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Abstract 

An introduction to inverse electron demand Diels-Alder reaction (IEDDA) chemistry is 

presented in Chapter one. In Chapter two, work aimed at improving an IEDDA-driven 

domino reaction leading to 2-hydroxybenzophenone is presented. Chromone-fused 

electron deficient dienes were synthesized as substrates for IEDDA-driven domino 

reactions. The reaction between one of these dienes and in situ-generated enamines of 

cyclobutanone was optimized. The optimized conditions were then applied to a variety of 

enamines derived from piperidine and various ketones (cyclic and acyclic). In almost all 

cases, the yields were superior to those obtained using preformed enamines and 

previously reported conditions for the in situ formation of the enamine.  

In Chapter three the attempted synthesis of a new chiral [n](1,6)pyrenophane is described. 

The described synthetic approach mirrors that of a cyclophane previously reported by the 

Bodwell group, but makes use of cyclohexanone instead of cyclopentanone in the initial 

IEDDA-based multicomponent reaction.  The synthesis was brought to the final step, but 

none of the target pyrenophane was obtained from the key McMurry/VID reaction.    
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1 

1. Introduction 

 

1.1       Diels-Alder Reaction 

 

The Diels-Alder reaction is one of the most extensively used reactions in organic 

synthesis. Otto Paul Hermann Diels and his student Kurt Alder were the pioneering 

investigators of this reaction. Starting in 1928 they reported the formation of several 

adducts from the reactions of various 1,3-dienes with various alkenes and published a 

series of papers about this transformation.
1,2,3

 The versatility and applicability of the 

Diels-Alder reaction in synthetic organic chemistry was recognized by the award of the 

1950 Nobel Prize in chemistry to Diels and Alder. 

In the parent Diels-Alder reaction, 1,3-butadiene (1) (the diene, or the 4π electron 

component) reacts with ethene (2) (the dienophile, or 2π electron component)  to afford 

cyclohexene (3) (the adduct) (Scheme 1.1).
4
 From a basic perspective, it can be viewed as 

both a 1,4-addition of ethene to 1,3-butadiene and a 1,2-addition of 1,3-butadiene to 

ethene. 

 

 

 

   

Scheme 1.1 The parent Diels-Alder cycloaddition reaction. 
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The Diels-Alder reaction belongs to a large class of reactions called pericyclic 

reactions, i.e. those that are concerted and proceed through a cyclic transition state. For 

both components of the reaction, bond formation occurs through the overlap of π orbital 

lobes that are on the same face of the π system, i.e. in a suprafacial fashion (Scheme 1.2). 

As such, the Diels-Alder reaction is formally described as a [4πs + 2πs] cycloadduct. 

Woodward and Hoffmann have defined suprafacial addition as “the addition of lobes on 

the same side of the π system”.
5
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Scheme 1.2 Suprafacial addition and conservation of relative stereochemistry of the diene 

and the dienophile in the cycloadduct. 

 

A key consequence of the concerted nature (Scheme 1.2) of the Diels-Alder is that 

it is stereospecific. In other words, stereochemical relationships in the diene and/or 

dienophile are retained in the adduct.  More specifically, a cis-configured dienophile 4 

will react with diene 1 to afford a cis-4,5-disubstituted cyclohexene 5. Similarly, a trans-

configured dienophile 6 gives rise to a trans-4,5-disubstituted cyclohexene 7. Along the 

same lines, 1,4-disubstituted diene 8 leads to the formation of cis-3,6-disubstituted 

cyclohexene 9. 

 



 
 

4 

For a Diels-Alder reaction to occur, the diene must adopt an s-cis conformation. In 

fact, one of the more important contributors to the Diels-Alder reactivity of a diene is how 

difficult it is for it to adopt the s-cis conformation. For acyclic dienes, the s-cis conformer 

is less favorable than the corresponding s-trans conformer (Scheme 1.3).
6
 Even if the s-

cis conformer is very sparsely populated, the Diels-Alder reaction can still occur, albeit 

slowly. Diels-Alder reaction through the s-trans conformer is allowed from a molecular 

orbital perspective, but the product is a very highly strained trans-cyclohexene. Thus, a 

very high level of molecular distortion would need to occur to reach the transition state 

and the reverse reaction would be highly exergonic. Because of an enforced s-cis 

conformation, cyclic dienes usually react considerably faster than acyclic dienes.
7
 

(Scheme 1.4) 
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Scheme 1.3 The s-cis and s-trans transition states. 

 

 

 

 

 

 

 

 



 
 

6 

 

 

Scheme 1.4 Reaction of cyclic diene. 

 

Another stereochemical feature of the Diels-Alder reaction is endo/exo selectivity. 

This has to do with the arrangement of the substituents in the dienophile with respect to 

the diene in the transition state. When the substituent of a monosubstituted diene is 

toward the π system of the diene the term “endo” is used to describe the transition state 

and often the product arising from it. On the other hand, when the substituent is situated 

away from the pi (π) system the term “exo” is used. The two different products (16 & 17) 

are diasteromers. The adduct that results from the endo transition state is usually the 

major product and this is known as the “Alder rule.” 
8 

 

Scheme 1.5 The “endo” and the “exo” transition states. 
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The examples in the Scheme 1.5 involve a symmetrically substituted diene and a mono-

substituted dienophile. When an unsymmetrically substituted diene reacts with the same 

monosubstituted dienophile through an endo transition state, two regioisomeric products 

can form depending upon which way around the dienophile is oriented with respect to the 

diene. (Scheme 1.6) 

 

 

 

 

Scheme 1.6 Possible regiochemical outcomes of the Diels-Alder reaction when R1 is not 

equal to R2. 

 

The consideration of resonance is a simple, but quite effective way to predict the 

regiochemical outcome of Diels-Alder reactions (Scheme 1.7). The alignment of sites of 

partial negative and partial positive charge on the diene and dienophile usually leads to a 

correct prediction of the regiochemical result. 



 
 

8 

A diene (20) with an electron donating group at the 1 position would be expected 

to react with a mono-substituted electron deficient dienophile (22) to afford a 3,4-

disubstituted cyclohexene (23) ("pseudo-ortho" product), whereas a 2-substituted diene 

(21) would be expected to favour a 1,4-disubstituted alkene (24) ("pseudo-para" product). 

 

 

 

Scheme 1.7 Valence bond explanation of the regiochemical outcome of the Diels-Alder 

reaction with monosubstituted dienes. 

 

The situation becomes more complicated when the diene bears more than one 

substituent. Depending on the substitution pattern of the diene, the substituents can either 



 
 

9 

work against one another or work co-operatively to direct the regiochemistry. For a 1,2-

disubstituted diene, one of the electron-donating groups increases electron density at one 

end of the diene and the other one increases the electron density at other end (Scheme 

1.8). This can result in low regioselectivity. 

 

 

 

 

 

Scheme 1.8 Valence bond explanation of the regiochemical outcome of the Diels-Alder 

reaction with a disubstituted diene at positions 1 and 2. 

 

A more interesting case is when electron-donating groups are placed at the 1 and 3 

positions of the diene. Both substituents donate electron density to the same terminal 

carbon atom as in diene (30) (Scheme 1.9). The result of this is very high regiochemical 

control in reactions with an electronically biased dienophile (22). Furthermore Diels-

Alder reactions of such dienes are known to proceed rapidly. 
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Scheme 1.9 Resonanace consideration of the Diels-Alder reaction 

 

Some of the most widely used and reliable dienes like Danishefsky's diene 32, 

Brassard's diene 33 and Rawal's diene 34 (Figure 1.1), 
9,10,11

 have electron-donating 

groups at both the 1 and 3 positions of the diene unit and such dienes reacts with high 

regioselectivity. 
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The preceding discussion has dealt with electron-rich dienes and electron-

deficient dienophiles, but this is just one of the three different electronic types of Diels-

Alder reaction. As discussed below, this classification is based on the presence or absence 

of the electronic nature of the two reaction components, which corresponds to electron-

donating groups or the electron-withdrawing groups on the dienes and dienophiles.  More 

formally, the three types of Diels-Alder reactions can be categorized according to the type 

of frontier molecular orbitals (FMO) interactions that are dominant as the cycloaddition 

takes place. In fact, the energy differences between the HOMO of one component and the 

LUMO of the other component determine which type of Diels-Alder reaction takes place. 

  The parent Diels-Alder reaction (between 1,3-butadiene 1 and ethylene 2) can be 

represented by the molecular orbital energy level diagram shown in Figure 1.2. The 

HOMOdiene - LUMOdienophile and the HOMO dienophile - LUMOdiene energy differences are 

about equal and quite large. Reactions of this type are referred to as neutral Diels-Alder 

reactions, since the extent of orbital interaction is inversely proportional to energy 

differences, meaning neither interaction will be dominant and the rate of this Diels-Alder 

reaction will be slow (Scheme 1.10) 
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As introduced earlier, the parent Diels-Alder reaction requires very forcing 

conditions. The same is true for reactions in which the diene and/or the dienophile 

have/has electronically neutral substituents. For reasons that will become clear shortly, 

the same is true for reaction partners that are both electron rich and both electron 

deficient. 

 

 

 



 
 

13 

 

1.2 Normal Diels-Alder reaction 

 

The normal Diels-Alder reaction takes place when electron-donating substituents 

are present on the diene and electron-withdrawing substituents reside on the dienophile. 

Attachment of an electron donating group results in the raising of the energy of its 

frontier molecular orbitals, whereas the presence of an electron-withdrawing group on the 

dienophile has the effect of lowering the energies of its frontier molecular orbitals 

(FMOs). These complementary changes to the FMOs of the reacting species cause the 

HOMOdiene –  LUMOdienophile energy gap to decrease and the HOMOdienophile - LUMOdiene 

energy gap to increase relative to the parent system. The reduction in the HOMOdiene – 

LUMOdienophile energy barrier results in an increase in the rate of reaction, which permits 

the normal Diels-Alder reaction to be carried out under far milder conditions the than 

neutral Diels-Alder reaction (Scheme 1.11). Most Diels-Alder reactions fall under this 

category and this is why it is described as "normal".  
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1.3 Inverse electron demand Diels-Alder reaction (IEDDA) 

 

The IEDDA reaction occurs when electron withdrawing groups are attached to the 

diene and electron donating groups are attached to the dienophile. Similar to the normal 

Diels-Alder reaction, the complimentary electron rich/electron poor pairing of the 

reaction partners has the effect of lowering one of the HOMO-LUMO energy differences 

relative to the neutral reaction. Specifically, the HOMOdienophile - LUMOdiene interaction is 

the dominant one in the IEDDA reaction. As with the normal Diels-Alder reaction, 

appropriate substituted dienes and dienophiles can undergo Diels-Alder reactions under 

mild conditions (Scheme 1.12). 
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As stated earlier, electron rich dienes bearing electron-donating groups at the 1 

and 3 positions such as Danishefsky's diene 32 and Rawal's diene 34 have enjoyed 

widespread use in the synthesis of natural products because of their high reactivity and 

regioselectivity.
12

 Dienes that are electronically complementary to Danishefsky's and 

Rawal's dienes, i.e. those that have electron withdrawing groups at the 1 and 3 positions, 

would also be expected to exhibit high reactivity and predictable regiochemistry in the 

IEDDA reactions. Similar to the normal Diels-Alder reaction, the net effect of having 

electron-withdrawing groups at the 1 and 3 positions is that they work co-operatively to 

electronically bias the diene (Scheme 1.13). As a result, an electronically rich and biased 

dienophile, e.g., dienophile 36, will react with its counterpart diene in a regioselective 

manner.    
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1.4 Dienes 

Dienes bearing electron-withdrawing groups in the 1 and 3 positions were 

identified as potentially reactive and regioselective dienes for studies of the IEDDA 

reaction in the Bodwell group. Simple electron-deficient dienes bearing electron-

withdrawing groups at 1 and 3 positions had been reported previously and had been found 

to polymerize, presumably as a consequence of the very low-lying LUMOs. For example, 

the synthesis and easy polymerization (in a 1,4-fashion) of dienes 40-43, was reported in 

1981 by Hall and Ahn.
13 
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 Diene 44 was also found to undergo same IEDDA reactions when generated in 

situ, but polymerized in its pure form. To combat the issue of polymerization of the 

simple electron deficient dienes, the Bodwell group turned their attention towards the 

synthesis of more heavily substituted or annulated systems. The expectation was that this 

would stabilize these dienes (kinetically and thermodynamically) and thus discourage 

polymerization. 

Cycloalkane-annulated dienes were investigated first. The first report of cycloalkene-

annulated diene 50 in the group was reported by Pi and Bodwell (Scheme 1.14)
14

 in 1997.  

Cyclohexenone 45 was subjected to a bromination/dehydrogenation sequence to give 

bromoketone 46. Immediate protection of the ketone as a cyclic acetal yielded 47. A 

halogen-metal exchange was performed by treatment of 47 with n-butyllithium, and this 

was followed by the addition of DMF to give aldehyde 48. Horner-Wadsworth-Emmons 

(HWE)
15

 reaction of 48 with a phosphorus ylide yielded diene 49. Removal of the 

protecting group afforded electron-deficient diene 50. 
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Using the general approach in Scheme 1.14, other electron-deficient dienes 51-53 

(Figure 1.6) were also synthesized by the group. Dienes 51-53 were found to be stable 

enough to be isolated and purified using standard techniques, but self-reacted in an 

unidentified way when stored at room temperature. Storage at  ̶ 20 
o
C under nitrogen 

extended the shelf life to several weeks, but it was found to be most convenient to build 

stockpiles of the much more stable diene 49 and generate fresh 50 as needed.        
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Dienes 50-53 reacted with a variety of electron rich dienophiles to give IEDDA 

adducts (Scheme 1.15). In all cases, nothing less than complete regioselectivity was 

observed. For example, diene 50 reacted with ethyl vinyl ether (54) to afford adduct 55 as 

a single diastereomer. In addition to the complete regioselectivity, the reaction proceeded 

with complete endo-selectivity. 

 

 

 

The synthesis of coumarin-fused diene 58 was reported later by the group in 1999 

(Scheme 1.16)
16

 in only one synthetic operation from salicylaldehyde 57 and dimethyl 

glutaconate 56.  Diene 58 was found to be more stable than dienes 50-53, and can be 

exposed to air for years without change. The increased stability comes with lower 

reactivity. However, the use of stronger dienophiles, like enamines, gave rise to IEDDA 

reactivity. In most cases, IEDDA adducts were not observed. Aromatized products arose 

from subsequent reactions. For example, reaction of 58 with enamine 59 presumably 

afforded adduct 60, which underwent 1,2-elimination of pyrrolidine and dehydrogenation 

to afford dibenzo[b,d]-6H-pyran-6-one 62. Subsequently, it was found that the dienophile 

(enamine) could be formed in situ. Again, complete regioselectivity was always observed.   
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Chromone-fused diene 63 (a constitutional isomer of 58) was then identified as a 

potentially more useful diene for IEDDA reactions leading to aromatic products via a 

similar domino process (Scheme 1.18). 

 

 

 

  In fact, diene 63 was found to react as expected with enamines to give rise to an 

IEDDA adduct 65, which could undergo 1,2-elimination of HNR2 to afford 

dihydroxanthone 66. Instead of undergoing the dehydrogenation to give 67, an 
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"intramolecular elimination" took place to give 2-hydroxybenzophenone 68. The presence 

of an excellent internal leaving group (stabilized phenoxide) situated beta to relatively 

acidic hydrogen atom is likely why the new aromatic ring was formed in this fashion 

rather than dehydrogenation (Scheme 1.18).
17 

 

A series of other dienes 63, 69, and 70 was synthesized, but only preliminary 

work was done on them. The main objective of this work is to carry out more in-depth 

studies on the IEDDA reactivity of the chromone-fused dienes 63, 69 and 70 (Figure 1.7). 
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Chapter 2 

2.1 Introduction 

One of the major aims of this project was the investigation of the IEDDA 

chemistry of the related dienes 63, 69, and 70 (Figure 1.7, Page 22). To achieve this aim, 

the first objective was to synthesize the dienes. 

2.2 Results and Discussion 

2.2.1 Synthesis of chromone-fused diene 63 

 Diene 63 was first synthesized by Akiba et al. (Scheme 2.1).
1
 Their Synthesis 

involved the aldol condensation of 3-formylchromone 71 with ethyl acetate in the 

presence of TBSOTf and 2,6-lutidine. The reaction progressed in high yield giving rise to 

63 in one synthetic operation. 

 

 

A later report from the Bodwell group showed that diene 63 can also be 

synthesized using the Horner-Wadsworth-Emmons (HWE) modification of the Wittig 

reaction.
2-4

 The HWE reaction typically affords only the E-isomer of the newly formed 

alkene when a stabilized ylide is used, i.e. an ylide bearing an anion-stabilizing group like 
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the ylide derived from triethyl phosphonoacetate. The HWE reaction approach was 

chosen to gain access to diene 63. Thus, commercially available 3-formylchromone 71 

was reacted with the ylide derived from triethyl phosphonoacetate to afford diene 63 in 

74% yield. As expected, only the E-isomer was formed, as was evident through the large 

coupling constant (J = 15.1 Hz) between the two protons attached to the newly formed 

alkene. 

 

In contrast to the previously reported procedure, in which diene 63 was isolated by 

column chromatography, it was found that it could be obtained in pure form through 

crystallization of the crude product from absolute ethanol. The 74% yield is slightly better 

than that obtained using column chromatography (69%).
17 

2.2.2 Synthesis of phenyl ketone substituted diene 70 

 Diene 70 was also synthesized using the HWE methodology according to a 

previously reported procedure in the Bodwell group. In this case, the synthesis involves 

two synthetic steps. The first step was the generation of phosphonate 74, which was 

obtained from the reaction of commercially available 2-bromoacetophenone 72 with 

triethylphosphite. The first step is an SN2 reaction to afford intermediate 73. The bromide 
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ion plays a dual function in the reaction pathway. The bromide ion first serves as a good 

leaving group that facilitates the attack by the phosphorus lone pair of triethylphosphite.  

The bromide ion then reacts with intermediate 73 via an Arbozuv dealkylation reaction to 

afford phosphonate 74 and ethyl bromide. The low boiling point (37 
o
C  ̶  40 

o
C) of ethyl 

bromide means that it could be removed from the reaction mixture through distillation. 

(Scheme 2.3)
2 

 

Using HWE reaction conditions,
6
 the carbanion generated by the reaction of 

phenyl ketone phosphonate 74 with NaH was reacted with 3-formylchromone 71 to afford 

the diene 70 (Scheme 2.4).
2 

The previously reported process called for a reaction of 24 h, 

but it was found by (tlc analysis) that some 3-formylchromone remained after this time. 

Extending the reaction time to 30 h resulted in the complete consumption of 3-

formylchromone, and diene 70 was isolated in 78% yield. This represents a slight 

improvement over the previously reported yield of 70%. 
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Similar to the synthesis of diene 63, only the E-isomer of the newly formed 

double bond was formed as this was clearly evident through large coupling constant of  

15.1 Hz  between the two vinyl protons. Column chromatography afforded diene 70 in 

78%, which is slightly better than the previously reported yield of (70%).
2,5,17 

 

2.2.3 Synthesis of sulfone substituted diene 69 

          A stockpile of diene 69 was made available by the previous Bodwell group 

members. Reporting on the synthesis of diene 69 by the Bodwell group,
2
 the synthesis of 

diene 69 was also accomplished employing the HWE reaction methodology. The 

synthesis of the required phosphonate 78 consisted of a 3-step sequence (Scheme 2.5).
2, 
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Commercially available benzenethiol 75 acted as the starting material and was 

reacted with paraformaldehyde in the presence of concentrated hydrochloric acid to give 

chloromethyl phenyl sulfide 76, which was then reacted with triethylphosphite at reflux to 

bring about an Arbuzov reaction to give phosphonate 77. This was then oxidized with 

H2O2/HOAc to afford the desired sulfone phosphonate 78 
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To complete the synthesis of diene 69, the ylide derived from phosphonate 78 was reacted 

with 3-formylchromone 71 to afford diene 69 (Scheme 2.6)
2, 5

 Similar to the other dienes 

within the scope of this work, only the E-isomer of this diene was formed, which was 

evident from large coupling constant of 15.0 Hz between the protons of the newly formed 

double bond. 

2.3 Dienophiles for IEDDA reaction 

Enamines derived from cycloalkanones were used as dienophiles for IEDDA 

reactions with the chromone-fused dienes. Generally, enamines are known to be among 

the more reactive electron rich dienophiles.  Previous work in the Bodwell group showed 

that enamines derived from cycloalkanones are good candidates for the investigation of 

this IEDDA reaction with the dienes under consideration.
7
’
17 

Enamines for these reactions 

can be synthesized (preformed) prior to reaction with the diene preformed, or they can 

also be synthesized in situ during the course of the domino reactions. The standard 

procedure for generating these enamines preformed is to reflux the ketone or 

cycloalkanone and an appropriate secondary amine in benzene with azeotropic removal of 

water (Scheme 2.7). 
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Enamines can also be synthesized in situ in the course of the IEDDA reaction by 

adding the enamine precursors (secondary amine and ketone) to the reaction mixture. 

Water is liberated in the process of enamine formation, so a drying agent can be added 

such that water does not retard the reaction. Generating the enamine in situ offers a great 

advantage of saving time, resources and effort. Furthermore, the formation and/or 

isolation of enamines derived from certain ketones can be difficult. 

The IEDDA reaction for the synthesis of hydroxybenzophenones can be 

conducted using any of the two methods above. Carrying out this reaction using the 

initially reported in situ method of synthesis involves using the conditions shown in 

Scheme 2.8(a) with pyrrolidine as the secondary amine and dichloromethane as the 

solvent.  The preformed method also involves adding the preformed enamine to a stirred 

solution of the diene and dichloromethane at room temperature (Scheme 2.7(b)). 
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2.4 Reaction optimization 

Prior to this work, both the in situ and preformed methods had been used to 

synthesize cycloalkane-fused compounds (2-hydroxybenzophenones). For enamines 

derived from C5 and C6 (Table 2.1)
7 

entries 2 and 3, both methods gave good yields of the 

2-hydroxybenzophenones derivatives.    For enamines derived for C7 and C8, only the 

preformed method afforded the derivatives produced (Table 2.1, Entries 4 and 5). In the 

case of the C8-derived enamines, the yield was poor. The C4-derived enamine is known to 

be very difficult to synthesize, so only the in situ method was employed and it gave the 2-

hydroxybenzophenones in rather low yield (26%) (Table 2.1, Entry 1). 
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Table 2.1 Reaction of diene 63 with the in situ generated and preformed enamines 

 

 

Entry n Time (h) % Yield 

In situ 

Method 

% Yield 

Preformed 

Method 

Product 

1 1 1.0 26 -- 81a 

2 2 0.25 85 78 81b 

3 3 25 80 84 81c 

4 4 24 n.r. 79 81d 

5 5 24 n.r. 10 81e 

 

 

Derivative 81a was identified as an attractive target because it is a potential 

precursor to benzocyclobutene diester 82. Thermal ring opening of 82 would give rise to 

o-xylylene 83, which was envisaged as a reactive electron deficient diene for further 

IEDDA transformations (Scheme 2.9).
7 
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Having established the fact that the initial preformed method of 

hydroxybenzophenone synthesis did not give rise to derivative 81a, the initial in situ 

method of synthesis was also applied as the only suitable alternative for the synthesis of 

derivative 81a. This method was successful for the synthesis of derivative 81a, but the 

major drawback was the low yield (Table 2.1, Entry 1). Very low yields like 26% will not 

allow for further exploration of chemistry on derivative 81a. The reaction mechanism for 

the formation of derivative 81a was presented initially in Scheme 1.18.
7
  

Related IEDDA reactions in the Bodwell group had been observed to respond 

very well to optimization, so work aimed at the improvement of the 26% yield for 81a 
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was initiated. The parameters that were varied include the secondary amine, the solvent, 

the number of equivalents of the secondary amine, the number of equivalents of the 

ketone and the temperature. 

 

2.4.1 Secondary amine for reaction optimization 

A small set of secondary amines (pyrrolidine, piperidine and morpholine) was 

employed in the reaction leading to 81a. Using the original conditions for the synthesis of 

81a, yield went from 26% with pyrrolidine, to 50% with morpholine to 84% with 

piperidine (Table 2.2).    

To try and understand the cause of the great variation in yield, the nature of the 

three enamines was considered. Stork reported in his earlier work on enamines that 

pyrrolidine-based enamines are more reactive towards electrophiles than piperidine-based 

enamines, which in turn are more reactive than morpholine-based enamines. The general 

order of reactivity by Stork as recorded in the literature is as follows: pyrrolidine > 

piperidine > morpholine.
8
 The higher reactivity of pyrrolidine-based enamines compared 

to their piperidine-based analogues has been explained by the higher p-character of a 

nitrogen lone pair in a five-membered ring compared to that of a six-membered ring, as 

evidenced  by a lower first vertical ionization potential of pyrrolidino compounds than the 

corresponding  piperidino compounds.
9
 Replacement of a CH2 group in piperidine by a 

more electronegative oxygen atom further increases the ionization potential and 

consequently reduces nucleophilicity of a morpholine-based enamines.
9 
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Table 2.2 Effect of secondary amine on yields 

Entry Secondary 

amine 

In situ- 

generated 

enamine 

Yield (%) Product 

1  

 

 

 

 

26 

 

2  

 

 

 

 

50 

 

3  

 

 

 

 

84 

 

 

 

Curiously, the yields of the reactions leading to 81a do not correlate with enamine 

reactivity. The most reactive enamine gave the lowest yield and the least reactive enamine 

gave the intermediate yield. The moderately reactive piperidine-based enamine gave the 

best yield (Table 2.2). The reason(s) for this are not clear. Upon consideration of the 
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assumed reaction pathway (Scheme 1.18), several reactions occur on the way to 81a and 

the secondary amine is involved at various points during the course of the reaction. Thus 

the effect of changing the secondary amine may have different (and contrasting) effects at 

its various points of involvement in the reaction (enamine formation, IEEDA reaction, 

1,2-elimination of the amine).
7 

 

2.4.2 Solvents for reaction optimization 

The three reactions described above were performed in dichloromethane. To 

probe the effect of the solvent, the same set of three reactions was conducted using four 

additional solvents: toluene, tetrahydrofuran (THF), 1,4-dioxane and acetonitrile.   

Table 2.3 The effect of different solvents on reaction optimization 

 

Entry Solvent Sec. amine Time (h ) Yield 

(%) 

1 dichloromethane pyrrolidine 0.75 26 

2 dichloromethane piperidine 12 84 

3 dichloromethane morpholine 24 50 

4 acetonitrile pyrrolidine 5 31 

5 acetonitrile piperidine 6 85 
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6 acetonitrile morpholine 13 56 

7 tetrahydrofuran pyrrolidine 6 39 

8 tetrahydrofuran piperidine 12 65 

9 tetrahydrofuran morpholine 30 60 

10 toluene pyrrolidine 5 26 

11 toluene piperidine 5 46 

12 toluene morpholine 72 35 

13 1,4-dioxane pyrrolidine 48 36 

14 1,4-dioxane piperidine 23 42 

15 1,4-dioxane morpholine xx xx 

 

 

For each of the five solvents, the best yield was obtained with piperidine as the 

secondary amine and the lowest yield was obtained with pyrrolidine.  It is worth noting 

that dichloromethane is known to react slowly with pyrrolidine, which may account for 

the lower yields using pyrrolidine.
7
 The observed yield for the reaction spanned a rather 

broad range, i.e. 42% in 1,4-dioxane, 85% in acetonitrile. A virtually equal yield (84%) 

was obtained using dichloromethane, but the reaction proceeded more rapidly in 

acetonitrile (6 h) than it did in dichloromethane (12 h) (consumption of 63, tlc analysis).    
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Table 2.4 Piperidine-acetonitrile combination 

 

Entry 2
o
. amine 

(equiv.) 

Cyclobutanone 

(equiv.) 

Time (h ) Yield 

(%) 

1 1.2 2.5 4 66 

2 1.2 1.2 4 81 

3 2.5 1.8 12 69 

4 0.25 1.8 18 84 

 

N/B: Yields were isolated yields 

The piperidine/acetonitrile combination was chosen for further optimization work, 

not only because of the faster reaction, but also because of the higher boiling point of 

acetonitrile (82 
o
C). This left the door for the investigation of a broader temperature range 

than in the lower boiling dichloromethane (40 
o
C). 
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2.4.3 The number of equivalents of the secondary amine 

A series of experiments was conducted to determine the effect of varying the number of 

equivalents of the secondary amine (piperidine) (Table 2.5). Very good yields (84-88%) 

were obtained between 0.25 and 1.2 equivalents, with the best yield coming from the 

reaction with 0.5 equivalents. Decreasing the number of equivalents below 0.25 resulted 

in a steady drop in the yield and a slowing of the reaction. Even at 0.05 equivalents (5 

mol%), the reaction still proceeded meaningfully (39%), which means that it can be 

thought of as organocatalytic. In contrast to the trend toward increasing rate of 

consumption of 63 with increasing equivalents of piperidine, increasing the number of 

equivalents from 1.2 to 2.5 resulted in a drop in yield to 66% and an increase in the time 

required for the consumption of 63 (12 h). The reason for this seemingly anomalous 

behaviour is unclear.   

Table 2.5 Effects of varying the number of equivalents of secondary amine on yield 

 

Entry Sec. amine Equivalents Reaction time (h) Yield (%) 

1 piperidine 2.5 12 66 

2 piperidine 1.2 6 85 

3 piperidine 0.5 12 88 

4 piperidine 0.25 16 84 
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5 piperidine 0.10 18 66 

6 piperidine 0.05 168 39 

7 piperidine 0.01 168 2 

9 piperidine 0 48 n.r. 

  

The significant progress of the reaction with as little as 5 mol% of the piperidine 

provides further evidence for a catalytic function of the secondary amine. As shown 

previously, the liberation of secondary amine from the initial IEDDA adduct (Scheme 

1.18) provides a pathway through which the secondary amine can act as an 

organocatalyst.
7 

 

2.4.4 The number of equivalents of the ketone 

Varying the number of equivalents of the ketone also had a significant effect on 

the reaction outcome. The reason for using 1.8 equivalents of the cyclobutanone up to this 

point was that this was the amount that had been used in the work original performed by 

Krista Hawco.
17 

It had been established earlier that the reaction involving 1.2 equivalents 

of piperidine and 1.8 equivalents of cyclobutanone in acetonitrile gave 81a in 85% yield 

(Table 2.3, Entry 3; Table 2.6, Entry 2). Upon decreasing the number of equivalents of 

cyclobutanone to 1.2 (a little more than the 1.0 equivalents required by the stoichiometry 

of the reaction), the yield fell slightly to 81% (Table 2.6, Entry 3). The yield also fell 

when the number of equivalents of cyclobutanone was increased to 2.5. In this case the 
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yield was 66% (Table 2.6, Entry 1). Therefore, 1.8 equivalents is close to the optimal 

value. 

Table 2.6 Effect of varying the number of equivalents of the ketone 

 

Entry Secondary amine Equivalents of ketone Reaction time (h) Yield (%) 

1 piperidine 2.5 4 66 

2 piperidine 1.8 6 85 

3 piperidine 1.2 4 81 

 

2.4.5 Temperature change on reaction optimization 

Up to this point, the best yield of 81a had been obtained using 1.8 equivalents of 

the ketone, 0.5 equivalents of the secondary amine and acetonitrile as the reaction solvent. 

Employing these conditions, a small set of reactions was carried out at different 

temperatures to establish the effect of temperature (Table 2.7) 
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Table 2.7 Effect of temperature change on reaction yield 

 

Entry Ketone  

(equiv.) 

Sec. amine 

(equiv.) 

Temperature (0 
o
C) Yield (%) Time (h) 

1 1.8 0.5 0 69 24 

2 1.8 0.5 22 88 12 

3 1.8 0.5 40 84 4 

4 1.8 0.5 60 39 1 

 

 

  As would be expected, the apparent rate of reaction increased with increasing 

temperature. Thus the reaction at 0 
o
C took 24 h and afforded 81a in 69% yield (Table 

2.7, Entry 1). At 22 
o
C, the yield improved to 88% but took only 12 h (Table 2.7, Entry 

2). Increasing the temperature to 40 
o
C resulted in a 4 h reaction that gave 81a in 84% 

yield (Table 2.7, Entry 3). Although a further increase in temperature to 60 
o
C reduced the 

reaction time to just 1 h, the yield dropped sharply to 39% (Table 2.7, Entry 4). Again, the 

complex nature of the reaction makes it difficult to draw concrete conclusions about what 

underlies the variation in yield. Whatever the case, room temperature and slightly above 

appears to be the optimal temperature range. 
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2.5 IEDDA reaction with ketones within the scope of work 

  Having established that the best yield was obtained using piperidine as the 

secondary amine (0.5 equivalents), acetonitrile as the solvent, 1.8 equivalents of the 

ketone and room temperature or 40 
o
C as the best temperature, these conditions were 

adopted as the optimized conditions. These conditions were then applied to the reaction of 

diene 63 with a variety of ketones other than cyclobutanone. For each ketone separate 

reactions were performed at room temperature and at 40 
o
C. The results are summarized 

in Table 2.8.  

 

 Table 2.8 Optimized results using conditions |A| and |B| 

 

Entry Ketone Optimized 

Condition |A| 
(rt.) 

Yield       Time 

Optimized 

Condition |B| 
(40 

o
C) 

Yield          Time 

Product formed 

1 

 

88%            18 h 

 

90% 
a
        18 h 

a 

80%            16 h 

 

   --               -- 
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2 

 

88%            20 h 86%            18 h 

 

3 

 

45%            24 h 86%          23 h 

 

4 

 

n.r            48 h n.r.            48 h product not formed 

5 

 

n.r            48 h n.r.            48 h product not formed 

6 

 

81%            18 h 62%           16 h 

 

7 

 

65%            24 h  63%          24 h 

 



 
 

45 

 

8 

 

65%            31 h  63%        29 h 

 

9 

 

81%            24 h 78%         22 h 

 

10 

 

n.r. n.r. Product not formed 

11 

 

n.r. n.r. Product  not formed 

12 

 

n.r. n.r. Product not formed 

 

n.r.: Indicates no reaction took place 

N/B: Yields were isolated yields 

90%
a
: Indicates large scale reaction with ketone 79 
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The reactions were monitored by tlc and reaction times given correspond roughly 

to the time taken for the last trace of the starting material (63) to disappear. Going 

through the entries in Table 2.8, the reaction with cyclobutanone (79) (Entry 1, Table 2.8) 

represents the best result from the optimization work. All of this work was performed 

using 200 mg of 63. Upon increasing the scale of this reaction to 2 g of 63, the yield 

increased slightly to 90%. At 40 
o
C, a small decrease in the yield (80%) occurred. 

Cyclopentanone (91) (Entry 2, Table 2.8) reacted with 63 to furnish 81b in excellent 

yields both at room temperature (88%, 20 h) and at 40 
o
C (86%, 18 h). Cyclohexanone 

(92) reacted with 63 (Entry 3, Table 2.8) to afford derivative 81c in only moderate yield 

at room temperature (45%, 24 h) but the yield of 81c improved greatly when the reaction 

was performed at 40 
o
C (86%, 23 h). 

Clearly, the outcome of the reaction is strongly influenced by the size of the 

cycloalkanone. According to tlc analysis, the reactions involving cyclobutanone and 

cyclopentanone proceeded considerably more quickly than the corresponding reaction 

with cyclohexanone during the first several hours, but the time required for the complete 

consumption of 63 was not markedly different for the three homologous ketones. The use 

of cycloheptanone (93) (Table 2.8, Entry 4) and cyclooctanone (94) (Table 2.8, Entry 5) 

did not lead to the formation of the desired product either at room temperature or at 40 
o
C 

To gain some understanding of the differences in behaviour of the various 

cycloalkanones, it would be useful to consider the rate-determining step. It may be 

assumed that the rate-determining step is the initial IEDDA reaction because only the 

starting material and products are observed during the course of the reactions (tlc 
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analysis). Both reaction components have electronically biased π systems, so a strongly 

asynchronous transition state can be expected, i.e. with much more advanced bond 

formation between the more highly charged carbon atoms of the diene and dienophile 

(see Figure 1.2, Figure 2.1). The IEDDA reaction can also proceed through an endo or an 

exo (with respect to the NR2 group) transition state, but in either case the steric 

interactions between the oxygen atom of the chromone system and the allylic CH2 group 

of the enamine appear to be an important factor according to the examination of simple 

molecular models. In the cyclobutanone-derived enamine, the ca. 90
o 

bond angles in the 

4-membered ring mean that the allylic CH2 group is further from the chromone oxygen 

atom of the diene than the corresponding CH2 group in the cyclopentanone derived 

enamine, in which the bond angle is ca. 112
o
.
10

 In moving to the cyclohexanone derived 

enamine, the bond angle is about 120
o
, which means that the all CH2 group is even closer 

to the chromone oxygen atom. A further point is that the cyclobutanone and 

cyclopentanone derived enamines are planar, or close to planar respectively, whereas the 

higher homologs are not. This means that other CH2 groups can conceivably come into 

play during the approach of the two reaction components. A detailed computational study 

would surely provide more concrete conclusions than the speculative thoughts provided 

here. 

Unlike with the cycloalkanones, carrying out the reaction using acetone (95) and 

2-butanone (96) employing the optimized conditions, the reactions failed to progress even 

minimally (tlc analysis). This is perhaps surprising because the two ketones are not 

significantly different from the cycloalkanones electronically and the enamines that they 
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should form would be expected to be sterically undemanding. When acetone (95) and 2-

butanone (96) were used as both a reactant ketone and as the solvent, the reaction 

proceeded smoothly to afford their respective products. Acetone (95) (Table 2.8, Entry 6) 

afforded 81d in good yield (81%, 18 h) at room temperature and in moderate yield at 40 

o
C (62%, 16 h). 2-butanone (96) (Table 2.8, Entry 7) gave rise to a mixture of derivatives 

81e and 81f in a ratio of (1:1) with a combined yields of (65%, 24 h) at room temperature, 

and (63%, 23 h) at 40 
o
C. The product mixture arises because 2-butanone is capable of 

forming two different enamines. The ca. 1:1 product distribution is surprising because 

enamine formation/reaction normally favors the less substituted enamine. For example, 

the organocatalytic  reaction of 2-butanone with aldehyde 111 in the presence of (L)-

proline gave β-hydroxyketone 112 in 65% yield (Scheme 2.10).
11

 Reaction occurred only 

through the less substituted enamine of 96. It is not clear why such a significant 

proportion of the reaction of 96 with 63 proceeded through the more substituted enamine. 

 A selection of other ketones was then subjected to reaction with diene 63. 2-

norbornanone (97) (Table 2.8, Entry 8) afforded 81g in 65% yield at room temperature 

(32 h) and 63% yield at 40 
o
C (30 h). Tetrahydro-4H-pyran-4-one (98) (Table 2.8, Entry 

9) gave 81h in good yield both at room temperature (81%, 24 h) and at 40 
o
C (78%, 20 h). 

Acetophenone (99), 1-indanone (100) and 2-tetralone (101) all failed to react with diene 

63 after 48 h (tlc analysis) at room temperature and at 40 
o
C. The ketones and the diene 

were recovered. For the aryl ketones 99, and 100, enamine formation  by azeotropic 

removal of water is known to be very difficult, so the lack of reactivity here is likely a 

reflection of the nature of the ketones.
12

 Enamines of acetophenone is unstable and 
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rapidly polymerizes in the presence of a trace of acid.
12  

The
 
poor reactivity of 2-tetralone 

derived enamines, which are actually commercially available, may be attributed to steric 

interactions between the oxygen atom of the chromone system of the diene and the 

aromatic proton ortho to the enamine formed by 2-tetralone (Figure 2.2). 
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With a set of results using the optimized conditions (Table 2.9, Conditions A), 

comparisons could be made with the result using the original in situ conditions (Table 2.9, 

Conditions B)
17

 and those obtained using preformed enamines (Table 2.9, Conditions 

C).
17 Upon examination of Table 2.9, it is clear that the optimized in situ conditions give 

superior yields than the original in situ conditions, except for the case of acetone 95 

(Table 2.9, Entry 6). In this instance, the yields were both good (Conditions A, 81%; and 

Conditions B. 87%) and acetone was used as both reactant ketone and solvent in 

optimized condition A. The optimized in situ condition were also consistently superior to 

the preformed conditions (Conditions C),
17

 except when no reaction occurred using 

Conditions A, e.g. with cycloheptanone (93) as the ketone (Condition A; n.r.; Conditions 

C, 78%). 
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Table 2.9 Comparison of yields using the optimized in situ Conditions |A|, the original in 

situ Conditions |B|
17

 and the original preformed Conditions |C|.
17 

 

Entry Ketone |A| |B| |C| Product formed 

1 

 

90% 26% n.r. 

 

2 

 

88% 85% 78% 

 

3 

 

86% 80% 84% 

 

4 

 

n.r. n.r. 79% 
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5 

 

n.r. n.r. 10% 

 

6 

 

81% 87% n.r. 

 

7 

 

65% -- -- 

 

 

8 

 

65% 54% -- 

 

9 

 

81% 78% -- 

 

10 

 

n.r. --. -- product not formed 
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11 

 

n.r. -- --. product not formed 

12 

 

n.r. -- -- product not formed 

 

Conditions A Optimized in situ conditions 

Conditions B Previous in situ conditions
17 

Conditions C Previous preformed conditions
17 

n.r.  Indicates no reaction 

 

 Similar IEDDA reactions were also carried out using chromone-fused diene 70 

employing the optimized in situ conditions. The outcome of the reactions with chromone 

fused diene 70 using the optimized conditions were presented in Table 2.10, (Conditions 

A) along with previous results using the original in situ conditions (Table 2.10, Condition 

B)
17

 and other results obtained previously using the preformed enamines (Table 2.10, 

Conditions C).
17

 As with diene 63, the outcome of the best results were obtained using the 

optimized in situ results (Conditions A). The advantage of using Conditions A was again 

most pronounced when cyclobutanone 79 was used as the ketone (Table 2.10, Entry 1). 

Here the yield improves from 15% using Conditions B
17

 to 96% using Condition A. A 

less dramatic, but still very substantial increase in yield was achieved in the case of 
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cyclopentanone (Conditions B: 30%; Conditions A: 83%) (Table 2.10, Entry 2). Not 

surprising, no reaction occurred using acetophenone 99, 1-indanone 100, 2-tetralone 101 

e.t.c. For 2-butanone 96, the ratio of the two products was again 1.1:1 

 

Table 2.10 Comparison of yields using the optimized in situ Conditions |A|, the original 

in situ Conditions |B|
17

 and the original preformed Conditions |C|.
17 

 

Entry Ketone |A| |B| |C| Product formed 

1 

 

96% 15% -- 

 

2 

 

83% 30% 83% 

 

3 

 

86% 80% 71% 
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4 

 

n.r. n.r. -- product not formed 

5 

 

n.r. n.r. -- product not formed 

6 

 

87% -- -- 

 

7 

 

63% -- -- 

ratio 1.1:1 

 

8 

 

n.r. -- -- product not formed 

9 

 

n.r. n.r. --. product not formed 
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10 

 

n.r. n.r. n.r. product not formed 

 

Conditions A Optimized in situ conditions. 

Conditions B Previous in situ conditions.
17 

Conditions C Previous preformed conditions.
17 

N/B: Yields were isolated yields 

n.r. indicates no reaction 

No prior work had been done with diene 69 using Conditions B,
17

 so the results of 

the reaction of diene 69 employing the optimized in situ conditions (Conditions A) can 

only be compared to those using preformed enamines (Conditions C)
17 

(Table 2.11). As 

for diene 63 and 70, the best results were obtained using the optimized in situ conditons 

(Conditions A) in most of the cases. The only exception is in the case were Conditions A 

resulted to no reaction. Compound 103a (Table 2.11, Entry 1) was not synthesized using 

a preformed enamine (Conditions C),
17

 but the advantage of using Conditions A 

presented itself again. Compound 103a was obtained in 82% yield (Table 2.11, Entry 1). 

An increase in yield was also achieved working with cyclopentanone 91 (Table 2.11, 

Entry 2) using Conditions A. Optimized in situ Conditons A gave an excellent yield of 

95% yield against 83% yield using Conditions C.
17

 The same outcome was obtained 

working with cyclohexanone 92 (Table 2.11, Entry 3). Conditions A gave yield of 80% 

yield, but Conditions C
17

 gave just a 67% yield of the same compound 103c. As before 

Conditions C
17

 gave rise to compound 103d in 76% yield working with the pyrrolidine-
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derived enamine cycloheptanone 93 (Table 2.11, Entry 4), but the use of conditions A 

resulted in no reaction. This is the only case where Conditions A do not give the best 

result.  It is not surprising that no reaction occured using acetophenone 99, 1-indanone 

100 and 2-tetralone 101 (Table 2.11, entries 8,9 and 10). Acetone (95) and 2-butanone 

(96) were used both as a reagent and solvent under Conditions A. This gave rise to 103e 

in 83% yield (Table 2.11, Entry 6) and a 1.1:1 mixture of 103f and 103g (Table 2.11, 

Entry 7). The ratio of 103f:103g is exactly the same as for 102e:102f and 81e:81g, which 

suggest that the nature of the electron withdrawing group on the chromone fused diene 

skeleton has essentially no effect on the product distribution. 

 

Table 2.11 Comparison of yields using the optimized in situ Conditions |A| and the 

original preformed Conditions |C|
17 

 

Entry Ketone |A| |B| |C| Product formed 

1 

 

82%  n.r. 
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2 

 

95%  83% 

 

3 

 

80%  67% 

 

4 

 

n.r.  76% 

 

5 

 

n.r.  -- product not formed 

6 

 

83%  n.r. 

 

7 

 

61%  -- 

 

 

 

-- 

ratio 1.1:1 
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8 

 

n.r.  -- product not formed 

9 

 

n.r.  -- product not formed 

10 

 

n.r.  -- product not formed 

 

Conditions A Optimized in situ conditions. 

Conditions B Previous in situ conditions.
17 

Conditions C Previous preformed conditions.
17 

N/B: Yields were isolated yields 

n.r. Indicates no reaction 

In looking at the results for diene 63,70 and 69, it can be seen that the optimized 

in situ conditions (Conditions A) gave better results than both the original in situ 

conditions (Conditions B) and the preformed enamine conditions (Conditions C) in most 

cases. Not surprisingly, the most dramatic improvement were obtained using 

cyclobutanone, which is the ketone for which the optimization work was done. Both sets 

of in situ conditions fail for cycloalkanones larger than cyclohexanone, in which case the 

use of a preformed enamine is necessary. Ketones 99-101 consistently failed to give the 
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desired product using in situ conditions (Conditions A, and Conditions B), which further 

limits the scope of the methodology. 

2.6 Pyridinyl-fused diene 104 

              In the final part of this Chapter, work aimed at the synthesis of chromone-fused 

diene 104 is presented. A previous member of the Bodwell group, Anh-Thu Dang, 

synthesized chromone-fused dienes 105-107 using the Doebner modification of the 

Knoevenagel condensation. Dienes 105-107 were reacted with electron rich dienophile 

108 to afford 4-methoxyxanthones 109-111 by way of an IEDDA/double elimination 

reaction
.13

 In going from the most electron rich diene 105 to most electron deficient diene 

107, both the rate of the reaction and the yield of the product increased considerably 

(Scheme 2.11).
13 

 

Beyond the introduction of electron withdrawing groups, another way to make an 

aromatic system more electron deficient is to replace a skeletal carbon atom with a 

nitrogen atom. Thus, pyridine-containing diene 104 would be expected to be a slightly 
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better diene than 106 in the IEDDA reaction. However, unlike 106, diene 104 can be 

protonated or alkylated to give a much more electron-deficient system 112. As such, 

diene 112 would be expected to be a very reactive diene in the IEDDA reaction. (Scheme 

2.12) 

 

 

The use of a 2-pyridyl group in 104 places the N atom in a position where the 

alkylation reaction can be used to simultaneously activate the diene and introduce the 

dienophile. For example, alkylation of 104 with a propargylic halide 113 should give rise 

to positively charged diene 114 (Scheme 2.13). Intramolecular IEDDA reaction would be 

expected to afford adduct 115, which could conceivably collapse as shown to afford 

pyrido[2,1-a]isoindole 116. The pyrido-isoindoles are known to be selective serotonin 

reuptake inhibitors (SSRIS), which are known for their use in a variety of neurological 

disorders and also for the treatment of obsessive compulsive disorders.
14 
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The first attempt to synthesize 104 involved the use of the Doebner modification 

of the Knoevenagel condensation reaction. Accordingly, 3-formylchromone 76 was 

reacted with commercially available 2-pyridineacetic acid in the presence of 
t
BuOK in 
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pyridine for 24 h (Scheme 2.14). No evidence for the formation of 104 was obtained. 

 

Surprisingly, very little consumption of the starting material was observed (tlc 

analysis) and 95% of the 3-formylchromone was recovered by column chromatography. 

A small amount of a new compound was also isolated, but its 
1
H NMR spectrum and 

mass spectrum were clearly inconsistent with the desired compound 104, or any of the 

expected intermediates leading to it. The mass spectrum (APCI(+) m/z = 396, APCI(-) 

m/z = 394) indicated that the new compound had a molar mass of 395. In the 
1
H NMR 

spectrum, a singlet at δ 11.96 was reminiscent of OH signals for the 2-

hydroxybenzophenones 81, 102 and 103 described earlier (δ = 11.71-12.17). A set of 

signals of the same integration as the signal at δ   11.96 (7.62 (d, J = 1.6 Hz, 1H), 7.65 (d, 

J = 1.6 Hz, 1H), 7.59-7.50 (m, 1H)), were consistent with protons of a 2-

hydroxybenzophenone moiety. A coupled doublet and triplet (J = 1.6 Hz, 1H) with an 

integral ratio of 2:1 suggested that 1,3,5-trisubstituted bezene was present, in which two 

of the substituents were the same. The 2:1 integral ratio of the hydroxybenzophenone OH 

signal at δ 11.96 to the triplet at δ 7.98 suggested that two of the substituents of the 1,3,5 

trisubstituted benzene were 2-hydroxybenzoyl groups. That the third substituent was a 2-

pyridyl group was supported by the presence of a set of three signals at δ 8.73 (m, 1H), 
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7.84 (m 2H), 7.37 (m, 1H) Thus the structure of the new compound was assigned as 1,3-

bis (2-hydroxybenzoyl)-5-(2-pyridyl) benzene 117, which has a molar mass of 395. 

  

To explain how compound 117 forms, two equivalents of 3-formylchromone are 

clearly needed in the reaction pathway. Assuming that the desired diene 104 formed, a 

formal Diels-Alder reaction with 3-formylchromone would give adduct 118, which could 

lead to 117 as shown in Scheme 2.15. Attack of the formyl group by a nucleophile such 

as t-butoxide could afford tetrahedral intermediate 119, which could collapse as shown to 

afford diene 120. A simple 1,2-elimination would then generate a new aromatic ring and 

protonation would afford compound 117. 
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The Diels-Alder reaction between diene 104 and 3-formylchromone 76 doesn't 

look reasonable because both components of the reaction are electron deficient. A 

Bayliss-Hillman type of reaction
15

 may be more reasonable in this case (Scheme 2.16). 

Conjugate addition of pyridine to 3-formylchromone 76 would afford zwitter ion 122, 

which could add nucleophilically to diene 104 at the most electron deficient site to give 

adduct 123. At this point, several routes to 117 are conceivable, which mainly differ in 

the order of events. Two possibilities are shown in Scheme 2.16. According to path a, 
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ejection of pyridine would afford oxcarbenium cation 124, which could cyclize via an 

intramolecular 6-exo-trig cyclization to give 118. Deformylation and elimination could 

then take place as shown in Scheme 2.16 to afford 117. Alternatively, according to path b, 

initial deformylation of 123 would generate chromone 125, which could cyclize to give 

126. Two elimination reactions would then afford 121 and then 117 upon protonation. 
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For whatever reason, the formation of diene 104 appears to be slow, so a molecule 

of 104 that forms is exposed to an excess of 3-formylchromone 76 for extended period of 

time. Thus, the opportunity exists for 104 to proceed to 117. The reason why the reaction 

leading to 104 is slow is unclear.  

An alternative route to diene 104 was then investigated.    This was based on the 

use of the HWE reaction (Scheme 2.17), which had been used successfully in the 

synthesis of other chromone-fused electron deficient dienes, e.g. 63, 69 and 70.
17

 To 

achieve the synthesis of 104, phosphonate 128 (2-[(diethylphosphono)methyl]pyridine P-

oxide) was required by the Arbuzov reaction of commercially available 2-picolylchloride 

hydrochloride (2-chloromethylpyridine hydrochloride) with triethyl phosphite. 

Phosphonate 128 was synthesized but could not be isolated in pure form. Specially, it 

could not be obtained without contamination by triethyl phosphite even using column 

chromatography. Triethyl phosphite did not show a separate spot in the tlc plate with 128 

making its separation more difficult. HWE reaction of impure 128 with 3-

formylchromone (76) unfortunately failed. The starting materials were recovered. The 

reason for the failure of this reaction is unclear as triethyl phospite would not be expected 

to interfere with HWE reaction. 
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2.7 Conclusions and Future Work 

 The major aim of this research work was the investigation of the scope and 

limitation of the IEDDA driven domino reactions of chromone-fused dienes 63, 69 and 70 

leading to 2-hydroxybenzophenones. In pursuing this objective, a variety of 

functionalized 2-hydroxybenzophenones was synthesized. The yield of compound 81a 

was also optimized to be high yielding on a 2 g scale and these conditions were used for 

all subsequent work. Comparisons between the yields obtained using the new optimized 

in situ conitions, the initial in situ conditions and preformed enamines
17

 led to the 

conclusion that the new optimized conditions gave better yields in almost every case.  

The scope of the reaction does not appear to be very broad with regards to the 

ketone that is used as an enamine precursor. Cyclic ketones with ring sizes of 4-6 work 

well, while no reaction is seen when the ketone is part of a larger ring. The fusion of 

benzene ring to a 5 or 6-membered cyclic ketone also shuts down the reaction. Steric 

effects are presumably responsible for the lack of reactivity. The acyclic ketones 

investigated were found to react slowly under the new optimized in situ conditions, but 

gave good yields when used as both solvent and reactant. 

Attempts to synthesize pyridine-containing diene 104 were unsuccessful using the 

Doebner modification of Knoevenagel condensation and the HWE reaction. In the former 

case, a small amount of a very unusual product was obtained. The explanation for its 

formation is that intended diene 104 was generated slowly, but underwent further reaction 

under the conditions of its formation. Further work aimed at the synthesis of 104 would 
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be worthwhile because of the possibility of performing N-alkylation reaction that would 

simultaneously introduce a dienophile and activate the diene towards IEDDA reaction. 

 The majority of the 2-hydroxybenzophenones synthesized under this 

transformation could conceivably serve as precursors to isophthalates
17

 and therefore be 

employed in cyclophane synthesis. For example 2-hydroxybenzophenone 81a could be 

converted to diester 82 (Scheme 2.18). Diester 82 could then be converted into 

dithiacyclophanes 129 and 130. Upon heating, cyclophane 129 could conceivably afford 

intermediate 131 which could undergo intramolecular [4+4] cycloaddition to afford 132. 

Desulfurization of 132 could afford cyclophane 133, which is a potential precursor to 

superphane (134). On the other hand, cyclophane 130 could be converted into 

cyclophanediene 135 and then pyrene 136. Heating of pyrene 136 in the presence of 

suitable dienophiles would open the door to the synthesis of larger PAHs (Scheme 2.18).  
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2.8 Experimental Section 

 

THF was dried by distillation over sodium metal and CH2Cl2 was distilled from calcium 

hydride under N2 immediately prior to use. Piperidine and pyrrolidine were dried over 

KOH and distilled prior to use. All other reagents and starting materials were used as 

received. Flash silica gel was used for all column chromatography, particle size 40-60µm. 

Compounds on tlc plates were visualised under UV light (254 and 365 nm). 

 

NMR. Solutions of compounds for 
1
H and 

13
C NMR were prepared in the deuterated 

solvents specified. All 
1
H and 

13
C NMR spectra were acquired using a Bruker Avance 

300 spectrometer. Data were processed and analysed using MestReNova software. 
1
H 

NMR data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t 

= triplet, q = quartet, m = multiplet), coupling constant (J), number of protons. 

 

Mass Spectrometry. Mass spectrometry data was collected on an Agilent 1100 series 

LC/MSD chromatography system by flow injection analysis. Samples were dissolved in 

the solvent listed and ionized by atmospheric pressure chemical ionization (APCI) in 

either positive or negative mode. 
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Melting Point. Melting points were collected using a Stanford Research Systems 

Optimelt automated melting point system with digital image processing Technology. 
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E-3-(2-(Ethoxycarbonyl)vinyl)-4H-chromen-4-one (63) 

 

To a 0 
o
C suspension of NaH (2.08 g, 52.0 mmol) (60% dispersion in mineral oil) in THF 

(100 mL), was added triethyl phosphonoacetate (10.9 mL, 54.9 mmol) under N2 and the 

resulting mixture was stirred for 1 h before being added by syringe to a solution of 3-

formylchromone (6.00 g, 34.5 mmol) in THF (100 mL). The addition was accompanied 

by a colour change from colourless to bright yellow, then orange after a few minutes of 

stirring. After 48 h the starting material had been consumed (tlc analysis) at which point 1 

M HCl solution (40 mL) was added. The majority of the organic solvent was removed by 

rotary evaporation; the aqueous mixture that was left was extracted with CH2Cl2 (4 × 20 

mL). The combined organic layers were dried over anhydrous MgSO4, filtered, and 

concentrated under reduced pressure. Recrystallation of the residue from 95% ethanol 

gave compound 63 (6.40 g, 26.2 mmol, 74%) as a white solid. Rf (30% ethyl 

acetate/hexanes) = 0.36; mp = 108-109 
o
C; 

1
H NMR (300 MHz, CDCl3) δ = 8.28 (dd, J = 

6.6, 1.7 Hz, 1H), 8.12 (s, 1H), 7.73-7.67 (m, 1H), 7.50-7.43 (m, 2H), 7.35 (q, J = 15.1 

Hz, 2H), 4.26 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H); 
13

C NMR: (75 MHz, CDCl3) δ  

= 175.91, 167.38, 157.30, 155.55, 135.32, 134.01, 126.37, 125.84, 124.24, 122.27, 

199.38, 188.12, 60.51, 14.32; MS (APCI-(+), CH2Cl2): m/z (%) 246 (15), 245 (100, 

[M+1]
+
), 200 (10), 199 (60); HRMS (TOF-MS-APCI): Calc. for C14H12O4: 244.0736, 

Found: 244.0740. 
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E-3-(2-Benzoylvinyl)-4H-chromen-4-one (70) 

 

To a stirred slurry of NaH (1.71 g, 42.7 mmol) (60% dispersion in mineral oil) in THF 

(50 mL) at 0 
o
C was added triethylphosphonobenzophenone (10.9 g, 4.30 mmol) to give a  

colourless solution upon stirring. 3-formylchromone (6.20 g, 35.6 mmol) was dissolved in 

THF (125 mL) at 0 
o
C to give a clear yellow solution. The phosphonate carbanion was 

added dropwise to the 3-formylchromone solution, and the resulting solution solution was 

stirred overnight at room temperature. NH4Cl(aq) (35 mL) was added and the solution was 

stirred for 0.5 h. The solvent was removed under reduced pressure, and the resulting solid 

was dissolved in CH2Cl2 and washed with water (25 mL) and then NaHSO3(aq) (4 × 10 

mL). The solution was dried over MgSO4, and the solvent was removed under reduced 

pressure to yield, after chromatography Rf (2% ethyl acetate/dichloromethane) = 0.60, 

compound 70 as a yellow solid (6.90 g, 25.0 mmol, 70%). mp = 166-168 
o
C; 

1
H NMR 

(300 MHz, CDCl3)  δ = 8.72 (d, J = 15.1 Hz, 1H), 8.34 (dd, J = 7.9, 1.1 Hz, 1 H), 8.24 (s, 

1H), 8.16-8.13 (m, 2H), 7.79-7.72 (m, 1H), 7.65-7.48 (m, 6H). 
13

C NMR: (75 MHz, 

CDCl3) δ = 190.8, 176.6, 159.2, 155.6, 138.1, 135.6, 134.3, 133.2, 129.0, 128.9, 126.5, 

126.2, 125.9, 124.5, 119.8, 118.4; MS (APCI-(+), CH2Cl2): m/z (%) 357 (100, [M+1]
+
), 

358 (25); HRMS (TOF-MS-APCI): Calc. for C18H12O3: 276.0786, Found: 276.0788. 
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E-3-(2-(Phenylsulfonyl)vinyl)-4H-chromen-4-one (69)
17 

 

 

To stirred slurry of NaH (1.03 g, 25.8 mmol) (60% dispersion in oil) in THF (50 mL) was 

added sulfonephosphonate 78 (8.02 g, 28.9 mmol) to give a colourless solution. This 

solution was added dropwise to a solution of 3-formylchromone (3.00 g, 17.2 mmol) in 

THF (100 mL). The resulting solution was stirred at room temperature 48 h. The solvent 

was removed under reduced pressure through rotary evaporation. The product was 

purified by column chromatography (2% ethyl acetate/dichloromethane) to yield 

compound 73 (2.79 g, 9.80 mmol, 51%), as a white powder. m.p = 197-199 
o
C. 

1
H NMR 

(300 MHz, CDCl3) δ = 8.24 (dd, J = 7.8, 2.2 Hz, 1H), 8.20 (s, 1H), 8.12 (d, J = 15.1 Hz, 

1H), 7.96 (td, J = 7.0, 1.9 Hz, 1H), 7.77-7.71 (m, 1H), 7.66-7.46 (m, 6H), 7.35 (d, J = 

15.1 Hz, 1H); 
13

C NMR: (75 MHz, CDCl3) δ = 175.71, 159.29, 155.45, 140.63, 134.43, 

133.38, 133.11, 131.57, 129.33, 127.74, 126.24, 124.05, 118.26, 117.65; MS (APCI-(+), 

CH2Cl2): m/z (%) 313 (100, [M+1]
+
), 314 (19); HRMS (TOF-MS-APCI): Calc. for 

C17H12O4S:  312.0456, Found: 312.0457. 
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3-(Ethoxycarbonyl)-5-(2-hydroxybenzoyl)benzocyclobutene (81a) 

 

To a solution of diene 63 (2.51 g, 10.3 mmol) in CH3CN (100 mL) was added 

cyclobutanone (1.29 g, 18.5 mmol), MgSO4 (4.03 g, 33.5 mmol) and piperidine (0.44 g, 

5.1 mmol). The mixture immediately turned bright orange upon addition of the amine and 

was stirred at room temperature for 18 h, at which point diene 63 was consumed totally 

(tlc analysis). The majority of the organic solvent was removed under reduced pressure 

and dichloromethane (40 mL) was added. The resulting reaction mixture was washed 

with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over anhydrous 

MgSO4, filtered and the solvent was removed under reduced pressure. The residue was 

subjected to column chromatography (3.5 × 15 cm, 20% ethyl acetate/hexane) to afford 

compound 81a as a yellow solid (2.73 g, 9.20 mmol, 90%). Rf (30% ethyl acetate/hexane) 

= 0.48; mp = 60-62 
o
C; 

1
H NMR (300 MHz, CDCl3) δ  = 11.96 (s, 1H), 8.10 (s, 1H), 

7.56-7.48 (m, 3H), 7.09-7.05 (m, 1H), 6.88 (t, J = 8.1 Hz, 1H), 4.37 (q, J = 7.8Hz, 2H), 

3.50-3.29 (m, 4H), 1.39 (t, J = 7.1 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 201.16, 

165.23, 163.24, 152.67, 146.57, 137.43, 136.39, 133.48, 129.09, 126.78, 125.12, 119.10, 

118.78, 118.46, 60.99, 31.37, 29.88, 14.39; MS (APCI-(-), CHCl2): m/z (%) 296 (20), 295 

(100, [M-1]
-
); HRMS (TOF-MS-APCI): Calc. for C18H16O4: 296.1047, Found: 296.1049. 
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6-(2-Hydroxybenzoyl)indan-4-carboxylic acid ethyl ester (81b) 

 

To a solution of diene 63 (0.200 g, 0.820 mmol) in CH3CN (8 mL) was added 

cyclopentanone (0.826 g, 9.82 mmol), MgSO4 (0.250 g, 2.08 mmol) and piperidine (0.035 

g, 0.410 mmol). The mixture immediately turned bright orange upon addition of the 

amine and was stirred at room temperature for 20 h, at which point diene 63 had been 

consumed (tlc analysis).  The majority of the organic solvent was removed under reduced 

pressure and dichloromethane (40 mL) was added. The resulting reaction mixture was 

washed with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over 

anhydrous MgSO4, filtered and the solvent was removed under reduced pressure. The 

residue was subjected to column chromatography (3.5 × 13 cm, 20% ethyl 

acetate/hexane) to afford compound 81b as a yellow solid (0.213 g, 0.691 mmol, 88%). Rf 

(30% ethyl acetate/hexane) = 0.70; mp = 95-96 
o
C; 

1
H NMR (300 MHz, CDCl3) δ  = 

11.96 (s, 1H), 8.14 (s, 1H), 7.70 (s, 1H), 7.60-7.50 (m, 2H), 7.10-7.09 (m, 1H), 6.92-6.89 

(m, 1H), 4.42 (q, J = 7.1 Hz, 2H), 3.40 (t, J = 7.5 Hz, 2H), 2.22-2.12 (m, 2H) 1.41 (t, J = 

7.1 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 201.100, 163.22, 146.57, 136.39, 133.44, 

129.40, 128.52, 118.77, 118.46, 61.07, 34.15, 32.50, 25.03, 14.37; MS (APCI-(-), 

CH2Cl2): m/z (%) 310 (18), 309 (100, [M-1]
-
); HRMS (TOF-MS-APCI): Calc. for 

C19H18O4: 310.1205, Found: 310.1209. 
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5,6,7,8-Tetrahydro-3-(2-hydroxybenzoyl)naphthalene-1-carboxylic acid ethyl ester 

(81c) 

 

To a solution of diene 63 (0.200 g, 0.820 mmol) in CH3CN (8 mL) was added 

cyclohexanone (0.145 g, 1.48 mmol), MgSO4 (0.250 g, 2.08 mmol) and piperidine (0.035 

g, 0.410 mmol). The mixture immediately turned bright orange upon addition of the 

amine and was stirred at room temperature for 24 h, at which point diene 63 had been 

consumed (tlc analysis).  The majority of the organic solvent was removed under reduced 

pressure and dichloromethane (40 mL) was added. The resulting reaction mixture was 

washed with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over 

anhydrous MgSO4, filtered and the solvent was removed under reduced pressure. The 

residue was subjected to column chromatography (3.5 × 13 cm, 20% ethyl 

acetate/hexane) to afford compound 81c as a yellow solid (0.240 g, 0.740 mmol, 86%). Rf 

(30% ethyl acetate/hexane) = 0.60; mp = 48-50 
o
C); 

1
 H NMR (300 MHz, CDCl3) δ = 

11.96 (s, 1H), 7.95 (d, J = 1.8 Hz, 1H), 7.60 (dd, J = 6.3, 1.6 Hz, 1H), 7.57-7.49 (m, 2H), 

7.09 (dd, J =7.4, 1.0 Hz, 1H), 6.92-6.86 (m, 1H), 4.39 (q, J = 7.1 Hz, 2H), 3.14-3.12 (m, 

2H), 2.89-2.87 (m, 2H) 1.38 (t, J = 7.1 Hz, 3H); 
13

C NMR (75 MHz, CDCl3)  δ = 201.72, 

167.34, 163.20, 142.91, 138.93, 136.37, 134.74, 133.40, 133.88, 133.04, 128.47, 119.11, 

118.46, 61.13, 30.29, 28.02, 24.46, 22.81, 22.23, 14.31; MS (APCI-(-), CH2Cl2): m/z (%) 
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323 (100, [M-1]
-
), 389 (35), 324 (20), 390 (5); HRMS (TOF-MS-APCI): Calc, for 

C20H20O4: 324.1362, Found: 324.1364. 
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3'-Carboxyethyl-4'-methyl-2-hydroxybenzophenone (81f) 

 

To diene 63 (0.200 g, 0.820 mmol) in acetone (8 mL) was added MgSO4 (0.250 g, 2.08 

mmol) and piperidine (0.035 g, 0.410 mmol). The mixture immediately turned bright 

orange upon addition of the amine and was stirred at room temperature for 18 h, at which 

point diene 63 had been consumed (tlc analysis).  The majority of the organic solvent was 

removed under reduced pressure and dichloromethane (40 mL) was added. The resulting 

reaction mixture was washed with 1 M HCl solution (4 × 10 mL) and the organic layer 

was dried over anhydrous MgSO4, filtered and the solvent was removed under reduced 

pressure. The residue was subjected to column chromatography (3.5 × 13 cm, 20% ethyl 

acetate/hexane) to afford compound 81f as a yellow solid (0.186 g, 0.660 mmol, 81%). Rf 

(30% ethyl acetate/hexane) = 0.92; mp = 86-88 
o
C); 

1
 H NMR (300 MHz, CDCl3) δ = 

11.96 (s, 1H), 8.25 (d, J = 1.9 Hz, 1H), 7.73 (dd, J = 7.9, 1.9 Hz,  1H), 7.58-7.49 (m, 2H), 

7.41 (d, J = 7.9 Hz, 1H), 7.10 (d, J = 0.8, Hz, 1H), 6.92-6.91 (m, 1H), 4.42 (q, J = 7.1 Hz, 

2H), 2.70 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 200.40, 

166.74, 163.23, 144.43, 136.48, 135.52, 130.23, 119.04, 118.53, 61.20, 50.58, 21.87, 

14.32; MS (APCI-(-), CH2Cl2): m/z (%) 284 (20, M
-
), 283 (100); HRMS (TOF-MS-

APCI): Calc. for C17H16O4: 284.1049, Found: 284.1052. 
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(1R*,4S*)-1,2,3,4-Tetrahydro-7-(2-hydroxybenzoyl)-1,4-methanonaphthalene-5-

carboxylic acid ethyl ester (81i) 

 

To a solution of diene 63 (0.200 g, 0.820 mmol) in CH3CN (8 mL) was added 

norcamphor (0.162 g, 1.47 mmol), MgSO4 (0.250 g, 2.08 mmol) and piperidine (0.035 g, 

0.410 mmol). The mixture immediately turned bright orange upon addition of the amine 

and was stirred at room temperature for 32 h, at which point diene 63 had been consumed 

(tlc analysis).  The majority of the organic solvent was removed under reduced pressure 

and dichloromethane (40 mL) was added. The resulting reaction mixture was washed 

with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over anhydrous 

MgSO4, filtered and the solvent was removed under reduced pressure. The residue was 

subjected to column chromatography (3.5 × 13 cm, 20% ethyl acetate/hexane) to afford 

compound 81i as a yellow solid (0.177 g, 0.530 mmol, 65%). Rf (30% ethyl 

acetate/hexane) = 0.52; mp = 92-96 
o
C); 

1
 H NMR (300 MHz, CDCl3) δ  = 11.99 (s, 1H), 

8.05 (s, 1H), 7.64-7.59 (m,  3H), 7.09-7.06 (m, 1H), 6.92-6.87 (m, 1H), 4.43 (q, J = 7.1, 

Hz, 2H), 4.27 (s, 1H), 3.47 (s, 1H), 2.09-1.95 (m, 2H), 1.84-1.80 (m, 1H) 1.64-1.55 (m, 

3H), 1.43 (t, J = 7.2 Hz, 3H), 1.26-1.21 (m, 2H); 
13

C NMR (75 MHz, CDCl3) δ = 166.36, 

163.20, 154.36, 150.20, 136.30, 135.41, 133.52, 128.78, 124.61, 123.59, 119.20, 118.73, 

118.42, 61.06, 48.63, 43.71, 43.45, 26.64, 25.71, 14.37; MS (APCI-(-), CH2Cl2): m/z (%) 
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= 336 (25), 335 (100, [M-1]
-
); HRMS (TOF-MS-APCI): Calc. for C21H22O4: 336.1362, 

Found: 336.1374. 
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7-(2-Hydroxybenzoyl)isochroman-5-carboxylic acid ethyl ester (81j) 

 

To a solution of diene 81j (0.200 g, 0.820 mmol) in CH3CN (8 mL) was added 

tetrahydro-4H-pyran-4-one (0.147 g, 1.47 mmol), MgSO4 (0.250 g, 2.08 mmol) and 

piperidine (0.035 g, 0.410 mmol). The mixture immediately turned bright orange upon 

addition of the amine and was stirred at room temperature for 24 h, at which point diene 

63 had been consumed (tlc analysis).  The majority of the organic solvent was removed 

under reduced pressure and dichloromethane (40 mL) was added. The resulting reaction 

mixture was washed with 1 M HCl solution (4 × 10 mL) and the organic layer was dried 

over anhydrous MgSO4, filtered and the solvent was removed under reduced pressure. 

The residue was subjected to column chromatography (3.5 × 13 cm, 20% ethyl 

acetate/hexane) to afford compound 81j as a yellow solid (0.216 g, 0.620 mmol, 81%). Rf 

(30% ethyl acetate/hexane) = 0.51; mp = 65-66 
o
C); 

1
 H NMR (300 MHz, CDCl3) δ = 

11.89 (s, 1H), 8.14 (d, J = 1.8 Hz, 1H), 7.56-7.27 (m,  3H), 7.10-7.07 (m, 1H), 6.93-6.87 

(m, 1H), 4.87 (s, 2H), 4.41 (q, J = 7.1 Hz, 2H), 4.03 (t, J = 5.8 Hz, 2H), 3.32  (t, J = 5.8, 

2H), 1.41 (t, J = 7.2 Hz, 3H); 
13

C NMR (75 MHz, CDCl3) δ =  166.36, 163.20, 154.36, 

150.20, 136.30, 135.41, 133.52, 128.78, 124.61, 123.59, 119.20, 118.73, 118.42, 61.06, 

48.63, 43.71, 43.45, 26.64, 25.71, 14.37; MS (APCI-(-), CH2Cl2): m/z (%) = 325 (100, 

[M-1]
-
), 357 (60) 387 (45), 326 (20); HRMS (TOF-MS-APCI): Calc. for C19H18O5: 

326.1154, Found: 326.1165. 
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6-(2-Hydroxybenzoyl)-4-(phenylsulfonyl)indan (103b ) 

 

To a solution of diene 69 (0.200 g, 0.640 mmol) in CH3CN (8 mL) was added 

cyclopentanone (0.046 g, 0.540 mmol), MgSO4 (0.250 g, 2.08 mmol) and piperidine 

(0.014 g, 0.16 mmol). The mixture immediately turned bright orange upon addition of the 

amine and was stirred at room temperature for 20 h, at which point diene 69 had been 

consumed (tlc analysis).  The majority of the organic solvent was removed under reduced 

pressure and dichloromethane (40 mL) was added. The resulting reaction mixture was 

washed with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over 

anhydrous MgSO4, filtered and the solvent was removed under reduced pressure. The 

residue was subjected to column chromatography (3.5 × 13 cm, 30% ethyl 

acetate/hexane) to afford compound 103a as a yellow solid (0.232 g, 0.610 mmol, 95%). 

Rf (30% ethyl acetate/hexane) = 0.47; mp = 146-148 
o
C; 

1
H NMR (300 MHz, CDCl3) δ = 

11.93 (s, 1H), 7.83-7.79 (m, 1H), 7.79 (d, J = 1.5 Hz, 1H), 7.71 (s, 1H), 7.62-7.55 (m, 

3H), 7.52-7.43 (m, 3H), 7.04 (dd, J = 8.4,0.9 Hz, 1H), 6.86 (ddd, J = 8.2, 7.2, 1.1 Hz, 

1H), 3.15-3.00 (m, 4H), 2.22-2.09  (m, 2H); 
13

C NMR (75 MHz, CDCl3) δ  = 199.98, 

163.30, 148.78, 148.24, 147.69, 136.84, 135.51, 133.22, 129.28, 127.47, 119.08, 118.89, 

118.65, 32.63, 32.44, 24.98; MS (APCI-(+), CH2Cl2): m/z (%) = 378 (65), 237 (45), 121 

(100), 115 (21); HRMS (TOF-MS-APCI): Calc. for C22H18O4S: 378.0900, Found: 

378.0919. 
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4-Benzoyl-6-(2-hydroxybenzoyl)indan (102b) 

 

To a solution of diene 70 (0.200 g, 0.720 mmol) in CH3CN (8 mL) was added 

cyclopentanone (0.052 g, 0.61 mmol), MgSO4 (0.250 g, 2.08 mmol) and piperidine (0.015 

g, 0.18 mmol). The mixture immediately turned bright orange upon addition of the amine 

and was stirred at room temperature for 20 h, at which point diene 70 had been consumed 

(tlc analysis).  The majority of the organic solvent was removed under reduced pressure 

and dichloromethane (40 mL) was added. The resulting reaction mixture was washed 

with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over anhydrous 

MgSO4, filtered and the solvent was removed under reduced pressure. The residue was 

subjected to column chromatography (3.5 × 13 cm, 30% ethyl acetate/hexane) to afford 

compound 103b as a yellow solid (0.205 g, 0.600 mmol, 83%). Rf (30% ethyl 

acetate/hexane) = 0.69; mp = 170-172 
o
C; 

1
H NMR (300 MHz, CDCl3) δ  = 11.97 (s, 1H), 

7.94-7.81 (m, 2H), 7.74 (s, 1H), 7.63-7.46 (m, 6H), 7.06 (d, J =7.2, 1H), 6.90-6.85 (m, 

1H), 3.14-3.03 (m, 4H), 2.22-2.12 (m, 2H); 
13

C NMR (75 MHz, CDCl3) δ  = 201.1, 197.0, 

163.3, 149.6, 146.7, 137.5, 136.6, 136.0, 134.4, 133.5, 130.1, 128.9, 128.7, 127.8, 119.2, 

118.9, 118.6, 33.0, 32.7, 25.6; MS (APCI-(+), CH2Cl2): m/z (%) = 342 (100), 121 (88), 

237 (48), 105 (42), 77 (35); HRMS (TOF-MS-APCI): Calc. for C23H18O3: 342.1262, 

Found: 342.1264. 
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5,6,7,8-Tetrahydro-3-(2-hydroxybenzoyl)-1-(phenylsulfonyl)naphthalene (103c) 

 

To a solution of diene 69 (0.200 g, 0.640 mmol) in CH3CN (8 mL) was added 

cyclohexanone (0.054 g, 0.55 mmol), MgSO4 (0.250 g, 2.08 mmol) and piperidine (0.014 

g, 0.16 mmol). The mixture immediately turned bright orange upon addition of the amine 

and was stirred at room temperature for 24 h, at which point diene 69 had been consumed 

(tlc analysis).  The majority of the organic solvent was removed under reduced pressure 

and dichloromethane (40 mL) was added. The resulting reaction mixture was washed 

with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over anhydrous 

MgSO4, filtered and the solvent was removed under reduced pressure. The residue was 

subjected to column chromatography (3.5 × 13 cm, 30% ethyl acetate/hexane) to afford 

compound 103c as a yellow solid (0.206 g, 0.530 mmol, 80%). Rf (30% ethyl 

acetate/hexane) = 0.60 ; mp = 170-172 
o
C; 

1
H NMR (300 MHz, CDCl3) δ  = 11.90 (s, 

1H), 8.37 (d, J = 2.3 Hz, 1H), 7.90-7.87 (m,  2H), 7.65-7.52 (m, 6H), 7.12-7.09 (m, 1H), 

6.96-6.91 (m, 1H), 3.03 (s, 2H), 2.90 (s, 2H), 1.83-1.73 (m, 4H); 
13

C NMR (75 MHz, 

CDCl3) δ  = 199.9, 1.63.4, 141.4, 140.7, 139.2, 137.0, 135.4, 135.1, 133.5, 133.3, 129.3, 

128.0, 127.9, 119.2, 118.9, 188.7, 30.3, 26.7, 22.2, 21.8; MS (APCI-(+), CH2Cl2): m/z 

(%) = 392 (30), 251 (32), 121 (100); HRMS (TOF-MS-APCI): Calc. for C23H20O4S: 

392.1077, Found: 392.1079. 
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1-Benzoyl-5,6,7,8-tetrahydro-3-(2-hydroxybenzoyl)naphthalene (102c) 

 

To a solution of diene 70 (0.200 g, 0.720 mmol) in CH3CN (8 mL) was added 

cyclohexanone (0.060 g, 0.61 mmol), MgSO4 (0.250 g, 2.08 mmol) and piperidine (0.015 

g, 0.18 mmol). The mixture immediately turned bright orange upon addition of the amine 

and was stirred at room temperature for 24 h, at which point diene 70 had been consumed 

(tlc analysis).  The majority of the organic solvent was removed under reduced pressure 

and dichloromethane (40 mL) was added. The resulting reaction mixture was washed 

with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over anhydrous 

MgSO4, filtered and the solvent was removed under reduced pressure. The residue was 

subjected to column chromatography (3.5 × 13 cm, 30% ethyl acetate/hexane) to afford 

compound 102c as a yellow solid (0.222 g, 0.620 mmol, 86%). Rf (30% ethyl 

acetate/hexane) = 0.68 ; mp = 48-50 
o
C; 

1
H NMR (300 MHz, CDCl3) δ = 11.97 (s, 1H), 

7.87-7.83 (m,  2H), 7.65-7.47 (m, 6H), 7.41 (d, J = 2.2 Hz, 1H), 7.07 (dd, J = 8.5, 1.1 Hz, 

1H), 6.91-6.85 (m, 1H), 2.95 (t, J = 6.3 Hz, 2H), 2.81 (t, J=6.2 Hz,  2H) 1.91-1.79 (m, 

4H); 
13

C NMR (75 MHz, CDCl3) δ = 200.9, 198.1, 163.3, 140.1, 139.1, 138.9, 137.1, 

136.5, 134.7, 133.8, 133.5, 131.7, 130.2, 128.8, 126.0, 119.2, 118.9, 118.5, 30.0, 27.5, 

22.7, 22.5; MS (APCI-(+), CH2Cl2): m/z (%) = 357 (100, [M+1]
+
), 358 (25); HRMS 

(TOF-MS-APCI): Calc. for C24H20O3: 356.1407, Found: 356.1412. 
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3-Benzoyl-5-(2-hydroxybenzoyl)benzocyclobutene (102a) 

 

To a solution of diene 70 (0.200 g, 0.720 mmol) in CH3CN (8 mL) was added 

cyclobutanone (0.043 g, 0.62 mmol), MgSO4 (0.205 g, 2.08 mmol) and piperidine (0.015 

g, 0.18 mmol). The mixture immediaitely turned bright orange upon addition of the amine 

and was stirred at room temperature for 18 h, at which point diene 70 had been consumed 

(tlc analysis).  The majority of the organic solvent was removed under reduced pressure 

and dichloromethane (40 mL) was added. The resulting reaction mixture was washed 

with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over anhydrous 

MgSO4, filtered and the solvent was removed under reduced pressure. The residue was 

subjected to column chromatography (3.5 × 13 cm, 30% ethyl acetate/hexane) to afford 

compound 102a as a yellow solid (0.230 g, 0.700 mmol, 96%). Rf (30% ethyl 

acetate/hexane) = 0.67; mp = 105-107 
o
C; 

1
H NMR (300 MHz, CDCl3) δ = 11.96 (s, 1H), 

7.90 (s, 1H), 7.85-7.82 (m, 2H), 7.69-7.47 (m, 6H), 7.07 (m, 1H), 6.91-6.86 (m, 1H), 

3.32-3.25 (m, 4H); 
13

C NMR (75 MHz, CDCl3) δ = 210.17, 163.27, 154.93, 151.28, 

146.77, 136.48, 133.47, 132.90, 129.59, 129.36, 128.55, 126.40, 119.09, 118.79, 118.52, 

31.25, 29.76; MS (APCI-(+), CH2Cl2): m/z (%) = 328 (95), 121 (100), 299 (65), 77 (58), 

223 (55); HRMS (TOF-MS-APCI): Calc. for C22H16O3: 328.1100, Found: 328.1103. 
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3-phenylsulfonyl-5-(2-hydroxybenzoyl)benzocyclobutene (103a) 

 

To a solution of diene 69 (0.200 g, 0.640 mmol) in CH3CN (8 mL) was added 

cyclobutanone (0.039 g, 0.55 mmol), MgSO4 (0.250 g, 2.08 mmol) and piperidine (0.014 

g, 0.16 mmol). The mixture immediaitely turned bright orange upon addition of the amine 

and was stirred at room temperature for 18 h, at which point diene 69 had been consumed 

(tlc analysis).  The majority of the organic solvent was removed under reduced pressure 

and dichloromethane (40 mL) was added. The resulting reaction mixture was washed 

with 1 M HCl solution (4 × 10 mL) and the organic layer was dried over anhydrous 

MgSO4, filtered and the solvent was removed under reduced pressure. The residue was 

subjected to column chromatography (3.5 × 13 cm, 30% ethyl acetate/hexane) to afford 

compound 103a as a yellow solid (0.192 g, 0.530 mmol, 82%). Rf (30% ethyl 

acetate/hexane) = 0.54; mp = 191-193 
o
C); 

1
H NMR (300 MHz, CDCl3) δ = 11.80 (s, 

1H), 8.03-7.94 (m, 3H), 7.67-7.48 (m, 5H), 7.45 (dd, J = 8.0, 1.5 Hz, 1H), 7.08 (dd, J = 

8.4, 0.8 Hz, 1H), 6.88 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 3.46-3.40 (m, 2H), 3.35 -3.29 (m, 

2H); 
13

C NMR (75 MHz, CDCl3) δ = 200.10, 163.33, 149.22, 147.81, 136.83, 133.70, 

133.25, 129.45, 127.77, 127.57, 126.65, 119.02, 118.79, 118.66, 30.49, 30.45; MS 

(APCI-(+), CH2Cl2): m/z (%) = 364 (45), 299 (65), 121 (100); HRMS (TOF-MS-APCI): 

Calc. for C21H16O4S: 364.0800 Found: 364.0802. 
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4-(2-hydroxybenzoyl)- 2-(phenylsulfonyl)toulene (103d) 

 

 

 

To a solution of diene 69 (0.200 g, 0.640 mmol) in acetone (8 mL) was added MgSO4 

(0.250 g, 2.08 mmol) and piperidine (0.014 g, 0.16 mmol). The mixture immediately 

turned bright orange upon addition of the amine and was stirred at room temperature for 

18 h, at which point diene 69 had been consumed (tlc analysis).  The majority of the 

organic solvent was removed under reduced pressure and dichloromethane (40 mL) was 

added. The resulting reaction mixture was washed with 1 M HCl solution (4 × 10 mL) 

and the organic layer was dried over anhydrous MgSO4, filtered and the solvent was 

removed under reduced pressure. The residue was subjected to column chromatography 

(3.5 x 13 cm, 30% ethyl acetate/hexane) to afford compound 103d as a yellow solid 

(0.192 g, 0.530 mmol, 83%). Rf (30% ethyl acetate/hexane) = 0.54; mp = 152-153 
o
C; 

1
H 

NMR (300 MHz, CDCl3) δ = 11.84 (s, 1H), 8.52 (d, J = 1.9 Hz, 1H), 7.94-7.87 (m, 2H), 

7.81 (dd, J = 7.8, 1.8 Hz, 1H), 7.66-7.49 (m, 5H), 7.40 (d, J = 7.9 Hz, 1H), 7.11-7.06 (m, 

1H), 6.92 (ddd, J = 8.2, 6.0, 1.1 Hz, 1H), 2.56 (s, 3H); 
13

C NMR (75 MHz, CDCl3) δ = 

199.45, 163.35, 142.12, 140.58, 139.50, 136.93, 136.33, 133.81, 133.51, 133.10, 133.05, 

130.21, 129.27, 127.90, 119.13, 118.77, 118.72, 20.45; MS (APCI-(+), CH2Cl2): m/z (%) 
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= 352 (58), 337 (65), 121 (100); HRMS (TOF-MS-APCI): Calc. for C20H16O4S: 

352.0800, Found: 352.0802.  
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2-Benzoyl-4-(2-hydroxybenzoyl)toluene (102d) 

 

To a solution of diene 70 (0.200 g, 0.720 mmol) in acetone (8 mL) was added MgSO4 

(0.250 g, 2.08 mmol) and piperidine (0.015 g, 0.18 mmol). The mixture immediately 

turned bright orange upon addition of the amine and was stirred at room temperature for 

18 h, at which point diene 70 had been consumed (tlc analysis).  The majority of the 

organic solvent was removed under reduced pressure and dichloromethane (40 mL) was 

added. The resulting reaction mixture was washed with 1 M HCl solution (4 × 10 mL) 

and the organic layer was dried over anhydrous MgSO4, filtered and the solvent was 

removed under reduced pressure. The residue was subjected to column chromatography 

(3.5 × 13 cm, 30% ethyl acetate/hexane) to afford compound 102d as a yellow solid 

(0.200 g, 0.630 mmol, 87%). Rf (30% ethyl acetate/hexane) = 0.64; 
1
H NMR (300 MHz, 

CDCl3) δ = 11.90 (s, 1H), 7.81 (m, 2H), 7.73 (dd, J = 7.9, 1.8 Hz, 1H), 7.64 (d, J = 1.8 

Hz, 1H), 7.62-7.57 (m, 2H), 7.52-7.42 (m, 4H), 7.05 (dd, J = 8.4, 0.8 Hz, 1H), 6.85 (ddd, 

J = 8.3, 7.3, 1.2 Hz, 1H), 2.43 (s, 3H) ; 
13

C NMR (75 MHz, CDCl3) δ = 200.40, 197.40, 

163.21, 141.34, 138.79, 137.06, 136.50, 135.09, 133.70, 133.32, 131.21, 130.87, 130.16, 

129.14, 128.73, 119.02, 118.81, 118.52, 20.16 ; MS (APCI-(+), CH2Cl2): m/z (%) = 315 

(49, [M+1]
+
), 316 (90), 121 (100), 105 (45), HRMS (TOF-MS-APCI): Calc. for 

C21H16O3: 316.1101, found, 316.1103.  
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3.0 Chapter 3 

3.1 Cyclophanes 

Cyclophanes are hydrocarbons consisting of an aromatic unit (most commonly a 

benzene ring) and an aliphatic chain that forms a bridge between two non-adjacent 

positions of the aromatic ring.
1 

Cyclophanes have attracted broad interest from the 

organic chemistry community for several decades due to their interesting and unusual 

structures, strain, symmetry, synthetic challenge, conformational behaviour and physical 

properties. It is still an interesting field of research, which now overlaps with areas such 

as asymmetric synthesis, supramolecular chemistry and materials science.
2 

 

 

Compounds 138 and 139 are among the simplest of cyclophanes because they 

consist of an aromatic system in which two non-adjacent atoms on this system are 

connected by an aliphatic bridge. When the aromatic system is benzene, the prefixes 

meta- and para- are used to indicate relationship of the carbon atoms that are bridged. For 

larger aromatic systems, two numbers that correspond to the numbering of the arene are 

used in parentheses. The number of atoms in the bridge is placed in the brackets and they 
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are denoted by [n]. Thus, compound 140 is a [n](2,6)naphthalenophanes. Cyclophanes 

can have any number and type of aromatic systems and as many bridges as permitted by 

the aromatic units. Accordingly there is enormous structural scope and a specialized 

system of nomenclature has been developed.
3
 Examples of multibridged 142, 

heteroaromatic (143, 146), non-benzenoid 144 and polycyclic aromatic hydrocarbons 145 

are shown in figure 3.2. 
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3.2 Pyrenophanes 

When the aromatic system in a cyclophane is pyrene, the cyclophane is called a 

pyrenophane (Scheme 3.1). Pyrenophanes are interesting because of the nature of the 

aromatic system. 

 

Pyrene is the smallest peri-fused polycyclic aromatic hydrocarbon and the largest 

polycyclic aromatic hydrocarbon to have been incorporated into a cyclophane on 

anything more than a sporadic basis.
4
 Pyrene is a compact polcyclic aromatic unit which 

has been widely exploited due to its electronic and photophysical properties as well as its 

ability to take part in non-covalent interactions. As such, it has been used as a key 

structural unit in organic matrials
5,6 

that have been used in organic electronic devices, 

such as field effect transistors
7
 and supramolecular fluorescent sensors.

8
 The sensitivity of 

pyrene's flourescence to its environment makes it a very effective fluorescent probe in a 

wide variety of systems. In fact, this property has elevated pyrene to "the status of gold 

standard as a molecular probe of microenvironments."
4 



 
 

99 

Pyrene has also been employed in biological chemistry, especially in systems for 

binding nucleic acids
9
 and in the design of synthetic receptors for aromatic

10
 and 

carbohydrate
11

 substrates. The pyrene unit is also valued for its binding properties. 

Having a large aromatic surface, it is capable of taking part in π-stacking and CH-π 

interactions which can be reinforced by the hydrophobic effect in water. This property of 

pyrene has been exploited frequently in the non-covalent functionalization of extended 

planar and non-planar π-systems such as carbon nanotubes and graphene.
12

 Pyrene and its 

derivatives have found applications in diverse areas, including plastics, dyes, pesticides, 

pharmaceuticals, electroluminescent devices and others.
13 

Chirality is an important aspect of cyclophane chemistry. Briefly, a parent 

cyclophane (one consisting of just aromatic units and bridges) can be chiral or achiral. 

Most of the typical well-known cyclophanes are achiral, e.g. [2.2]paracyclophanes (150). 

However, the introduction of a single substitute on either the bridge or the aromatic unit 

affords a chiral product (149 or 151) (Scheme 3.2).
14 
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As far as pyrenophanes are concerned [n](2,7)pyrenophanes 154 are inherently 

achiral, whereas the (1,6)Pyrenophanes 157 are inherently chiral. This means that they 

contain a chiral chromophore, which makes them interesting from the viewpoint of 

chiroptical properties. 

Several [n](2,7)pyrenophanes have been synthesized using a common strategy that 

starts with a 1,3,5-trisubstituted benzene. On the other hand only one simple 

[n](1,6)pyrenophane has ever been synthesized. This was accomplished using the same 

strategy, but with a 1,2,4-trisubsubstituted starting material. However, the synthesis was 

very problematic. [n](1,6)Pyrenophane 157 is C2-symmetric and chiral. Instead of just an 

end-to-end bend, which is present in pyrenophane 154, the bridge of the 

[n](1,6)pyrenophane 157 causes a longitudinal twist, or torsion, around the long axis of 

the pyrene system. The enantiomers of 157 were separated, which allowed the chiroptical 

and photophysical properties of the chiral pyrene system to be studied. Unfortunately, 

other [n](1,6)pyrenophanes could not be synthesized using this strategy, so the changes in 

the chiroptical properties with increasing twist could not be evaluated. 
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A much more complex [n](1,6)pyrenophane was recently reported by the Bodwell 

group.
14

 The synthetic approach differs greatly from the one used to synthesize 154 and 

157 and evolved from the work aimed at the development of IEDDA-based 

multicomponent reactions (MCR). 

 

3.3 Multicomponent reaction 

Multicomponent reactions are highly valuable reactions in chemistry due to their 

ability to incorporate three or more substrates into a single target in one synthetic 

operation.
15

 These reactions are very useful in synthetic chemistry for drug discovery, as 

well as in the total synthesis of natural products.
17

 The MCR that was developed by the 

Bodwell group affords (6H-dibenzo[b,d]pyran-6-ones (DBP). For example the reaction of 
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salicylaldehyde (158), dimethylglutaconate (159) and cyclopentanone (161) in the 

presence of pyrrolidine (160) in 1,4-dioxane afforded DBP 162 in 69% yield. In this 

reaction, six different reactions occur, including Knoevenagel condensation, 

transesterification, enamine formation, an inverse electron demand Diels-Alder (IEDDA) 

reaction, 1,2-elimination and transfer hydrogenation. An important feature of this reaction 

is that the secondary amine plays a catalytic function in both the formation of the electron 

deficient diene (Knoevenagel condensation) and the electron-rich dienophile (enamine)
16

 

(Scheme 3.4). 
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The application of DBP 162 in the synthesis of pyrenophanes came from the 

identification of a suitable 1,2,4-trisubstituted benzene system in 162 (cf. 155). This 

subunit became more obvious after the reduction of compound 162 with LiAlH4, which 

afforded triol 167 in 95% yield (Scheme 3.5). The two hydroxymethyl groups 

corresponding to “X” groups in 155 and the 2-hydroxymethyl group corresponding to the 
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“Y” substituent. The difference in acidities of the different types of (OH) groups (pKa of 

phenol = 9.95;
 
 pKa of benzyl alcohol = 15.40)

17
 enabled two units of 167 to be tethered. 

Thus reaction of 167 with 1,6-dibromohexane in the presence of potassium carbonate 

afforded tetraol 169 in 78% yield. 

After attempts to convert 167 into the corresponding dithiacyclophane failed, 

tetraol 169 was oxidized with PCC/Celite to afford tetraldehyde 170 in 72% yield. When 

compound 170 was subjected to McMurry reaction conditions,
18

 [12](1,6)pyrenophane 

derivative 172 was obtained in 12% yield. The formation of 172 was quite surprising 

because the desired product was cyclophanediene 171. Presumably, 171 did form, but 

underwent valence isomerization and dehydrogenation under the conditions of its 

formation. This very productive step brought about the formation of three new carbon-

carbon bonds and two aromatic rings. Overall, the synthesis of 172 required only five 

steps from commercially available compounds, which is several steps less than the 

standard pyrenophane synthesis. 
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The objective of the work described in this chapter was to use the synthetic 

approach that was employed in the synthesis of 172 for the related pyrenophane 173. The 

presence of six-membered rings was intended to allow for the formation of 
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dibenzo[a,h]pyrenophane 174(Scheme 3.6). The larger PAH makes this a more 

interesting chiral chromophore and fluorophore than pyrene. 

 

It was expected that the synthesis of 173 could be accomplished by replacing 

cyclopentanone with cyclohexanone in the initial MCR. Thus the reaction of 

salicylaldehyde (158), dimethylglutaconate (159), cyclohexanone 175 in the presence of 

pyrrolidine afforded diene 176 in 71% yield (Scheme 3.7). 

 

In this case, the dehydrogenation (transfer hydrogenation) step of the MCR did 

not take place. This may be due to the presence of steric strain across the cove region of 

the aromatized product 177 (Scheme 3.8). The incomplete MCR was not a problem 
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because aromatization of compound 176 to compound 177 could be achieved using DDQ 

in 93% yield.  Reduction of compound 177 with LiAlH4 then afforded triol 178 in 96% 

yield. Selective O-alkylation of the phenolic OH group with 1,6-dibromohexane afforded 

tetraol 179 in 83% yield. Tetraol 179 was oxidised to tetraldehyde 180 in 62% yield using 

PCC/Celite, which set the stage for the key cyclophane-forming McMurry reaction.
18

 

Unfortunately, all attempts to synthesize pyrenophane 173 met with failure. In all cases, 

the starting material 180 was fully consumed, but none of the desired product was 

formed. The reason for the failure of this reaction is not obvious. 
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3.4 Future work 

The synthesis of chiral pyrenophane 174 could also be tried by aromatizing the 

partially saturated six-membered ring directly following the multicomponent synthesis of 

the 6H-dibenzo[b,d]pyran-6-ones (DBP) 176 (Scheme 3.9). 
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 3.5 Experimental Procedures and Characterization Data 

General: Reactions were performed using anhydrous solvents under a balloon containing 

N2 unless otherwise indicated. All reactions were performed with oven-dried (120 
o
C) 

glassware. THF was distilled immediately prior to use from sodium/benzophenone under 

N2 and DMF was vacuum distilled over CaH during workups. Solvents were removed 

under reduced pressure using a rotary evaporator. Chromatographic separations were 

performed using Silicycle silica gel 60, particle size 40-63 mm, unless otherwise 

mentioned. Thin-layer chromatography (tlc) was performed using commercially 

precoated plastic-backed POLYGRAM SIL G/UV254 silica gel plates, layer thickness 

200 mm. Compounds on tlc plates were visualized using a UV lamp (254 and 365 nm). 

Melting points were obtained using an Optimelt automated melting point system and are 

uncorrected. 
1
H and 

13
C NMR spectra were obtained from CDCl3 or DMSO-d6 solutions 

using a Bruker AVANCE (300 MHz) instrument. Chemical shifts: TMS (δH = 0.00 ppm) 

and CDCl3 (δC = 77.23 ppm), respectively. Low-resolution and high-resolution mass 

spectrometric data scopic (MS) data using an Agilent 1100 series LC/MSD instrument 

and a Waters Micromass GCT Premier instrument, respectively. 
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Dibenzopyranone (177) 

    

To a solution of dihydrodibenzopyranone 176
16

 (1.00 g, 3.00 mmol) in (10 mL) of 

reagent grade benzene (10 mL) was added recrystallized DDQ (0.95 g, 4.2 mmol)  and 

the resulting mixture was stirred at room temperature for 30 min. The mixture was then 

heated at 80 
o
C overnight (16-18 h). The mixture was gravity filtered and the filter cake 

was washed with chloroform (30 mL). The filtrate was concentrated under reduced 

pressure and the residue was subjected to column chromatography (3.5 × 23 cm) to afford 

compound 177 in 93% yield (1.42 g, 4.61 mmol) as a brown solid. Rf (30% ethyl 

acetate/hexanes) = 0.51; mp = 157-159 
o
C; 

1
H NMR (300 MHz, CDCl3) δ = 8.76 (s, 1H), 

8.30 (dd, J = 8.3, 1.1 Hz, 1H), 7.51 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.40 (dd, J = 8.2, 1.5 

Hz, 1H), 7.33 (ddd, J = 8.6, 7.1, 1.6 Hz, 1H), 3.94 (s, 3H), 3.34-3.29 (m, 4H), 1.96-1.88 

(m, 2H), 1.86-1.78 (m, 2H); 
13

C NMR: (75 MHZ, CDCl3) δ = 166.05, 161.02, 155.33, 

151.94, 141.81, 134.47, 132.06, 130.76, 126.89, 126.75, 126.65, 124.37, 120.40, 118.85, 

117.94, 52.15, 35.33, 33.62, 25.00; MS (APCI-(+), CH2Cl2): m/z (%) 309 (100, [M+1]
+
), 

310 (22); HRMS (TOF-MS-APCI): Calc. for C19H16O4: 308.1049, Found: 308.1051. 
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1,2,3,4-Tetrahydro-6,8-bis(hydroxymethyl)-5-(2-hydroxyphenyl)naphthalene (178) 

 

 

To a 0 
o
C slurry of LiAlH4 (0.83 g, 22 mmol) in THF was added compound 177 (1.70 g, 

5.50 mmol) in several portions and the resulting mixture was heated to 70 
o
C for 5 h. 

After cooling to 0 
o
C, water (20 mL) was added carefully over a period of 20 min. The 

reaction mixture was diluted with aqueous 1.0 M HCl solution (100 mL) and extracted 

with CHCl3 (3 × 200 mL). The combined organic layers were dried over Na2SO4, gravity 

filtered and the solvent was removed under reduced pressure. The residue was triturated 

with ether (2 × 15 mL) to afford compound 172 (1.42 g, 5.21 mmol, 96%) as a colorless 

solid. Rf = 0.60 (ethyl acetate); mp 148-150 
o
C; 

1
H NMR δ = 7.40 (s 1H), 7.14 (ddd, J = 

8.5, 6.1, 3.0 Hz, 1H), 6.89 (d, J=8.0 Hz, 1H), 6.84-6.80 (m, 2H), 4.49 (t, J = 5.3 Hz, 1H), 

4.75 (brs, 1H), 4.49 (d, J = 5.0 Hz, 2H), 2.67 (brt, J = 6.1 Hz, 2H), 2.23 (brt, J = 6.2 Hz, 

2H) 1.76-1.51 (m, 4H); 
13

C NMR (DMSO-d6, 300 MHz) δ = 154.16, 138.16, 136.70, 

134.67, 134.16, 131.82, 130.50, 128.13, 126.07, 122.25, 119.07, 115.45, 61.22, 61.01, 

27.62, 25.01, 22.56, 22.46; MS (APCI-( ̶ ), CH2Cl2): m/z (%) 283 (100, [M ̶ 1]
-
)
  
284 (13); 

HRMS (TOF-MS-APCI): Calc. for C18H20O3: 284.1412, Found: 284.1418. 
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1,6-Bis(2-(1,2,3,4-tetrahydro-6,8-bis(hyroxymethyl)naphth-5-yl)phenoxy)hexane 

(179) 

 

 

 

To a suspension of triol (178) (0.80 g, 3.0 mmol) and K2CO3 (1.24 g, 8.50 mmol) in DMF 

(15 mL) was added 1,6-dibromohexane (0.39 g, 1.6 mmol). The resulting mixture was 

stirred vigorously at 90
 o

C for 16 h and then cooled to room temperature. Water (30 mL) 

was added and the resulting mixture was extracted with ethyl acetate (3 × 30 mL). The 

combined organic layers were washed with water (50 mL), dried over NaSO4, gravity 

filtered and the solvent was removed under reduced pressure. The residue was subjected 

to column chromatography (5% MeOH / CHCl3) to obtain tetraol 179 83% (0.79 g, 1.2 

mmol) as a colorless solid. Rf = 0.40; mp = 131-133 
o
C; 

 1
H NMR (300 MHz, DMSO-d6) 

δ = 7.41 (s, 2H), 7.32-7.27 (m, 2H), 7.03-6.89 (m, 6H), 4.98 (t, J = 5.0 Hz, 2H), 4.76 (t, J 

= 5.1 Hz, 2H), 4.48 (d, J = 5.0 Hz, 2H), 4.03-4.01 (m, 4H), 3.87-3.77 (m, 4H), 2.62-2.59 
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(m, 4H), 2.17-2.15 (m, 4H), 1.66-1.60 (m, 4H), 1.54-1.46 (m, 4H), 1.40-1.38 (m, 4H), 

1.16-1.07 (m, 4H); 
13

C NMR: (75 MHz, DMSO-d6) δ = 155.53, 138.41, 138.21, 136.21, 

136.17, 136.10, 135.66, 135.52, 134.13, 134.02, 130.83, 128.91, 128.79, 126.54, 124.36, 

124.28, 121.16, 121.12, 112.92, 68.50, 68.40, 63.72, 63.57, 62.58, 62.56, 36.35, 31.28, 

28.65, 28.46, 28.33, 25.67, 25.21, 25.10, 22.83, 22.80 ; MS (APCI-(+), CH2Cl2): m/z  (%) 

649 (25, [M-1]
-
), 650 (100); HRMS (TOF-MS-APCI): Calc. for C42H50O6: 650.3610, 

Found: 650.3612. 
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1,6-Bis (2-(6, 8-diformyl-2, 3-dihydro-1H-hexen-4-yl)phenoxy)hexane (180)  

 

 

 

To a solution of tetraol (179) (1.00 g, 2.00 mmol) in CH2Cl2 (45 mL) was added Celite 

(3.00 g) in one portion. To this suspension was added PCC (4.05 g, 18.8 mmol) in several 

portions and the resulting mixture was stirred at room temperature for 3 h. The reaction 

mixture was vacuum filtered through a plug of Celite and the cake was washed 

thoroughly with CHCl3 (3 × 50 mL). The filtrate was removed under reduced pressure 

and the residue was subjected to column chromatography (30% ethyl acetate / hexanes) to 

afford tetraaldehyde (180) 62% (0.65 g, 0.91 mmol) as a colorless solid. Rf = 0.30 (30% 

ethyl acetate / hexanes); mp = 168-171 
o
C;

 1
H NMR (300 MHz, CDCl3) indicates the 

presence of two diastereomers in a 2:1 ratio. The differences were seen only in the 

aromatic region. Major diastereomer: δ = 10.27 (s, 2H), 9.58 (s, 2H), 8.24 (s, 2H), 7.45-

7.42 (m, 2H), 7.08-7.06 (m, 4H), 6.97 (d, J = 8.3 Hz, 2H). Minor diastereomer:  δ = 10.24 
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(s, 2H), 9.59 (s, 2H), 8.23 (s, 2H), 7.41-7.39 (m, 2H), 7.06-7.04 (m, 4H), 6.98 (d, J = 8.2 

Hz, 2H). Remaining signals for the mixture of diastereomers: δ = 3.83 (t, J = 6.3 Hz, 4H), 

3.32-3.26 (m, 4H), 2.48-2.28 (m, 4H), 1.81-1.57 (m, 8H), 1.44-1.40 (m, 4H), 1.05-1.03 

(m, 4H) ; 
13

C NMR: (75 MHZ, CDCl3) δ = 192.91, 192.12, 191.91, 155.80, 147.64, 

145.57, 138.87, 137.37, 134.57, 133.38, 132.14, 131.06, 130.69, 130.10, 129.93, 129.87, 

128.70, 124.57, 123.95, 120.72, 118.29, 111.85, 67.84, 32.90, 29.71, 28.74, 27.84, 25.41, 

22.73, 22.05, 21.71; MS (APCI-(+), CH2Cl2): m/z (%) 643 (100, [M+1]
+
), 644 (41); 

HRMS (TOF-MS-APCI): Calc. for C42H42O6: 642.2981, Found: 642.2982. 
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Selected NMR spectra  

 

 

 

 



 
 

120 

 

                          1
H NMR spectrum of 63 in CDCl3 
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                          13
C NMR spectrum of 63 in CDCl3 
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                          1
H NMR spectrum of 70 in CDCl3 
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                      13
C NMR spectrum of 70 in CDCl3 
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                         1
H NMR spectrum of 69 in CDCl3 
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                        13
C NMR spectrum of 69 in CDCl3 
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                        1
H NMR spectrum of 81a in CDCl3 
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                         13
C NMR spectrum of 81a in CDCl3 
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                      1
H NMR spectrum of 81b in CDCl3 
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                        13
C NMR spectrum of 81b in CDCl3 
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                         1
H NMR spectrum of 81c in CDCl3 
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                          13
C NMR spectrum of 81c in CDCl3 
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                         1
H NMR spectrum of 81f in CDCl3 
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                          13
C NMR spectrum of 81f in CDCl3 
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                          1
H NMR spectrum of 81i in CDCl3 
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                          13
C NMR spectrum of 81i in CDCl3 
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                      1
H NMR spectrum of 81j in CDCl3 
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                          13
C NMR spectrum of 81j in CDCl3 
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                         1
H NMR spectrum of 103b in CDCl3 
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                          13
C NMR spectrum of 103b in CDCl3 
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                         1
H NMR spectrum of 102b in CDCl3 
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                          13
C NMR spectrum of 102b in CDCl3 
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                        1
H NMR spectrum of 103c in CDCl3 
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                          13
C NMR spectrum of 103c in CDCl3 
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                          1
H NMR spectrum of 102c in CDCl3 
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                        13
C NMR spectrum of 102c in CDCl3 
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                        1
H NMR spectrum of 102a in CDCl3 

 



 
 

147 

 

 

                          13
C NMR spectrum of 102a in CDCl3 
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                      1
H NMR spectrum of 103a in CDCl3 
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                          13
C NMR spectrum of 103a in CDCl3 
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                      1
H NMR spectrum of 103d in CDCl3 
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                          13
C NMR spectrum of 103d in CDCl3 
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                      1
H NMR spectrum of 102d in CDCl3 
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               1
H NMR spectrum of 117 in CDCl3 
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                      1
H NMR spectrum of 177 in CDCl3 
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                          13
C NMR spectrum of 177 in CDCl3 
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                      1
H NMR spectrum of 178 in DMSO 
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                          13
C NMR spectrum of 178 in CDCl3 
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                                                 1
H NMR spectrum of 179 in CDCl3 
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                                                   13
C NMR spectrum of 179 in CDCl3 
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1
H NMR spectrum of 180 in CDCl3 
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13

C NMR spectrum of 180 in CDCl3 
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