applied it for a smooth, rigid footing

on weightless Mohr-Coulomb materials. Cox (1962) used this technique for a ciccular

Cooting on soils with weight, by putting c· = c + 17. tan ¢ (0".. is the atmospheric pres

sure) and introducing a dimensionless parameter G = ...,B/(2c"). The average bearing

capacity pressure is a function of both G and~. The solution of Cox (1962) can di

rectly account for the soil cohesion, self-weight and surcharge without superpositioD.
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The unusual assumption of applying the atmospheric pressure as a surcharge to the

soil surface may be due to the misunderstanding of the principle of effecth-e stress.

However, the formulation for the solution is mathematically conect.

Larkin (1968) presents a detailed formulation of the method of characteristics for

the bearing capacity of very shallow circular and strip footings, in which the frictional

effect of the soil above the footing base has been taken into accouot. The stress vari

ables are normalized by 0.58-y and the c~rdinates by 0.58 for both plane strain and

axisymmetric cases. Since the footings are assumed to be frictionless, the character

istics lines are extended to the footing bases. The failure pattern is similar to Hill's

mechanism. The values of N., of a. surface strip footing are 15.7 and 87 when the ID

is equal to ao- and 40" respectivdy. The calculated bearing capacity of footings on

cohesionless soils is very sensitive to the embedment depth. For a circular footing, an

embedment depth of 0.09 to 0.13 of the footing diameter will result in a bearing ca

pacity increase of 100%. However, the calculated results of Graham and Stuart (1971)

show a much smaller increase of bearing capacity with depth. They considered that

neglecting the shear resistance of sand above the footing base would oat cause a signif

icant enor for very shallow footinp;;. Analysis of Hansen and Christensen (1969) also

showed an increase of bearing capacity with depth, but oot as large as that indicated

by Larlcin (1968).

When a footing base is rough (6"=t/), experimental evidence (Biarez d aL, 1961;

Gorbunov-Possadov, 1965; Ko and Davidson, 1973) shows that there is a wedge-shaped

rigid (elastic) zone of soil under the footing. In the characteristics analysis, Graham

and Stuart (1971) define the rigid wedge after Terzaghi (1943); the edge of the wedge is

straight and inclined at ¢ to the horizontal. The results agree with those of Meyerhof

(1955). When 4i=35°, the value of N.., is 54.7. A similar rigid wedge is also assumed

by Graham and Hoven (1986) in their footing analysis using a critical state model.
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For a rough strip footing, Lundgren and Mortensen (1953) present the solution

of N", using a one-9iE!dge failure mechanism. The ~line bounding the rigid 9iE!dge is

tangential to the base at the footing edge. For \P=3O". the calculated N~ is 14.8. A

similar rigid wedge was assumed by Gorbunov-Possadov (1965) and an N", value of 192

was derived for 16=40". The failure mechanism of Lundgren and Mortensen (1953) has

been employed by Hansen (1970) to derive the formula for N" as expressed by Equation

(2.19).

Based on the principle presented by Lundgren and Mortensen (1953). Hansen and

Christensen (1969) investigated the effect of base friction on N" for surface strip foot

ings. The value of N", increases with base frictiOn angle (6); for a certain \P, N, of a

smooth footing (6 =0) is half of N" of a fully rough footing (6 = \p). When tiJ ,. 30°.

N" is 15 for a rough footing. For rP ~ 45°, if 6 ~ 20" a footing can be assumed to be

rough for deriving N.,.

A more recent investigation of the bearing capacity of strip and circular footings

using the method of characteristics was carried out by Bolton and Lau (1993). For

a rough footing, a trapped rigid 9iE!dge underneath the footing is assumed; the wedge

angle with the horizontal footing base is taken as (If/4 + riJ/2). With this assumption,

the resultant stress at the tip of the wedge is always vertical and symmetry at the

centerline is conserved. For F3O", the value of N., is 23.6 for a strip footing and is

31.9 for a circular footing. N" is higher for circular footings tha.n for strip footings

wben rP ~ 20"_ For smooth footings. N., of circular footings is greater when ~ is greater

tban 33°.

Tbe method of characteristics can obtain tbe combined bearing capacity factor N..,.

due to the contributions of surcharge (q) and soil weight. For a strip footing, N"" can

be expressed as
N ..__ =~N,+N.,

.,.. 0.5"7'8(1 +q) 1 +q
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(5.2)

where

- q
q = O.57B

A fini~ surcharge must be applied in analysis for Mohr-Coulomb material with

no cohesion (Graham. 1968; and Lau, 1988). because tbe condition of zero surcharge

causes some difficulties at tbe singularity at the footing edge (Graham and Hoven.

1986). The computation for N., is started by assuming a constant surcharge at the

footing base le\-"el. As described by Graham and Stuart (19il), a solution for N., is

obtained by increasing the footing size until the surcharge has no significant effect on

the calculated bearing capacity. It is shown that when q is smaller than 0.001. N.,.

converges to N., (Graham and Stuart, 1971; Bolton and Lau, 1993). In contrast, Nq is

obtained for ij values exceeding 1000.

This chapter presents a study of the effect of footing si2e on the bearing capacity of

circular footings on a dense sand using the method of characteristics. The analysis will

be carried out using both variable friction angles and an equivalent constant friction

angle for each footing.

5.2 Governing Equations and Formulation

5.2.1 Basic equations

In the case ofaxisymmetry about the z·axis in an T-Z-8 coordinate system, the

stress components are (1r, a" a~ and Trz . The circumferential stress (1, is a principal

stress. The other two principal stresses (compression is positive) are

0"\ = ~(ar +a.) + [~(ar - 0"~)2 + T~,JI/2

0"3 = ~(ar +a.) - (~(O"r - 0",)2 + T~.)1/2

(5.3)

(5.4)

Haar and Von Karman assumed that a, is equaI to one of the other two principal

stresses (Chen, 1975). This assumption is safe (Lau, 1988). Cox d 41. (1961) pointed
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out that the Haar and Von Karman hypothesis is quite genl!raI and applicable. The

vaJUl! of 0, is herein taken equal to the smaller principal stress, that is

(5.5)

The Coulomb yield criterion and the two equilibrium equations are given by

(5.6)

(5.7)

(5.8)

in which m = 1 is for circular footing and m = 0 is for strip footing. Equations

(5.5)-(5.8) provide four equations for the four unknown stresses so that the problem is

statically determinate.

Using the Coulomb yield aiterion and Haar and Von Karman hypothesis. the four

strl!SSl!S are expres5l!d as (Tan. 1990)

O~ = 0(1 + sin 4'.IC0621/J) - Ut::

T~r = o sindJsin 21/J

(5.9)

(5.10)

(S.Il)

(5.12)

(5.13)

(5.14)

where tb is the inclination of the direction of 0\ from the z-axis, as shown in Figure

5.1; 0 and Or:: are defined by

0,+03
'~-2-+",

Cfr:: = t&n"p

Differentiating Equations (5.9)-(5.12) yields

~ =(1-sintPCOS2tP)~ + 2asintPsin2¢~ (5.15)
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figure 5.1: Direction of priDcipaJ stresses

~ = (l +Sin4iCOS2l/J)~- 2(1Sin6Sin21b~ (5.16)

a;;.~ =Sin6sin21/J~+2uSin6cOS21/J~ (5.li)

a;:~ =Sin6sin2""~+2usin6COS21/1~ (5.18)

Substituting the above equations into the two equilibrium equations results in a

system of governing equations in terms of r, z. U and 1/1,

(1-sin6COS2T/1)~ +2usin6sin21/1~+sin6Sin2lb~

+ 2USintPCOS2l/J~ + m;Sin6(1- cos2T/1) = 0 (5.19)

SintPSin2tP~ + 2USinI,6COS2tP~ + (l +sintPCOS2l/J)~

-2usin6sin2tP~+m~SintPSin2""='" (5.20)
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These are two nonlinear differential equations. Under given stress boundary conditions.

the equations can be solved for bearing capacity using finite difference techniques.

In Equations (5.19) and (5.201, C1 and tb are functions of r and :;. Therefore. the

variation equations of C1 and '" can also be expressed as

dq= ~dr+ ~dz

dt/J= ~dT+~dz

Equations (5.19}-(5.22) can be written in matrix fonn as

where matrixes .::1. ~ and ~ are in the forms

(5.21)

(5.22)

(5.23)

(5.26)

(5.251

(

l-sin6cos2tb 2usin6sin21b sin6sinU 2usin6COS21b)
.d.= Sin6;;n2,p 2asin:C052w I+Sin1zcos 2,p -2usin

O
f/lsin2,p (5.24)

o b 0 dz

.- (E~E)
iJob/a,

(

-msin.(l - =2.)a/r ).= 7- m (''";iin2.)n/r

As these equations are hyperbolic, the solution for of. is not unique; tbe determinant of

.::1 is zero. By using detA = 0, two families of characteristic lines can be obtained as

~aracteristics:

.8-characteristics:

~=tan(¢+11)
d,

III

(5.27)

(5.28)



wbue J7;;: 1f/4 - f/I/2.

Along tbe two families of characteristics, the governing equations (5.19) and (5.20)

become two ordinary differential equations, whicb can be obtained by replacing a col

umn of d by Q and setting tbe determinant to zero (Tan. 1990). Tberefore the rela

tionships of q and tb along tbe characteristics are expressed as

da + 20" tan tiJdlb + m; (sindKir + tao~sin6 - 1)11.:1 = ..,(dz - tanodr) (5.29)

along an O'-Characteristics; and

do - 2o"taodKitb + m; [sintDdr - tao tD{sin 6 - 1)11.:1 = ~(dz + tan tiJdr) (5.30)

along a ,a-cbaracteristics.

5.2.2 Computation procedure

For tbe convenience of computation as adopted by Larkin (1968), the variables q,

r and z are norma.li2ed as

I=-=0.58
(5.31)

where.., is soil unit weigbt, 8 represents the width of a strip footing or the diameter

of a circular footing.

In Figure 5.2, if the variables f
"

z.:, Ui and tb. at point i and f}> Ii> Uj and 1/1; at point

j are known, tbe variables 1', I, lJ and tb at point tu can be approximately determined

using Equations (5.27)-(5.30). Equations (5.27) and (5.28) can be rewritten as

l' - fi = (I- i;)tan(tPi+ J7)

and Equations (5.29) and (5.30) can be rewritten as

cJ-Ui + 26". tao?(tP - 1/1i) = i - i; - tan~(1' - f i)
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Figure 5.2: Computation scheme of point w from known points i and j

- m. 2.:J,_ [sint/.l(f _ f i ) + tan6(sinrjl-l)(i - .!;)] (5.34)
r+ri

ii - iJ"j - 2uj tandl(w - Wi) =i - zi + turb(f - f j }

- m
f
~~j[sindl(f - f J } - tancP(sindJ - l)(z - Ij)1 (5.35)

From Equations (5.32) and (5.33), the variables f and i at point 10 can be approx

imately determined as

f = (f; - lj)tan(fh + 11) tan(tPj - 11) - f,tan('l,bj - 11) + fjtan(¢i + 11)

tan(\tI.; + '1) - tan(Wj '1)

c _ i.. tan(~; + 11) - Ijt&n{1/1j - '1) - f; + fj

• - tan(" +.) - tan(,,; - 0)

and Equation (5.34) and (5.35) can be solved for jj and 1/J as

it = OIUj +a,.:Ji
Ui+itj
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"'here thl!! parameters al and ~ are l!!XJ)re;sed as

a\ :=: Z - Zt - tan riJ(F - Fj) +0";(1 + 2Wi tanriJ)

- m
f
~~i[SinriJ(F - f;) + tanq,(sinriJ - l)(z - f,)! (5.40)

a,:=: f - ii + r.a.nriJ(f-fJ ) +o'j(l- 2tbJtand»

- mi'~~J (sinriJ(r - f i ) - tand>(sino - 1)(= - =,)] (5"'\1)

Because the characteristics are usually curved, the solution can be improved using

iteration technique by putting Wi = (ll + "';)/2 and Wi :=: (tP + f/Jj)f2 in calculating f

and i. By repeating the process, ., and 0" will converge to -4J.. and ii. as thl!! number

of iterations increases (Sokolovskii, 1960).

5.3 Boundary Conditions

5.3.1 Smooth footings

The boundary conditions for the method of characteristics are related to the rough·

ness of the footing bases. A perfectly smooth footing as shown in Figure 5.3, fails in

Hill mechanism. As there is no horizontal shear stress between the footing and the soil,

the vertical stress in soil aJong the footing base is a major principal stress (the angle

between the z-axis and the direction of the major principal stress ..=0). The zone oba

is called an active zone. In Zone acd, the horizontal stress is a major principal stress; it

is called a passive zone. Along soil surface the stress boundary conditions are known,

and

.=-q
l-sinlf,l

where the normalized surcharge is l!!XJ)ressed hy
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Figure 5.3: Failure pattern and failure zones of smooth footings

Between the passive zone and the active zone, there is a fan zone abc. The th~

zones share the same point, G, term~ a singularity point at which the stress field makes

the transitions between the extreme cases. At point a which is treated as a degenerate

of a .B-characteristics, !b is 90" for the passive zone and is 1800 for the active zone; the

rotation angle of principal stresses in the fan zone at the singularity is e = 90". Bolton

and Lau (1993) introduces at this point an exponential stress increase with rotation

angle. Before rotation starting from the passive zone. 1/1 and it are knOWD. When the

principal stress at a rotates by a value of 8, the boundary conditions become

tb,=1/J+9 (5.44)

(5.45)

The problem can be solved using the known parameters f/J. it, f and i along the

soil surface ad, and the known tb and I along tbe footing base. Starting from the soil

swface ad with known stress boundary conditions, the stress field within obcd can be

determined. The line ad is divided into several equally spaced points. The position of
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point d can be adjusted during iuration until th~ ,8-cbaracteristic starting at d finally

finishes at 0 with a requ.ired accuracy. When the variables at points along OG are known,

th~ bearing pressure U z can be obtained using Mohr's circle as

(5.46)

The mean bearing capacity q.. of the footing can be determined by integrating u=

numerically over the whole footing base. Lau (1988) carried out the analysis of strip

and circular footings using a mesh of 96 .8-cbaracteristics and 220 cr-clJaracteristics and

a rotation step in the fan zone of 30
•

5.3.2 Rough footings

In reality footings~ usually rough and the failure pattern is not SO simple. U the

friction angle (6) between soil and base is fully mobilized and the problem is solved by

a direct extension of smooth footing solution, the characuristics will curve back along

the footing base. For a fully mobilized 6, the angle between the direction of the major

principal stress and the Donnal of the footing base. r, is given by (Graham and Stuart,

1971; and Tan, 1990)

(5.47)

The main problem in this method results from the fact that symmetry at the centerline

is violated, because the principal stress at the centerline is Dot vertical.

When no slip occurs between a rough footing base and soil, a wider rigid (elastic)

wedge-zone extended to the edge of the footing can be assumed in analysis, as shown

in Figure 5.4. The wedge surface is assumed to be perfectly rough; the frictioD angle

with soil is 6=I/J. Using the equation above, the angle between the direction of the

major principal stress and the Donnal of the footing base is given by

tPl=r-Q=45°+~_Q
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Figure 5.4: Rigid wedge and failure zones of rough footings

Graham and Stuart (1971) suggests that the wedge angle 0 is equal k> soil friction

angle ~ for bearing capacity of footings. The calculated values of N., agree closely with

those obtained by Hansen and Christensen (1969). However, this approach also violates

the symmetry criterion at the wedge tip. To eliminate the error of non-symmetry at

the tip, Bolton and Lau (1993) assumes 0=45"+</1/2 for strip and circular footings, so

that the major principal stress at every point 00 the edge is vertical and symmetry is

conserved at the tip. The wedge surface mohilizes q, and acts as the last characteristic

in the marching solutions. However, this assumption of Prandtl failure mechanism

is strictly COrnet only for footings on weightless material. The calculation results of

Bolton and Lau (1993) indicate that the value of N., increases from smooth footing to

rough footing by a factor of about 3 for strip footings and about 4 for circular footings.

A method for rough strip footings, in which the rigid wedge as shown in Figure

5.5 is naturally bounded by o-cbaraeteristics and symmetry is conserved at the tip,

h&S been presented by Lundgren and Mortensen (1953) and later used by Hansen and
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Figure 5.5: Failure pattern of rough Cooting with wedge hounded by a-characteristics

Christensen (1969), Steenfelt (1977) and Bonding (1977). Tan (1990) also used this

tee:hoique for strip and circular footings with variable roughness. As shown in the

6gure, thl!: shape of the wedge is related to the ~ativemagnitude of surcharge and the

friction mobilized between the soil and footing base. When the SUttharge is high and

00 slip occurs between Cooting base and soil, the first o-Iine (ac) to the last a-line all

pass through the singularity point a; the mobilized friction angle 6 at point a can be

assumed to be equal to or less than!p. Lundgren and Mortensen (1953) found that for

lO6=3O". all the a-lines pass through II oo1y when 7Blq is less than 11.4.

For very shallow footinp with low surdiarge, slip may occur near footing edges.

The rigid wedge zone becomes smaller. In this case, only the first o-Une (ac) passes

through the singularity point a; all other cr-lines to the left of lie reach the base at some

distances from the footing edge. The size of the wedge is reduced with decreasing o.
When the footing is perfectly rough (6=4», all o-lines leaving the footing are tang~tial

to the base. Wh~ 6 is less than 4>, the o-lines are DO longer tangential to the base;
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from 11 to q along the base near the edge. the angle between the direction of the major

principal stress and the normal of the base is r. given by Equation (5.47). The rotation

angle of principal Slres5 in the fan zone at tbe singularity is

8=9O"+r (5.<9)

For 6 = tP. r = 45- + ';/2.8 = 135- +41/2. For dJ=6=30". the results of Lundgren and

Mortensen (1953) have given llq=O.I04(O.5B).

5.3.3 Boundary conditions of analysis

In this study. the friction angle between the glass sand and the aluminum footings

is about 28- (see Chapter 3). This value is much higher than the value of friction angle

required for a rough footing, which is about IS- to 20" (Hansen and Christian, 1969;

and Chen. 1975). Therefore. the footinp in this analysis are all assumed to be rough,

which will fail in Prandtl mechanism. An rigid wedge failure mechanism is used in the

analysis.

Graham and Stuart (1971) assumed that the wedge angle is a=';. Bolton and Lau

(1993) used 0 = 45- + _/2 so that symmetry is conserved at the wedge tip. The

assumption of Bolton and Lau is only appropriate for N. at very large surdlarge; the

values of N., are much higber than those reported in the literature. It is desirable to

combine the techniques adopted by Graham and Stuart (1971) and Bolton and Lau

(1993). One way to do this is to use the logarithmic curve llcb in Figure 5.6 as the

boundary of the rigid zone. The inclination angle of the curve is ¢ at the footing edge

and is 45° + 41/2 at the tip. It is demonstrated. however. that with the increase of

stress level from points Q to b through c, the Q·lines starting after the point c at some

plue between a and b will extend into the rigid zone. This would result in error in the

analysis. In order to eliminate the error and to simplify the analysis, an rigid wedge

is formed by linking points 11 and b using a straight line. The wedge angle Q for this
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Figure 5.6: Assumed rigid wedge of rough footings in analysis

Table 5.1: Soil bietion angle 1P and wedge angle a

30 35 40 45 50

48.6 51.5 54.4 58.1 60.9

work, as shown in Figure 5.6, is related to soil friction angle. The relationship between

Q and ~ is listed in Table 5.1 and is also shown graphically in Figure 5.7.

5,4 Implementation of Analysis

5.4.1 Consideration of variable rP

It is well recognized that the Mohr's failure envelope of sand is usually curved

(Hill, 1950) and the soil friction angle decreases with mean effective principal stress.
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Figure 5.7: Wedge angle a versus soil friction angle ~

During drained shearing, soil may dilate or contract depending on the initial density

and strl!SS level (Rowe, 1962, 1969; De Josselin de Jong, 1976). Bolton (1986) suggests

that for a sand under drained. conditions. tne peak secant triaxial friction angle t/J can

be expressed as

inwhicb.

~ = t/J" - kin.! (5.50)

(5.51)

where t/J.. and k are soil constants. Bolton and Lau (1993) used ,p =: 30" in the highly

stressM region and ,p = 57" near the soil surface.

Bolton (1986) assumes that the critical state friction angle (41",) is a function of soil

mineralogy and independent of stress level. The triaxial results presented in Chapter 3

and the data given by Chu (1995) suggest that both the peak friction angle and critical
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state friction angle of sands decrease with confining pressure. According to the results

given in Chapter 3 of the triaxial compression tests of the dense glass sand (ID=90%)

under drained cooditions, the variation of the peak friction angle with stress level is

given by Equation (3.20). The triaxial test results indicate that the peak friction angle

of the sand dropped £rom about 46.9 to 37.3° when the confining pressu~ is increased

from 25 to 2500 kPa.

As adopted by Graham and Stuart (1971) and Graham and Hoven (1986), <P is

incorporated as a st.ress dependent variable in the characteristics analysis of this study

and the value of • is updated according to stress level during computation. The

same governing equations are used as formulated for the cases of constant~. During

calculation, the value of tP corresponds to the average stress level at the~ previously

known points and the new point.

5.4.2 Implementation of computation

A code in the C programming language has been developed in a UNIX system

to implement the analysis of the bearing capacity of circular and strip footings. The

analysis starts £rom the soil surface where the stress conditions are known, and then

advances to the passive zone, the fan zone, the active zone and the wedge surface,

which are shown in Figuu 5.4. The bearing capacity obtained for a footing is the

average vertical pressure acting on the wedge surface. In the analysis, the following

parameters are inputed to the program:

(1). The number of O-characteristics lines including the singuJarity point is 101

for all analyses. The mesh is equally spaced along the soil surface. The number of

a·characteristics lines in the fan zone is also 101.

(2). For each point during iteration, the convergence criterion of stress is 8fJ/s =
0.0001.
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Table 5.2: Comparison of N" of rough strip footings

if> (degree) 30 35 40 45

tV (this study) 19.4 40.8 88.9 203

N" (Larkin, 1968) 15.7 40.8 B7

N" (Hansen, 1970) 15.i 33.9 79.5 201

N" (Graham &: Stuart, 1971) 54.7

N.. (Bolton &; Lau. 1993) 23.6 121 324

(3). N.. is obtained by applying a surcharge If =qJ(O.S"YB) = 0.001, in order to

simulate a surface footing; Nq is derived by applying q=I000.

(4). The friction angle (iP) in the soil domain of analysis is related to stress level

using Equation (3.20) obtained from triaxial tests. For the calculation of a new point,

¢ is corresponding to the average stress level of the new point and the two known

points. At the soil surface, the maximum friction angle is ¢=57". In highly stressed

regions, the lower limit of the friction angle is assumed to be 30°.

(5). The wedge angle a shown in Figure 5.6 is determined using a dJ value corre

sponding to the mean stress level of points along the wedge surface. At the beginning

of analysis, an initial value of the wedge angle a is assumed. Iteration was continued

until tbe accuracy of a is less than or equal to 0.01°.

The program is verified for strip footings under constant ¢ conditions. The values

of N., obtained f?r this study are compared with those in the literature. as shown in

Table 5.2. It can be seen that the N., values of this study are reasonable compared

with others; they are especially close to those of Hansen (1970) and Larkin (1968). It
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is obvious that the N., values obtained by BoltoD and Lau (1993) are much b..igher than

those of other researchers. The program has also been ch.ecked by calculating the value

of N, when the wedge angle is defined by 0=45· + ./2. for 0=30", the calculated N,

is 18.1, wb..ich. is very close to the exact. solution of 18.4 derived by Reissner (1924).

5.5 Analytical Results of Circular Footings

5.5.1 Bearing capacity from variable friction angle ¢

Analysis of circular footings on the surface of the dense sand with a dry unit weight

of 15.4 kN/cm3 has been carried out using the method of ch~teristics described

above. The stress-dependent peak • value, calculated by Equation (3.20) is used in

the analysis. When the footing diameter increases from 0.1 m to 10 m, the calculated

bearing capacity (q.) is increased. from 292 to 6740 kP&; The bearing capacity factor

N., is reduced from 632 to 146, due to the decrease of soil friction angle with stress

level. With tbe increase of footing size, tbe wedge angle 0 is decreased Crom 57.9° to

The relationsb..ip betweeD tbe calculated bearing capacity and footing diameter is

illustrated in Figure 5.8. It is seen that the bearing capacity increases linearly witb

footing diameter in the double-log plot. The calculated bearing capacity (q.) can be

expressed in terms of footing diameter (D) as

(5.52)

where q. is in kPa and D is in meters. To make a comparison, the bearing capacity

from centrifuge tests given by Equation (4.22) is also shown in the ligure, as represented

by the dotted line. The bearing capacity calculated by tbe method oC characteristics

is very close to that obtained from centrifuge tests. The differences, increasing with

Cootingsize, are 1.4,5.4 and 11.7% when the footing diameters are 0.1,1.0 and 10.0 m
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Figure 5.8: Calculated bearing capacity of circular CootingS;

respectively_

5.5.2 Bearing capacity from equivalent friction angle (/Ieq

The analysis above shows that when a variable q, corresponding to different stress

level is used, the bearing capacity of footings can be well modeUed by the method

of characteristics. It is, however, desirable that an equivalent friction angle 4JeII of a

footing with a certain dimension can be fouod so that the bearing capacity can be

caJ.cu1ated using the constant !Pelf" Meyerhof (1950) and De Beer (1965&) suggest that

6.. should correspond to the mean value ofnonnal stress along tbe failure surface (0'",).

Meyerhof (1950) has proposed that

q.
u'" = 10 (5.53)

where q. is the bearing capacity. Using the above equation and Mohr's circle, tbe value
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Figure 5.9: Equivalent friction angle 4Jq versus footing diameter

of s corresponding to ¢U/ can be calculated by

0'1 +0'3 q.(l + r.a.n2 ¢q)
'--2- 10 (5.54)

Then (jut can be obtained using Equation (3.20) by iteration. At tbe beginning of

analysis, an initial bearing capacity of a footing is assumed to calculate tbe value of

tPeiI and then a new bearing capacity can be obtained. Using the updated bearing

capacity, the process of calculation can be repeated until a prescribed accuracy of

bearing capacity of 0.1% is reached.

The calculated. equivalent friction angle (¢q) and the bearing capacity (quq) from

tPeq are sbown in Figure 5.9 and 5.10. When the Cooting diameter increases from 0.1 to

10 rn, tPcq is decreased from 4.7.5 to 4.0.8°; for a log-eycle increase of footing size, ¢eq is

reduced by about 3.50
•

The calculated bearing capacity (qW;f) in Figure 5.10 from equivalent friction angle
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Figure [;.10: Bearing capacity from equivalent friction angle iP..

fPu" which is constant for a cenain footing, increases linearly with footing diameter in

a double-log diagram.. The relationship is written as

(5.55)

where q,.,q is in kPa and D is in meter. It can be seen from the figure that the bearing

capacity calculated from <P,. using the method of characteristics is very close: to that

obtained from centrifuge experiment. The differences are 7.6, 5.4 and 3.2% when the

footing diameters are 0.1, l.0 and 10.0 m respectively.

5.6 Summary

This chapter presents the basic equations and formulation of the method of char·

acteristics for the bearing capacity of foundations. A detailed discussion regarding

the effect of boundary conditions on the failure mechanism and bearing capacity of
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foundations is presented. Analysis has been carried out to investigate the size effect

of circular footings. A rigid wedge under a rough footing is assumed for analysis. The

wedge angle 0 can be derived from a soil friction angle corresponding to the a\-'l!tage

stress level along the Vif!dge surf~. The effect of footing size on bearing capacity

due to the stress dependence of soil friction angle has been well modelled. A program

written in the C programming language has been developed to implement the analysis.

The effect of footing size on bearing capacity can be modelled by taking into con

sideration the stress dependence of soil friction angle. During calculation for a point,

the value of ¢ corresponding to the average stress level of the two previously known

points and the new point is used. The peak friction angle of the sand obtained from

triaxial tests is used. The calculated bearing capacity of circular footings increases

linearly with Cooting diameter in a double-log scale diagram. It is very close to the

bearing capacity obtained from centrifuge tests. The wedge angle is reduced by the

increase of Cooting size, due to the decrease of soil friction angle with stress level.

The bearing capacity can also be estimated using a constant friction angle dJ~q for

each footing corresponding to the mean normal stress along the failure surface. The

mean normal stress can be !'dated to the bearing capacity using Meyerhof's formula.

Using the friction angle ¢.." the effect of (ooting me on bearing capacity can also

be well simulated. This procedure: provides a basis (or the finite element analysis of

bearing capacity using a constant friction angle for each footing, as presented in the

next chapter.
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Chapter 6

Finite Element Analysis of Axially
Loaded Ring Footings

6.1 Introduction

6.1.1 Finite element method

The finite element (FE) method, originally developed in the 1940s in struc:tucal

engineering (Hrennikoff, 1941; and McHenry, 1943), is a numerical method for 5010.;

iog engineering and mathematical problems such as structural analysis, beat transfer,

fluid 80w and electr~magnetic potential The finite element technique has been used

in geotechnical engineering (or various purposes, including settlement and consolida-

tion of soils, embankments and excavations, earth retaining structures and foundation

analysis (Desai. and Christian, 1977). For many problems in which the analytical solu

tions are Dot available, the finite element technique C8.D be employed for dealing with

complicated conditions of geometries, loads and materials. For structural problems.

the displacement (or stiffness) method is usually adopted. The procedure of the ti·

aite analysis mainly includes discretizing tbe body into small finite elements, defining

the strain.displacement and stress-strain relationships according to the selected dis

placement function and material properties, deriving the element stiffness matrix and

equations, assembling the element equations to obtain global equations, introducing
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boundary conditions and solving the equations for unknowns.

For nonlinear elasto-plastic materials like soils, of which ~he solution is load path

dependent, an incremental method is essential for the solution of the finite elemen~

equations. The load is divided into a number of small iDcnments and the solution at

the end of an increment is the summation of the solutions of all previous increments.

Using this method. the complete load-displacement history can be defined.

The equilibrium equations of the incremental analysis can be derived by applying

the principle of virtual work. which is stated as follows (Logan, 1992);

Wlf a deformable body in equilibrium is subjected to arbitrary virtual (imag

inary) displacements associated with a compatible deformation of the body. tbe

virtual work of external forces is equal to the virtual strain energy of the internal

stresses."

For a finite element with a volume of V and a surface of 5, the matrix of tbe displace-

ment functions ({T/J}) is related to the matrix of nodal displacements ({d}) by

{,p} = [N]{d} (6.1)

where matrix IN] represents the shape functions. The strain matrix ({E}) and stress

matrix ({a}) are expressed as

{E} ~ [Blld}

{a} = [DIlE}

in which (Dj is a material stiffness matrix, IBI is a matrix derived from (NJ.

The internal virtual strain energy of a finite element is

and the external work is in the form of

(6.2)

(6.3)

(6.4)

6W = {5d}T{p} + j,{5¢}'{T}dS + 1v{5¢}T{X}<!V (6.5)
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where {od} is the vector of virtual nodal displacemeots, {ow} is the vectOr of virtual

displacemeot functions. {P} is the nodal load matrix, {T} is the matrix surface forces

and {X} is the matrix of body forces.

Combining the above equations and using the principle of vinual work expressed

yield

oU=oW (6.6)

[(OdIlBIT[DJdV{d) = {'d}T{p} + {'d)T fsINJ'{TldS + {'d}T [iNJT{X}d\"

(6.7)

That is

[klld} = {PI + {f.} + {M (6.8)

in which

Ikl =[iBJ'IDJlBldV (6.9)

{f.} = fslNJT{T}dS (6.10)

{M = [rNJT{X}dV (6.11)

Equation (6.8) is the equilibrium equation of the finite element. It can be assem

bled to the global equilibrium. equations of the problem. By introducing boundary

conditions the I!quations may be solved for unknowns. For the foundation analysis in

the PreROt study, due to the presences of soil nonlinearity, large soil deformation and

complicated boundary conditions, the global equilibrium equations should be solved

by incremental procedure. A general purpose 6..nite element computer code ABAQUS

will be used to implement the analysis.
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6.1.2 Modelling of foundations

The finite element method associated with soil plasticity theories has been used to

investigate the bearing capacity of foundations on cohesive soils (Davidson and Cben,

1976; Zienkiewicz d 01.• 1975; Zienkiewicz d aI.• 1978). ~ative fl!W finite element

solutions or bearing capacity of cohesionless soils are available.

Griffiths (1982) carried out finite element ualysis or strip rootings on rrictional ma

terials, separately assessing Nc due to soil cohesion c, N, due to overburden pressure

q and N., or cohesionless soil with weight. The Mobr·Coulomh failure criterion with a

Bow rule or zero plastic volumetric strain was employed. The elastic modulus £=2)( lOS

kPa and Poisson's ratio 11=0.35 were used. Perfect plasticity was implemented using

the visc:o-plastic tEChnique (Zienkiewicz and Cormeau, 1972, 1974). Eight-node quadri.

lateral, isoparametric elements were adopted. A rooting was modelled by applyiog a

prescribed vertic:al displacement 00 nodes of soil contacting with the footing. For a

smooth rooting (6=0) the nodes could freely move homontally; ror a rough footing

(d ~ rP) borizontaJ. reitraints to the nodes were added. This simplicity caD avoid tbe

convergence problem associated with the use or interface elements (Griffiths, 1982).

The reiults presented by Griffiths (1982) suggest thAt the finite element metbod

can be used with confidence to estimate the bearing capacity ractors Nc and N,. Good

results or N., have been obtained. The dependence of N., on rooting roughness is

confirmed. The calculated values or N., decrease: with footing size, which is thought to

be due pa.rt.ly to the non·linear stress distribution beneath the rooting. 1D computing

N." convergence was very slow using the displacement control technique, due to the

shear concentration at the footing edge. The convergence rate decreases with increasing

,p. A rP value of 35° seemed to be the limit to obtain a reasonable N., using the raw

visc(>-plastic technique.

Desai (1968. 1971) and Desai and~ (1970) performed finite e1mtent analyses
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of bearing capacity of footings on days. A footing was modelled by either a uniform

pressure or a rigid displacement. The finite element method has given satisfa.eto~·

r!Sults for predicting the stresses and deformations of footings. It is shown that the

average bearing pressure obtained by applying a uniform pressure is very close to that

by applying a rigid displacement. Griffiths (1982) indicated that applying a uniform

pressure on the surface of coh!SionJess soil is unrealistic because the soil at the footing

edge can D.ot sustain D.orma! stress.. In such a case, the pressure at the edge must be

zero. Analysis of strip loads on e1asto-plastic soil was also carried out by Hoeg d aL

(1968).

Cbristian (1977) also introducm the use of finite elemeD.t technique for bearing

capacity. It is stated that in using the incremental procedure for soil nonlinearity,

solution accuracy and cost depend on many factors such as the number of elements,

element type and the size of load increments. It is concluded that reducing the size of

load increments can obtain the most benefit. The most popularly used isoparametric

elements are good for nonfrietional materials.. They may result in much greater ultimate

loads than those estimated by bearing capacity theory.

Chen (1975) presented an example of finite element analysis of a rigid strip footing

on a c-q, weightless soil using the Drucker-Prager elasto-perfectly.plastic model. The

effects of mesh size and displacement increment size are studied. It is found that the

finest mesh resu.lts in softest ~ponse (small!St load). The smallest increment size of

loading yields lowest bearing pressure.

In summary, effort in using the finite element method for the bearing capacity of

foundations has been made in the past decades. Compared with other methods such

as the characteristics analysis and the limit equilibrium approach, the finite element

technique for bearing capacity is far from mature and its application is limited. It

seems that satisfactory results have been obtained only for foundations OD. cohesive
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soils. For foundations on sands. very few good data have been reponed. It is believed

that the difficulty results from the complexity of soil behaviour. rather than due to the

finite element teehnique itself or the capacity of today's computers. The bottleneck

in the finite ~ement application to bearing capacity problems is how to select proper

constitutive models for soils.

6.2 Soil Plasticity and Incremental Modelling

The stress-strain constitutive rf!lation of soil is complicated because of the follow

ing features of soils: (I) The stress-strain relationship is nonlinear; even at very low

strain. plastic deformation occurs. (2) Soils are frictional materials; the strength and

stress-strain relation are pressure dependent. (3) Soils exhibit volumetric change when

sheared; during drained shearing, a 'loose' soil tends to contract and a 'dense' soil tends

to dilate.

The strain of a soil includes two parts: elastic strain and plastic strain. A constitu

tive model describing the elast~plastic response of tbe soil must include four aspects:

(1) the elastic deformation behaviour; (2) a yield surface in the stress space witbin

which tbe soil deforms e1astical.ly; (3) a plastic potential defining tbe mode of plastic

deformation when the soil is yi~ding; and (4) a hardening rule describing tbe expansion

of tbe yield surface during plastic deformation. The increment of plastic strain during

yielding is normal to the plastic potential. When the plastic potential is identical to

tbe yield surface, the 80w rule is termed associated, otherwise nonassociated.

For a SOil. the total increment of strain matrix ({de}) is the sum of increment of

elastic strain matrix ({tk"}) and the increment of plastic strain matrix ({dEP }), that is

(de) ~ (de') + (de")
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The yield surface is assumed to be

f(q,IC):: 0

lLDd the plastic potential is

(6.13)

(6.14)

where q represents the stresses, IC is a parameter describing the hardening rule and {

is a soil parameter. The increment of plastic strain is given by the flow rule as

(6.15)

The increment of stress matrix ({dtT}) is related to the increment of elastic strain

matrix by

(6.16)

where [D"'] is the elastic:: stifEnl!SS matrix. Using Equation (6.12) and (6.15), tbe above

equation is expressed 8$

(da} ~ lUI {de} - [UP {~}

Differentiation of Equation (6.13) results in

{
8f}T 8f

d/~ - {da}+-d><=O
& 8.

The hardening parameter (IC) is a function of plastic strain. Therefore,

Combination of tbe above three equations yields

A- {~)'IU){de}
- {U}"[l)<J-IH~n~}
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By substituting the above equation to Equation (6.17), the relationship between

stress increment and the strain increment can be obtained in the form of

(da} ~ [U"] {dE}

where the elasto-plastic stiffness matrix (fVC"J) is

(6.21)

(6.22)

What is discussed above is a general proc«lure for the elasto-plastic incremental

analysis. A particular model, Cam-day, will be introduced in the foUowing for a further

discussioD and a better understanding of the el~plasticbehaviour of soil.

The Cam-clay model was origi.nal1y proposed by Roscoe and Schofield (1963) for

describing the elasto-plastic behaviour of clay. A modified versiOD was presented by

Roscoe and Burland (1968) and discussed in detail by Wood (1990). The model includes

an elastic theory, a yield surface. a flow rule and a hardening law. The parameters for

the model can be determined by triaxial compression tests. Cam-clay is widely recog

nized in both practice and academic circles because of its simplicity and satisfactory

accuracy compared with more realistic models. A good comprehension of Cam-day, a

pedagogic model, is very beneficial to understanding fundamental soil behaviour and

the feature of other particular models for soil.

The model is described in a three dimensional space, as shown in Figun: 6.1, con

sisting of two effective stress invariants (p and q) and the specific volume of soil defined

v=l+e (6.23)

where e is soil void ratio. The mean principal stress p and the deviator stress q are

expressed as

(6.24)
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Figure 6.1: Cam.-clay: (a) Yield locus and critical state line (CSL); (b) Normal com
pression line (NeL), unloading-reloading line (URL) and critical state line
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(6_25)

where 0'" (7, and O':J are the major, intermediate and minor effective principal stresses

respectively.

An important embodyment in Cam-clay is the critical state line (Schofield and

Wroth, 1968), which is the locus of shear failure points. At critical state, a soil develops

shear deformation without change in stress and volumetric strain, that is

where E, represents the deviator (shear) strain.

The critical state line (CSL) in the p-q space is taken as a straight line through the

origin. The relationship between the mean principal stre;,s p and deviatOr stress q at

critical state is

!=M
p

(6.27)

where M is a strength parameter, representing the slope of the critical state line.

As shown in Figure 6.1(b), the increment of elastic volumetric strain (£:l along the

unloading-reloading line is given by

(6.28)

where 6p is the increment of p, and ,. is the slope of unloading·rel.oading line (URL) in

the ID~tI space. For finite element analyses the increment of elastic deviator strain is

assumed to be

(6.29)

in which oq is the increment of q, and G is the elastic shear modulus of soil. In analysis,

a constant Poisson's ratio can be assumed (Britto and Cunn, 1987; and Wood, 1990).
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The CUIYl!nt yield surface of Cam-elay is an ellipse on the M space. The equation

of the ellipse is

(6.30)

where P. is the preconsolidation pressure of isotropic normal compression. wh.ich COD

trols the size of the yield surface; M is tbe slope of the critical state line. A.nother form

of the equatioD for the yield locus is

(6.3l)

in which the stress ratio 11 is in the form of

(6.32)

At critical state, ,,=M and p=p./2.

In Cam-day, the flow rule is assumed to be associated; the soil obeys the normality

condition. The plastic potential is identical to the yield surface, expressed as

9 ~ I =q' - M'P(]>. -p) =0 (6.33)

where 9 is plastic potential. The V@CtOr of plastic strain increments is in the direction

outward normal to the yield surface. Therefore.

(6.34)

where 6E: is the increment of plastic volumetric strain, J~ is the increment of plastic

deviator strain.

The size of the yield loci is controlled by P. at a constant shape factor M. The soil

hardening is related to isotropic compression. The change of yield loci is supposed to

be related to plastic strain increments, that is

(6.35)
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Figure 6.1(b) suggests that the specific volume of soil UDder isotropic normal com-

pression is

v=N->'lnp. (6.36)

where N is the spl!Ci6c volume when p.=I, >. is the slope of the isotropic nonnal com

pression line (NeL) in the lnp.v space. Then, the increment of the plastic volumetric

strain is given by

6£' = (~ - 1t)6p. (6.37)
• UP.

Comparing Equation (6.35) with Equation (6.37) yields the hardening law as

~= >.vr:.." (6.38)

~=o (6.39)

This means that the hardening of soil depends only on plastic volumetric strain. inde

pendent of plastic shear strain.

Cam-clay has been adopted in computer codes for finite element analysis of geotech

nical problems (Britto and Gunn, 1987; and Hibbitt et al., 1994). The model is con

siderl!<! to be suitable for describing the el~plasticbehaviour of clays, especially for

normally consolidatl!<! or tightly overconsolidated clays. For sands, plastic deformation

is due mainly to the deviator stress; high mean principal stress is required to produce

significant plastic deformation in isotropic compression (Tatuoka and Ishihara. 1974;

Lade and Duncan, 1975; Poorooshasb et al.., 1967; and Wood, 1990). For granular

materials like sands, the Drucker-Prager model can be employed.

6.3 Modified Drucker-Prager/Cap Model

The Drucker-Prager model (extended Von Mise:s criterion) was originally proposed

by Drucker and Prager (1952). The modified Drucker-Prager/Cap model in ABAQUS
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Figure 6.2; Yield surfaces of modified Drucker-Prager/Cap model

(Hibbitt d ai., 1994) will be used for the analysis of foundations on sand in this study.

The purposes of adding the cap yielding surface to the extended Drucker-Prager model

are to provide a plastic hardening mechanism and to control the volumetric dilation

when the soil yields during shearing. The How rule is associated in the cap region (f..)

and nonassociated in the shear failure region (f.) and transition region (fr), as shown

in Figure 6.2. The Drucker-Prager shear failure segment is a. perfectly plastic yield

surface, 011 which the plastic How results in volumetric dilation that causes the cap

yield surface to soften.

6.3.1 Failure surface

The shear failure surface of the Modified. Drucker-Prager/Cap model (Hibbitt d
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0,

Figure 6.3: Yield Surfaces of the ABAQUS Drucker-Prager model in the 'lI"-Plane

aL, 1994) is a straight line in the p-t space defined by

f,=t-ptan/J-d=O

in which

(6.40)

(6.41)

(6.42)

where D, d and K are soil parameters, p is the mean principal stress and q is the

deviator stress.

In Equations (6AO) and (6.41), fJ is the friction angle of soil in the t·p plane. K

controls the dependence of the yield surface on the intermediate principal stress. K = 1

implies that the yield surface is the von Mises circle in the :If-plane, as shown in Figure

6.3. The convexity of yield surface requires K 2: 0.778.
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It is known that the Mohr-Coulomb strength parameters c and tit are independent

of the intermediate principal stress (O"'l). It can be assumed that the value of 6 de

termined from triaxial compression test is equal to that from triaxial extension test

(Sutherland and Mesdare. 1969). H~r, the Drucker-Prager parameters P. K and d

are infl.uenced by 0"2. To use c and ¢ to determine the value of P and K. it is preferable

to make the Mohr-Coulomb model and the Drucker-Prager model provide the same

failure definition in triaxia! compression and extension. Hibbitt dol. (1994) deduced

that to match the response of triaxial compression and extension, the Drucker-Prager

parameters are given by

tanPtr = 36_~,; (6.43)

K _ 3-siD¢
(6.44)

tr - 3+sin¢

and

dv=c3
6_cc:.:tIt (6.45)

where I3r.r' KlY" and dtr represent P, K and d respectively under triaxial conditions.

The three equations above provide the Drucker~Prager model parameters which

match the Mohr-Coulomb model in triaxial compression and extension. Because K,.. ~

0.78 is required for the convexity of yield surface, Equation (6.44) implies tit :s 22".

Therefore, if'; is significantly gruter that 22", this approac:h may yield a poor Drucker

Prager match of the Mohr-Coulomb parameters.

As described in chapter 3, the values of tit of the dense sand are typically between 32"

and 47", depending on stress level. In this study, in order to adapt the Drucker~Prager

model for those high triaxia! ,; values, the failure surface f of the sand determined by

the calculated P,.. and K,.., as shown in Figure 6.4, is replaced by an equivalent yield

failure surface 1m defined by tI,.. and Ktr • The rule for defining 1m is that the distance

between points n and b in triaxial compression is equal to the distance between points
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"0.

Figure 6.4: Modification of Drucker.Prager yield surface

c and d. Using this rule. HIT is given by

tan,d, =Kl..+2taDf1t.._K';-K:..~
IT K~+2 K~+2 p

with

(6.46)

(6.47)

where p is the mean principal stress in soil. When 4 is zero or vuy small, the above

equation for tf" can be lttpressed as

tant1IT = ~:~tanPtr

where 0.78 $ K;r :5 1.0. For Ktr=l,

(6.48)

(6.49)

in which titp, Krr and rf" are modified Drucker·Prager parameters for triaxial matching.

144



For plane strain problems such as strip foundations, the Drucker-Prager model

parameters should be matched to provide the same 80w and failure response as Mohr

Coulomb model. It is known that the value of friction angle (dl) is about 10% higher

under plane strain conditions than under triaxial conditions. That is

(6.50)

where { is about 10% (Bishop, 1961, 1966; Meyerhof, 1963; and Hansen, 1970).

under plane strain conditions, the Drucker-Prager model parameters 8, K and d

are represented by /Jp. K,. and ~ respectively. Assuming K,,=1 whim means t=q.

Hibbitt d (11. (1994) demonst-rated. that {J,. and d,. are related to Mohr-Coulomb

parameters c and t/J,t by

sindl tanfJ",~
,. 9-tano,.,tan¢

~
ccos\Opl = 9 tan,Bpltan¢4t

(6.Sl)

(6.52)

where tb is the dilation angle in the pot plane as shown in Figure 6.2, For associated

80w (¢ =/Jp), this yields

tan/Jp = 3sin~
J3+sin2~",

d,. 3"" ....
c= J3+sin2\O,.

and for nondilatant 80w (tt = 0), it can be derived that

tanfJ". = V3sin¢7l

~ = V3cos\Opl

(6.53)

(6.54)

(6.55)

(6.56)

For the Drucker·Prager/Cap model, ¢ under shear failure conditioDS is typically be-

tween 0 to /1, By averaging the values of tan /Jp and ~ for associated 80w and Dondila-
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Table 6.1: Drucker-Prager parameters converted from c and ~ (for Ktr =K,.,=I)

Triaxial matching Plane strain matching
Friction angle (".="1 (.... ~l.l..)

"(d""..) tftr (degree) d,./' IJ,. (de",..) /'

20 34.12 2.12 32.68 1.59

25 40.09 2.11 38.18 L51

30 45.12 2.08 42.66 1.42

35 49.32 2.03 46.30 1.32

40 52.83 1.95 49.24 1.20

45 55.76 1.85 51.60 1.08

50 58.20 1.73 53.49 0.95

tant Bow using the four equations above. the apprarimate estimations of the Druclcer

Prager parameters for plane strain mat.ehing can be obtained from

tanP J3"" .... (1+ J3) (6.57)
"~--2- ";3+sin2~,.,

~ = J3,...... (1+ J3 ) (6.58)
c 2 J3 + siJJ.2 ¢I.,.,

The Drucker-Prager model parameters derived from c and ~ under triaxial condition

({=O) and plane strain condition ({=(U) are listed in Table 6.1.

In ring foundation analysis, soil under a circular footing (ring radii ratio n=O) is

in a condition close to triaxial testing (Okamura et al., 1997); the Drucker-Prager P.

K and d can be approximated by f/tr, KtT and d'tr. The results of centrifuge tests

presented in Chapter 4 indicate that the behaviour of a ring footing is similar to a

circular footing when the ring radii ratio is within 0.35. When n is increased to 0.9,
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the soil under t~:! footing can be considered under plane suain conditions and fJ",. d".

and K,,=1 are~ in analysis. The~fore, the values of 8 and d when K =1 for a ring

footing with a radii ratio n can be obtained as

where

o_fO ifn:S;O.35
.. -l 1.82(n - 0.35) if 0.35:S; n:S; 0.9

(6.59)

(6.60)

(6.61)

In analysis, when the value of d is small, the load increment required may be too

small; with the increase of d, the yil!l.d stress may be too low and tbe cap ma)' be in

tension space and a fatal error may ocarr. Reducing the value of R (see Sections 6.3.2

and 6.3.3) will improve the conditions. When d is too small, convergence may not

be guaranteed. In analysis, a relatively small c value is used for each footings. The

value of soil cohesion c used is assumed to be proportional to footing dimension. For

a circular footing 1 m in diameter, c is assumed to be equal to 5 kPa, in order tbat

the bearing capacity is Dot significantl}" increased and the convergence of the analysis

is ensured.

6.3.2 Yield surface

The yield surlace of a soil element is a boundary in the stress space within which

the soil behaves elastically; an increment of stress from the yield surface may lead to a

plastic deformation depending on the Sow rule. Accordingly, the plastic deformation

may result in a change of the yield surface and a new yield surface may be formed,

depending on the hardening law. The current yield surface of a soil is related to the

(effective) stress history of the soil.
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The yield surface of the modified Drucker-Pragerleap model in the ~t space con

sists of a straight line and a curved cap. The straight line is a Drucker-Prager shear

failure segment defined by Equation (6.40). This failure segment is a perfectl)' plas

tic yield surface without hardening or softening. Plastic ll.ow on the failure segment

results in plastic volume:ntric increase which onJy causes the cap to soften. The cap

yield surface, which hardens or softens as a function of plastic volumetric strain. is of

elliptical shape written as

and the transition yield surface is expressed as

in which R is a soil parameter which controls the shape: of the cap, c:r is a small number

for defining the transition yield .surface. The parameter P. is in the form of

.. -&I
P·=I+Rtan8 (6.64)

where the isotropic compression yield stress, "', defines the bardening law, which will

be discussed later in the following section.

Hibbitt et oJ.. (1994) suggests that an Q value between om and 0.05 should be

used, Prelim.inary computational results indicate: that the loading capacity of a footing

is not significantly affected hy the value of Q. Therefore, an Q value of 0.03 is selected

in the analysis, as suggested by ABAQUS manuals. The loading capacity decreases

slightly with R, which varies typically from 0 to L For the dense sand in this study,

an R value of 0.5 is adopted.
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Figure 6.5: Plastic potential of modified Drucker·Prager/Cap model

6.3.3 Flow rule and hardening law

To define the flow rule of a soil. a plastic potential (surfaa:) is used to indicate the

direction of the plastic strain vector on the yield surface. The plastic strain vector is

perpendicular to the plastic potential. When the strain vector is also perpendicular

to the yield surface, the flow rule is termed associated. Otherwise. it is nonassociated.

For associated Sow rule, the yield surface can be used as a plastic potential.

The surfaces of plastic poteotial of the modified Drucker·Prager/Cap model are

shown in Figure 6.5. On the cap yield surface, the plastic potential is associated. and

is given by

(6.65)

00 the shear failure surface and the transition yield surface, the plastic poteotial is
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nooassociated, defined by

g.~~I(P-P.)tanP]'+[(I+'"'",,,,,oJ (6.66)

Therefore, 9.. and 9. form a continuous and smooth potential surface. It sbould be

mentioned that the nonassociated plastic flow implies that the soil stiffness matrix is

not symmetric.

In the analysis, when the stress state of an element is outside the initially defined

cap yield surface, ABAQUS will adjust the cap position so that the stress state lies on

the yieJd surface.

The hardening law is defined by a piecewise relationship between the isotropic

compression yield stress CAl and the volumetric plastic strain (t:), as shown in Figure

3.7. This relationship is obtained in isotropic triaxial compression test. In analys~

the initial volumetric plastic strain (~) employed is corresponding to the initial stress

state when the analysis begins. It defines the cap yield surface at the start of analysis.

6.4 Finite Element Technique

This section introduces some basic teclmiques used in the analysis of the ring foot

ings. The main ideas presented here come from the ABAQUS manuals (Hibbitt d al.,

1994).

6.4.1 Element selection and isoparametric formulation

In ABAQUS (Hibbitt et aI., 1994), the axisymmetric elements are formulated in

an r-z coordinate system. Isoparametric formulation is used in order to exactly re~

resent rigid body modes and homogeneous deformation modes, which is necessary for

convergence to the exact solution when the mesh is refined. All the elements are in

tegrated numerkaUy and the victual work integral is replaced by a summation at the
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integration points. The integration caD be '"full" or "rMuced". For full intl!gJ'&tion. the

number of integration points is sufficient to exactly integrate the vinuaJ work. For the

reduced integration, the number of integration points is sufficient to exactly integrate

the strain field contributions which are one order less than the order of interpolation;

the higher-order contributions to the strain field will be ignored.

In reduced integration elements, the strains and stresses are calculated at locations

which provide optimal accuracy. In addition, the reduced number of integration points

decreases CPU time. A disadvantage of this pr~ure is that it may admit deformation

modes causing no straining at the integration points. These zero-energy modes cause

a phenomenon named "hourglassing" and result in ina.ccurate solution. This problem

is particularly severe in fim..order quadrilateral and hexahedra elmleots.

The isoparametric elements include quadrilaterals in two dimensions for plane and

axisymmetric problems and "brick" (hexahedra) in three dimensions. Non-isoparametric

elements such as wedge elements are only be used for awkward parts of the mesh.

Standard first-order elements are of constant strains. Altbough first-order isoparamet

ric elements can provide more than constant strain response, the higher-order content

is usually not accurate and has little value. The second-order elements are of linear

strains. For elliptic problems such as elasticity analysis, in which smoothness of~

lutions is assured, the second-order elements usually provide higher solution aceuracy

per degree of freedom.

For plasticity problems such &8 the foundation analysis in the present study, when

tbe solution approaches the limit loads. tbe pl&8ticity modes usually tend towards

hyperbolic behaviour and localizations arise. These discontinuities in the gradient field

should be well modelled. For a given number of nodes, tbe first-order elements are

likely to be the best, as they provide the most locations at which some component of

the solution gradient caD be discontinuous (the element edges). Therefore lirst-order
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Figure 6.6: lsoparametric element

elements are preferm:l. in such a case (Hibbitt d 01-. 1994. Nagtegall et tJi... 1974; and

Nagtegaa1 and De Jo08. 1981).

In this study. 4-node firstrorder quadrilateral elements of soil are chosen for the

axisymmetric analysis. In the analysis. isoparametric interpolation and full integration

are used. The isoparametric: element is shown in Figure 6.6. The isoparametric element

coordinates are 9 and h. ranging from .} to +1 in an element. The interpolation

function of the first..order quadrilaterals is

u = ~(1 - g)(1 - h)ul + ~(1 + 9)(1 - h)U2

+~(1 + 9)(1 + h)uJ + ~(1 - 9)(1 + h)u.

6.4.2 Interaction between soil and footings

(6.67)

In order to model the interaction between the deformable soil and the relatively

stiff aluminum footing. interface elements are used. The footing is idealized as a rigid
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Figure 6.7: Node ordering of interface element INTER2A

body; the surface of the rooting contacting the soil is treated as a rigid surface and is

represented by rigid surfacf: elements. For the surface of the soil eontaetiog the footing,

the interface elements use the nodes corresponding to the disaetized soil domain.

For each 4-node interface elmlent (INTER2A), thae are 2 nodes on each side of the

contacting surfaces of the soil and the footing. The two int~tionpoints are located

at the two ends. The node ordering of the interf.ac:e elements is shown in Figure 6.7.

A rigid body representing a footing has a master reference node common to aU of the

rigid surface element nodes. The nodes for defining the rigid surface elements are slaw

oodes, on which kinematic constraints sueb as boundary conditions cannot be applied,

but to which other elements can be connected. For the reference node, transitional and

rotational degrees of freedom are allowed. Kinematic constraints controlling the over

all motion of the rigid body must be defined at the reference node. Point loads can be

applied to both the reference node and the rigid surf~ element nodes. Distributed
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Figure 6.8: Contact pressure-clearancl! relationship for interface elements

loads can be applied to the rigid surface elements. The reference node can be used for

nodal output.

For the interface elements between the rigid surface and the soil, a finite-sliding

formulation is adopted. This formulation allows for separation and relative finite dis

placement. These elements satisfy the ronditions of equilibrium and continuity of

displacement in the normal contact direction and are able to transmit tangential shear

stress and normal pressure stress. When the normal stress: is reduced to zero, the

surfaces begin to separate, as illustrated in Figure 6.8. Separated surfaces come into

contact when the clearance becomes zero.

The tangential sbear stress is coupled with the normal stress by the effect of friction

between the two surfaces. The standard Coulomb friction model is used to define the

shear response. Using this friction modeJ, the contact surfaces do Dot slide as long as
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the equivalent shear stress is less than the critical shear stress (T.... ), or

(6.68)

where TI and T2 is the shear stresses in direction 1 and 2 respectively. The critical shear

stress is related to the normal stress by

(6.69)

where <r.. is the normal stress and ~, is the coefficient of friction of the interface.

For isotropic friction, the direction of the frictional slip is identical to thl!: direction

of the shear stress, expressed by

2=.1-
Teq "Yq

(6.70)

whl!:re 'Yi is the slip rate in direction i (i = 1 or 2), and 'YIrlI is the equivalent slip rate

given by

(6.11)

A stiffness method is used to implement thl!: friction theory. The condition of DO

relative motion is approximately modelled by stiff elastic behaviour. No relative motion

exists until frictional slip occurs. A larger value of the stiffness will more reasonably

model the actua! problem. As shown in Figure 6.9, the elastic stiffness is defined so

that the relative motion (elastic slip) £rom the point oCzem shear stress is bounded by

the allowable maximum elastic slip h ....) after which frictional slip OCCUJ$. Thl!: elastic

slip is selected according to the value of a ch.aracteristic element length (C.) calculated

by ABAQUS from the whole model. The maximum elastic slip is chosen as a small

fraction (F,) of li. A better approximation can be achieved with a smaller value of F"

at the expense of a slower convergence rate of the solution. As suggested by Hibbitt et

ai. (1994), a default F, value of 0.005 is selected in the analysis.
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Figun 6.9: Friction model of interface elements

6.4.3 Nonlinear solution technique

The finite element models for the foundation analysis are nonlinear and involve

many thousands of variables. The equilibrium equations may be symbolically expressed

(6.72)

where FH is the force component conjugate!: to the Nfl' variable and UU represents

value of the MfA variable.

ABAQUS provides Newton's method and Quasi.Newton's method for solving the

nonlinear problem of Equation (6.72) by developing a series of iDcrements (Hibbitt et

ai., 1994.). Because the nonassociated Bow rule is used in the elasto-plastic Drucker·

Prager/Cap model for the soil, the stiffness matrix of the problem is DOL symmetric.

Therefore, tbe Quasi.Newton's method, which requires that the Jacobian matrix should
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be sym.m~tric and not dlang~ greatly from on~ it~ratioD to the next, an not be used.

The (standard) Newton's m~thod is adopted as a numeric:al technique for solving the

nonlinear equilibrium equations throughout the history of interest.

In th~ Newton's method, when an apprarimate solution of U;M has been obtained

after an iteration I, if et:., is the difference between this approximate solution and the

exact solution, Equation (6.72) can be written as

(6.73)

Expanding this equation in a Taylor series about the appraxi.m.ate solution u~ yields

If u!" is a clO5e approximation to the solution, each ~, will be small. Therefore, the

above equation can be substituted by

(6.751

where

(6.76)

and

(6.n)

is the Jaoobian matrix. In this way, the next approximation to the solution is

(6.78)

and the iteration can be repeated to reacil a required accuracy.

The advantage of this method is its quadratic convergence rate when convergence

is ensured. However, Newton's method is expensive, because the Jacobian must be

formed and solved. at each iteration. Another major disadvantage of this method is
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that the calculation of the Jacobian matrix may be a problem, because in some cases

it is difficult to obtain the form of the matrix algebraic::ally. To ensure convergence,

all entries in F,N and ~I must be sufficiently small. In ABAQUS. the magnitude of

the increments can be controUed automatic::ally. The time step is controlled based Oil

the maximum force residuals foUowing each iteration. By comparing the consecutive

values of the force residuals, ABAQUS can determine whether convergence is likely. If

convergence is unlikely in a reasonable number of iteratioas, the load. incremellt will

be adj usted.

6.5 Implementation of Analysis

6.5.1 Introduction to ABAQUS

The finite element analysis of footings is carried out using a general purpose finite

element program., ABAQUS, which runs as a batch application (Hibbitt et al., 1994).

The input file indicates options required and gives data corresponding to these options.

ABAQUS data consist of model data and history data. Model data. define a finite ele

ment model illcluding the elements. Dodes, element properties and material behaviour;

history data indicate the sequence of events and loads applied to the model. Tbe pro

gram can be used to conduct various types of analyses, including static and dynamic

stress-displacem.ent analysis, heat transfer and thermal str!SS analysis, coupled pore

ftuid 80w and stress analysis and m&SS diffusion analysis. In ABAQUS, a basic concept

is that a problem history can be divided into steps. A step is any phase of tbe history:

a thermal transient or a dynamic transient. In statie stress analysis, a step just means

an analysis of a load change from one magnitude to another. In each step, a procedure

for defining the type of analysis (Le., static or dynamic strE!$ analysis) can be chosen,

and loading definitions and boundary conditions can be given. The procedure can be

c:hanged from step to step to provide the user great 8exibility in performing analyses.
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An analysis process may include different steps. Each new step will start the analysis

from the final state of the last step.

The element library in ABAQUS provides various choices of element types: solid

(continuum) elements, interface elements, rigid elements, infinite elements. membrane

elements, beam elements, elbow elements, hydrostatic 8uid elements, shell elements

and other special purpose elements. In an analysis, any meaningful combination of

elements can be used to make up the model. In the foundation analysis of this study,

solid elements are used in the soil domain, rigid elements ace adopted to represent the

foundation, and interface elements are employed to model the mction between soil and

foundation.

ABAQUS provides a broad range of material behaviour: elasticity, plasticity. ther

mal properties, hydrostatic ftuid and pore fluid flow properties, mass diffusion and other

material properties. The material library provides both linear and nonlinear, isotropic

and anisotropic material models. The properties related to a material are specified in

a data block. A name is given to the material specified in order to reference it when

corresponding element properties are defined.. Some material data can be defined as

functions of independent variables such as temperature and stress.

ABAQUS is well desigDed for result output including both nodal and element data..

It offers a printed. data file writWl during the analysis, containing information of model

definitiODS, history definitions, and nodal and element output results specified by the

user. ABAQUS also offers a results file and a restart file for postprocessing. The

results file, in either ASCU or binary format, is a computer readable output file. The

restart file may be read by ABAQUS to continue the analysis or may he processed

by ABAQUS/POST to display the results. The program of ABAQUS/POST provides

graphical postprocessing capacities including model plotting, deformed shape plotting,

contour Line plotting, vector plotting and X-V plotting. It can be conveniently used
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to display plots interactively or generate hardcopy plots.

6.5.2 Finite element meshes

For circular and ring footings under axial loading, 4-node axisymmetric quadrilat

eral elements (CA.X4) are adopted in the soil domain. Each footing is represented by

a rigid body consisting of 6 tw'(>node rigid surface elements (RAX2) and a reference

node. Between the rigid su.rf~ and the soil, 6 interface elements (INTER2A) are

defined to model the interaction between the footing and soil. Each 4-node interlace

element shares two nodes wit.h a rigid surface element and other two nodes with a soil

element. The finite element meshes for footings with ring radii rati05 of 0, 0.2, 0.35,

0.5,0.7,0.8 and 0.9 are shown in Figun B.l to B.7 in Appendix B, with 336, 368, 432,

400, 392, 324 and 336 soil e1em9.ts respectively.

In the soil domain of the meshes, the nodes on the left vertical boundary which is

the center line ofaxisymmetry, can only move in the vertical direction; rotation and

borizontal movement are restrained. For nodes on the horizontal line at the bottom of

the meshes, both vertical and horizontal movements are not allowed. For nodes on the

right side boundary, only horizontal movement is restrained.

6.5.3 Loading of footings

The initial stresses in soil are the hydrostatic stresses due to gravity. The vertical

stress (aa) of a soil element is calculated according to the depth of the element and

the unit weight of the soil. The horizontal stress (0'2 or 0'3) can be estimated using

the coefficient of earth pressure at rest (K.), measured using an oedomet.er ring as

introduced in chapter 3. The initial stresses are applied to the soil elements by a loading

step taking into acrount the soil body (gravity) force. In the process of loading, the

measured K. value of 0,42 is not ~Iy used. A Poisson's ratio (v) of 0.30 calculated
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£rom K. using Equation (3.4) is used. in the analysis. In this way, the initial stress

state in the soil can be modeUed.

In the finite element analysis, a footing is represented by a rigid body consisting of

rigid surface elements and a reference node. The rigid surface elements are ct'Innected

with soil elements using interface elements. The nodes of the rigid surface elements ace

slave nodes; kinematic constraints or boundal)' conditions cannot be applied on them.

Boundary conditions of a footing must be defined on the reference node which can also

be used for nodal output of loads and displacements. The reference node is a point

where the load on the footing is applied.

Loading is applied on a footing by giving a prescribed vertical displacement on

the reference node of the rigid body in a number of increments. The magnitude of a

loading (displacement) increment is automatically selected by ABAQUS depending on

the conditions of convergence. To ensure accuracy of analysis, the load is applied in 30

or more increments for each footing.

6.6 Analysis of Circular Footings

6.6.1 Procedure of analysis

Circular footings on the dense sand under axial loads have been analysed using the

FE technique. Because the friction angle of soil decreases with stress level. an equivalent

friction angle has been adopted for each footing. The tedmique of iteration has been

employed in the finite element analysis. For each footing, an initial bearing capacity

is 8.$UJl1ed in order to calculated the mean stress (.f) in soil using Equation (5.54).

Using the estimated 5, the friction angles at peak and critical state can be obtained

by Equation (3.20) to (3.21); the Young's modulus can be obtained using Equation

(3.9). After calculating the parameters of Drucker-Prager model by Equation (6.47)

and (6.49), finite element analysis of the footing can be carried out to obtain a new
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beariDg capacity. Then the calculated bearing capacity is used to repeat the analysis

until a required accuracy for the bearing capacity is reached. Analysis shows that the

convergency rate of iteration for the bearing capacity is very quick. For an assumed

initial bearing capacity which is about one half ofor twice the accurate bearing capacity

of a footing, a bearing capacity with an accuracy of 0.1 percent can be obtained b~'

repeating the iteration process for 3 or 4 times.

Preliminary analysis indicates that using the peak friction angle in the finite element

analysis leads to an over-estimated bearing capacity when compared with centrifuge

results. This suggests that a friction angle between the peak and critical state friction

angles should be used. The friction angle from triaxial data for FE analysis is expressed

(6.79)

where m. is a coefficient having a value from 0 to 1, tPm.z and tPu are peak and critical

friction angles expressed by Equation (3.20) and (3.21) respectively and are dependent

on stress level. Preliminary analysis of circular footings indicate that to best fit the

centrifuge data, an m. value of 0.5 should be used in the finite element analysis. This

m. value of 0.5 has been chosen so that the bearing capacity obtained from the FE

analysis is in accordance with that from the centrifuge tests when the footing diameter

is 1.0 m. A footing of 1.0 m in diameter is considered an intermediate footing in size

in the centrifuge tests and FE analysis.

The initial plastic: volumetric nrain (c:> in the soil under a footing is estimated

according to a mean principaJ stress, by using the relationship between the plastic

volumetric strain and mean principalnI1!SS as shown in Figure 3.7. This mean principal

stress in the soil is the average value to a depth of three times the footing diameter.
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Figure 6.10: Normalized bearing pressure (~) versus relative settlement (3/D) of
circular (ootings from FE analysis

6.6.2 Effect of footing size

Centrifuge test results presented in Chapter 4 show that the bearing capacity of

circular footings increases linearly with footing diameter in a double-log scale diagram.

The failure mode of footings tends to move from general shear failure to local shear

failure when the size of footings is increased. The effects of foundation size 00 the

behaviour of bearing capacity have been widely discussed (De Beer, 1965a; and Vesic,

1973; Clark. 1998).

To investigate the influence of footing siR using FE tedmique, several circular

footings under axial loads have been analyzed. The finite element model used for the

analysis is shown in Figure B.1. The relationships between the normalized bearing

pressure Rp expressed in Equation (4.18) and tbe relative settlement of footings with

diameters of 0.5, 1.0, 2.0, 5.0, 10 and 20 m are presented in Figure 6.10. In tbe figure.

s represents the settlement or a rooting; D is the rooting diameter. The normalized
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bearing pressur~ is in th~ form of

(6.80)

wh~re p is th~ averaged pressure act.ing on the footing, and "f is soil unit weight.

From Figure 6.10, it can be seen that th~ oonnalized bearing pressure decreases

with footing size. When th~ footing: diam~ter is incr~ased from 0.5 m to 20 m. the

normalized bearing pressure at failure is reduced from approximately 125 to 42; the

relative settlem~nt is increased from approrimat~ly 8% to 22%. It can also be seen

that the slope of th~ curves before failure loads decreases significantly with footing

size. The failure mode of th~ circular footings t~nds tn move from general shear failur~

to local shear failure when the footing diameter is increased.

The behaviour of load and settlement of circular footings from the FE analysis is

very close to that of circular footings in centrifuge tests as seen in Figure 4.12. A major

difference is that in centrifuge tests, there are peak loads for small footings. while in

the FE analysis there is no peak load for all footings.

The bearing capacity obtained from FE analysis is plotted against footing diamet~r

in Figure 6.11. The values of bearing capacity are 660, 960. 1450,2300, 4400. 7600

and 13000 kPa when the footing diameters are 0.2, 0.5, 1.0, 2.0, 5.0, 10 and 20 m

respectively. The bearing capacity calculated increases approximately linearly with

footing diameter in the double-log sc:aIe diagram. For comparison. the bearing capacity

of circular footings from centrifuge tests. represented by Equation (4.22) is also shown

in Figure 6.11. It can be seen that the bearing capacity of circular footings from

FE analysis is very close to that obtained from centrifuge tests. The difference is very

small when the footing diameter is greater than 0.5 m. For smaller footings, the bearing

capacity from FE analysis is higher.

The bearing capacity of circular footings of up to 20 m in diameter has been cal

culated in the FE analysis. In the centrifuge tests described in Chapter 4, the footing
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Figure 6.11: BeariDg capacity versus diaml!!ter of cittu.lar footings

diameter is limited to 7 m. The relationship between tbe bearing capacity and foot

ing diameter from centrifuge tests can be extrapolated as shown by the dotted line

in Figure 6.11. The bearing capacity of footing with diameters of 10 m and 20 m is

on the dotted line extrapolated from centrifuge test data. This indicates that when

calibrated with test data, the FE technique deve.loped can be used to estimate the

beari.ng capacity of large fOUDdatiollS.

With the increase of footing size from 0.2 m to 20 m, the bearing capacity obtained

from the FE analysis is increased from 660 kPa to 13.000 kPa, which leads to an

significant increase of stress 1l!Vl!1 in tbe soil and a decrease of friction angle shown in

Figure 6.12. The equivalent friction angle mobilized is reduced from 42.40 to 36.4°

when the footing diameter increases from 0.2 m to 20 m. For a log-cycle increase of

footing size, the mobilized friction angle of soil in reduced by 3°.
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Figure 6.12: Equivalent friction angle versus footing diameter in FE analysis

6.7 Axially Loaded Ring Footings

The behaviour of ring footings under axial loads bas heeD analyzed using the FE

t@Chnique. The meshes for the FE analysis of footings with ring radii ratios of 0, 0.2,

0.35,0.5,0.7,0.8 and 0.9 are shown in Figure B.l to Figure B.7. To investigate the

effect of footing size, four groups of (ootings with areas of 0.785, 1.57, 19.6 and 78.5

m2 are analyzed. The corresponding circular footing diameters are 1.0. 2.0, 5.0 and 10

mrespect.ively.

6.7.1 Load and settlement

Figure 6.13 presents the relationship between the average pressure applied and the

settlement of two groups of footings, in which 8 represents the settlement of footings,

and D is the outside diameter. In Figure 6.13(a), the area of the footings is 0.785 m2•

in which the outside footing diameters (D) are 1.0. 1.068, 1.lS5, 1.400 and 2.294 m
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Figure 6.13: Load versus settlement of ring footings from FE analysis
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when the ring radii ratios are 0, 0.35, 0.5, 0.7 and 0.9 respectively. The load-settlement

relationship is influenced greatly by the ring radii ratio (n). The slope of the curves

before failure loads increases with ring radii ratio. The failure load is maximum when

n=O.35; when n=O and 0.5, the failure loads are approximately equal; [or a ring footing

with n=O.9, the failure bearing pres:stlf'e is 660 kPa, which is about one half of that

of the circular footing (n=O). When n=O, 0.35 and 0.5, there are no peak loads: the

loads increase slightly with settlements after failure loads. For n=0.; and 0.9. there

are peak loads; the load is decreased after the failure of footings.

For the larger footings with an area of 19.63 m' in Figure 6.13(b), in which the

footing outside diameters are 5.0, 5.34, 5.77, 7.00, 11.5 m when the ring radii ratios

are 0, 0.35, 0.5, 0.7 and 0.9 respectively, the relationship between load and settlement

is similar to that of the smaller footings in Figure 6.13(a). It is seen that there are

differences between the two groups of footings. In Figure 6.13(b), there is no peak

load for the footing with n=0. 7. The decrease of load after failure is more obvious

for the footing with n=O.9. More importantly, the relative settlement (s/D) at failure

becomes greater. The slope of the CUI'VeS is smaller than that of the footings in Figure

6.13(a). With the increa.se of footing size, the bearing capacity increases but tbe failure

mode becomes more and more local.

Compared with the centrifuge test data shown in Figun!: 4.16 to 4.19, the FE tech·

nique is not very good for modelling the strain softening behaviour of footings after

failure loads. In centrifuge tests, all ring footings with various dimensions have failed

in general shear mode; the failure loads are the peak ones. In the FE modelling, only

footings with large ring radii ratio (n is greater than 0.7) fails in general shear model;

when n is smaller, the failure mode is local shear. However, in both centrifuge tests

and FE analysis, the load-settlement patterns are very similar hefore failure loads.

Therefore, from the view point of bearing capacity, the results of the FE analysis of
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ring footings are satisfactory.

6.7.2 Bearing capacity

As described in Section 6.6, the values of bearing capacity of circular footings of 1.0,

2.0, 5.0, and 10.0 m in diameter arl!: 1450, 2300, 4400 and 1600 kPa respectively. Four

groups of ring footings with the same areas as these four circular footings have been

analyzed using FE technique to investigate the effect of footing size and ring radii ratio

on bearing capacity. The calculated values of buring capacity ratio (Br ) as given by

Equation (4.27), which is defined as thl!: ratio of the bearing capacity of a ring footing

over the bearing capacity of a circular footing with the same area, all!: shown in Figure

6.14.

It is seen that at a given n value, the difference of the calculated B,. valul!:$ of the

four groups of footings is very small. This mggesta that the footing size has littll!: I!:fi"ect
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on the value of bearing capacity ratio. The Br values from the FE analysis are vel)'

dose to those from centrifuge tests. The FE technique adopted is good for calculating

the bearing capacity of ring footings under axial loads.

6.8 Summarizing Remarks

The FE technique has been used for bearing capacity analysis of ring footings on

dense sand under axial loads. In the analysis, a footing is represented by a rigid body

with rigid surface elements. 1D the soil domain, 4-node axisymmetric elements are

used. Between the footing and soil, interface elements have been adopted. Drucker·

Prager/Cap constitutive model is chosen to simulate the elast~plastic: behaviour of

soil. The analysis has been carried out using a general purpose finite element program,

ABAQUS. The footings were loaded by applying a prescribed vertical displacement in

a number of increments.

The effect of footing size on be&ring capacity has been investigated by analyzing

circular footings of 0.2 to 20 m in diameter. The normalized bearing pressure decreases

with footing size. The failure mode of the circular footings tends to move from general

shear to local shear when the footing size is increased. The bearing capacity increases

from 660 to 13000 lcPa when the footing diameter is from 0.2 to 20 rn. As a result, the

mobilized soil friction angle estimated is reduced from 42.40 to 36.4-, due to tbe increase

of stress level in soil. The relationship between tbe calculated bearing capacity and

footing diameter is approximately linear in a double-log scale diagram. Tbe bearing

capacity from FE analysis is very close to tbat obtained in centrifuge tests. Footings

witb ring radii ratios of0.2, 0.35, 0.5, 0.7, 0.8 and 0.9 have been analyred to examine tbe

effect of footing shape and size. The load·settlement pattern and the bearing capacity

behavior of the ring footings analyzed are similar to those observed on centrifuge tests.

In the literature, very few good results of tbe bearing capacity of foundatioDS on
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sand from finite element analysis have been reported. It is believed that the difficulty

is due to the complexity of soil behaviour. In this study, an attempt has been made to

use the FE technique to investigate the bearing capacity behaviour of ring: foundations

on a dense sand. Satisfactory results have been obtain@d. The paramet~ of the

Drucker-Prager/Cap constitutive model are chosen according to the triaxial behaviour

and other properties of soil. Some soil parameters are determined by comparing the

bearing capacities obtained from the FE analysis to those from the centrifuge tests.

The finite element technique is helpful for further understanding of ring foundation

behaviour. It can be very useful when experimental modelling is difficult. such as in

the case ofvery large foundation analysis. The procedure of tbe FE analysis developed

could be helpful for future research on tbe behaviour of foundations on cobesionless

soils.
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Chapter 7

Summary and Conclusions

7.1 Summary

This thesis presents research on the bearing capacity of ring foundations on a dense

sand. by means of centrifuge modelling, the method of characteristics and FE analysis.

The work has summarized the past research on ring foundations and has presented a

comprehensive review of the fundamentals of bearing capacity in order to provide an

insight to the behaviour of foundations. The silica sand used had an effective grain size

(dlo) of 0.22 mm and a uniformity coefficient of 1.69. Triaxial tests have been carried

out to determine the tbe variations of friction angle and plastic volumetric strain of

tbe sand at a density index of 90%. In situ stresses and elastic moduli wele measured

by oedometer compression tests. The friction between the sand and the aluminum

footings used in centrifuge \eSts was measured using a direct shear device.

Over 40 centrifuge tests of ring footings on tbe sa.Dd have been carried out at

accelerations from 10 to 160 gravities to investigate the effect of footing size, ring radii

ratio and load eccentricity on bearing capacity. The aluminum model footings of 15

cm2 in area each have ring radii ratios of 0, 0.2, 0.35, 0.5. 0.7, 0.8 and 0.9. Footings

were loaded vertically at a constant rate of 0.1 mm per second, witb load ea:entricity

ratios ranging from 0 to 0.375. A steel ball was positioned on each footing to transfer
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load from a load cell so that the footing could rotate during loading. Three linear

displacement transducers were used to measure the vertical displacement and rotation

of footings. Sand samples of up to 430 kg were prepared by a raining technique using

a diffuser consisting of three 200 m.m sieves and a shutter 'lrith 19 holes. resulting in

a density index of 90%. During the raining of sand. the falling height was kept at 50

em while the deposition intensity was 0.103 g/cm2 per second. Centrifuge model tests

have been verified using the principle of modelling of models. Based on the test results.

a procedure for evaluating the bearing capacity of ring foundations under axial and

eccentric loads has been presented.

The bearing capacity of circular footings under axisymmetric conditions has been es

timated by the method of characteristics (or slip-line method) using the Mohr-Coulomb

yield criterion of soil. The analysis has been carried out to investigate the effect of foot

ing size on bearing capacity. An elastic wedge under a rough footing has been assumed.

The wedge angle can be deriwd from the average mobilized friction angle according

to the stress level along the wedge surface. A program written in C has been devel

oped to implement the analysis. Analyses have been conducted using both a constant

equivalent friction angle and variable friction angle which depends on the stress level

in the soil.

Circular and ring footings under axial loads have been analyzed by the linite element

(FE) technique. A footing is represented by a rigid body coDSisting of rigid surface

elements. In the soil domain, 4-node axisymmetric element are used. Interface elements

are used to model the interaction between the footing and soil. The elast~plastic

constitutive relationsbip of soil is represented by the Drucker-Prager/Cap model. The

FE analysis has been conducted on circular footings of 0.2 to 20 m in diameter and

on ring footings of different dimensions and ring radii ratios. The effect of footing size

and shape on bearing capacity has heen investigated.
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7.2 Conclusions

According to the results obtained regarding to the soil behaviour. the centrifuge

modelling and numerical analysis of ci.rcuLar and ring footings, the roUewing conclusions

can be drawn:

1. In triaxial compression tests, both the peak and critical state friction angles of

the silica sand with density index of 90% decrease with stress level. When the cell

pres>ure is increased from 25 to 2500 kPa, the peak friction angle is reduced from

46.9" to 37.3°, while tbe critical state friction angle is reduced from 40.1° to 31.9".

For a log-cycle increase of stress, the friction angles are reduced by 4° to 5°. The

difference between the peak friction angle and the critical state ODe ranges from 5° to

r', decreasing with stress level.

2. The coefficient of earth pressure at rest (K.) of the sand measured using an

oedometer ring is 0.42. The value of Poisson's ratio determined from the value of K.

is 0.30. The measured elastic modulus, which inouses with stress, is close to that

proposed by Hardin and Richart (1963).

3. The coefficient of friction between the sand and the aluminum footings, measured

using a direct shear device, is 0.53. This value is equivalent to a friction angle of 2s

between the sand and the footingll_

4. Using the raining technique developed, dense uniform sand samples can be

obtained with good repeatability. The method is very effective for preparing large

sand samples.

5. For the circular footings in the centrifuge, the bearing capacity increases Hnearly

with footing diameter in a double-log scale diagram. For a footing with a prototype

diameter of 7 m, the measured bearing capacity is as high as 6200 kPa. The bearing

capacity factor N.., decreases with increasing footing size due to the reduction of soil
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friction angle with stress level and the effect of progressive failure of soil.

6. In centrifuge tests, the bearing capacity of constant area ring footings under

axial loads increases slightly when the ring radii ratio (n) is from 0 to 0.35. When n

is greater than 0.35, the bearing capacity decreases significantly. For a ring footing

with n=0.9, the bearing capacity is about one half of that of the circular footing. Test

results indicate that the bearing capacity of a ring footing can be obtained from the

bearing capacity of a circular footing with the same area using a bearing capacity ratio.

B~. The value of B~ is related only to the ring radii ratio, and is independent of footing

size.

7. For eccentrically loaded ring footings in centrifuge, the bearing capacity decreases

with load ecrentricity. The bearing capacity of a ring footing under ecCi!ntric load can

be expressed in terms of a reduction factor (R.) and the bearing capacity of the footing

under axial load. The value of~ is related only to load eccentricity, and is independent

of ring radii ratio and footing size.

8. The centrifuge test results indicate that the bearing capacity of an eccentrically

loaded ring footing on the sand (q.. ) can be estimated from the bearing capacity ratio,

En the reduction factor, ~, and the bearing capacity of an axially loaded circular

footing with the same area (q...,). That is

This procedure for evaluating the bearing capacity of ring footings under vertical loads

is very practical, because the bearing capacity of a circular footing can be obtained

using the generally accepted experimental data and theories available in the literature.

9. The bearing capacity of circular footings can be calculated by the method ofchar

acteristics using variable soil friction angle or equivalent constant friction angle. The

bearing capacities calculated. also increase approximately linearly with footing dimen

sion in a double-log scale diagram, and are close to the results obtained in centrifuge
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tests. The method for bearing capacit}· using an equivalent friction angle provides a

basis for the FE analysis of footings using constant friction angles.

10. In the FE analysis, tM bearing capacity of circular footings is increased from

660 to 13000 kPa when the footing diameter is from 0.2 to 20 m. As a result. the

mobilized soil friction angle is reduced from 42.40 to 36.40
, due to the increase of stress

level in soil. The load-settlement pattern and bearing capacity of ring footings obtained

from the FE analysis are very close to those from centrifuge tests.

11. This study presents an attempt at applying the finite element technique for the

beariug capacity of ring foundations on sand. The results from the analysis of circular

and ring footings are satisf.actory. It should be mentioned that some soil parameters

for the FE analysis have been determined by comparing the results of FE analysis with

centrifuge test. data.. The finite element model calibrated with experimental data. is

very useful for analysis of very large foundations or for other cases when experimental

results are not available or difficult to obtain.

7.3 Future Research

In this study. centrifuge tests have been carried out to investigate the bearing

capacity ~aviourof ring footings on sand under axial and eccentric vertical loads. The

metbod of characteristics has been employed to study tbe effect of footing size on the

bearing capacity of circular footings. The FE analysis has been carried out to calculate

the beariug capacity of circular and ring footings under axial loads. Good results have

been obtained. According to tbe results and experience obtained in this research. it is

recommended tbat future research on tbe bearing capacity of riog foundations should

be concentrated 00 the following.

1. Centrifuge modelling of ring foundations under inclined or torsional loads should

be conducted. because ring foundations are often used for tall structures which are
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subject to horizonw as well as vertical loads.

2. Centrifuge tests may be carried out to investigate the effect of otber factors on

the bearing capacity of ring foundations, such as the density of sand, the embedment

depth of foundations and tbe cohesion of soil. The presently available theories and

experience of strip and circuJar foundations should be very helpful to guide the design

of the experiment. It is expected that the results of a limited number of tests will be

enough to provide a insight to the influence of those factors.

3. Three dimensionallinite element analysis can be carried out for ring foundations

under eccentric and inclined loads. Three dimensional FE analysis will be more difficult

to conduct due to the large number of variables and slower convergence rate in analysis

of foundations under eccentric and inclined loads. The analysis shouJd be focused on

large foundations as they are mOrl!: practical. for small footings on sand such as one

of 0.1 m in dimension, the FE analysis may be difficult due to the high friction angle

of soil as the str!:Ss level is low.
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Appendix A

Load and Displacement of
Eccentrically Loaded Ring Footings

Centrifuge tests of eccentrically loaded circular and ring (OOtings with an area of

15cm2 were conducted at an acceleration of 100 gravities, as described in Chapter 4.

The footings are in five groups. with ring radii ratio n = 0, 0.35. 0.5, 0.7 and 0.9

respectively. The loading eccentricity varies from 0 to 0.315. The load, settlement and

rotation angle of 20 tests conducted at various ring radii ratio and loading eccentricity

ace given in Figure A.I to A.20 as follows.
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Figure A.I: Load and rotation angle versus vertical settlement (n=O, e/D=O)
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Figure A.2: Load and rotation angle versus vertical settlement (n=0, elD=O.075)
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Figure A.4; Load and rotation angle versus vertical settlement (n=O, e/D=O.25)

195



6000.------------,

~5000

54000

e3000
a.

~2000
~ 1000

n=O, eID=O.375

°0L-----c
5
O-----:,Oo------J

15
Vertical sottlomont (mm)

20,--------------,
n=O, 010=0.375

-5
0
'-------,5::-----:'10----",15'

Vertical settlement (mm)

Figure A.5: Load and rotation angle versus vertical settlement (n=O. ejD=O.375)
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Figure A.6: Load and rotation angle versus vertical settlement (n=O.35, e/D=O)
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Figure A.7: Load and rotation angle versus vertical settlement (n=O.35, ejD=O.075)

198



6000'.-----------~

~5000
6
e 4000
iil
ill 3000a
~2000
~ 1000

n=O.35, eID=O.37S

°0~----:S:---:-1::0:----:lS'

Vertical settlement (mm)

20.--------_-----,
n=O.35, eID=O. 5

-SOL.----S-----l0,-----.J1S

Vertical settlement (mm)
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Figure A.Ii; Load and rotation angle versus vertical settlement (n=O.5, ejD=O.lS)
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Figure A.12: Load and rotation angle versus vertical settlement (n=0.5, e/D=O.375)
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Figure A.13: Load and rotation angle versus vertical settlement (n=O.7. ejD=O)
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Appendix B

Finite Element Meshes for Axially
Loaded Ring Footings

The finite element meshes for seven circular and ring footings under axisymmetric

conditions with ring radii ratio n=O, 0.2, 0.35, 0.05, 0.7, 0.8 and 0.9 are shown in Figure

Bl to 87 respectively. The meshes have been used in the finite element analysis of the

bearing capacity of ring footings on sand, as presented in Chapter 6. In each figure,

the dashed line on the left side represents the axisymmetric center. At the bottom

of each mesh, both vertical and horizontal displacements are constrained; at the right

side of the mesh, only horizontal displacement is Dot allowed.
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Figure B.1: Finite element mesh for circular footing (n=O)
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Figure 8.2: Finite element mesh for ring Cooting with n=O.2
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Figure 8.3: Finite element mesh ror ring footing with n=O.35
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Figure B.4: Finite element mesh for ring footing with n=O.5
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Figure 8.5: Finite element mesh for ring rooting with n=O.7

217



.'
I

1 I
I

1 I
T

Figure 8.6: Finite element mesh for ring footing with n=O.8
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Figure 8.7; Finite element mesh for ring footing witb n=O.9
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