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ABSTRACT 

Inexorable demand of energy intensified the search for oil and gas in remote and harsh 

regions. The operations related to exploration and production of oil and gas has been 

increased significantly over the last 30 years. The liquid hydrocarbon and natural gas 

products are usually transported through pipelines, which traverse large distances through 

a variety of soils. Failure of such pipelines could cause a significant economic loss and 

environmental damage. Geohazards and the associated ground movement represent a 

significant threat to pipeline integrity that may result in pipeline damage and potential 

failure. Safe, economic and reliable operation of pipeline transportation systems is the 

primary goal of the pipeline operators and regulatory agencies. Pipelines are usually 

buried or partially embedded into the seabed. To develop a reliable pipelines design 

method the complex behaviour of seabed sediment (soil) and soil/pipeline interaction 

should be properly modeled and analyzed. 

Finite element (FE) modeling has been widely used for predicting the response of buried 

pipelines. One of the main challenges in FE modeling of buried pipelines is to use 

appropriate soil constitutive model. Most of the FE analyses used built-in soil constitutive 

models in available commercial FE software. However, their prediction might be better if 

an advanced soil constitutive model is used. 

The main objective of this research is to perform finite element modeling for analyzing 

the response of pipelines buried in sand. The primary focus of this research is to adopt an 
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advanced soil constitutive model which might have a significant impact on pipeline 

response due to soil movement and to implement it in the commercial finite element 

software package ABAQUS with a user defined subroutine UMA T. All the analyses 

presented are in drained condition. 

In this study numerical analyses of soil/pipeline interaction are performed using the built

in Mohr-Coulomb soil constitutive model in ABAQUS FE program. This study shows the 

limitations and advantages of this constitutive model. Reviewing available soil 

constitutive models in the literature, it is identified that NorSand soil model proposed by 

Jefferies (1993) could better simulate the behaviour of sand pa1iicularly the dilation under 

monotonic loading. NorSand soil constitutive model implemented in ABAQUS FE 

software using user defined subroutine UMA T is used for modeling the response of 

pipelines under lateral , ve1iical (upward) and oblique loading events. Finite element 

analyses are also performed with built-in Mohr-Coulomb model. It is shown that the 

NorSand UMA T can simulate better the force displacement behaviour including the post

peak softening, which cannot be done with Mohr-Coulomb model with a constant dilation 

angle. The failure envelope obtained with NorSand UMAT for combined lateral and 

vertical (upward) oblique loading for a deep burial pipeline in dense sand is comparable 

with the analytical solution and previous numerical analyses. 
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1.1 General 

Chapter 1 

INTRODUCTION 

Pipelines are extensively used for transporting water and hydrocarbons. The vital role that 

they play in our present economy is reflected in the many kilometers of pipelines laid in 

onshore and offshore locations worldwide. Arctic and offshore Newfoundland and 

Labrador have been considered to be the major sources of oil and gas reserves in Canada. 

In recent years, oil and gas industries are moving into these areas for exploration. They 

are also planning for development and transportation of oil and gas to the markets. The 

liquid hydrocarbon and natural gas products are usually transported through buried 

pipelines, which traverse large distances through a variety of soils. Geohazards and the 

associated ground movement represent a significant threat to pipeline integrity that may 

result in pipeline damage and potential failure. In certain situations, pipelines can be 

exposed to potential ground failures such as surface faulting, liquefaction-induced soil 

movements, and landslide induced permanent ground deformation (PGD). These ground 

movements might cause excessive stresses in pipelines that may impact serviceability or 

trigger failure such as buckling or wrinkling and pipeline damage in some cases. 

Therefore, safe, economic and reliable operation of pipeline transportation systems is the 

primary goal of the pipeline operators and regulatory agencies. 



1.2 Scope of the Work 

Finite element (FE) modeling has been widely used for predicting the response of buried 

pipelines to lateral, upward (vertical) and oblique loading conditions. Most of the FE 

analyses used built-in soil constitutive model in commercially available FE software. 

However, their prediction might be better if an advanced soil constitutive model is used. 

A number of researchers including the researchers at Memorial University and C-CORE 

studied soil/pipeline interaction behaviour of onshore and offshore buried pipelines. 

Finite Element modeling has been considered one of the successful and efficient 

modeling techniques to analyze the response of buried pipeline to lateral , upward 

(vertical) and oblique loading conditions and also for varying soil conditions. 

Commercially avai lable software packages such as ABAQUS have been used for 

modeling the behaviour. Previous researchers also recognized that advanced soil 

constitutive model is required for better prediction of the response as the built-in soil 

constitutive models in software packages have significant deficiencies. 

1.3 Objectives 

The main objective of the present study is to develop a finite element modeling technique 

using ABAQUS FE software for analyzing the response of buried pipelines in sand 

subjected to ground movement using an advanced soil constitutive model. The following 

steps are taken to achieve this objective. 
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i) Conduct FE analyses using available constitutive model in ABAQUS; 

ii) Identify an advanced soil constitutive model that better simulates the stress

strain behaviour of sand; 

iii) Implement the soil model in ABAQUS FE software using UMAT; 

iv) Calibrate the FE model including the UMAT using triaxial test results; and 

iv) Conduct soil/pipeline interaction analyses for different loading conditions and 

compare with previous studies. 

1.4 Organization of Thesis 

The thesis is organized into six chapters that cover the literature review and developments 

carried out during the research. The manuscript starts with this chapter dedicated to the 

background and objectives of the study followed by a chapter on literature review of 

soil/pipeline interaction problems. The main contributions towards the advancement of 

modeling soil/pipeline interaction are presented in the subsequent chapters. 

Constitutive models for sand available in the literature have been reviewed. An advanced 

soil constitutive model NorSand which is not very complex yet can simulate most of the 

features observed in laboratory tests is selected. In Chapter 3 the various aspects of this 

model is discussed. The limitations of Mohr-Coulomb model which is typically used are 

also discussed. The details and comparison of these two soil constitutive models are 

described. The possible advantages of NorSand model to simulate soil/pipeline 

interaction problems are also discussed in this chapter. 
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Chapter 4 describes the FE analyses that were conducted to simulate the behaviour of 

pipelines in sand for pure lateral, pure upward and oblique loading with Mohr-Coulomb 

soil model. It presents the results of the 2-D and 3-D FE analyses conducted to simulate 

the large scale tank test performed by Trautmann and O' Rourke (1983). Results from FE 

analyses are presented with particular attention to the load-displacement plots. 

Chapter 5 describes the implementation and validation of the NorSand soil constitutive 

model. The implemented NorSand UMA T is first validated with available triaxial test 

results for varying soil conditions. The implemented NorSand model was also compared 

for soil/pipeline interaction events for pure lateral and pure upward loading with the FE 

analyses using Mohr-Coulomb model. Finally, FE analyses were conducted to simulate 

the behaviour of soil/pipeline interaction for a deep burial pipeline in dense sand for 

oblique (lateral-vertical) loading. The effects of oblique angle on soil-pipeline interaction 

are examined and a diagram of variation of horizontal and vertical interaction factors with 

oblique angles is developed. The failure envelope is also obtained with NorSand UMAT 

for combined lateral and vertical (upward) oblique loading and compared with analytical 

solutions and previous numerical analyses. 

Chapter 6 presents the summary of the analyses and the conclusions that are drawn from 

this research. Some recommendations for the future work are also provided in this 

chapter. 
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1.5 Original Contributions 

In this research, an advanced soil constitutive model for simulating the response of buried 

pipelines is identified first. Reviewing the available soil constitutive models, it is 

identified that NorSand soil constitutive model proposed by Jefferies and his co-workers 

could better model sand behaviour. NorSand model implemented in ABAQUS FE 

software using user defined subroutines UMA T is used for numerical analyses. The 

numerical model is used for simulating the response of pipelines to lateral, upward 

(vertical) and oblique loading conditions subjected to ground movement. 

ABAQUS is a general purpose finite element software which is very powerful in analysis 

of boundary value problems and has been considered as a numerical tool for analyzing 

different types of problems in civil and mechanical engineering. This is not a pure 

geotechnical software with built-in advanced soil constitutive models. However, a 

number of researchers in geotechnical and pipeline engineering used ABAQUS as it is 

very efficient. In the present study, one of the main limitations is addressed for analysis 

of pipelines and other infrastructures by implementing NorSand soil constitutive model in 

ABAQUS FE software. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

Buried pipelines are extensively used for transporting water and hydrocarbons. In the oil 

and gas industries, energy pipeline systems are critical transportation elements for 

transmission of hydrocarbon products over long distances. Over 97% of Canadian natural 

gas and crude oil production is transported by transmission pipelines and the estimate of 

Canada' s underground natural gas and liquids pipeline network (gathering, transmission 

and delivery lines) is approximately 825,000 km (www.cepa.com). One of the challenges 

in buried pipe line design is the effect of geohazards on the mechanical response and 

integrity of pipelines. In certain situations, pipelines can be exposed to potential ground 

failures, such as surface faulting, liquefaction-induced soil movements, and landslide 

induced permanent ground deformation (PGD). Ground deformation often causes the 

most serious local damage in buried pipeline networks (Hamada and O 'Rourke, 1992; 

O 'Rourke, 1998; O ' Rourke, 201 0). Permanent ground deformation effects not only apply 

to earthquakes, but also occur in response to floods, tunneling, deep excavations, and 

subsidence caused by dewatering or the withdrawal of minerals and fluids during mining 

and oil production. Such loading conditions are becoming increasingly more important as 

technologies are developed to cope with natural hazards, human threats, construction in 

congested urban environments, and offshore structures. Many previous studies (e.g. 
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Trautmann, 1983; ALA, 2002; O'Rourke, 1998; Paulin, 1998; Conte et al., 2002; 

Anderson et al., 2004; Yeh et al. 2006; Giovanazi and Cubrinovski, 2007; O'Rourke and 

Bonneau, 2007; Ha et al., 2008a and b; O'Rourke, M.J. et al., 2008; O'Rourke, T.D. et 

al., 2008; and Oliveira et al., 2010) have addressed the effects of POD, including soil 

liquefaction, landslides, surface faulting, and tunneling and urban excavations, on critical 

underground infrastructure. These ground movements might cause excessive stresses in 

pipelines and might cause the damage in some cases. Therefore, the advancement of the 

understanding of pipe/soil interaction will not only lead to improved engineering designs 

but also to reduced uncertainty, improved economy, and greater safety for the oil and gas 

pipeline industries. 

2.2 Soil/Pipeline Interaction 

In the current state-of-practice (e.g., Committee on Gas and Liquid Fuel Lifelines of ALA 

2002), the pipeline is generally modeled by a simplified beam, while the soil/pipeline 

interaction is modeled by three soil springs in the axial (or longitudinal), transverse 

horizontal, and transverse vertical directions using Winkler type model (Winkler, 1867) 

as shown in Figure 2-1. 
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Figure 2-1: (a) Schematic illustration of continuum soil/pipeline interaction, (b) Idealization of 
pipe/soil interaction based on structural model (ALA, 2002) 

The properties of soil springs in three orthogonal directions are independent which means 

that the deformation of soil in one direction has no effect on pipe/soil interactions in other 
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directions. The general form of the load-displacement relations for these springs can be 

expressed as: 

T =f(x);P =f(y);Q =f(z) (2 .1) 

Where T, P and Q are the soil loads applied to unit length of the pipeline and x, y and z 

are the relative displacements between pipe and soil in longitudinal, lateral and vertical 

directions, respectively. This approach benefits from ease of application and its 

incorporation in available finite element (FE) codes (ALA, 2002), but suffers from the 

uncoupled representation of soil as a series of spring-slider reactions (Honegger and 

Nyman, 2004). Whereas simplified models for pipeline response to abrupt soil movement 

(Kennedy et a!. , 1977; O' Rourke and Trautmann, 1981) provide guidance for design, 

numerical simulations of the nonlinear and post-yield performance of pipelines 

(O'Rourke and Liu, 1999; Eidinger et a!, 2002) are also being considered nowadays. 

Numerical modeling methods have been validated through large-scale tests or physical 

tests that simulate soil-structure interaction, which are essential for reliable model 

development and acceptance in practice (O'Rourke and Liu, 1999; O 'Rourke, 201 0). 

Continuum models are now being developed for replicating soil-pipeline interaction in a 

realistic way (O ' Rourke, 20 10). 

The soil reaction that develops as the p1pe moves relative to the ground is of key 

importance in the response of underground lifelines to PGD. Theoretical and 

experimental studies were conducted in the past to determine the forces on pipelines due 
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to the relative movement of the soil in a specific direction, namely longitudinal, 

transverse horizontal, or transverse vertical (e.g. Hansen, 1961 ; Ovesen, 1964; Vesic, 

1971; Audibert and Nyman, 1977; Ranjan and Aurora, 1980; Trautmann eta!, 1985; 

Paulin, 1998; Scarpelli et al., 1999; and Rizkalla et al., 1992; Guo, 2005; Wijewickreme 

et al. , 2009). 

ALA (2002) provides two models to calculate the horizontal bearing factor for sand, Nqh, 

(Figure 2-2 and Figure 2-3). The first one is based on the work of Audibert and Nyman 

(1977). They adapted Hansen (1961) model for vertical piles subjected to lateral loading 

and a good agreement with experimental data was found. The value of Nqh increases with 

soil friction angle and burial depth-diameter ratio, HID (PRCI, 2003). The second model 

for the bearing factor, Nqh, is based on the work of Trautmann (1983). They found good 

agreement between experimental results and the theory for vertical plate anchors 

subjected to horizontal loading (Ovesen and Stromann, 1972). ALA (2002) has pointed 

out that for the same burial geometry and soil properties, the factor Nqh obtained from the 

model of Hansen (1961) is 50 to 100% greater than that obtained from the Ovesen and 

Stromann (1972) based model (PRCI, 2003). Guo and Stolle (2005) reconciled the 

difference between Hansen (1961) and Ovesen and Strom ann (1972) based on the size 

effect, stress level and soil weight. 
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Figure 2-3: ASCE horizonta l bearing capacity factor: after Trautmann and O'Rourke (1983) 

Several theoretical, numerical and experimental analyses have been conducted on load-

displacement behaviour of piles and anchor plates that can be also used to define the 

pipe/soil load-displacement behaviour for each of the three perpendicular (axial or 

longitudinal, lateral horizontal and vertical) directions. Although the available guidelines 

(e.g., ALA, 2002) provide procedures for characterizing the force-displacement 

relationships for vertical uplift, settlement, and lateral displacement of buried pipelines in 
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soil using spring models, these springs are usually independent and during a 3D pipe/soil 

relative displacement they cannot account for cross effects due to the shear interaction 

between different soil zones along the pipe. A number of studies have been conducted in 

the past to investigate the pipe/soil interaction during an oblique or three-dimensional 

pipe/soil relative movement, which includes experimental (e.g. Daiyan et al., 201 Oa and 

b, Hsu et al., 2006), theoretical (e.g. Cocchetti et al., 2009a) and numerical (e.g. Cocchetti 

et al., 2009b, Phillips et al., 2004) investigations It is also to be noted here that the 

response of a pipeline under combined loading in centrifuge (Daiyan et al., 201 Oa & b) is 

slightly different from the model test results conducted by Hsu et al. , (2006), which also 

need to be resolved. Previous researchers (e.g. Daiyan et al. , 2010a and b, Phillips et al., 

2004) show that there is a considerable increase in the axial soil restraint on the pipeline 

when a lateral relative displacement occurs between pipe and soil. Therefore, more 

investigations on complex loading conditions are needed to enhance the numerical tools 

and to develop engineering guidelines to assess pipeline' s response in a 3D pipeline/soil 

interaction event. 

Although there are several experimental, theoretical and numerical studies, the number of 

numerical studies for oblique especially for lateral-vertical loading using advanced soil 

constitutive model is limited. As continuum finite element models can provide the means 

of simulating buried pipeline behaviour in a more reliable way than finite element 

modeling with spring-slider elements that is often performed in current practice, finite 

element modeling of oblique loading events of pipe-soil interaction both in plane strain 

and three-dimensional conditions are equally important. 
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2.3 Effects of Soil Constitutive Model 

While previous numerical studies available in the literature show the similar trend as 

observed in model tests, for successful quantification of the response of pipeline to 

lateral, upward (vertical) and oblique loading conditions, the soil behavior should be 

modeled properly. Fortunately, a large number of research works in geotechnical 

engineering are devoted to the development of better constitutive model for sand which 

can capture most of the salient features of stress-strain behaviour. Unfortunately, these 

advanced soil constitutive models are not implemented in most of the commercially 

available software such as ABAQUS. Therefore, most of the research works on buried 

pipelines are based on simple built-in model such as Mohr-Coulomb plasticity model. 

The Mohr-Coulomb plasticity model has a number of limitations including the modeling 

of dilation and could be questionable at low stress level. For pipeline-soil interaction 

analyses in sand, the peak forces from Mohr-Coulomb model also overestimate the model 

test results (Yimsiri et a!., 2004). In this research, an advanced soil constitutive model for 

simulating the response of buried pipelines was identified first. Reviewing available soil 

constitutive models, it was identified that NorSand soil constitutive model proposed by 

Jefferies (1993) could better model the soil behaviour particularly in sand. NorSand soil 

constitutive model implemented in ABAQUS FE software using user defined subroutines 

UMAT is used for numerical analyses in the current study. 

The research described in this thesis is undertaken to improve the analysis of buried 

pipelines under the effects of POD by simulating soil-pipeline interaction by continuum 
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finite element models and with an advanced soil constitutive model, NorSand. First, 

several finite element models in plane strain condition were developed with built-in 

Mohr-Coulomb model and also with implemented NorSand soil constitutive model in 

ABAQUS to analyze the pipe/soil interaction event for pure horizontal and pure upward 

loading. The results of large-scale tests are used to compare with numerical results with 

built-in Mohr-Coulomb model to either validate the finite element models or generate 

improvements in the modeling process, resulting in more effective simulation techniques. 

The developed finite element tools with the implemented NorSand model are used for 

further soil-pipeline interaction analyses on oblique loading event in plane strain 

condition. 

2.4 Summary 

The current state of practice for pipeline design is fully reflected in the ALA (2002) 

guidelines, and more recently, C-CORE Report (2003). In general, pipeline is 

represented as an elastic beam, while the soil along the pipeline is modelled by a series of 

discrete nonlinear springs (i.e. elasto-plastic, multi-linear). Using different equations 

corresponding to assumed conditions, the maximum soil spring forces and associated 

relative displacement necessary to mobilize these forces are computed. Even though the 

above mentioned guidelines follow the same basic principles, the calculations of soil 

forces are very different, since they are based on different considerations and 

assumptions. However, for accurate simulation of load transfer to the pipeline, proper 
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modelling of the soil-structure interaction is very important taking into account relative 

movements between the pipeline and soil. 

The response of pipelines is very much dependent upon the properties of the surrounding 

soil. For a pipeline buried in loose sand, the measured force-displacement curves are 

almost hyperbolic. However, a peak point followed by a decrease in force is observed in 

dense sand which is termed as strain softening. The built-in Mohr-Coulomb model in 

ABAQUS cannot simulate this behaviour. So implementation of an advanced soil 

constitutive model that can capture different features of sand in ABAQUS has become a 

prime concern for the researchers in geotechnical engineering. 
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Chapter 3 

CONSTITUTIVE MODELING OF SAND 

3.1 General 

Soil constitutive modeling describes qualitative and quantitative understanding of soil 

behaviour. Soil behaviour depends on many factors including stress level and void ratio. 

A good constitutive model should be able to predict the stress-strain response of soil for 

the range of applicable stress level and void ratio. Constitutive modeling is also important 

as geotechnical engineers depend to a large extent on in situ tests to determine sand or silt 

properties but in situ tests do not really measure soil properties; rather they measure the 

response to the loading. An inverse boundary value problem needs to be solved for 

obtaining soil properties from the in situ tests, and a constitutive model is required for 

this. Constitutive modeling is also an excellent way to simulate full-scale experience. A 

sound framework is needed to understand the full-scale experience and this framework 

necessarily comes from the mechanics. Mechanics, in turns, is based upon understanding 

soil constitutive behaviour. The need for 'good' constitutive models is ever increasing 

because, with the advance in computers, more complex numerical analyses are becoming 

a routine practice. 

3.2 Stress-Strain Behaviour of Sand 

The mechanical behaviour of reconstituted sands is governed by a number of material 

properties such as mineralogy, grain size distribution, grain shape, specific gravity and 
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friction angle. Been et a!. (1991) grouped these as intrinsic material properties as they can 

be uniquely defined and are independent of the state of the sands. The strength of sand is 

usually characterized by the angle of internal friction~' , angle of dilation, \I'm and critical 

state friction angle, ~~ c· As there is no bond between the grains, the shear strength of sand 

can be defined by the Mohr-Coulomb failure criterion with zero cohesive intercept: 

(3 .1) 

where -rr is the shear stress at failure on the failure plane, cr'1 is the normal stress on the 

failure plane and ~'m is the mobilised friction angle. In triaxial condition, the mobilized 

angle of internal friction and dilation can be written in terms of the effective principal 

stresses and strains as: 

sin¢' = m (3.2) 

(3.3) 

where cr'1 and cr'3 denote the major and minor effective principal stresses, respectively, 

and 8 E1 and 8 E: 3 are the major and minor principal strain increments, respectively in 

triaxial condition. 
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The relationship between ~' m and \lim has been the focus of many geotechnical researchers 

(e.g. Rowe, 1962; Bolton, 1986; Wood, 1990; Been et al., 1991) in the past. Rowe (1962) 

developed the well-known stress-dilatancy theory, which defined the relationship between 

stress ratio 11 and dilatancy rate IY as: 

OEP 9(M-ry) DP = _E.-
OEP - 9+3M-2M7] 

q 
(3.4) 

where 11 = qlp' and M is the slope of the Critical State Line (CSL) in the p'-q stress space 

which can be related to the critical state friction angle ~' c by: 

M 
_ 6sin¢ 'c 

c-
3-sinc:f> ·c 

M = 6sinc:f> 'c 
e 3+sin¢ 'c 

(3.5) 

(3 .6) 

where Me and Me are the slopes of CSL in triaxial compressiOn and extension, 

respectively. From the Eqs. 3.5 and 3.6, it is clear that Me> Me if the critical state friction 

angle is constant in both compression and extension spaces. Rowe ( 1962) proposed that 

for dense sands, the mobilised friction angle ~' m could be interpreted as the sum of the 

sliding resistance at the contact (i.e. the true friction angle ~' u), particle rearrangement and 

dilation. The component of crushing has some role at high stress level, but for typical 
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stress range in geotechnical practice may not be very significant. As shown in Figure 3-1 

the dilatation plays a significant role on internal friction and thereby shear resistance. 

From experimental results on various sands, Bolton (1986) proposed a simple correlation 

between the mobilized friction angle ~' 111 , critical state friction angle ~, c and mobilized 

dilatancy angle \jf111 , as: 

~' m = ~' c + 0 .8\jfm (3 .7) 

It has been also shown that the dilatancy rate depends on relative density of the soil. 

20 



34 -

30 

26 

Poros1ty. n (~o) 

Figure 3-1: Contributions to the shear strength of granular soils (Mitchell, 1993). 

Instead of relative density, the "state parameter concept" has also been successfully used 

to develop constitutive models for sands (e.g. Jefferies, 1993). The main advantage of this 

parameter is that it combines the influences of density and confining pressure on sands in 

a unique way as shown in Figure 3-2. The state parameter is a measure of how far the soil 

state is from the critical state in terms of density or void ratio. 
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Figure 3-2: Definition of the state parameter 

3.3 Typical Response of Sand in Triaxial Test 

Typical stress-strain curves for dense and loose sand in drained triaxial tests are shown 

Figure 3-3 . In Figure 3-3(a) the deviator stress, q, is equal to cr i- cr2 for triaxial conditions. 

The axial stra in is E: I and the deviator strain, E:q is equal to 2(E: I - E:3)/3 for triaxial 

compression. Both E: I and E:q are commonly used to plot stress-strain curves in 

geotechnical engineering. 

As shown in this Figure 3-3 dense sand shows a peak value of deviator stress before 

dropping to constant stress at larger strains. Conversely, loose sand does not show a peak 

but directly reaches to the same constant value of stress as the dense sand at large strains 

for identical mean effective stress conditions. 
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Figure 3-3(b) plots data in volumetric strain versus axial or deviator strain. Volumetric 

strain, E:v, is defined as E: 1+2E:3 for triaxial conditions with positive sign for compression. 

That means, positive volumetric strains represent contraction while negative volumetric 

strains denote dilation. 

Dense sand contracts initially during shear and then dilates until a state is reached where 

volumetric strain remains constant. Loose sand contracts during shear until it reaches 

constant volume conditions at large strains. 
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Figure 3-3: Schematic of typical results of a drained triaxial test on loose and dense sand (a) Deviator 
stress vs Axial strain (b) Volumetric strain vs Axial strain (Das, 2008) 

The aim of constitutive modeling is to develop mathematical equations which represent 

the stress-strain behaviour not only in triaxial condition but also in other form of loading. 

To measure the stress-strain and strength properties of sand, a large number of 

sophisticated testing systems have been developed and a large number of plasticity 
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models have been proposed such as Mohr-Coulomb, NorSand, Bounding Surface and 

SANISAND (Taiebat and Dafalias, 2007). The stress-strain behaviour of sand depends 

not only on their density but also on the stress level. The true state of soils cannot be 

quantified simply by relative density. The location of its current stress and volume state 

relative to the critical state line could be the better option as used in NorSand model. In 

this research, constitutive models available for sand have been reviewed. Finally, the 

analyses have been performed using two constitutive models. The first one is the Mohr

Coulomb model, which has been widely used by previous researchers. The second one is 

the NorSand model which is an advanced soil constitutive models. The response of 

buried pipeline in sand using these models has also been compared. 

3.4 Mohr-Coulomb Model 

Mohr-Coulomb soil model is a simple linear elastic-perfectly plastic model. It is widely 

used in geotechnical engineering to simulate material response under monotonic loading. 

Mohr-Coulomb model is one of the built-in soil constitutive models in ABAQUS finite 

element software for modeling geomaterials. The way it is implemented in ABAQUS is 

shown in Figure 3-4. The failure criteria in deviatoric plane are shown in Figure 3-5(a). 

The flow potentials in deviatoric and p-q plane are shown in Figures. 3-5(b) and 3-5(c), 

respectively. As shown in this figures that the flow potentials are smooth surfaces to 

avoid numerical issues. The default deviatoric eccentricity (e=(3-sin~')/(3+sin~')) is used. 
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The Mohr-Coulomb failure criterion assumes that the failure occurs when the shear stress 

on any point in a material reaches a value of -r:1 that depends linearly on the normal stress 

in the same plane (Figure 3-4) as defined in Equation 3.8. 

-r:r = c' + cr' tan~' 

T 

Figure 3-4: Mohr-Coulomb failure criteria 

(3.8) 

-a 
(compressive stress) 

The material constant c' defines the cohesion and the friction angle ~· controls the slope of 

the yield surface in the deviatoric plane as shown in Figure 3-4. The yield surface does 

not harden with plastic strain. In the case of~ = 0°, Mohr-Coulomb model reduces to the 

pressure-independent Tresca model with a perfectly hexagonal deviatoric section. 
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Within the Mohr-Coulomb framework, the soil is modelled as an isotropic dilatant 

elastic-perfectly plastic material. Elastic behaviour can be modelled using linear/non

linear elastic properties. Plastic flow in the meridional stress plane can be considered to 

be "associated" when the angle of internal friction ~· and the angle of dilation \jf m are 

equal and the meridional eccentricity, E: is very small (Figure 3c); however, plastic flow in 

this plane is in general "non-associated". Plastic flow in the deviatoric stress plane is 

always "non-associated" . Therefore, the use of this Mohr-Coulomb model generally 

requires the non-symmetric matrix storage and solution scheme. 
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In short, Mohr-Coulomb soil constitutive model requires two strength parameters, c' and 

~·, where c' represents the part of strength that is independent of normal stress and ~ · is 

the angle of internal friction in terms of effective stress. It requires two additional 

elasticity parameters (Young's modulus, E, and Poisson's ratio,v). A linear isotropic 

elastic modulus is used in this study. Moreover, the dilation angle (t/J) is needed to be 

defined which is constant in built-in model. Applying normality to Mohr-Coulomb 

surface, i.e. using associated flow, implies that the dilation angle is equal to the friction 

angle. This results in unreasonably high volumetric strains and hence Mohr-Coulomb is 

typically used as a non-associated flow model. In general, the prediction using built-in 

Mohr-Coulomb is not satisfactory both for volume changes and pre-yield nonlinear 

behaviour. 

3.5 NorSand Model 

NorSand is a generalized critical state model for soil based on the "state parameter" 

approach. It is an elasto-plastic critical state soil model first proposed by Jefferies (1993). 

It has associated plasticity but through the introduction of limited hardening, it simulates 

dilation similar to actual soil. Over the last 15 years, the NorSand model has been 

updated, primarily to incorporate varying critical image stress ratio, Mi, and to provide 

improved predictions under plane strain condition. The version of the NorSand presented 

here corresponds to the version given in Jefferies (1993). 

It is claimed that, the NorSand was the first critical state soil model to realistically model 

sand. Unlike Cam-Clay, it predicts realistic dilatancy for dense sands (Jefferies and 
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Shuttle, 2005). Like Cam-Clay NorSand assumes normality, but NorSand also imposes a 

limit on the hardening of the yield surface which allows for more realistic prediction of 

dilatancy for dense soils. 

A brief summary of NorSand model development is provided in the following sections. 

The NorSand has been developed based on two basic axioms: (i) a unique critical state 

exists, and (ii) soils move to the Critical State Line (CSL) with shear strain. 

This is an idealized critical state model and with following four ideas (Shuttle and 

Jefferies, 201 0): 

1. There are infinite possible NCL in e-crm space such that any yield surface does not 

necessarily intersect the CSL, with the position of the current yield surface in the 

e-crm space being defined by \j/ . Here, crm is the mean effective stress in three

dimensional stress space (cr 1+ cr2+ cr3)/3, which is equal top' in triaxial condition. 

For convenience, all the effective stress components are presented without prime 

(') although author understands that in most of the geotechnical engineering 

textbook, cr is used for total stress and cr' for effective stress. 

2. The state parameter \jf tends to zero as shear strain accumulates to a large value. 

3. The minimum possible dilation rate (i.e. dilation at peak strength) is linearly 

related to \jf. 

4. Principal stress rotation always softens (shrinks) the yield surface. 
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One of the main features of all versions of NorSand is that it has an infinity of normal 

consolidation lines (NCL) and not every yield surface is required to pass through the 

critical state which is a significant difference from Cam-Clay model. This behaviour was 

first reported by Tatsuoka and Ishihara (1974), from triaxial tests on Fuji River sand. 

They demonstrated that the normal consolidation line (NCL) for sands is not unique, 

instead being a function of density. Moreover, they showed that looser samples yield at 

higher deviator stress for a given mean effective stress. Jefferies and Been (2000) 

provided additional data to confirm this finding conducting tests on Erksak sand. The 

concept is illustrated in Figure 3-6. For every normal consolidation line there is a 

conjugate yield surface at each value of initial mean effective stress. 
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Figure 3-6: Typical CSL and NCL in e-lnp' plot 
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NorSand, in common with other plasticity models, comprises three items: (i) a yield 

surface; (ii) a flow rule, and (iii) a hardening law. These three items of the NorSand 

model are briefly discussed below. Further details are available in the articles by Jeffries 

and his co-workers (e.g. Jefferies, 1993 and 1997; Jefferies and Been, 2000; Jefferies and 

Shuttle, 2002; Shuttle and Jefferies, 201 0). 

Yield Surface and Flow Rule: 

Although Cam-Clay model can successfully model soft clay in wet side, the dilatancy rule 

used in Cam-Clay does not match well with data obtained for sand especially dense sand. 

Based on experimental results, Nova (1982) proposed the following stress-dilatancy rule 

which has been used in NorSand model. 

D P = M -ry 
1-N (3.9) 

The parameter N represents the volumetric coupling and its value varies between 0.2 and 

0.4 (Nova 1982). The NorSand yield surface has the familiar bullet-like shape of the 

classical Cam Clay model but with one important addition. In triaxial condition the yield 

surface can be written as (Jefferies 1993): 

[ 
N J M p N - J ~ ~ N l+(N-l{p,) 

(3. 1 0) 
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IfN = 0 the above equation becomes same as Cam-Clay model 

(3 .11) 

The shape of the yield surface is a function of N. Yield surface hardening is constrained 

to match the computed maximum dilatancy to real sand behaviour. From experimental 

data, the maximum dilatancy has been found to be 

(3.12) 

Where x is a constant and the state parameter at image state is given by 

(3 .13) 

The maximum dilatancy is transformed to a ' limiting hardness' (a family of lines parallel 

to CSL in e-lnp space) and the yield surface is sized so that the dilatancy from normality 

matches reality. 
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Figure 3-7 shows the shape of the yield surface (Equation 3.10) as function N. As 

mentioned in previous sections that excessive dilation is one of the main limitations ofthe 

Mohr-Coulomb and dry side of Cam-Clay models. The plastic dilatancy If is determined 

from the idealized stress-dilatancy relation. 

Hardening Law: 

The third aspect of the model is the hardening law, which describes how the yield surface 

increases or decreases in size with plastic straining. Equations 3.14 and 3.15 describe a 

family of lines in e-lnp space parallel to the CSL. 

( Pi) = (1 + 3.51/JiN)(N-1)/ N if N _J_ 0 
P max M ' -r 

(Pi)max = exp( -3.51/Ji / M) , if N = 0 
p 
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A simple hardening rule that complies with the limited maximum hardness is a first order 

rate equation to bring the sand to its limiting hardness (Equation 3 .16) or in an 

exponential rate equation (Equation 3.17): 

(3.16) 

!!.:_=Hexp <- ll iM) (p . -p) 
. 1,max 1 

Elf 

(3.17) 

where His a proportionality constant and a new material property which can be compared 

to the role of 1/A. in Cam-Clay. In the present NorSand UMAT, the exponential form 

(3.17) is used. 

NorSand is an isotropic model hardening which expands or contracts the yield surface 

while retaining its shape. The current state parameter and the direction of loading controls 

whether the yield surface hardens or softens. The divergence of yield surface from critical 

state is used as the basis of the hardening law, and the hardening law acts to move the 

yield surface towards the critical state under the action of plastic shear strajn - which 

directly captures the essence of critical state principles. 

In summary, the NorSand model reqUires eight (8) input parameters that can be 

determined fi·om laboratory test data. Two of them are critical state parameters, four 
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plasticity parameters, and two elasticity parameters. Table 3-1 shows the parameters 

required in NorSand model and their typical range. 

Table 3-1: Typical range of NorSand model parameters (Shuttle and Jefferies, 2010) 

Propertr Trpical Range Remark 

CSL 

r 0.9 - 1.4 ' Altitude ' of CSL. defined <1t 1 kPa 

), 0.01-0.07 Slope of CSL. defined on b<1se e 

Plosticitr 

1\ftc 1.1- 1.5 Critical friction riltio, triaxiill compression as 
reference con eli tion 

N 0.2 - 0.45 Volmnetric coupling coefficient 

H so- 500 Plastic hardening modulus for loading:, often f(\j/) 

X tc 1.5 - 4.5 Relates minimum dilatm1cy to y. Often tilken ilS 3.5. 
Triaxial compression ilS reference condition 

Elosricit\' 

Ir 100-800 Dimensionless shear rigidity 

I ' 0.1 - 0.3 Poisson's ratio, commonly 0.2 adopted 

3.6 Advantages of NorSand in Modeling Soil/Pipeline Interaction 

The concept of critical state (Roscoe et al. , 1958) has been successfully applied to 

modeling the behaviour of cohesive soils. Because the behaviour of sand is somehow 

different from clay, some modification has been made later for modeling sand in critical 

state framework. Moreover, the Critical State Models like Cam-Clay or Modified Cam-

Clay have some notable successes i.e. explaining the effect of void ratio on soil behaviour 

and effect of overconsolidation on clay strength. Unlike clay, for a particular l], sand does 

not possess a unique relationship between the void ratio e and p'. In fact, the density of a 
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typical sand in the pressure range before particle crushing cannot be altered considerably 

by a constant 11 compression, either isotropic (TJ = 0) or anisotropic (TJ # 0). Moreover, 

when the 11 of sand reaches it's limiting value ofM (the critical stress ratio) during plastic 

loading, it does not necessarily follow that the sand is at a critical state. The stress path 

can actually move along the 11 = M line, as for example in an undrained dilative shear 

path up to ultimate fai lure. These differences suggest that the well-established framework 

for clay modeling should not be directly used for sand modeling. NorSand has few 

parameters, most of which are familiar. The unfamiliar parameters are easily understood 

and measured. It really does not need much more effort than a Mohr Coulomb model 

(Shuttle and Jefferies, 201 0). 

For numerical modelling of sand, Mohr-Coulomb model is commonly used. However one 

might also want to use Cam-Clay model. Some key features of NorSand comparing with 

other constitutive models are given below, which should be considered in soil/pipeline 

interaction analyses: 

• The basic problem IS neither Cam-Clay nor the Modified Cam-Clay dilate 

anything like dense sand. NorSand can model dilation behavior of sand. 

• Existing Cam-clay models fail to predict observed softening of dense sands 

properly. 

• Like Cam-Clay, NorSand assumes normality but NorSand also imposes a limit on 

the hardening of the yield surface which allows more realistic prediction of 

dilatancy for dense soils. 
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• A significant difference from Cam-Clay is that NorSand has infinity of Normally 

Consolidation Lines (NCL) and not every yield surface is required to pass through 

the critical state. This behaviour was first reported by Tatsuoka and Ishihara 

(1974) from triaxial tests on fuji river sand, who demonstrated that NCL for sands 

are not unique, instead being a function of density. 

• The hardening of the yield surface cannot be uniquely controlled by void ratio and 

the slopes of the NCL and the swelling line as for Original Cam-Clay (OCC) 

model or Modified Cam-Clay (MCC) model. In NorSand hardening is related to 

the plastic shear strain. 

• To get the representative predictions for dense sand in the original and Modified 

Cam-Clay models, a high overconsolidation Ratio (OCR) must be used even if the 

sand is normally consolidated. In NorSand, the ' intrinsic state' of soil is separated 

from over consolidation and there is no need to assign an OCR to properly model 

dense normally consolidated sand (Jefferies, 1993). 

• Mohr-Coulomb model cannot predict the softening behaviour whereas, NorSand 

realistically simulates softening behaviour. 

• Constant dilation angle is generally used in Mohr-Coulomb model whereas in 

NorSand, the dilation angle changes with plastic deformation. Note that some 

researchers (e.g. Popescu eta!., 2002) implemented the variation of dilation angle 

as a function of plastic shear strain. 
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Chapter 4 

FINITE ELEMENT ANALYSES WITH MOHR-COULOMB SOIL 
CONSTITUTIVE MODEL 

4.1 General 

The Finite Element software package ABAQUS/Standard 6.1 0 EF 1 is used to simulate 

the pipeline/soi l interaction both in two- and three-dimensional conditions. Comparison 

of numerical results with actual experiments is necessary to validate the numerical model. 

The model tests conducted at Cornell University (Trautmann and O' Rourke, 1983) are 

used for the numerical validation. Two soil constitutive models used in this study are 

Mohr-Coulomb model and NorSand soil constitutive model. In this chapter, the 

performance of Mohr-Coulomb model is presented. The performance of NorSand model 

is discussed in Chapter 5. 

4.2 Model Tests at Cornell University 

A number of large-scale tests were performed at Cornell University to understand the 

soil/pipe interaction behaviour subjected to lateral and vertical loading (Trautmann and 

O'Rourke, 1983). The two-dimensional view of the experimental setup is shown in Fig. 

4-1 . The tests were performed in a tank of 1.2 m width, 2.3 m long and 1.2 m depth. 

Different types of fluvio-glacial sand having similar, but not identical, grain size 

characteristics (Olson, 2009), referred to as CU filter sand were used in the tests. To show 

the capability and limitations of the present FE analysis models, benchmark analyses have 
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been performed to simulate these tests using the same test conditions and same 

geotechnical properties of the soil used in the tests. 

DepeediaOD 
HID 

Appox300nm 

2300nm 

600mPl 

Figure 4-1: Two-dimensional view of experimental setup (Trautmann and O'Rourke, 1983) 

The Cornell University (CU) filter sand has a coefficient of uniformity Cu of 2.6 and an 

effective grain size D 1o of 0.2 mm. The tests were conducted in dry soi l beds of three 

different relative densities having dry unit weight of 14.8 kN/m3 for loose, 16.4 kN/m3 for 

medium and 17.7 kN/m3 for dense sand, which corresponded to the relative density of 0, 

45, and 80%, respectively. In practice, the sand around the pipeline is often compacted 

and could be in the state of medium to dense conditions. Hence, the tests in medium and 

dense cases are simulated in the present study. A 102 mm pipe with a wall thickness of 

6.4 mm fabricated from ASTM Grade A-36 steel was used in model tests. The pipe was 

of welded seam, hot rolled construction and had rough, scaley surfaces with minor rust 

patches. 
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Geotechnical parameters for CU filter sand were obtained from the direct shear tests 

performed by Trautmann (1983). Tests were performed in 60 mm by 60 mm direct shear 

testing apparatus, using 50 mm thick specimens and a displacement rate of 0.56 mm/min. 

The relationship between the normal stress and shear stress at the peak is shown in Figure 

4-2. As shown the angle of internal friction at the peak is 42° for dense sand while it is 

33° for medium sand. Note that, these densities are slightly lower than the densities used 

in pipe loading tests, and therefore the peak of 44° for dense and 35° for medium sand are 

used in finite element analyses in the present study. 

NORMAL STRESS, pei 

25Br--~--~1~--~--~2--~~--~3--~ 

2121 3 

IJ Oenei~y • 17.2 kN/,.3 ~ ~ 
en 15 ~ • 42 deg. rn 

> U) :tl 

~ 2 U) 

U) if rn 
0: 

10 ~ i1i 
:I: 
(/) "'0 • 

1 
... 

5 
Oene1~y • 16.0 kN/,.3 

ljJ -
33 deg. 

" 2.} G!l 5 10 15 2B 

NORMAL STRESS, kPa 

Figure 4-2: Relationship between normal stress and shear stress at the peak of Cornell University 
(CU) filter sand (Trautmann, 1983) 

41 



Pipe loading tests were conducted in several conditions varying the depth of embedment 

ofthe pipe and soil density. Experimental results were converted to dimensionless form to 

faci litate the comparison of experimental and analytical results. The dimensionless format 

also facilitates the application of the results to a wide variety of pipe diameter and depth 

of practical interest. 

Figures 4-3 to 4-5 show the force-displacement curves for lateral loading obtained by 

Trautmann (1983) for loose, medium and dense sand, respectively. The vertical axis in 

this figure show the normalized lateral resistance Fl(yDHL) , where F is the measured 

lateral force, y is the dry unit weight of the sand, His the depth from the top of the soil to 

the base of the pipe for lateral movement which is denoted as H6 in the present study in 

order to avoid any confusion with depth of embedment used for vertical pipe loading, D is 

the external diameter of the pipe, and L is the length of the pipe involved in the test. The 

horizontal axis is the dimensionless pipe displacement expressed as YID which will be 

denoted as 8/ D for present analyses in which 81 is the measured lateral pipe movement. 

The arrows in these figures show the location of maximum load, which were used for 

further analyses of test data. 
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Figure 4-3: Force-displacement curve of lateral pipe tests in loose sand (Trautmann, 1983) 
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Figure 4-4: Force-displacement curve of lateral pipe tests in medium sand (Trautmann, 1983) 
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Figure 4-5: Force-displacement curve of lateral pipe tests in dense sand (Trautmann, 1983) 

As shown in Figures. 4-3 and 4-4, for loose and medium sand, the dimensionless force 

gradually increases with displacement. However, for dense sand (Figure. 4-5), the 

dimensionless force reached to the peak after some displacement and then decreased. The 

peak force is the one of the most important factors that should be evaluated properly 

using appropriate soil constitutive model. 
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Figures 4-6 to 4-8 show the force-displacement curves for vertical loading obtained by 

Trautmann (1983) for loose, medium and dense sand, respectively. The parameter Fin 

the vertical axis represents the measured vertical force and He is the depth from the top of 

the soil to the center of the pipe before the start of upward movement. In the horizontal 

axis, Z is the measured as upward pipe movement which will be denoted as Ou in the 

present study. 

5. 121 

4. 5 

""""" r 
4." 6 3 

i ~c 
DQnaiey c 14.8 kN/m 

...J Pipe Diameter = 1~2 mm c 0 
u 3. 5 J. HelD = 1.5,4,8,13 :X: 

)() 
Teet No a. 34, 33, 35, 36. ' u. 

.. 3. 121 
Ul u 
!5 2. 5 13 
LL. 

en 
en 
~ 2." 

a .... 
en 1. 5 
ffi 
% .... 
c 1. l'i.l 

" · 5 

0. 0 

"· " 121. 2 e. 4 121. 6 "· e 1. 121 1. 2 1. 4 

DIMENSIONLESS DISPLAC~T, Z/0 

Figure 4-6: Force-displacement curves for uplift tests on buried pipe in loose sand (Trautmann, 1983) 
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Figure 4-8: Force-displacement curves for uplift tests on buried pipe in dense sand (Tra utmann, 

1983) 

As shown in Figures. 4-6 to 4-8, the shape of the force-displacement curve for upward 

loading is also highly dependent upon the depth of embedment. For example, a shallowly 
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embedded pipe in loose sand at H! D=1.5 shows a significant reduction in normalized 

force after the peak. Moreover, for a given depth of embedment, for example H! D=4, the 

post-peak reduction of dimensionless force is more in dense sand as shown in Figure 4-8. 

Proper modeling of soil/pipe interaction behaviour should be able to capture this 

behaviour. 

4.3 Finite Element Modeling 

Numerical analyses in this study started with two-dimensional finite element simulation 

of lateral loading of above experiment (Trautmann and O'Rourke, 1983). Figure 4-9 

shows the dimensions of the soil domain and typical finite element mesh used in the two

dimensional analyses. 

1.473m 

Figure 4-9: Structured meshing in ABAQUS 
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The dimensions are similar to the large-scale experiments (Figure 4-1) conducted by 

Trautmann and O'Rourke (1983). By simplifying the soil and pipeline as a two

dimensional plane strain system, the soil is discretized by 8-node biquadratic plane strain 

quadrilateral, reduced integration element, CPE8R. Reduced integration (i.e. , four-point 

integration) for soil elements is used to improve the efficiency of computation. According 

to Bathe and Wilson (1976), four-point integration is generally the optimum integration 

order for eight-node rectangular elements. In order to prevent the spurious zero-strain 

modes, ABAQUS employs the reduced integration rule together with hourglass stiffness 

control to formulate the element stiffness matrix (HKS Inc. 2000). The bottom of the 

model (Figure 4-9) is restrained from any vertical movement, while all the vertical faces 

are restrained from any lateral movement using roller supports. No displacement 

boundary condition is applied on the top face, and the soil can move freely. A pipe is 

placed at the desired location. The depth of the pipe is measured in terms of HID ratio, 

where H is the depth from the top of the soil to the center of the pipe for upward 

movement denoted as He or depth from the top of the soil to the base of the pipe for 

lateral movement denoted as Hb and D is the external diameter of the pipe. The values of 

HID used in these analyses are 2.0 and 11.5 (for lateral movement) and 4.0 and 13.0 (for 

upward movement). 

4.3.1 Pipe/soil Interface 

The interface between pipe and soil is simulated usmg the contact surface approach 

available in ABAQUS/Standard. This approach allows the separation and sliding of finite 

amplitude and arbitrary rotation of the contact surfaces. The Coulomb friction model is 
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used for the frictional interface between the outer surface of the pipe and sand. In this 

method, the friction coefficient (J.l) is defined as J.l=tan(<ht), where <P~l is the pipe/soil 

interface friction angle. The pipe/soil interface friction angle, <!>ll depends on the interface 

characteristics and the degree of relative movement between the pipe and soil. The larger 

value of <P~l indicates the characteristics of rough uncoated pipes with rusty or corroded 

surfaces and the lower values would correspond to pipes with smooth coating. The value 

of <i>J.L varies between <!>' and <j>'/2 (Yimsiri et al, 2004). A value of J.l=0.32 is used in this 

study. 

4.3.2 Loading 

The numerical analysis is conducted in two main steps. The first step is a geostatic stress 

step that accounts for the effects of soil weight and defines the initial stress state in the 

soil. In the second step, the pipe is moved in the desired direction specifying a 

displacement boundary condition at the every node of the pipe. 

4.3.3 Soil Properties 

Clean, subangular, fluvioglacial sand was used in model tests (Trautmann and O'Rourke, 

1983). The sand has uniformity coefficient 2.6 and effective grain size 0.2 mm. The 

minimum and maximum dry unit weights are 15.5 kN/m3 and 18.3 kN/m3
, respectively. 

In this study, the tests in medium and dense soil conditions are simulated as the soil 

around the pipeline in the field is generally compacted. The tests simulated in this 

research were conducted in dry sand with unit weight of 16.4 kN/m3 and 17.7 kN/m3
, 

which gives relative density of 45% and 81 % respectively. 
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As mentioned before, two soil constitutive models used in this study are Mohr-Coulomb 

model and NorSand soil constitutive model. In this chapter, the performance of Mohr

Coulomb model is shown first and Chapter 5 includes the performance of NorSand 

model. 

The Mohr-Coulomb plasticity model is a built-in model in ABAQUS/Standard finite 

element software for modeling geomaterials. The input parameters required in Mohr

Coulomb model are: Young's Modulus (E), Poisson's ratio (v), angle of internal friction 

(~ 1 ), dilation angle (\Jim) and unit weight of soil (y). The elastic modulus E can be 

determined from the unload-reload parts of drained triaxial tests data or from empirical 

relationships. In this study two finite element modeling is done for medium and dense 

soil. The values of E for medium and dense sands are estimated from test data presented 

by Turner and Kulhawy (1987). The Poisson's ratio of 0.2 is the best representative 

values of medium and dense sand (Jefferies and Been, 2006). The peak friction angle 

~~peak and dilation angle \j/111 are derived from the direct shear test data presented by 

Trautmann, 1983. The dilation angle was estimated based on ~~peak= ~~ critical + 0.8\j/111 given 

by Bolton ( 1986). The value of ~~ criticai=31 o is used. Table 4-1 shows the values of the 

parameters used in finite element analyses. 
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Table 4-1: Geometry and Parameters used in finite element analyses 

Parameter Values 

Pipe: 

External Diameter, D 0.102 m 

Thickness, t 0.0064 m 

Elastic Modulus, Epipe 2.04x 108 kN/m2 

Poisson 's Ratio, Ypipe 0.3 

Soil: Medium sand Dense sand 

Elastic Modulus, E 2950 kN/mL 3650 kN/mL 

Poisson' s Ratio, Ysoil 0.2 

Critical State Friction Angle, ~'critical 31 
0 

31 
0 

Friction Angle, <!>' 35 
0 

44 
0 

Dilation Angle, \lfm 5 
0 

16 
0 

Unit weight, y 16.4 kN/m3 17.7 kN/m3 

Interface Friction co-efficient, fl 0.32 

2 and 11.5 (for pure lateral), 4 and 13 (for pure 
Depth of pipe, HID 

upward) 

4.4 Mesh Sensitivity and Boundary Effects 

The size and distribution of mesh have significant effects on numerical prediction. In 

addition, the locations of the boundaries are equally important for successful modeling. In 

this section these effects are shown. 
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4.4.1 Mesh sensitivity 

In this study, ABAQUS CAE is used to generate finite element mesh. Once the soil 

domain is defined, auto generated default meshing option might be used to form the 

mesh. When it is used, the typical finite element mesh formed are shown in Figure 4-1 0. 

As shown in this figure that the mesh formed in this option is not in regular pattern. 

However, for better modeling, it is expected to have a structured mesh with denser 

elements near the pipe. Structured mesh has been generated in this study by zoning the 

soil domain using "bias" option avai lable in ABAQUS. Typical structured mesh 

generated in this study is shown in Figure 4-9. 

A mesh sensitivity study is performed first to select the appropriate mesh size and 

distribution for two-dimensional analyses. Starting with default meshing with ABAQUS 

and the parameters shown in Table 4-1 , analyses have been performed with structured 

meshing shown in Figure 4-9 with different element numbers. Very little difference in 

peak pipe force is obtained if the mesh generation changed from the default to structured 

meshing system. However, the success with structured mesh without any numerical issue 

is higher than auto generated mesh. Moreover, the total number of element cannot be 

controlled in the auto generated default meshing in ABAQUS, which can be easily done 

in the structured meshing system. The structured meshing is very efficient with less 

numerical issues as the element shapes are regular than the auto generated default 

meshing. Therefore, the structured meshing is selected for further analyses to obtain good 

results and promote computational efficiency. 
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Figure 4-10: Default meshing in ABAQUS 

4.4.2 Boundary Effect 

Another critical issue that needs to be checked is the location of the bottom and right 

boundaries with respect to the location of the pipe. One might think that the bottom and 

right side of the tank is close to the pipe and might have some effect on load-displacement 

behaviour. In order to check the effects of bottom and right boundaries, w hich are 

relatively close to the pipe, analyses have also been performed w ith a larger soil domain 

where the bottom and right boundaries respectively are at 0.8 m and 1.1 m from the pipe 

(Figure 4-11 ). Very little difference in ca lculated lateral res istance using these two 

different soil domains (Figure 4-12) indicates that the d imensions of the so il domains 

shown in Figure 4-10 are suffic iently large and therefore boundary effects are not 

expected on predicted lateral resistance, displacement and failure mechanisms. Therefore, 

in the fo llowing section analyses are done using finite e lement mesh shown in Figure 4-9. 
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Figure 4-11 : Location of right and bottom boundaries 
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Figure 4-12: Bottom and right boundary effects in 20 analysis 

56 



4.5 Geostatic Loading Step 

Finite element analyses are performed for varying Hb/D and density of the soil (medium 

and dense sand). The parameters used in these analyses are shown in Table 4-1 . For 

lateral pipe movement, two Hb/D ratio of 2 and 11.5 were taken. The initial stress or the 

geostatic stress step definition is very important for numerical analyses. The stress values 

and the stress contours at the geostatic step were checked carefully before going for 

further analysis. It is to be noted here that even if the initial stresses is not specified 

properly the analysis might get through the geostatic step, but might have error or give 

inaccurate results in the subsequent loading step. Also there would be higher soil 

displacements at this stage as ABAQUS attempts to bring it in an equilibrium condition. 

In this study, the initial condition of stress is given which is closed to the in situ stress 

condition. Then the geostatic step is appl ied. The following checks after the geostatic step 

are done. 

• The vertical stress (S22 in 2-D and S33 in 3-D) after geostatic step is closer (or 

equal) to what is defined the 'initial conditions' and also the contours ofthis stress 

are parallel. 

• The soil displacements (U2 in 2-D and U3 in 3-D) after geostatic step are very 

small. 

Figure 4-13 shows the typical vertical stress contours after geostatic strep. Figure 4-13 (a) 

is for shallow embedment (Hb!D=2) of pipe in medium sand, and Fig. 4-13(b) is for deep 

burial condition (Hb/ D= 11.5) of pipe in dense sand. As shown in these figures , the 

vertical stress contours after geostatic stress step are parallel and the value of stress is 
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same as in situ stress. Although it is not shown here, the vertical displacements after the 

geostatic step is very negligible ( <1 o-6 m). That means the analyses in the geostatic step 

have been completed successfully. 

S~ S22 
(Avg: 75%) 

S, 522. 

- 4 S J 3e- 8 
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Figure 4-13: Geostatic loading (a) for analysis with medium dense sand for Hi/I) = 2 (b) for analysis 
with dense sand for Hi/D = 11.5. 
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4.6 Pure Lateral Loading 

A two-dimensional finite element model is developed for lateral loading of pipe with 

geometry exactly similar to the experimental setup used by Trautmann (1983) as shown 

in Figure 4-1. Although the test setup is three-dimensional, the analysis presented in this 

section is in two-dimensional plane strain condition. The ratio of the pipe diameter to the 

pipe wall thickness is selected as Dlt = 16. The analyses are performed for one shallow 

(Hb/D=2) and one deep (Hb/D=11.5) burial condition. In both cases the bottom ofthe pipe 

is at 300 mm above the floor of the tank (Figure 4-1 ). Similar to the experimental setup 

the pipe is placed at 600 mm left from the right wall of the tank and is moved laterally to 

the left until sufficient post-peak load-displacement response is observed. The Mohr

Coulomb model implemented in ABAQUS requires a non-zero cohesion to avoid 

numerical issue. The cohesion value of 1.0 kN/m2 is used in this study. 

Figure 4-14(a) and Figure 4-14(b) show the comparison between the experimental and 

numerical results for shallow burial conditions (Hbl D=2) with medium ( y = 16.4 kN/m3
) 

and dense sand (y = 17.7 kN!m\ Figure 4-15(a) and 4-15(b) show the similar comparison 

for deep burial conditions (Hb/D=11.5). As shown, the peak resistance obtained from 

numerical analyses is reasonably matched with experimental results. However, the post

peak behaviour such as the post-peak softening could not be modeled properly using the 

Mohr-Coulomb soil model. Also the force displacement curve obtained from the 

numerical analysis does not match well with experimental results for Hb/D=11.5. 
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Although the modulus of elasticity for sand has been selected from experimental 

observation, the force-displacement curve in Figure 4-15(b) shows that a higher modulus 

of elasticity of sand than the value selected here might give better comparison with test 

results. Finite element results with a higher value of E (= 11 ,000 kN/m2
) is also shown in 

Figure 4-lS(b), which gives a closer result with test data. 
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4.7 Pure Vertical (Upward) Loading 

A two-dimensional finite element model is developed for upward loading of pipe with 

geometry exactly similar to the experimental setup used by Trautmann (1983). The 

experimental set up used by Trautmann (1983) for upward loading is little different from 

the setup for lateral loading as shown in the figures 4-1 6 and 4-17. The ratio of the pipe 

diameter to the pipe wall thickness is same as lateral loading of Dlt = 16. The analyses are 

performed for one shallow (H/ D=4) and one deep (H/ D=13) burial condition. In both 

cases the bottom of the pipe is at 300 mm above the floor of the tank. 

Figure 4-16(a) and 4-16(b) show the comparison between the experimental and numerical 

results for shallow burial conditions (H/ D=4) for both medium and dense sand. Figure 4-

17(a) and 4-17(b) show the comparison between the experimental and numerical results 

for deep burial conditions (H/ D=13) with medium and dense sand. As shown, the peak 

resistance obtained from numerical analyses reasonably matched with experimental 

results. However, the post-peak reduction of vertical force could not be simulated using 

the Mohr-Coulomb model. 
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4.8 Three-Dimensional Analyses 

The tests conducted by Trautmann (1983) are m fact in three-dimensional condition, 

although in previous sections, it is modeled in a two-dimensional plane strain condition. 

In their experiment, a model pipe of 0.61 m length was moved laterally in a 

2.3mx 1.22mx 1.4 73 m (lengthxwidthxthickness) tank filled with dry sand. In this section, 

the same problem in three-dimensional condition is analyzed. The main purpose of this 

simulation is to check whether the difference between 2D simulation and test results is 

due to three dimensional effects or not. The three-dimensional finite element model 

shown in Figure 4-18 is formed with the geometry exactly similar to the experimental 

setup by Trautmann (1983). For soil, 8-node linear brick, reduced integration, hourglass 

control elements (C308R) and for pipe, 4 -node three-dimensional bilinear rigid 

quadrilateral (R304) elements are used. All the vertical faces are modeled using roller 

supports and therefore the interface between tank and soil is not modeled properly in this 

case. This time, a rigid pipe is used in the analysis to improve the computational time and 

the reference point is defined at the center of the pipe. The pipe is moved laterally by 

applying a displacement boundary condition at the reference point without any imposed 

vertical restraint. Typical vertical stress contours after geostatic loading are shown in 

Figure 4-19. 
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Figure 4-18: Typical meshing for lateral 3-D soil/pipeline interaction analysis 
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4.8.1 Pure Lateral Loading 

The same soil parameters listed m Table 4-1 are used except Young' s modulus of 

elasticity, E as 11000 kN/m2 as the force-displacement curve matched better with this 

value as shown in Figure. 4-l 5(b) for two-dimensiona l cases. Three-dimensional lateral 

pipe displacement analyses are done for the dense sand i.e. for y = 17.7 kN/m 3
. The FE 

results obtained from the three-dimensional model are compared w ith the two-

dimensional results presented in the previous sections and a lso w ith the test results as 

shown in Figure 4-20(a) and Figure 4-20(b). 

68 



8.0 

7.0 

C? 6.0 
~"" 
Q c 5.0 
k: 
(!) 4.0 (.) 
I-
0 

(.I.. 

"'0 3.0 (!) 
N 

"@ 

§ 2.0 
0 z 

1.0 

0.0 

25.0 

"""" 20.0 
"l 
~"" 
Q 
?-
~ 15.0 

v 
(.) 
1-
0 

(.I.. 10.0 
"'0 
(!) 

.t::l 
"@ 
§ 5.0 
0 
z 

0.0 

(a) Hb/D = 2 ····· ..... ....-~ ... . .. '.I~~-.. _._ 
~.:;g-·-· 

~··..:.--

~ 
~ ,.. -- .. 

,~· 
-/-;~ -1~/ 
·r 

- Trautmann 1983 [Test 22] -

- - MC-2D 
-

••••• • MC-3D 
I I I 

0 0.1 0.2 0.3 0.4 0.5 
Normalized Displacement, 81/D 

I 

(b) Hb/D = 11.5 

~ -If:" """-"-v -
iJ 

/l 
tf --Trautmann, 1983 [Test 32] 

f 
-

- - MC-2D 

•••••· MC-3D 
I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Normalized Displacement, 81/D 

Figure 4-20: Normalized Force-displacements curves from Latera l-3D ana lysis for dense sand (a) 

Ht!D =2 (b) H t!D = 11.5 

69 



As shown, the force-displacement curves obtained from the two-dimensional modeling is 

very similar to that of the three-dimensional analysis. That means any discrepancies 

between the model test and finite element results are not for the three-dimensional effects. 

One of the possible reasons of discrepancies is the use of appropriate soil model. The 

Mohr-Coulomb plasticity model may not simulate the soil behaviour properly in this case. 

An advanced soil constitutive model might be used for better modeling this behaviour. 

Figure 4-21 shows the shear strain in the soil around the pipe at a post-peak displacement. 

Two different soil failure mechanisms are observed: local (punching) failure for deep 

burial condition (Figure. 4-21 b) and general shear failure for shallow pipe burial 

condition (Figure. 4-21 a). PEMAG gives the plastic strain magnitude which is used to 

show the strain localization and failure type (local or general). PEMAG is defined as 
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Figure 4-21: Shear failure pattern under lateral loading (a) H,;D = 2 (b) H,;D = 11.5. 
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4.9 Summary 

The main focus of this chapter is to present some finite element analyses using built-in 

Mohr-Coulomb soil constitutive model and the comparison of the results with available 

model test results. Previous model tests show that the force-displacement response of 

pipelines buried in sand subjected to pure lateral or vertical (upward) load depends on 

depth of embedment and density of soil. For the pipelines in dense sand there is a post

peak reduction in force for both lateral and vertical (upward) loading. It is found that the 

finite element simulation with structured mesh has less numerical difficulties. The elastic 

modulus controls the shape of the initial part of the load-displacement curve. The use of a 

constant elastic modulus may not be the right procedure to simulate soil/pipeline 

interaction behaviour and therefore in the following chapter the shear modulus as a 

function of mean stress is used. The finite element simulation with built-in Mohr

Coulomb soil constitutive model with constant dilation angle cannot simulate the post

peak reduction in force as observed in model tests, however, the initial part of the force

displacement curve could be simulated with refined value of soil parameters. 
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Chapter 5 

FINITE ELEMENT ANALYSES WITH NORSAND SOIL 
CONSTITUTIVE MODEL 

5.1 General 

The finite element analyses presented in Chapter 4 is based on built-in Mohr-Coulomb 

model in ABAQUS. Not only in this study but also some previous studies recognized that 

that there are some limitations in Mohr-Coulomb soil constitutive model for modeling 

soil/pipeline interaction behaviour. Therefore, in this chapter modeling has been 

performed using an advanced soil constitutive model, NorSand. 

This chapter has been organized in the following way. Firstly, the implementation of 

NorSand model in ABAQUS FE software using the user defined subroutine is briefly 

discussed. The parameters require to be defined in the ABAQUS input file for proper 

communication with UMA T are also discussed in this section. In the second part of this 

chapter, triaxial tests for a wide range of initial condition are simulated. These 

simulations are done to show that the NorSand UMA T can successfully model a wide 

range of soil condition that might occur in soil/pipeline interaction events. In the third 

part of this chapter, some soil/pipeline interactions for pure lateral and pure vertical 

(upward) loading are simulated and the results are compared with simi lar analyses using 

Mohr-Coulomb model. Finally, the finite element simulations have been performed for 

oblique lateral-vertical (upward) loading. 
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5.2 Implementation ofNorSand Model into ABAQUS 

ABAQUS/Standard has interfaces that allow the user to implement any general 

constitutive equations and the user-defined material model can be implemented in 

ABAQUS/Standard by using user subroutine, UMA T. When none of the built-in 

constitutive models available in the ABAQUS material library accurately represents the 

behaviour of the material to be modeled, the UMA T can be called. It updates the stresses 

and solution-dependent state variables to their values at the end of the increment for 

which it is called and provides the material Jacobian matrix, 86cr/86c., for the mechanical 

constitutive model implement in ABAQUS. 

The first version ofNorSand UMAT has been developed by Dasari and Soga (2000) for a 

joint industry program on soil/pipeline interaction. The original NorSand model proposed 

by Jefferies (1993) was implemented into ABAQUS/STANDARD Version 5.8. This 

version of UMA T has been received with the permission to modify it for the present 

study. A rapid change in ABAQUS software development has been occurred over the last 

decade and a number of versions have been released after the Version 5.8. The analyses 

presented in this study have been conducted using ABAQUS/STANDARD Version 6.10 

EF 1. The development of input files with UMA T in version 6.10 EF 1 is different from 

Version 5.8. In addition, the compliers required for Version 6.1 O-EF1 and 5.8 are quite 

different. The present study using Version 6.10 EF1 requires Intel Visual Fortran 

I 0.1/11.1 and Microsoft Visual C++ 2008 SP1 (Visual C++ 9.0). The following are some 
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of the important command lines included in the input file to activate NorSand UMAT 

during analyses. 

*MATERIAL, NAME=SOIL 

* DEPVAR (Allocated space at each material point for solution dependent state variables) 

18 (There are 18 solution-dependent-state variables in the code) 

*USER MATERIAL, TYPE=MECHANICAL, CONSTANTS = 11, UNSYMM 

M, A, r, N, H, A, n, u, x, IS WIT, TOL 

(The above 11 constants are passed to the UMA T. Among them the first 9 are 

geotechnical properties required in NorSand model. The details of these constants are 

shown in Table 5-1). 

*INITIAL CONDITIONS, TYPE=SOLUTION, USER 

(This is to specify initial condition (e.g. initial effective stresses, initial void ratio) via 

user subroutine SDVINI) 

Table 5-1: Input parameters required for UMAT 

Mtc Critical stress ratio in triaxial compression 

A Slope of the Critical state line in e-lnp graph 

r Critical void ratio at p'=1 kPa 

N N in Nova' s flow rule 

H Hardening modulus 
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A Shear modulus multiplier (Equation 5.1) 

n Pressure exponent 

v Poisson 's ratio 

X Maximum dilation coefficient 

IS WIT Switch to use constant or exponent H 

TOL Tolerance for stress integration 

It is to be noted here that the NorSand model is also implemented in ABAQUS ALE for 

modeling ice gouging effect (Eskandari et al. , 2011) 

5.3 NorSand Model Parameters 

Most of the model parameters listed in Table 5-1 are common in geotechnical modeling. 

Detailed information about these parameters are avai lable in Jefferies and Been (2006). 

The parameters which are used differently in this study are discussed below. 

5.3.1 Modulus of Elasticity 

In Chapter 4, constant modulus of elasticity (E) is used in the simulations with Mohr

Coulomb model. It is also shown that the value of E has a significant effect on force

displacement behaviour as shown in Figure. 4-15(b ). The elasticity is an important 

parameter that must be selected properly to simulate correct shape of load-displacement 

curve. Experimental studies (e.g. Janbu, 1963 ; Hardin and Black, 1966) show that the 

elastic moduli of granular materials increase with the increase in mean stress (p'). It has 
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been also shown that the elastic modulus depends on void ratio. Various expressions have 

been proposed in the past in order to account the effects of void ratio and mean stress on 

elastic moduli. Yimsiri (2001) compiled all the available expression in the literature. All 

expressions of shear modulus (G) can be written in the following general form. 

(5.1) 

The value of A depends on void ratio or density. Yimsiri (200 1) showed that the value of 

n recommended by previous researchers varies between 0.4-0.61, with most cases n = 0.5. 

It is to be noted here that some authors (e.g. Jefferies 2006) used shear rigidity Ir, which 

can be also expressed in above form. In the NorSand UMAT G = Ap'n is used. 

5.3.2 Critical Stress Ratio in three-dimensional stress space 

The use of a constant value of M for all loading conditions is not realistic. Experimental 

observation shows that the value of M changes with Lode angle (8). For example; the 

values of M in triaxial compression, triaxial extension and plane strain conditions are 

different. Several mathematical function of M(8) has been proposed in the past (e.g. 

Matsuoka and Nakai , 1974; Lade and Duncan, 1975, Banerjee eta!., 1985) to capture this 

variation. The simplest form ofvariation is the Mohr-Coulomb hexagonal model in then

plane. However, the hexagonal variation has sharp comers which cause numerical 

difficulties. Therefore, in this study the value of M varies with 8 according to the 

following function proposed by Banerjee et a!. (1985). 
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M(S)= 2kM,c 
(l+k)-(l-k)sin38 

(5.2) 

where 8 is Lode angle, M 1c is critical state stress ratio m triaxial compression and 

k = 3 - s~ ¢' . Note that, the Lode angle 8 = 30° represents triaxial compression while 8 
3+sm¢' 

= -30° represents triaxial extension and the plane strain condition is in between + 30° and 

- 30°. The variation of Mwith 8 inn-plane is shown in Figure 5-1. 

Figure 5-l: Variation of Min 7t-plane used in UMAT 

In this study, the value of M in triaxial compression (M1c) is given as a geotechnical 

parameter in the input file. In the subroutine NorSand UMAT, the value of M is updated 

as shown in Figure 5-1 . 
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5.4 Simulation of Triaxial Tests using NorSand UMA T 

To show the effectiveness of the implemented NorSand soil constitutive model in 

ABAQUS using the user defined subroutine UMA T, some triaxial tests under various 

conditions are simulated. In the first set of analyses four triaxial compression tests are 

simulated. The test condition and material properties used in the analyses are shown in 

Table 5-2. The main purpose of the selection of these four tests is to cover a wide range 

of soil conditions that might be encountered in pipe/soil interaction analyses. The test 

0667, 0662, 0682 and 0685 corresponds to tests on very dense, dense, loose and very 

loose sands, respectively. 

Table S-2: Triaxial test data on Erksak sand (Regenerated from Been et al., 1991) 

Initial condition End of test 

Test Name p' cr'3 p' q 
Void Ratio \jJj e 

(kPa) (kPa) (kPa) (kPa) 

0667 0.590 130 -0.161 130 253 355 0.702 

0662 0.677 60 -0.084 60 104 131 0.752 

0682 0.776 500 0.044 500 812 938 0.725 

0685 0.812 200 0.067 200 283 273 0.749 
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Jefferies and Been (2006) compiled a large number of laboratory data and reanalyzed 

them in the framework of NorSand soil constitutive model. The parameter used in the 

present numerical analyses are obtained from their work and listed in Table 5-3. 

Table 5-3: Model parameters of NorSaqd for simulating triaxial tests 

Parameters D667 D662 D682 D685 

Void ratio, e 0.590 0.677 0.776 0.812 

Pmax (= p' at the tip of the yield surface, 
130 60 500 200 

, =o) 

Critical stress ratio m triaxial 
1.3 1.26 1.18 1.18 

compression, Mtc 

Slope of the Critical state line m e-lnp' 
0.014 

graph, A. 

Critical void ratio at p' = 1 kPa, r 0.8 

N in Nova' s flow rule, N 0.25 

Hardening modulus, H 500 450 250 200 

Shear modulus multiplier, A 9000 8000 1500 1500 

Pressure exponent, n 0.5 

Poisson' s ratio, v 0.25 

Maximum dilation coefficient, x 3.8 4 4 4.5 

Tolerance for stress integration, TOL 0.001 
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An axisymmetric 4-noded single element (CAX4) is chosen to simulate a soil element in 

triaxial condition as shown in Figure 5-2. The soil specimen was consolidated 

isotropically to initial consolidation pressure as shown in third column of Table 5-2. The 

initial consolidation pressure is applied on the soil specimen in numerical simulation by 

surface pressure on the top and right vertical faces. It is to be noted here that the 

application of surface pressure on the bottom and left faces is meaningless as they are 

restraint from any displacement in the vertical and lateral directions, respectively. After 

the application of confining pressure, the vertical load is applied on the soil specimen by 

setting vertical downward displacement of top two nodes in incremental form. Note that 

these four tests are on normally consolidated sand. The effects of overconsolidation are 

discussed later. 

Deviatoric Stress 
(Displacement controlled) 

Confining Pressure 

Figure 5-2: Axisymmetric 4-noded element CAX4 for FE simulation of triaxial tests. 

In Figures 5-3 to 5-6, the numerical results are presented in the form of deviatoric stress 

versus axial strain and volumetric strain versus axial strain plots. The laboratory test data 
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are also shown in this figure for comparison. The results from numerical simulation using 

the NorSand UMA T show a very good fit with the test results. 
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After simulation of four triaxial tests listed in Table 5-2, tests similar to 0682 are 

simulated for three different void ratios. As discussed in Chapter 3 NorSand model can 

capture the possible infinite number of normally consolidated lines. Figure 5-7 shows 

three normally consolidated lines (NCL) at three different densities. Three soil specimens 

are consolidated isotropically along these NCL top'= 500 kPa and then unloaded top'= 

300 kPa and then sheared in triaxial compression. This created some overconsolidation 

ratio. The purpose of this simulation is to show the effects of density and 

overconsolidation of sand using NorSand UMA T. Figure 5-8 shows the variation of 

deviatoric stress with axial strain. The initial void ratios of the soil specimens A and B are 

very close to the critical state void ratio at their initial stress level. Therefore, the 

deviatoric stress reaches to the peak and remains almost constant as typically observed in 

loose sand. Note that the initial value of p 'for specimen A is higher than that of specimen 

B and therefore the deviatoric stress at the ultimate condition is higher for specimen A. 

The specimen B is overconsolidated and yielding occurs at a deviatoric stress of 195 kPa 

which is the intersection of the initial yield surface and stress path shown in Figure 5-10. 

Therefore, the stress strain behaviour before 195 kPa of deviatoric stress is nonlinear 

elastic as shown in Figure 5-8. Figure 5-9 also shows for lower initial void ratios (0.6 and 

0.7) the stress strain plot is similar to the behaviour typically observed in dense sand with 

strain softening. 

Figure 5-9 shows the volumetric strain versus axial strain plots for four different initial 

conditions, which is similar to typical triaxial results on dense to loose sands. 
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From the above analyses it can be concluded that the NorSand model has been properly 

implemented in ABAQUS FE software using the UMA T. 

5.5 Modeling of soil/pipeline interaction using NorSand UMA T 

The two- and three-dimensional finite element modelling using Mohr-Coulomb soil 

constitutive model is presented in Chapter 4. In this section, finite element analyses using 

the NorSand UMA T are presented. The main purpose of these analyses is to show the 

effects of advanced soil constitutive model on soil/pipeline interaction analyses. 

5.5.1 Input Parameter for NorSand Model 

Table 5-4 shows the values of input parameters used in all the analyses presented in the 

following sections using the NorSand UMA T unless otherwise mentioned. These are the 

typical values of Erksak 330/0.7 sand (Jefferies and Been, 2006). This sand is chosen in 

this study as Jefferies and his coworkers validated the NorSand model by comparing a 

large number of laboratory tests on this sand. In general the data shown in Table 5-4 

represents the dense state of Erksak 330/0.7 sand. The critical stress ratio in triaxial 

compression is 1.26 which corresponds to an critical angle of internal friction of 31°. It is 

to be noted here that while the peak angle of internal friction is higher in dense sand, the 

angle of internal friction at the critical state is almost constant irrespective of density. The 

value of A. and r are chosen from typical test data on this sand compiled by Jefferies and 

Been (2006). The N value of Nova's flow rule typically varies between 0.2 and 0.45 

(Jefferies and Been, 2006) and in this study 0.25 is used. Jefferies and Been (2006) 
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suggested that the plastic hardening modulus (H) of sand typically varies between 50 and 

500 and in this study 200 is used. Several researchers showed that a value of pressure 

exponent (n) of 0.5 best represents the elastic behaviour of sand. The maximum dilation 

coefficient varies between 2.5 and 4.5 and a value of 4 is used in this study. 

Table S-4: Parameters used for soil/pipeline interaction analyses with NorSand UMAT 

Parameters lnQut Value 

Initial void ratio (e;11) 0.677 

Critical stress ratio in triaxial compression (M1c) 1.26 

Slope of the Critical state line in e-lnp graph (A.) 0.014 

Critical void ratio at p'= l kPa (1) 0.8 

N in Nova' s flow rule (N) 0.25 

Hardening modulus (H) 200 

Shear modulus multiplier (A) 1000 

Pressure exponent (n) 0.5 

Poisson's ratio (v) 0.2 

Maximum dilation coefficient (X) 4 

Tolerance for stress integration 0.001 
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5.5.2 Input parameters for Mohr-Coulomb model 

The finite element results using NorSand UMAT are also compared with FE analyses 

using the built-in Mohr-Coulomb model. In Mohr-Coulomb model, the dilation angle and 

the peak friction angle are required as input parameters which are obtained from the 

parameters listed in Table 5-4 in order to maintain consistency in input parameters 

between these two models. 

The angle of dilation ( \V ) in plane strain condition can be simply defined by the ratio of 

volumetric strain rate and shear stain rate as: 

(5 .3) 

where c\ and i 3 are the strain rate in the major and minor principal strain directions, 

respectively. The minus sign arises simply from the convention that compressive strains 

are taken as positive and is introduced so that the angle of dilation is positive when the 

soil expands. 

Houlsby (1991) indicated that care should be taken in the extension of the definition of 

the angle of dilation to other than plain strain conditions. He showed that for triaxial 

condition the following expression should be used. 
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(5.4) 

Note that the Equation 5.4 reduces to Equation 5.3 for plane strain condition. 

In NorSand model the stress-dilatancy relationship is developed from triaxial test results. 

The peak dilatancy rate is defined as (Jefferies 1993): 

(5.5) 

Where \Jli is the initial state parameter. Combining Equations 5.4 and 5.5 we find 

. - 2 
srn\jl=-x\.jl i 

3 (5.6) 

Using the parameters listed in Table 5-4, the value of ec is calculated. The initial value of 

state parameter \Jli (= ecein) is then calculated, which is used to calculate the value of \If 

(=9°). Once the value \If is known, the peak friction angle is calculated from 

<!>~ = <!> ~ + 0.8\.jl (Bolton, 1986), which is equal to 39° in this case. The other parameters 

used in the analyses with Mohr-Coulomb model are shown in Table 5-5. 
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Table 5-S: Parameters used for soil/pipeline interaction analyses with Mohr-Coulomb model 

Parameters Values 

Pipe: 

External Diameter, D 0. 102 m 

Thickness, t 0.0064 m 

Elastic Modulus, Epipe 2.04x 108 kN/m2 

Poisson's Ratio, Vpipe 0.3 

Soil: Dense sand 

Elastic Modulus, E 11000 kN/m2 

Poisson' s Ratio, Vsoil 0.2 

Critical State Friction Angle, ~'critical 31.5 
0 

Friction Angle, ~' 39 
0 

Dilation Angle, ( \V) 9 
0 

Unit weight, y 17.7 kN/m3 

Interface Friction coefficient, 11 0.32 

2 and 11.5 (pure lateral loading), 4 and 13 (pure 
Depth of pipe, HID 

upward loading) 
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5.6 Pure Lateral Loading 

Figure 5-11 (a) shows the comparison between the numerical results with Mohr-Coulomb 

and NorSand soil constitutive models for shallow burial conditions (Hb/D=2). As shown 

in this figure the normalized force reaches to the peak after a very small displacement. 

With Mohr-Coulomb model, a slight increase in force might be the effect of constant 

dilation angle used in the analysis. On the other hand, with NorSand model the vertical 

force reached to the peak and then reduced. Note that similar type of post peak reduction 

of lateral force was observed in model tests as shown in Figure 4-5. The constant dilation 

angle in Mohr-Coulomb model cannot simulate such behaviour. Some of the previous 

studies therefore used very simplified model of reduction of dilation angle with plastic 

shear strain (e.g. Daiyan et al. 2010a and b, Nobahar et al. , 2007). Figure 5-11(a) also 

shows that the peak force developed at lower lateral displacement with Mohr-Coulomb 

model. One of the reasons is that a constant elastic modulus is used in Mohr-Coulomb 

model. If a lower value of elastic modulus is used the peak will be developed at lager 

displacement as shown in Chapter 4 (Figure 4-15b ). 

Figure 5-11 (b) shows the similar comparison for deep burial conditions (Hbl D= 11.5) with 

dense sand (y = 17.7 kN/m3
). As shown in this figure there is no significant reduction in 

lateral force after the peak even with NorSand model. This is the effect of depth of 

embedment on lateral force. It is to be noted here that if the soil is very dense the 

reduction of lateral force after the peak can be simulated using NorSand model. Such 
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behaviour cannot be simulated if the built-in Mohr-Coulomb model with constant dilation 

angle is used. 
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5.7 Pure Vertical (Upward) Loading 

The effects of advanced soil constitutive model on soil/pipeline interaction analyses for 

pure upward loading are also checked in this study. The same finite element models 

presented above are used. In this case, instead of lateral displacement, vertical (upward) 

displacement is applied in the loading stage. Again two soil constitutive models, Mohr

Coulomb and NorSand, are used and analyses are performed for dense sand. 

Figure 5-12 shows the comparison between the numerical results with Mohr-Coulomb 

and NorSand soil constitutive models for shallow burial conditions (HcfD=4). As shown 

in this figure that both models shows a post-peak reduction in vertical force. However, the 

reduction is higher with NorSand model. Note that in Mohr-Coulomb model a constant 

dilation angle is used. One of the reasons of post-peak reduction of vertical force is that 

after some vertical movement of the pipe the failure plane reaches to the ground surface 

as shown in Figure 5-13. 
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Figure 5-13: Displacement and plastic strain plot for pure upward loading in dense sand 

As the pipe moves up, the length of the failure plane is reduced and therefore vertical 

force is reduced. On the other hand, in NorSand model, in addition to reduction in the 
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length of the failure plane as in Mohr-Coulomb model, the dilation angle is also reduced 

with shear strain. Therefore, the post-peak reduction is higher in NorSand model. 

The vertical force versus vertical displacement plots for deep burial conditions (He! D= 13) 

are shown Figure 5-14 with two soil constitutive models. As shown in this figure some 

reduction in vertical force is predicted using NorSand model while it is almost constant 

after the peak when Mohr-Coulomb model is used. This is again because in NorSand 

model, the dilation angle of dense sand is reduced with the increases in shear strain. 

In both shallow and deep burial conditions, NorSand predicts slightly higher peak vertical 

force. It is also to be noted here that the predicted vertical force with the vertical 

displacement is very similar to the measured values in model test as shown in Chapter 4 

(Figures 4-7 and 4-8) 
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5.8 Oblique Loading 

In the simplified methods currently used in engmeenng practice, the modeling of 

soil/pipeline interaction is performed using three independent springs in three orthogonal 

directions. However, in reality, it is very rare to have pure lateral or pure vertical 

movement of soil relative to the pipe. In most cases, the soil movement perpendicular to a 

pipeline has both horizontal and vertical components, i.e., the loading on the pipe from 

the movement of soil is in oblique direction. In the following sections finite element 

modeling of soil/pipeline interaction events in dense sand for lateral-vertical (upward) 
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oblique loading with an advanced soil constitutive model , NorSand is presented. It is to 

be noted here that there are some studies on lateral-vertical oblique soil/pipeline 

interactions for clay available in the literature (e.g. Daiyan et al., 2009; Guo 2005). Cathie 

et al., 2005 also provided an overview of the oblique loading and soil-pipeline interaction. 

However, the research on oblique loading in sand is very limited (e.g. Nyman, I984; 

Daiyan et al., 20 II). There is no study on lateral-vertical oblique soil/pipeline interactions 

in sand with an advanced soil constitutive model as presented in the following sections. 

In previous sections, the finite element results for pure lateral and pure vertical (upward) 

loading with two constitutive models have been compared. In this section, the response 

under oblique loading is investigated with NorSand soil constitutive model. 

Two-dimensional finite element analyses have been performed for a pipeline embedded at 

Ht/D=11.5 in dense sand (y = 17.7 kN!m\ The parameters and the geometry of the 

model kept exactly same as previous analyses. Similar to previous analyses, after the 

geostatic step, the pipe has been moved at an oblique angle using displacement boundary 

condition. The definition of oblique angle for 2-D analyses is shown in Figure 5-15 where 

a is equal to 90° for pure horizontal and 0° for pure upward movement. 
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Oblique angle 
Oblique direction 

Figure 5-15: Definition of oblique a ngle in 2-D oblique loading 

In finite element analyses, the components of nodal force on the p1pe acting m the 

horizontal and vertical directions are printed in ABAQUS data file for all the nodes on the 

pipe for each increment. Summing them up, the horizontal (Foh) and vertical forces (Fov) 

are obtained. The components of displacement in the horizontal (8oh=80 cosa) and vertical 

(8oh=8osina) are also obtained, where 80 is the oblique displacement. The numerical 

simulations are done for five oblique angles 15°, 30°, 45°, 60° and 75°, in addition to 

lateral (90°) and vertical loading (0°). 

5.8.1 Force-Displacement Curves 

In Figures 5-16 and 5- 17, the normalized force-displacement curves are shown for 

horizontal and vertical components of oblique loading, respectively. The vertical axis of 

Figure 5-1 6 represents the lateral force imposed on the pipe by the lateral component of 

oblique displacement, which is normalized as F0t/(yDHb) in which Foh is the horizontal 
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component of force, y is the dry unit weight of the sand, Hb is the depth from the top of 

the soil to the base of the pipe, and D is the external diameter of the pipe. The horizontal 

axis is the dimensionless pipe displacement expressed as Dahl D, in which Doh is the 

horizontal pipe displacement in oblique loading. Similarly, the vertical axis of Figure 5-

17 shows the vertical component of force. In this figure, He is the depth from the ground 

surface to the center of the pipe. The other parameters are same as horizontal components. 

The horizontal axis of this figure shows the dimensionless pipe displacement expressed 

Davl D in the vertical direction. 
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Figure 5-1 7: Force-displacement curves for vertical component in obliq ue loading 

Figure 5-1 6 shows that for oblique loading angle greater than 30° the horizontal 

component of force (Foh) gradually increases with horizontal displacement (Doh). The rate 

of increase of force is very small at large displacement. For a very small oblique angle 

(e.g. a=15°) the horizontal component of force reached to the peak and then decreased 

with further displacement. 

The pattern of the vertical component of force displacement curve shown Figure 5-17 is 

different from the horizontal component shown in Figure 5-16. The vertical component of 

force reached to the peak and then decreased with increase in vertical displacement. The 

vertical displacement required to reach to the peak is relatively small for higher oblique 
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angles. For example, the peak vertical force is obtained at DaviD ::::;0.05 for oblique angle 

of75°, whi le the peak is at DaviD ::::;0. 1 for pure vertical loading (a=0°). 

Guo (2005) conducted finite element analyses of buried pipelines in clay subjected to 

combined horizontal and vertical (upward) movements in the oblique direction in 

undrained condition. The calculated force is normalized by undrained shear strength of 

clay (cu) and the diameter of the pipe (D). Figure 5-1 8(a) shows that the force on the pipe 

gradually increases with displacement and reaches to the peak and remains almost 

constant at large displacement. Figures 5-18(b) and (c) showsthe variation of normalized 

horizontal Nh (=FahlcuD) and vertical Nv (=FavlcuD) force components with horizontal (u) 

and vertical (v) displacement components, respectively. A comparison between Fig. 5-17 

and Fig. 5-18(c) show that while there is a significant softening response in the vertical 

force component in drained analysis in sand (Figure 5-17) it is less in undrained response 

for the pipelines buried in clay, at least for the cases analyzed. 
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Figure 5-18: Force-displacement responses for oblique loading for HID=3.03: (a) total, (b) horizontal, 
and (c) vertica l forces (Guo, 2005) 
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Daiyan et al. (20 11) conducted a senes of finite element analyses to understand 

soil/pipeline interaction behaviour for combined horizontal and vertical (upward) 

movements of the pipeline buried in dense sand. The built-in Mohr-Coulomb soil 

constitutive model available in ABAQUS FE software is used with varying dilation angle 

as a function of plastic strain. Comparing the Figures 5-16, 5-17 and 5-19, it can be 

shown that there are some similarities between the force displacement curves. However, 

more analysis is required for direct comparison between these results and to show the 

effects of soil constitutive model on the response of pipeline subjected to oblique loading. 
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Fig. 5-19: Force-displacement responses for oblique loading: (a) HID= 2 and (b) HID = 4 (P: lateral 
component, Q: vertical component of load) (Daiyan, 2011) 

5.8.2 Peak Forces Caused by Oblique Soil Movement 

The peak force and the displacement at the peak are the two important parameters 

required in the design of buried pipelines. In this section the peak force exerted on the 

pipe for different oblique angles is investigated. 
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The peaks of the horizontal and vertical components of the force are obtained from the 

load displacement curves shown in Figures 5-16 and 5-17 respectively. Five commonly 

used procedures for estimating the peak force from a force-displacement curve are: (i) the 

point of intersection of the two straight line portions of the force-displacement curve 

(Wantland eta!., 1982), (ii) the point at which the force displacement curve becomes flat, 

which is very similar to Terzaghi's bearing capacity failure, (3) the point of intersection 

of the tangent on the later part of the curve with vertical axis (Neely et al. 1973), (iv) the 

point at which the stiffness is one fourth of the initial elastic stiffness (Rowe and Davis 

1982), and (v) the maximum force. Pike and Kenny (20 11) showed that there are some 

differences in estimated peak force based on these methods. In this study, the peak force 

is obtained from the maximum value. When the maximum force is not evident in a force

displacement curve as shown in Figure 5-16 for large oblique angles, where the lateral 

component of force is continuously increasing, the force at Oah=0.025(H+D/2) (ALA, 

2002) is considered as the peak force. 

The normalized peak force components in the horizontal and vertical directions are 

plotted against oblique angle in Figure 5-20. As shown in this figure that the peak of the 

horizontal component gradually increases with increase in oblique angle. On the other 

hand the peak vertical component remains almost constant with oblique angle until 45° 

and then decreases gradually. 
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Figure 5-20: Variation of horizontal and vertical interaction factors with oblique angles 

Daiyan et al. (2009) performed series of finite element analyses for pipelines buried in 

clay. The soi l has been modeled using undrained shear strength of clay. Based on their 

finite element analyses and Response Surface Methodology (RSM), they proposed two 

equations for lateral and vertical interaction which is shown in Figure 5-21 as a function 

of oblique angle. 
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Figure 5-21: Normalized lateral and vertical components of peak oblique load on the pipeline in clay 
(Daiyan et. al, 2009) 

A comparison between Figures 5-20 and 5-2 1 shows that the effect of oblique angle on 

vertical component of peak force in dense sand considered in the present study is different 

from the clay. 

5.8.3 Failure envelopes under oblique loading 

The failure envelopes under oblique loading can be developed by plotting the horizontal 

and vertical components of force at ultimate (peak) states, which is shown in Figure 5-22 

for the present study. Another way to present these results is to plot the lateral and 

vertical components of force normalized by the ultimate forces corresponding to purely 

horizontal and vertical (upward) pipe movements, respectively. Figure 5-23 shows this 

plot. 
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The numerical results obtained from the present finite element analyses are also compared 

with previous studies. Using a limit equilibrium approach, Nyman (1984) proposed an 

equation for calculating oblique load capacity of a buried pipeline. He developed the 

equation based on Meyerhof's method for analysis of inclined anchor plates (Figure 5-24 

a). The analogy between buried pipe and inclined anchor is shown in Fig. 5-24(b). He 

assumed that the resultant soil forces are collinear with the direction of pipe movement. 

The mathematical relationship proposed by Nyman (1984) is: 

Pua = (1 - f3)quo + f3Puo (5.7) 

Where Pue is the ultimate lateral load for an oblique interaction angle, a measured from a 

vertical axis, q110 and Puo are respective the ultimate vertical and lateral loads per unit 

length of pipe which are denoted as Foh and Fov, respectively, in this study and ~ is an 

inclination factor defined as: 

0.25a 

{3 = 90 - 0.75a 

Here a is in degree. 

(5.8) 

Based on Nyman (1984 ), Guo (2005) proposed the following two modified form of 

equations for estimating oblique load capacity. 
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(_£__)2+~=1 
Puo quo 

(5.9) 

(5 .10) 

The first one is very similar to Nyman ( 1984). Both of these equations are plotted in 

Figure 5-23. Guo also claimed that all the experimental and numerical data on clay he 

compiled fall within these two curves. For comparison the numerical results obtained by 

Daiyan et al. (20 11 ) are also plotted in this figure. 

While the numerical results with NorSand UMA T show the simi lar trend, some of the 

data are outside the range proposed by Guo (2005). However, more analyses are required 

for different densities and burial depths to confirm this trend. 
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Figure 5-22: Latera l-vertical bea ring factor interaction diagram as a function of the oblique angle 
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Figure 5-23: Comparison of different representations of failure envelope 

The theoretical analyses (Nyman, 1984 and Meyerhof and Hanna, 1978) assume linear 

failure surfaces whereas the present research show that the fai lure zone to be more 

complex. The shear strain in the soil around the pipe at a post-peak displacement is shown 

in Figure 5-25 for different oblique angles. As the pipe is at deep burial condition, the 

local failure mechanism of soi l governs as shown by the shear strain contour. These 

figures also show that there is a transition from a surface heave type failure mechanism to 

lateral bearing failure with increasing oblique angle, a. 
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Figu re 5-25: Typical plastic shear strain in oblique angle 
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Chapter 6 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

6.1 Conclusions 

In this thesis, finite element analyses of complex soil/pipeline interaction of buried 

pipelines are presented. The main focus of this study is to show the use of an advanced 

soil constitutive model to simulate the response of buried pipelines subjected to relative 

displacement between pipe and soil. Two soi l constitutive models considered in this study 

are Mohr-Coulomb model and NorSand model. The Mohr-Coulomb model is a simple 

linear elastic-perfectly plastic model for geomaterials, which is a built-in model in 

ABAQUS finite element software, and is widely used in modeling of soil to simulate the 

response of buried structures under monotonic loading. However, this built-in model has 

an unrealistic constant dilation angle and is incapable of simulating the strain softening 

behaviour as observed in dense sands. The NorSand model is a generalised Cambridge

Type model for sand developed from the concept of critical state soil mechanics. The 

NorSand model adopts associated flow rule yet predicts realistic dilation of sand. 

However, this model is not available in ABAQUS FE software. In this study, FE element 

analyses have been performed using a user defined subroutine UMAT where the NorSand 

model is implemented. Analyses are performed mainly in two-dimensional plane strain 

condition and some in three-dimensional conditions for pure lateral, vertical (upward), 

and oblique pipe movements. 
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The first series of analyses presented in Chapter 4 is with the built-in Mohr-Coulomb 

model in ABAQUS. The auto generated mesh sometimes gives numerical difficulties, 

which could be overcome by using structured mesh that is also computationally efficient. 

The Mohr-Coulomb model can simulate some of the model test results if the geotechnical 

parameters are properly refined. However, the Mohr-Coulomb model cannot simulate 

some experimental observations, such as post-peak softening and some force

displacement response. 

In Chapter 5 the implementation of NorSand model is presented. The performance of the 

simulation is improved when the control parameters in ABAQUS are properly adjusted. 

A series of triaxial compression tests are simulated. The NorSand UMA T can simulate 

triaxial tests for a wide range of initial conditions. The dilation behaviour observed in 

laboratory tests is simulated correctly using the UMA T for very loose to very dense sands 

and also at overconsolidated states. 

The force-displacement behaviour for pure lateral and pure vertical (upward) loading 

obtained with the NorSand UMA T shows a very similar trend as observed in model 

experiments with post-peak softening behaviour. 

The response under lateral-vertical (upward) oblique loading is successfully simulated 

using the NorSand UMAT for a deep burial pipeline in dense sand. For this condition, the 

lateral component of force gradually increases with lateral displacement without showing 

any strain softening response, except for an oblique angle very close to the vertical. 
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However, the vertical component of force with vertical displacement shows a softening 

behaviour for all oblique angles with a clear peak. The variation of peak force with 

oblique angle is different from the prediction reported by previous authors for clay and 

also for sands using built-in Mohr-Coulomb model. The vertical component of force 

increases rapidly with oblique angle from horizontal. The peak force components 

obtained with NorSand UMAT are compared with failure envelopes developed by 

previous authors. The failure envelope obtained from this study is considerably far from 

Nyman ' s (1984) analytical solution for sand. 

6.2 Recommendations for Future Work 

The developed UMAT for NorSand soil constitutive model can successfully simulate the 

response of sand under monotonic loading and many important features of soil/pipeline 

interaction behaviour of buried pipelines in sand. The author spent a significant amount of 

his time for M.Eng. study to understand the constitutive models of sand especially 

NorSand and its implementation in ABAQUS. Therefore, a comprehensive parametric 

study for various conditions could not be performed in this study. The fo llowing are the 

recommendations for future studies. 

• The soil/pipeline interaction analyses usmg NorSand UMAT are performed 

mainly for dense sand in deep burial condition. Further analyses are required for 

different soil density and burial conditions. 
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• Analyses for oblique loading are performed only for lateral vertical condition. The 

axial lateral and axial vertical oblique loading are equally important and should be 

analyzed. 

• More comparison between NorSand UMAT and Mohr-Coulomb model for 

different pipe/soil interaction events is required. Simplified methods or some 

design guidelines for buried pipelines in sand would be useful. 

• The developed UMA T could be also used for other buried structures in sand such 

as pile foundations. 

• The implemented NorSand model in ABAQUS in this study was originally 

developed by Jefferies in 1993. But subsequent development has been done in the 

recent versions of NorSand. So the recent version of the NorSand should be 

implemented in ABAQUS. 
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