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ABSTRACT 

Many industrial processes pose many potential threats to life or environment, especially in case 

of failure. Hazardous, flammable and reactive materials are often processed at elevated 

temperatures and pressures. The hazards posed by those materials need to be controlled and 

managed in order to improve the process safety. Safety Instrumented System (SIS) is a widely 

recognized tool by a number of industry sectors to prevent those hazards and thus reach the 

required safety objective. Recently, the process industry has started to realize the significance 

of SIS. 

Due to the increased process complexity and possible instability in operating conditions, the 

existing control systems have limited ability to provide practical assistance to both operators 

and engineers. Therefore, much attention has been focus on suitable designs of system control 

components. This thesis proposes a new methodology for fault diagnosis, safety function 

formulation, and to implement safety instrumented system based on real-time monitoring. The 

methodology is comprised of three stages. The first stage is to model and simulate the target 

process system according to the observed system behaviors. The second stage is to adopt 

knowledge-based fault diagnosis technique, which implements the valuable knowledge from 

the experts and operators as well as a vast databank of information from a variety of sensors, 

for making optimal decision regarding current state of the process operation. Fuzzy logic is 

also used in this stage to make inferences based on acquired information (real-time data) and 

the knowledge. This stage is a fundamental part of the proposed methodology. 

A computer-aided tool, implementing previous two stages, is developed on the platform of G2 

expert system platform using GDA (G2 Diagnostic Assistanf) components in the third stage. 

This tool is subsequently used to verify the methodology performance through both industrial 

and simulated data. 

The proposed methodology is straightforward, flexible and easy to understand. Moreover, the 

developed fault diagnosis safety function may be utilized in developing various safety 

instrumented systems. 
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Chapter 1 

INTRODUCTION 

1.1 Safety Instrumented System (SIS) 

The chemical industry has made great strides over last 20 years toward improving process unit 

performance and safety operation (Summers, 2006). Tbis improvement has been achieved 

through a variety of techniques, which are aided to identify and manage risks. Although each 

country has different programs and standards for implementing this improvement, the concept 

of process safety management is well known. Over last 10 years, process industry has made 

significant investment in research, resources, and system upgrades, minimizing risks and 

hazards. 

System safety and reliability are the main parameters to ensure system design, development, 

and operation for a process facility. There are usually high demands on the safety performance 

of systems where the consequences of accidents are large. Safety Instrumented System (SIS), a 

system independent of Basic Process Control System (BPCS), is designed to take action to 

maintain the process safety in the event of malfunction. The International Electrotechnical 

Commission (IEC) 61508 (2000) standard defines SIS as "a rystem composed rif sensors, logicsolvers 

and final-control elements for the purpose rif taking the process to a scife state, when predetermined conditions are 

violated'. 

In general SIS aims to reduce risk to an acceptable or As Low As Reasonably Practicable 

(ALARP) level using risk-based approach. The greater the process risk, the more effective the 

SIS must be in order to control the risk (Cusimano and DiNapoli, 2001). The ALARP 

principle provides a general objective of SIS, which is to reduce the frequency at which a 

hazard may occur to an acceptable or at least a tolerable level. It should be noted that a SIS is 

not required if the risk is already acceptable by non-SIS techniques such as operator response 

on alarms, safety distance, etc. 
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be regarded as a logic solver. In process industry, safety function is implemented by a 

collection of equipment pieces. Consider a heater fired on natural gas fuel. Excess fuel gas and 

loss of flame can lead to an explosion. An emergency switch is able to tum off heater to 

prevent this hazard. The procedure of this action can be regarded as a safety function. 

Safety function only reduces risk (probabili!J * consequences) and never completely eliminates the 

risk (Wiegerinck, 2002). However it would be sufficient to reduce the risk to an acceptable 

level. Reconsider the heater example above: the chance that the switch fails to close the heater 

does exist. Although the opportunity of the accident has definitely been reduced, it is not 

guaranteed that the explosion will not occur after adding an emergency switch. Actually in the 

beginning of designing safety function, the desired probability of failure needs to be 

considered. 

A safety function can be subdivided into multiple sub functions according to all possible 

events that could lead to a specific hazardous incident. For example, a safety function is 

required to protect a reactor against overpressure. The cause of this hazard could be the loss of 

coolant, high pressure in reactor, or loss of service of ESD system. Each of those events can 

be prevented by a sub safety function respectively. 

SF is able to assist SIS to reduce the risks. The amount of risk reduction is principally 

concerned. It can be measured based on the calculated Probability of Failures on Demand 

(PFD), which is the probability that SF fails to maintain safe state when predetermined safety 

conditions are violated. This probability can be estimated by calculating total probabilities of: 

1) SF input services fail to tell the logic solver of SIS to take the action. 

2) Logic solver was told to take action, however it fails to initiate it. 

3) Final control-elements fail to take action when action is initiated by logic solver. 

Since it is difficult to get the exact value of unsafe failure rates, safety analysis is used to 

measure the likelihood of SIS performing required safety functions. 
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1.3 Safety Analysis 

There is no broadly agreed definition of safety analysis. The one proposed before is "safety 

analysis is a systematic procedure for analyzing systems to identify and evaluate hazards and 

safety characteristics" (MacDonald, 2003). This definition includes both quantitative and 

qualitative methods. The purpose of safety analysis is to improve systematic safety and reduce 

risk. It can be considered as a supplement to a company's own safety activities. 

Safety analysis should be conducted before and after applying corresponding SIS to the 

systems. To obtain the confidence that the risks associated with safety requirement are 

acceptable, safety analysis is carried out to ensure that system design is consistent and maintain 

safe behavior. 

Safety analysis is based on the knowledge of hazards from previous studies. The information 

and data is collected by a design engineer, who has a thorough knowledge of overall system 

and its design. Safety function can be considered as an approach to conduct safety analysis. 

Since a specific SIS can be represented by multiple safety functions according to all possible 

events, each SF can be used for the purpose of safety analysis. 

Safety analysis is able to be used for judging the performance of safety function(s) of 

corresponding SIS. Safety Integrity Level (SIL) is developed as a quantitative evaluation factor 

of this judgment. 

1.3.1 Sajery Integrity Level (SIL) 

Safety integrity can be understood as probability that a safety-related system will satisfactorily 

perform the required safety functions under all stated conditions within a given period of time 

(K.osmowski, 2006). SIL represents the amount of risk reduction that is required from a safety 

function. IEC 61508 defines SIL as "a discrete level (one if .four) for specijjing the sqfery integrity 

requirements o/Ht.ftryfunction." (2000). Safety integrity level 4 (SIL4) is the highest level and safety 

integrity levell (SILl) is the lowest one. 

SIL has become increasingly part of the design and operation of safety instrumented system 

(Kirkwood and Tibbs, 2005).Companies are now specifying SIL based on the amount of risk 

6 



reduction that is required to achieve a tolerable risk level. The SIS is designed to meet or 

exceed this level of performance (Marszal and Mitchell, 2003). 

SIL is calculated by the Probability of Failure on Demand (PFD) or Risk Reduction Factor 

(RRF). The IEC standard provides following table for SILs: 

T bl 1 D fi .. f SII £ d d d f f IEC 6 511 1 a c e 1mt1ons o , ,s or eman mo e o operation rom 1 -

SIL Range of Averaged PFD Range ofRRF 

4 -5 
10 <= PFD < 10-

4 100,000 >= RRF > 10,000 

3 -4 
10 <= PFD < 10-

3 10,000 >= RRF > 1000 

2 10 -) <= PFD < 10-
2 1000 >= RRF > 100 

1 -2 
PFD < 10-

1 100 >= RRF > 10 10 <= 

SIL is intended to provide targets for developers. According to the value of SIL, developers 

can understand what the intended safety function is going to achieve and choose desired 

instruments to implement it. This needs to be done in early level of development stages in 

order to guarantee that proposed safety functions are realistic, achievable and affordable. The 

cost of SIS will increase if higher SIL is required. 

Risk reduction terms can be applied to calculate RRF and PFD: 

RRF=Fnp/ 't'p 
PFD = 1/ RRF 

where Fp = Protected Risk rrequenry 

rnp=Unprotected Risk Frequenry 

The equations listed above are used in this paper to determine RRF and PFD. 

There are several methods available to determine SIL of a safety function, which are described 

in IEC 61511. 
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• Fault and Event tre<>S ,\nalrsis (FL\ I ETA) 

• S.1fety la.yer maui..'( method 

• Risk graph 

e Lay Of Protecbot\. \naJysis (LOP.\) 

r\ conSt.1LU rnethod to detennioe SU.. IS r«(uired for :uty o~g.uuzation. Qu.'Lncitauv~ RL"k 

Aoalysb (QRA), risk graph ancl LOP.\ are all established mcrhods for dcrcnnining SIL.. 

parucularly in process mdustry st•ctor (Foord ct aL, 2()()4.). 

1. 3.2 lLD., of Protttdon Ant~!piJ (LOPA) 

LOP .. \ method was de,·eloped by Amt'...ri.cml losututc of Chemica] Engineering (AJCE) as a 

method for asses:illtg the SIL reqllllt'mcnts of SFs (foord cr al., 2004). 

WP. \ is a semi-quat\UtaUv~ risk ru\alysts method bec::tusc 1his technique d()CS use numbers 

and gt-'llern.tc a nwncricaJ risk csrim.·uc. Ho\vC\·cr, rhe numbers arc selected to consef\ ati,eJy 

csrim:uc f.'lilurc probability, usually to an order of m.agn.irude Je,·t:l of ~tccura<.~·. rather that to 

closely repttM':Ot the actual perfonnancc of specific cqurpmcm and devices (Hcndel""hOt and 

Dowdl, 2002). 

LOP. I unpJcmcnr.s rh< muJJipJ< lndcpcndcm J>Jwcction UJWS (JPL) ro !<:1h1f1Wd ·'process, 

which i!i often used in 1mxcss industry. Figure 4 illusu:ues the: concept of protc(..1ion Jayc~. 

' ) 
- --t;-o.- Jt.etpOftN ~ 

~----."=-
SlS (SlY) 
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TPL reprct'Cnts the L'lyer of protc.•ctlotl against ao initiating CllL"e k~cling to ao impact e'\Tefl{. 

Specifically it might be: 

• General Process Design: There mar. for CX."lmple, be the design of S)·sr:em rh:tt reduces 

chc prob:tbility of a luuardous e\·em. 

• Basic Process Control System (BPCS): Failure of a control loop is likel)' to be rcp1:tced 

by an extra c-ontrol loop. Autom~tically conrrol system i.s ru,wys added imo r:he p•'OCesc;: to 

prcvcnt undeslft'c.l events. 

• Alarms: Independent of the BPCS., an alarm might exist t>ro\·Kiing sufficient t:i.me for an 

oper<LtOr co reSJ:>OOd :1nd take an effectin.- :tenon. 

• Safety Instrumented System (SIS): If ruJ non-SIS IPL.c;: :above could not reduce the 

~(Jtlt'1lC)' of consequence ~ta:r.ard) to an acceptable le\'(~1. a spcx:ific SIS is implemcntc..'<.l to 

meet the target objec;t. 

Figure 5 l'lhO\vs the concept of each lPL :lccing ac; a harrier to t'<.--ducc the frt.--quency of dle 

consequence. 

IPU IPU /P/.3 IP1< 

llPCS SIS 

I I I I 
I.OPA pro\'ides a cot'lSlStent baMs for j\1dging if cherc :arc sufficient IPLs to conttol the .rbks of 

an accKk:nt for 2 s.cenario (\'\'icgcrit\ck, 2002). If ll is oot enough, then more IPL.s arc addc..-d. 

Table 2 shows the general fonn of a LOP~\ table: 
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Table 2 General format ofLOPA table 

Consequence Initiating Initiating Independent Protection Layers Mitigation Mitigated 
& Severity Event Event Probability of Fa~ure on Demand Independent Conseque 

Challenge (PFD) Protection nee 
Freq Layers Freq 
/yr (PFD) /yr 

Process BPCS Alarm SIS 
Design s (SIF) 

LOP A estimates the probability of undesired consequence by multiplying frequency of the 

initiating event by the product of the PFDs of each applicable IPL using the equation below: 

= J/ XPFDil X PFDt2 X ... X PFDiJ 

where J/. = frequency for consequence C for initiating event I (Mitigated) 

J/ = initial frequency for initiating event I 

PFD ij = probability of failure on demand of jth IPL that protects against consequence 

C for initiating event i. 

The IEC61511 part 3 Annex F includes suggested or typical PFD values for factors such as 

operator responses and alarm system integrities (MacDonald, 2003). 

LOP A is a relatively quick and straightforward approach for modeling the protected system. 

However LOP A may be inadequate if required component failure data is not available or 

failures are not independent. FTA can be used in these situations since this method can 

evaluate compound failures. 

1.3.3 Fault Tree Ana!Jsis (FTA) 

Fault trees originated in the aerospace industry and have been used extensively by nuclear 

power industry to quantify and quality the hazards and risks associated with nuclear power 

plants (Crowl and Louvar, 1991). It is the most common of quantitative analysis techniques to 

be used for detailed SIL determination (Kirkwood and Tibbs, 2005). 
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Fault Tree Analysis (FTA) is a graphical technique that provides a systematic description of 

the combinations of possible occurrences in a system, which can result in an undesirable 

outcome (Kirkwood and Tibbs, 2005). This analysis starts from a top event, an accident, and 

works backwards to various scenarios that can cause the accident (Rothschild, 2004). FTA is 

designed to accurately evaluate compound failures and account for any dependencies between 

failures. 

FTA visually produces an additional failure map, which assists the developers and safety 

analyst to identify the strength and weakness of the whole system. Although FTA is a more 

robust technique than LOPA, it also has its own limitations: 

1) FTA is a highly specialized study technique, which requires developers to have a 

thorough understanding of the target system. For some complex process systems, 

expensive software is required to conduct the FTA. 

2) Comparing with LOPA, FTA takes more time to complete. The number of 

intermediate events related to one basic event could be large. This will make it more 

difficult to develop fault tree. 

1.3.4 Combining FTA with LOPA 

Because both LOP A and FT A have their own weaknesses and strengths, it is more convenient 

to combine these two methods in order to determine the SIL. This enhanced method 

integrates the simplicity of LOPA with analytical strength of FTA and provides a relatively 

quick and more efficient safety analysis. Combining LOPA with FTA needs the developers to 

consider the target process system as the safety related system. The concept of the overall 

safety lifecycle is crucial to system design. Each safety layer must be defined and developed 

independently. 

The existing process system is first divided into various protection layers using LOPA onion 

model. SIS can be considered as an IPL. Other layers are determined according to the 

developer's knowledge and experiences for whole system. The procedure to perform the safety 

analysis using SIL, illustrated in Figure 6, can be summarized as followed: 
11 



I) Dctcnninin.g t;ttget 511.: h &.-ptnJ .. un dw.· t}~ of 11-nt('m 1"UCh ~ CUiltuluou:s 

rem,..,.. on~nd "'f'len\. Sll.2 l ... <OUfficknt b mu~tiDI.I~.tttl) p«Khf s~~taru;.. 

2) Adchlljl IPL; \n abtm and a Sl~ OUlb.: aJd.d •• •n 11'1 . 

I) C..lculac.illjl SIL by PTA: Bwld &.uh.,..... bo.cd"" th< utfo,..nuo fmm p=,.,... 

h.a1ard "tud~· ">uch as Hazard and C>pc-rabilit)- -'HAZOP;. 

4) Calculating RRF: RRF = h< alcubtod "'" dondtnM htp h~ I p If ob<>inod RRF 

dc~e11 1101 :tmvr :tt defined r.mgc according 1n 1hc: Tahlt• 1. 1hc:11 add more I PL and 

rcpcar all rhc !lll'(l~ described ~lxwc . 

• 
II ..... bU ••­

•-u-r ' 

The dct;ulc:d dcm•)n,.rr:nion of d\io;. procedure \\illlx c.IJJKU""":J an • c~ .. c •rud~ bdow. 
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1.3.5 Case Sttlt!J of Soft()• Ana!Jsis Using Combining Met/)Q(/ 

...... 

E'l01=:;!c Tank LCIVCII Conlr()l 
SimulatOt' 

~ ,., ... 
~···f ·····-·' I _r ) 

e..;c:Poo~n 

Ce-•ltof 8v••o .. 

J '·--·~ >= ., 

Figure 7 $how:; a snapshof of a ba<~ic rank k:vel control S)'Slt'm ~i.mulator tlcvdoped on G2 

pbtform. The fl:mun.ablc liquid is dra\"\'1\ from a J>rocess source tnto a t:utk. The hcaght of rank 

is 10 meters . • \ rypical len!l control loop, which uses proporrion.1.l conrmUcr, is provided in 

IWCS to m.•t.im:un rank lc...-d :u 5 mcrcN. An explosion will happen if dle lel.•el comrol fails for 

any rc2oon and rnnk becomes full. A J>ressutt rdiefnl\'e Q>SV.J) ls lnstallt."<<. If the hqwd has 

10 CSC'IJ>e from dle lank through this v:tlve, a d1.ngcrous ntpor cloud wlll be formed. F:tilurc 

rate data ubed :Ill this otsc study are an:ragc values determined :~r :t '}-pk:al chcmic2l process 

facility and selected from the book by Frank P.Lccs (F'r.:mk, 1986). 

'l11c rcasonl). for loss of Je,·cl oonO'OI include: 

• F:ulure of l.cvcl sensor l.S-1 

• Failure of proporriorul controller SC- I 

• Control vak•c C\'-1 f~ il~ ro close 
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llfil 

I) Unprotected S)'SiblJ 

lhe f:ul\ ll't' of unproc~.-ct ~r .. tem a:-~ o.Ol6351)t"ar. 

I 

·-• -· • • • ·-· . ... ... 

1) Add Mn-SJS IPL (oJXr.IIOr respo= to" abnn) 

\ high J., d ahnn .. then add<d 10 me S)-.tml. nu, ahnn .. .0 be ·= at.d If bqwd hd 10 

tank rncho (, mctC'f"' •• \ftu adding a non-SIS b,ct, lp (prntmcd mk fttqucncy) ts 

O.OUI6 1~/) r 
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1.4 Objectives of Present Work 
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o~tkbuon, a computcr-:udcd tool ba .. c.'<.l on tlu" methodology is also dC\·dhJ)CJ 
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The objectives of this research include: 

• To propose a methodology for real-time fault diagnosis in process system and its use 

in developing real-time SIS 

• To implement the proposed methodology by developing a computer based tool 

• To study and evaluate the performance of the proposed methodology using developed 

tool 

1.5 Organization of the Thesis 

This thesis is divided into seven chapters. The first chapter introduces the concept and 

significance of safety system, safety function, and safety analysis. It also introduces the current 

safety related practices in process industry. In addition, an improved safety analysis method, 

which combines LOPA with FTA, is presented with a detailed case study. 

Chapter 2 presents review of the available approaches and a proposed safety system 

development methodology, which is divided into three stages including system simulation, 

knowledge-based fault diagnosis method and G2 application development. In chapter 3, a 

micro steam power unit is modeled using the simplified process model and simulated by G2 

expert system. Chapter 4 proposes a knowledge-based fault diagnosis method which is 

comprised of three steps: acquiring information, making inferences and taking actions. A 

computer application is also implemented based on three steps of this method using G2's 

GDA application. In chapter 5, application of the proposed methodology and tool is 

demonstrated using simulated and industrial data. Chapter 6 discusses the results obtained 

from chapter 5. Chapter 7 includes the final conclusion and future possible works of this 

research. 
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Chapter 2 

METHODOLOGY FOR DEVELOPING REAL TIME 
SAFETY INSTRUMENTED SYSTEM 

2.1 Review of Available Approaches 

The standards and guidelines for designing SIS have been studied and developed for almost 20 

years. In 1987, UK HSE (UK Health and Safety Executive) published an excellent document 

on the use of Programmable Electronic Systems for use in safety applications. In 1993, AICE's 

(American Institute of Chemical Engineers) center for Chemical Process Safety released the 

book, "Guideline for Safe Automation of Chemical Process", which covers the design of DCS 

(Distributed Control Systems) and shutdown systems. IEC (International Electrotechnical 

Commission) has also been working on the overall standards for all industries for more than 

10 years and published IEC 61508 and 61511. These two documents cover the use of relay , 

solid state and programmable systems and will apply to all industries such as medical, 

transportation , nuclear, etc. It should be noted that all of the standards and guidelines listed 

above are performance oriented, not prescriptive (Gruhn, 1999). 

All of the standards and guidelines listed above provide the fundamental requirement and 

instruction of designing SIS. According to these standards, Gryhn (1999) introduced a basic 

SIS design life cycle, which is illustrated in Figure 13. These procedures have been accepted for 

most of industry sectors as the procedures to follow during SIS concept design stage. ABB's 

System 800xA, a high-integrity modular controller, is a complete IEC 61508 and IEC 61511 

compliant SIS and has improved process availability (M:cMath and Kingman, 2005). 
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2.2 Proposed Methodology 

There is one general safety function which can be considered as a principal part of each SIS. 

This function is called fault diagnosis function. The function of diagnosis is among the objectives 

of the monitoring and falls under a total process of supervision (Sharif and Grosvenor, 1998). 

The purpose of this function is to monitor the process through the real-time information from 

the lower level (sensors) and take actions on higher level (controllers). 

To develop a real-time SIS, fault diagnosis function might be a common approach which can 

be applied to detect over-all faults and even faults in components. The goal of this chapter is 

to propose a general methodology to develop the SIS by designing general fault diagnosis 

function, which can be used in various process systems. 

The proposed methodology implementation can be divided into three stages, which 1s 

illustrated in Figure 14: 

Stage 1 
System Modeling and 

Simulation 

1 
Stage 2 

Knowledge-baaed Fault 
Dlagnoele 

1 
Stage 3 

G2 Application Development 

Figure 14 Three stages of proposed methodology implementation 

2.2.1 System Modeling and Simulation 

Simulation has been used successfully for years to improve system design and management 

(Harrell, 1998). It is a quantitative technique that examines the detailed execution of the 

process at a higher level. Many developers have been benefiting from the use of simulation to 

analyze and improve their designs. 

During the step of designing SIS, it is more flexible and applicable for a developer to have a 

complete system simulator based on developed system model as a platform rather than trying 
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to apply any extra system into real process system. Most process systems are dynamic and 

unpredictable. Direcdy modifying current system components could cause potential threat to 

life or environment. 

Developing system simulation can be divided into four stages, which are oudined below: 

• Specifications: This is the stage of conceptual design. The overall system as well as 

various components is required to be analyzed. In addition, the interfaces between 

systems and subsystems need to be defmed and validated. 

• Modeling Design: At this stage, detailed system/ component models are designed 

according to the system behaviors. The available modeling methods include state 

space, classical empirical model, and other mathematical methods. This stage could be 

challenged since it is difficult to model some non-linear systems precisely. The 

acceptable modeling accuracy should be considered before carrying out this stage. 

• 

• 

Development: The simulator, which is based on the designed model, is developed in 

this stage. Since the desired simulator is computer-based, the appropriate software 

platform should be chosen. The possible options include HYSY~, ASPEN Plus®, 

Java, G2, etc. 

Verification: The developed simulator needs to be verified in order to meet the 

requirements. This can be performed by comparing the outcome of simulator with 

real system output. 

The details regarding system simulation are described in Chapter 3. 

2.2.2 Knowledge-based Real-Time Fault Diagnosis Method 

Faults, also referred in industry as critical conditions or abnormal situations, are a range of 

abnormal operating states that are beyond a normal state, but fall short of automated 

shutdowns (Siegel et al., 2004), such as those that take place during an emergency. Typically 

these conditions are the consequences of combinations of events that are unexpectedly occur 

at same time. Fault is also understood as any kind of malfunction in the actual dynamic system 

(Mohamed & Ibrahim, 2002). Such malfunction could result from process variables, process 
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components, or even basic control systems. If the system behavior is regarded as 

malfunctioning, then appropriate fault diagnosis mechanism can be used to detect this faulty 

activity. 

The method of fault diagnosis began in various places in the early 1970s and has been 

receiving more and more attention over the last two decades (Dash et al., 2004). The 

increasing interests are applied for two major applications: academic and industrial application 

due to safety related matters. The detection and diagnosis of faults in process systems is of 

great significance. An early detection of faults may help to avoid incidents, process upsets, 

product deterioration, performance degradation, and damage to human health or even loss of 

lives (Wolfram et al., 2001). In this paper, fault diagnosis method is implemented to realize the 

fault diagnosis function of developed safety system. 

Fault diagnosis can be performed by employing different approaches such as model-based and 

knowledge-based. Model-based approach uses quantitative models and equations to estimate 

the states or parameters of the system. However, in practice it is almost impossible to obtain a 

model that exactly matches the process behavior (Mohamed & Ibrahim, 2002). The mismatch 

between the behavior of the model and the plant may lead to large error signals (Howell, 

1994), which can cause false alarms unless appropriate thresholds are used. Furthermore, it can 

be impossible to describe some non-linear systems by analytical equations. These 

disadvantages increase the necessity of using an alternative approach: knowledge-based 

approach. 

Knowledge-based fault diagnosis is performed based on the evaluation of on-line monitored 

data according to a set of rules which the human expert has learned from past experience 

(Monsef et al., 1997). The knowledge includes the locations of input and output process 

variables, patterns of abnormal process conditions, fault symptom, operational constraints, and 

performance criteria. The operator and engineer's intelligence related to the specific process 

systems are implemented into this approach. Their knowledge can help to recognize the 

potential faults based on previous experiences. This approach can reduce the burdens on exact 

numeric information and automates the human intelligence for process supervision (Lo et al., 
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2006). Compared with model-based approach, it is particularly suitable for large industrial 

plants since those non-linear real plants are extremely difficult to model and linear 

approximation of the model will introduce large errors in the results. In addition, knowledge­

based approach is able to reduce the complexity of implementing the corresponding safety 

system and make it flexible and easy to understand and follow. Combining knowledge-based 

fault diagnosis method with real-time process variables monitoring will improve the efficiency 

and reliability of detecting fault behavior and overall effectiveness of the system. 

Motivated by the advantages mentioned above, a knowledge-based real-time fault diagnosis 

method is proposed in this thesis for the purpose of implementing general fault diagnosis 

function in SIS, which is comprised of three steps (Figure 15). The first step is the acquiring of 

the real time process information, from critical equipment pieces, such as boilers, compressors, 

separators or reactors. Temperature, pressure, level, and flow rate are the most important 

process variables to be monitored and have the capability of representing the state of 

operation in a variety of equipment pieces. The fault in these variables can affect the stability 

and safety of the whole process system. The second step is making inferences (diagnosis) 

based on acquired process information. The last step is making actions according to the 

inference values, such as informing operators, raising alarms, shutting down equipment, 

activating higher layer protections and trying to bring the system back to normal condition. 

The details of this method are described in Chapter 4. 
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FaulL dr.tg:nosis, both i.o terms of tb> likehhood at\d the likdy period of occurrence, remain"' a 

particuJarl)' difficult task. In the cn\•ironmcm of rc:~ l ·timc data ooUccrion, high ,·olume of 

i.nform .. ltion needs co be ~Ht.'l lyzed aod processed in ~ short pedod. Final outcome l>ased 0 1\ 

real-t.irne data ana.l)·sis is likely to be rca.sonable ~u1d rcl.am·dy precase only through the 

as:ustance of some computer :udcd tools. Fun.hem1ore, modem procc<'s plants have become 

more complex and Uwoh·ed using high technology m:~chincs and comJ>Utcrs. 'J-o de\•elop ~n 

acceptable d i.1gnosric system for such plams. il is imponam to constder the underl)'ulg 

principles of fault di.1.gnosis in gcncr.al, :.lnd U')' co dC'I·clop a comp1.1ter based fault di:agnosts 

srsrcm which satisfies d1e specifications aLld demands (Shanf atld Grosvenor, t 998). 

111c :1i.ms of d~~etoping cotnpmer ~pplicacion art to pro,·tdt the platform for testi.ng proposed 

Jnethodology, enhaoce the perfonnance of the safety system, and decrease the rc:,c;:ponsc 

mterval betwc.·cn dctc.."Cung fault :.lnd taking funhcr :lCciOn !t. In order (0 emure dlat an saftt)' 

goals han been :1chiC\'Cd, dc\•ck>pe<l COmJ>ucer ~)>pli-cation should have the foUowing 

capobilities' 

• Rule-'based reasoning: Turning complex d~ta into useful infonnation b) reasotung about 

it through o bject models and rules. 
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• EH•tu d c:tcebOn: C.onnnuously morutonng mulnrlc l")nchrnnn".u <'H'I~ts opeaall~· for 

atw.,rm "" mr" and dau ~ttom.s ~v m f\-al nn•· 

• Connectivaty: lh:klgcs to numerous <tt:t.ndtrd d:l:t.tb:t~C1>, pruc;all CPOUul')"lt:ID'~ and U.'>tt 

de' dc-.rmt'fll Cfl\1-mnmcnt. 

• lntegrntc:d intelligent technologies: .\ bt.bt) to unplc:nu:fll run} lnwc. neural ncrn·orb. 

G2 !ln(N.·;~ •oc (rom (;en!!~ m Corpo r.ltion has 1hc :tbthHc!l In l)l'rro nn ehc-.c capabihries. 

f'oundcd an t9K6, Gc•b)m Corporation is 1 lc:1ding pnwad~r nf rule cl\gtJlt !'()((\\tare and 

.. crHCt:!t (or 11\l'•"lon-cnucal ..aluuon~ that aulomate dt'CJ ... ton" tn tnl tJmc. (,~tsym's Oagshtp 

G2 .. uf.,.art" appbtoc m~l-tunc rule t«hnooog) for ck't.'WIIfl'4 rhar c•phnwc: ~nons and 

detect, ~ ..... llkit•:""'. <X>'dy probl<ms. 

•-.:alit 
••• a 

G2 ts unc uf tht -urkJ', koadlog rttl·time Mgtnc: pbttonn and wuquc::h Ctii'Dbal-.-d tal time 

n.:~'IC.nan~ rcchn.:~ Uk::ludwg ~ obttet moJdu~ '-lmubnon, and proccd~ Ul 1 gogle 

~ cl. 'P"""'' and dcplo\ Dlll:[lt en' uoameot. Real om.; c.bt:. ., tnn,.,fnmxd uuu automated 

dcCNHilOC and actanns ut mal tune by G2 pbtfonn. \ \\kk t:.fl~lt' of tndustty ~uoons are 
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supported by G2 including oil and gas industry, process manufacturing, power utilities, 

aerospace, and telecommunication. 

G2 supports three basic types of programming constructs for processing data: rules, methods 

and procedures. One of the primary implemented processing methods in this simulating 

platform is rule-based processing since it has two general techniques. Another method is 

procedural processing, which includes single-threaded processing and multi-threaded 

processmg. 

GDA, the G2 Diagnostic Assistant, is an environment for developing and running intelligent 

operator applications. Its principal component is a graphical language that lets user express 

complex diagnostic procedures as a diagram of blocks, also called an Information Flow 

Diagram (IFD). These blocks are connected by paths that show how data flows through the 

diagram. 

A GDA application contains various schematic diagrams, which have capability of 

• Acquiring data from real-time processes 

• Making inferences based on the data 

• Taking actions based on the inference values, such as raising alarms, sending messages 

to operators, or concluding new set points 

Motivated by the G2 platform introduced above, the proposed methodology including system 

simulation and fault diagnosis method are implemented on the platform of G2 expert system 

using GDA applications. The details of this method are described in section 3.3 and section 

4.5. 
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C h11pltr J 

SYSTEM MODELLING AND SIMULATION 

S) 'lh:n1 nllxlchnK ;;~nd samuL1t1on ~~ the fi.rs-L :otage of the prc•J)ci'O(:d mcthcx.lolog)·. lhe p~ 

of tha!l 'ILI~C '" m p,cncnue the mput data aud pro,"tt:lc a platform for d<:">tgnmg ~nd tesnng f.mlt 

dLLRJ1n!'l" func1ion. It 110 ba~d on the cre:ttt--d !>p;tcm mudd wnh the C:tJ.,alnhry of describing 

the ")""tc:m hth;l\ IHr!i corrcc:l~' under nonll:tl or abnormal condmon; 

ln thJ.; chapter, a real pruct':o~~ ~))(em b modeled l'.ltnubtt..-d ~ <~2 'WlfN.an- and Ui:;eu~:s.ed. The 

,u,bWt) anJ ft:2,abilin of model b abo ,·enficU thn~ cc.rmpsrtng data gnl<!otnl b\ 

sunubtacJft 'tltlth htdnl'\· rttonb of the umL 

3.1 Mode~ng Design 

In tht rc<atth.. mic:to "ICVI'I po"l·er unit, c;hO'Il--n m r .... '1\l..fT 1"'. '" fint Chc:)I'Oo('f) tO be- (i:OldM:d.. It 

t" tluh.-d an tht.• tht.111tllltb tO the~ c.k-p;anmt1lt ul \lt.•mmu. t OJ\t:NI) t.Jtd t:. u:o>ed 

for the Purr<~ of !'tudt."'\1 expenmeOI};.. The Khc-mabe of tha• rower Ullll l'i s.llO\\'ll Ul Figure 

18. 

hp:un 1 ' 11. plrtu:n: of :<~o,_;un l" .. u un I 
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This power unit is compost--d. of severJ.l tuUts u1dudU1g a sc~m boiler, Stlper heaters. ste:lm 

turbUte. condenser, condensate rnnk. pump. and ocher control spirem components. Steam 1s 

fil"'>t gencr::tted in the boiler and mon-s along the system to run the turbine. Fina.Uy it 1>owcrs 

ten electric b\tlbs. l11c unused srtlm is condensed br condenser and dcposut.xl U1 the 

condensate tank for the furwe tlSC. 

Several ~rstem mOc.leling methods cao be tlS.Cd such :~~ St:l(C space and cla-.s,iC'll empirical 

model. HowC\•cr the complexity of whole thennal sy:>tem m:tkes lt difficult to identify and 

model b) a OOO\'enrionalapproach. FunhcmlOI'e it i ~ not ncccs..<>:uy co build a highJy preose 

S)~tcm model for this project. The accuracr ~ul be comidcrtd as acceptable &e\•cl. \v)Uch 

indicates d\at ccrmin of crrort~ arc allowed. Due to reasons mentioned above. it will be more 

flexible and efficiC'LU if a sttaiglnforward modeling approach is implcmcnrcd. 111ercforc a 

simplified proco>s model L<> de\•ek>ped hr stud)'Ulg the behaviorS of proce~s \·ariables and thos 

ldemif) i11g lhe rclC\•am response equarions. 



In this power system, three major process variables are pressure, temperature, and flow rate. 

Steam pressure in the boiler is the key variable of the system. It is the starting point to 

determine other variables such as temperature in the boiler, flow rate of steam running out of 

the boiler, power generated by the steam turbine, and so on. Two steps have been defined in 

order to determine corresponding model response equations: identifying the order of the 

process model according to process components behavior and determining model parameters 

based on time response of the unit system model. 

3.1. 1 System Model Order Identification 

Figure 19 shows the trend chart of boiler steam pressure recorded every minute. The steam 

pressure starts to increase from 200 kPa and reaches steady state when it becomes close to 700 

kPa. Since it is similar to the response of a typical second order system, it can be modeled 

using equation below: 

expL~mt) ~ ~~-~2 
f(t)=l- \ ~' n sin(m -vi-;2t-tan-1

( ~ )) 

~l-;2 n ; 
(Ogata, 2004) 

where: mn = undamped natural frequency 

; = damping coefficient 

Other system components also need to be modeled, such as pipe time delay, valve dynamic 

and superheater dynamic. Since these components only delay the response time of the 

particular unit, they can all be modeled as first order systems whose equation is 

f(t) = K(l-e-11
') (Ogata, 2004) 

where: T = time constants 
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}.1.1 .fystrm .\lodtl Purumrlm Otttrmmalron 

'I he: order of the procc~ model prmldt11 1he 'i:frucn•re of the C<.Jll;\0011. In order to complete 

1hc: •umubnom the cqwt:ion JY.ll'iltnt·tcl"'' mu~t IJc determined. Sy"<~tcm ch'li"::CfcrL,rics. ~uch as 

""'nt nmc and O\ en.hoot ca" lx (lbr.:uncd h~ :an~h-zing trend ),"1 l'C'(.;ol'\lo;_ \ftcr dur, the 

c.Jc,_.,.an·d toquaoun an be obt:unnl. tc..""'tnl, at1J ac.llll..,ttd lZSUlg the \l.:atlab I·ur ("l(.:ampk. Sr-fem 

characl~fleit an be d.."f .. "tml04,_-d b) :~>IUd~mg umd ch1n Ul ·~f\.~ I'J. ( )\c:r,.huot ros; JS 

0.111.1 and rumg Om< (Tr, 1> oboul 211 """"'"' (1200 S<<>OO•h). Thcr<fun: undsmp«<l11tUftl 

ff\"C.~l.M."flC) ttJ. 2nd d:ampmg mcftlcJ<.'1H .; tn '\.-cond orckr system cquannn can bt- obt.a.llled 

u .. ang ot)<rro.t:rn:d OYCrt'hOO( and n"tntt umc:. Jhc o lculared equation 111 .. hcw.·n bdu\\: 

f(t) ~ 1- cxp(-{1.002176<t) sin(0.0026lxt-50.2) 
0.7684 

hb"'"' 211 ~-~ a sunpk ownubbll'f\ n( 'lc..-am ~ USUlf( a ~ tJnk"f tqu:Jrioo io 

\bobb u<tng obwn<d cquonon. '"" diogn~m fhgutt 19 snd 20) "•"< "'> ..,.;br patt<m> 

w•th lutlr \-ariarioo. Thu »o bta~ the rv.·o dtagr.uns u...e c.hf(t."l1.'1U umc ax.~~~o 2nd there is oo 

llHI!oC: .. unuboon in ~fatbb. Hn\\cn.·r, nol all models can be ad1u."t'-·d h~ llu.; method. Some 

procc:-.!1 components. for CMUnplc:.J'IJ'M.! dt:b~ and unit dynamics. ha\'C: no (;hllrl 10 compare. In 

ortll·r to deal w1th du~ ~ttuaUm1, p;tr:mlcfer~ mu~t be decided accurdu1p, 10 rhe dcn:Joper's 

undc:nnuulmg of the enure o;)"''-ICill. 
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3.2 Srstem Simulation using G2 

'l'he pu~ of the tndl'ndull rnodc:l ~<lmub.aon is to check 811tl nll4blc "~noo~ models 

(~ ICiU!Ot c-r :.L, 200-1) .• ".ftcr !l1.:n\ m~ All dc•cnnincd model equattollll (.\Jlpcndbo C) from the 

JH't.·nous tir:tg<":, csrabli'(hing til ~.: C."'C>tnplcct de!ltred simullror bceum~:'l fcalliblc. 

l·!ftUtc 21 illu;;mres a !ltlap-chot u£ dK' 'ltmul:at•,r ~eloped ul rhe G2 !'ihcU {Jltll(.'i."!l:<~ .,.unuJ:uor). 
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r.ach component :and unu of tM pcr\H::r ~r~m m"*-'l be defined and rtp~mcJ J"- a G2 

obJect. I he artnbuu:• o f the o bject arc ' pccificd :J(Cmlltng ro the kno~.V lcdgc and c:~optncncc of 

thr dt.·•oclopcrs. 1-nt cumpk. tht tltnbutc-s of a 'team botkr nh1.._'CI o:houkl a1 lea .. t ux:ll.K.k 

..,fcan'l-ou~ -Dh:'~ ._-,tcr--...OOV. Qtc, 'lnm-tm'I{'C'r.t.Nn:. aod budc-r rn:---.u«. l'bctw;: attnbut~ 

arc ,.n cll~otiaU) nccc•,;ary to c.k--..cnhc hU'\, ttu~ oh1cc-t Func:uoos. 

The G2 funcoon t!l u'ICd ro repn·!'otm the obnult'\1 model «JlL1tann. lln.'i m."llr.c. n n!iy for 

d(',(')qJxr to n)(itf..- the ch:tn:~Cl('nll!ic of the desared 111odd wnhnut changiftg l)to~.:cdurc cot.le. 

\0 funcuuo_~ are dda~ 10 lht nmc doman 1n (lrdcr to lfl(:""-1toC' m ~~ the ~pt'C'd o( 

opcnu.141. ~ sunubuun orne ptnud n«d ro bt ..dill" h.-d. Ftgutt 2.2 &lkl ... mteo -:.n namp&t of 

G2 funwoo. whtch rc:pn.: ... cm~ the IJotkr p rc$-SUf(' mu~~..lt l cquanon. 

~n-c-·tllle(t)•(1 • ~""'. 

04J1( I - npC-211 ' I • -
(ICJ'(I - exp~Omt!j0.2)Y omego)) • 
"'P(-1 ' omego ' wn ' IYoqrl( I -
1111'~-2111' Bl~SSIR-SP • ---

.\li the dc\·cLoped G2 funcrions h:.\C: bc.'t.'1l i_ndudcd tn .\J)(X:ndtx C .. 

To f,"Ciletitt :an :.cccptablc: p~,; .. unulaOOn ('n\ l~)nmt·tu. i!Imuh:utrou,; o)X'rllnon' must be 

unplcmc-rucd 1M G2 prottdurt rn11g12m an t).t."('Urt: a ~c- ,f ~t actJf.J"')'­

Tht·rtr{n, they arc c.lf%1bk of sunullung re:t.l-omt: pr\)Ct<l'> OJXr.lnunt. lb .. .,k::t.lh· :a. pn~et.'\lure L"i 
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«.""()' ~11bk fot dc:ahng \nth tM mput 2:lld rhc nurpm of c~ch ubtcXI 1 .oach <Jp!tem uru.t, whlch 

tw. aln.1k!~ been ddinrd by 2 G:! obJect. ha-. n~ ~o pnl(:a.luft uaocnrc:d \n.c.h ns O'llo""n 

tt"!<pccnn annhurc"l.. Rc.ler proctdure. •-tucb aams to cnruml anJ ~mnvc ochtt 

pmcc:durc". b rht· cc·f'unl (ouodauoo of ocbtt procnlurn.. The· acnurh tnduck-d Ul thb 

pt~Kl-dure can he ~tnm1n.Zal" folkN.--s: 

1) C:ht"l:k I he lflllul procbs condJnons. for cx;~mple '""hclhc.:r m nol the super heater ts 

pc)\~ cn:tl up 

2) r:1lculm: bmler pressure ba~cd on current simu.l:ation time 

.l) C.alcuLilc holler jjh~am ft•mpe:ruture aod Aow mte ba!<.Cd 011 oh1:uncd Jlf('s.,ure 

4) ( kul·uc: "';ncr IC'\ el1n;;;idc boil« 

6) t pd.rc: aD ~~C~Ut>r rntl•ngo> 

i (" .alcularc rurt~ J'M""" a 

8! ~un orhcf rrc~\lf\·!0; to calcubte llKJole pi'OCn-1 pattrn<"ltf' wch ., the flc,..; mtc of r:be 

cc~ndt_·sN.:r and the water k\·d m the condenser rank 

9) \\'au 5 M"C•tndll and repeat all the cakub.oons der,cnbcd :alx1\ c 

·nc.- C2 rule<~ h;aH bt."'('n tkveloped to detect spcctfic proccs<~t"••cnts. l nhll.e the G2 procedure, 

\locO lkfinW ruks are dcc;;~«< ro Mndk me prn«n '-ptcm ;ac;.oun, after C~lcd or 

Wk1Jk'C1t-d ('\ C'tn'J. 

'*"'*lll•• .. bc•a p•,...Pofl9't*-1 
~,......,..._.cOftebk .... e.e 
~Of......-1·"• 
~· OH. OHrP lind conclude 1twt 
~1 • .,. P"Oiofllplll ol &0"91"-1 

L--------------""1·-~n- 1-l ,., t \~•,pit "' t ;z n* 



In this simulator, the rules are also responsible for updating the simulated sensor outputs. If a 

procedure updates a process variable, the sensor associated with this variable also updates its 

output. One example of G2 rules is illustrated in Figure 23, which is designed to update 

simulated pressure sensor sg-ps-1. 

All the developed G2 rules have been included in Appendix D 

3.3 Simulation Verification 

In order to verify the performance of the model and simulation, the outcome of simulation 

should be compared with unit history log records. To be efficient, the comparison must be 

based on similar process conditions, for example, normal or abnormal conditions. Three major 

process variables, which include boiler steam pressure, boiler steam flow rate, and turbine 

power, were selected for the comparison. 

Figures 24 and 25 demonstrate both simulated process outcomes and unit history record 

charts. The simulation was conducted under normal process conditions. 

Other non-daily operations, such as changing generator load and shutting off super heaters, 

can also be applied to the simulator in order to prove the accuracy of model. 
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Figure 26 iiJuscrntcs the !'C$Uit of d1c simulated pmccs..o; :after reducing po,vcr IOQd b)' us.ing 8 

bulbs in<;tcad of 10. Ouc to the noise and the limitations of the eq1.Upmem. rutbllte pO\ver does 

t\0( decre\se to the expected le,·el nrunedi:uely. h Sl:l.rt:l lO i.tlcrta.se at 6r.st and drops to the 



relevant b·cl afcer a period of Wne. This e,·e1tt can be obser\'ed from the marked o.rcJc of 

Figure 27, a chart of tulit trend. n.ocord.s during thts non-d:aily opera cion. The de,· eloped mode] 

f.1.ils to explain ch i <~ sina:~cion . . \n adrution.al mode~ which is d~1g11ed to sunu~ttc this unccrt:un 

power noise, has been Uldud.t--d . 
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From the verification step, it has been proven that the developed model has the capability to 

represent the behaviors of the power unit by comparing outcome during normal and abnormal 

process conditions. 

Summary 

The developed process simulator is based on simplified process model and built by G2 

structured procedural language. Since the accuracy and practicability of those model have been 

verified with the acceptable result using the past historical system data, this simulator is able to 

be used in the next stage. 
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Chapter 4 

KNOWLEDGE-BASED REAL-TIME FAULT DIAGNOSIS 
METHOD 

The simulator developed in last chapter provides a platform designing and testing the fault 

diagnosis function. The goal of this general function can be achieved by knowledge-based real­

time fault diagnosis method, which is already introduced in section 2.2.2 and will be discussed 

further in this chapter. This method implements the valuable knowledge from the experts and 

operators as well as a vast databank of information from a variety of sensors. Fuzzy logic is 

used to make inferences according to the acquired information and knowledge. In addition, 

the development of a GDA-based computer application based on this method is also 

introduced in this chapter. 

Already mentioned in section 2.2.2, the proposed method is comprised of three steps: 

1. Acquiring information 

2. Making inferences 

3. Taking actions 

4.1 Acquiring Information 

Process data contains valuable information about the state, operation, and behavior of the 

process plant, more so in case with limited available process knowledge (Dash et al., 2004). In 

this step, a simple and quick method is needed to extract the meaningful information from the 

sheer volume of real-time sensor data. Process trend analysis is a useful approach to utilize 

real-time temporal patterns and it has previously been used in areas, such as process 

monitoring. The purpose of this step is to obtain real process data and thus perform process 

trend analysis. 
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4.1.1 Primitive Identification 

The fundamental elements of trend description proposed by Janusz and Venkatasubramanian 

(1991) are primitives i.e., A(O,O), B(+,+), C(+,O), D(+,-), E(-,+), F(-,0), G(-,-) where signs are 

of the first and second derivative respectively (Dash et al., 2003) . A trend is represented as a 

sequence (combination) of these seven primitives (Dash et al., 2004). Figure 28 illustrates the 

shapes of these seven primitives. Clearly, identifying primitives is the first step of process trend 

analysis. 

Figure 28 Fundamental clements of trend: Primitives (Dash et al., 2003) 

Identifying primitives is not an easy task. There are several important issues which affect trend 

analysis and thus need to be discussed. These include noise, time scale, computational 

complexity and GDA feasibility: 

• Noise: sensor data always contain noise. The quality and accuracy of primitive 

identification is affected by noise. The amount of noise must be minimized before 

performing any trend analysis. 

• Time Scale: also referred as sampling rate in practical cases. The scale at which the 

primitive is extracted depends on the driving event. The time scale window should 

be wide enough to capture the significant variations. 

• Computational Complexity: this is a difficult task. Depending upon the 

complexity of the process, the calculation might be extremely complicated. Since this 
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task requires real-time primitive extraction, computational complexity level should be 

considered as low as possible. 

Taking the above points into consideration, a simple and efficient approach to identify real 

time primitives from raw sensor data is proposed in this step: f'lxed Window Discrete Data 

Primitive Identijication. The idea of this approach comes from the definition of the primitive and 

the characteristic of sensor information. The discrete sensor data is collected by the fixed 

window and fitted by third order polynomials. The instantaneous first discrete derivative 

(FDD) and second discrete derivative (SDD) are computed using general least squares fit 

method. The fixed window size is specified as five. The computation is based on the new 

sensor data value and four most recent data value, which is illustrated in Figure 29. 

After obtaining both FDD and SDD using the method discussed above, current instantaneous 

primitive value can be identified according to the definition. For example, if FDD is 5.3 and 

SDD is -4.5, then primitive is considered as D. 

D .... t 

Dn: The nth received sensor data 

1 Computation 
Block 

FDD,. 
> 

Computation SDD. 
Block 

FDDn: The c alculatedfirst discrwu tkrivativ~ after receiving the n th sensor data 
SDDn: The calculated s~cond discrwu tkriv~ after receiving the nth sensor data 

Figure 29 Fixed window discrete data primitive identification approach. 

To illustrate this approach, simulated sinusoids signal data is generated as the input of 

primitive identification system. Figure 30 shows the result of this case study where the input 

signal and corresponding primitive output (horizontal line) are illustrated. In order to display 
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current pnmicin: m the 6gurc, the f) 'fie$ of the primici\·es have been ch:tngcd from ch;araclcrs 

(A f) lO munbers (1 - 7). Figure 3l shO\\'~ a zoomed pieture or the rnar:ked area . 
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Comp:uing the result from Figure 31 \Vith prlln.iti,·e definition (hgure 28), n can be st•cn chat 

the desired approach performs well in cxtnccing b;tc;ic prim.itivcs from dte sllnulated input. 

ApJ>aremly, the ad,·rutta.ge of th.is approach 1s that It is f.'lst and efficient. l lowC\~cr, it :-also hots 

some limi{:ttions: 
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1) dependency: the output depends on the most recent 6vc discrete input d."tta. The 

~uality of those data coukl affect the accur::lcy of idcnrificarion. As menrioncd before. 

this approoch creates an insmnmneous recognition mtd the result can not be changed 

later. 

2) noise tolerance: noise is srill a maJOr issue .. 'lbere is no noise callceling techrbque 

used 10 du$ approach. lbc input sensor data nt.-ed to be fLitcrt:d before performing any 

:lflaly..,is. 

These lunitation~ <:a.rl: be mi.ninuzed to some extent by modtfyutg samphng mte (window size) 

and creating fLitcrs 10 GD. \ application. Since the proposed faulr diagno<>is methodologr is 

l:Y.t'lcd on re.1l time <bta and needs a rapid resroose. dUs ma}· be considered as a satlsfactorr 

response~ 

4.1.2 Promt T mtd 

As mentioned t.-:tdicr. a trend 1s the combtnatt()O ()f se\'en p•imiri\'e$: 

TrendTr= {P, .1\ ... .. ... 1\} 

For es:.mplc, Figure 3l shou-s a U'end composed of three pcimttives BDE. wh.ich can be 

represemed"' Tr= {B, 0, £} 

The purpose ()fusing process tTend j.,. ro caprurc the pattern of faulr t\'"COl for future allalys1s. 

Therefore. dle oomparisoo between f\\.'0 tttttds is Jlt'CC:Ssary•. Howen•r, due to the uncertain 

charactcnstic of pcinutivc tdcJttlficarion and the stmilar sh-:tpe between some p•im.ici\•es.. il is 
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noc p~c.1.tcal1n p."tfunn a c;tnct compaoson. lor c.-umpk. 1n I~ ll. TtCild DG and CG 

an- ~mdar tn ~e:.mc ntdU .. ~ lhe ~h2pe of pnnunn~ l) and pnrru11H" C: ~ ahkc.-.. 

In ortkr 10 "'oh·c tlm b!o-UC. Simibriry Index (SI) (Oa!-h ct al, 21)0') i11 mtroduccd to rc._-presem 

the ~.umUru~ k_•\(.•( hct\\·ttn NOO ttencb, Jab)e 3 c;how'i 1hc rrc-dclinc.-d ~ry mauix 

heN.CC1l cu:h rrutuD\(, \VhCf'C S ,.r• prm"kJo the 'SUnJlanf) 1Jt•t\\("t'1\ /~ and P,' (from 0 tO 1). 

, . .,, <Ul11f'k.l) and Car<"""" ,uniJardun D snd I~ J!"<n duo S, (0.'5) "brg<r dun s .. 
(0). The ~I bc.""'t.'"' nt.o U\.-nd.' an lx: aJcub.ted ~ tht: «.'(WIUun (I). 

Sf ( I) 

h 111houW :all'oC.> be ''oleO tltat the slltlibrit)• matnx in f able .'\ ~~ nol fixed I he dc\·clopcrs can 

impmH• the accurac:~· of the calculated Sl by adjusnng each rdau:d Sp,p;. 

... ' n I II ll'nmm\ ,;umbo nuun 

Sp,p; .A B c D E F G 

.A I 0 0 25 0 0 0 25 0 
B 0 I 075 05 0 0 0 
c 0 25 075 I 075 0 0 0 
D 0 05 075 I 0 0 0 
B 0 0 0 0 I 075 05 
F 0 25 0 0 0 075 1 075 
a 0 0 0 0 05 075 1 



Figure 34 illustrates the algorithm of computing SI after receiving the identified primitive. 

Initially, knowledge-based trend Tr *must be determined, which includes the number and type 

of primitives. Then similarity value ( S pp, ) is decided after comparing each received primitive 

with corresponding knowledge-based primitive in Tr * . If S PP, is not equal to zero, the current 

SI is calculated. The SI computation ends when either index is equal to N or the next similarity 

value is zero. 

Number ofprimitivw in Tr • • N 
Current ildexi•l 
SI-o 

Obtain current 
primitive p 

SI•SI+ S, 
N 

I • I +1 

NO 

Yes 

Figure 34 The algorithm of computing SI 

Tr • = { ~ , fi , ...... PN } 

The Rate of Change (ROC), which is the first derivative of corresponding process variable, 

represents the discrete rate of change. It is obtained through computing the instantaneous 
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slope for five individual input data using general least squares fit method. ROC can be used to 

characterize the input sensor data by determining whether and at what rate the input is 

increasing or decreasing. Comparing with SI, ROC is capable of quantifying the temporal 

pattern of sensor data. Therefore, it may also be considered as input to the analysis. 

4.2 Making Inferences 

According to the previous section, the inputs of the Inference system are SI (similarity index) 

and ROC, obtained from process trend analysis. One important issue here is that the SI is not 

a precise input. It is difficult to develop a model-based inference system for the purpose of 

obtaining a precise output. Another issue is that it is still hard to utilize the useful information 

provided by engineers to the inference system. Motivated by the issues mentioned above, a 

fuzzy inference .rystem (FIS) is proposed in this step. 

4.2.1 FuziY Inference System 

ruz:ry itiference .rystem can be considered as an inference system based on both expert knowledge 

and fuzzy logic. FIS has the capability of converting the numeric data into linguistic variables. 

The imprecision and uncertainty characteristic of system inputs is managed using fuzzy sets. 

Furthermore, using FIS approach to perform fault diagnosis is also able to handle the 

impreciseness of process trend representation. It is worth mentioning that fuzzy inference 

systems have been successfully applied in fields such as automatic control, data classification, 

and decision analysis (Marcellus, 1997). Below a brief explanation of fuzzy logic and fuzzy set 

is provided, and for details, please refer to a paper by Dr. Zadeh (Zadeh, 1988). 

A fuzzy logic system is a nonlinear system whose behavior is described by a set of linguistic 

rules. For example, rules such as: 

IF (service is good) THEN (give more tips) 

IF (service is alright) THEN (give average tips) 

IF (service is bad) THEN (give less tips) 
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Unlike other regular mathematical systems, fuzzy logic system is related to the classes with 

unsharp boundaries where the output is only the matter of degrees. It is primarily about 

linguistic vagueness through its ability to allow an element to be a partial member of set, so 

that its membership value can lie between 0 and 1 (Harris et al., 2002). 

Central to the fuzzy logic system are fuzzy sets and membership function. A fuzzy set A is 

defined as a set of ordered pairs: 

where A is called the fuzzy sets and f.1 A (x) is called the membership function. 

Fuzzy logic is conceptually easy to understand and flexible. Imprecise data can be easily 

processed by it. Fuzzy logic is based on the natural language and convenient to use in the 

complicated control system. 

4.2.2 Application of PIS to Fault Diagnosis 

To identify the fault, expert knowledge is mapped with the knowledge-based fault process 

trend (pattern) in the form of fuzzy if-then rules. An Ifthen rule typically expresses an inference 

such that, if we know a fact, then we infer or derive, another fact called a conclusion (El-Shal 

& Morris, 2000). For example a rule might read, 

{fsensor Sf shows Trf AND ROC qfsensor Sf is large. then the fault Ff is most likefy to happen 

This rule implies that if sensor Sl has been observed with process trend Trl and at the same 

time its value increases significantly, then the possibility of Fl fault event occurring is 

extremely high. In this example, Trl is knowledge-based process trend, which has been 

recognized as a fact by the experts based on their experiences. To evaluate this rule, current SI 

is measured using the algorithm introduced in the previous section and fuzzificated by 

corresponding input membership function. The detailed demonstration of this step is 

presented through a case study later. 
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4.3 Taking Actions 

The objective of this step is to guide the process back to normal in the case of abnormal 

conditions. After detecting an abnormal event, which could cause severe accidents, the proper 

actions are required immediately. This will be achieved by developing a set of actions which 

include activating safety measures and a higher layer of protection. 

4.4 Developing GDA Application 

In subsequent section, details of the implementation of methods and approaches discussed 

above using GDA, which is introduced in section 2.2.3, are provided. 

4.4.1 Primitive Identification 

Figure 35 illustrates the snapshot of the GDA application for the purpose of primitive 

identification. This application consists of several blocks including: 

• Real-time Process Data: this block is the source of information. It could be 

industrial data such as the data obtained from the sensor or the simulated data. The 

output frequency of this block should be high enough in order to capture the fast 

updated pattern. 

• Filter: non-linear exponential filter is added in order to filter out high frequency noise. A 

non-linear exponential filter is a low pass filter, which is able to filter high frequency 

noise. The advantage of this filer is that it can filter noisy input but also be able to 

respond to the significant changes quickly. Furthermore it also improves the accuracy 

of primitive identification. 

• Discrete rate of change: this block is responsible for computing the instantaneous 

rate of change for its input using a general least squares fit method. In order to apply 

proposed "f'lx:ed Window Discrete Data Primitive Identification approach into this block, 

window size is set to 5 and polynomial order is set to 3. 

• Logic gates blocks: the aim of these blocks is to determine the primitive type 

according to the value ofFDD and SDD. 
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4.4.} Fuzr>· Tnfmnte SJ•Sttm (FTS) Tmplemrnltitiou 

GDA supports fuzzy logic i.tnplemcm"'tion. There are scvcr:d blocks spcci;~lly d~igncd for 

dC\·cloping fun:y logic component:> c;uch ;~c; Fu:r.ry Consequence Block. \'(.'cightcd Evtdeoce 

Combi.11er Block, rul.d 1--uz.zy E\·idence Gate Block. Howe\'Cr. it should be noted th:at one IU7.7.f 

C\;dcncc ~rc block only enables thn.·c combmed if!htJJ rules. 

Figure 37 showc; a sn:tp~hor of the dcnlopcd fiu:r.y logic system using GOA blocks. It also 

ill\aSWltes \'atious parts of 2 fu:tzy logW; system \Vith rc1:ucd CO.\ b lock used to implement th:u 

:>pccdic part. . \s metltiOLlCd abon:·, ool}· U:u-ee rules a.re -aUowcd. ~lore n1les can be 

implemented by addtng sinuhr applicauons. 1-lo\\'t.'n.'r each output should be combU1cd for the 

Goal oulpt•t, which is illusu:ued in Fig\lrc 38. 

I ,.us 
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Iii Fuzzy 1'111 1 

Iii Fuzzy Port 2 

4. -1.-1 /Jrq11iri1~ Rtal-limr Proem Data 

To allow GDA apphcation to commwticate with exteroal process sensors. !:he G2 GatC\vay 

Staod'lrd hnerf:ace (GSI) obJCCr needs to be generated. The purpose of the GSJ is to allow 

developed GDA applicmon to (juickly obt:Uo real+time d:ua that it needs to make inrclligcnt 

control decisions in a cimc-cririe~ l processing em'ironmem .. 

Two applicauo•ts are de' eloped in th.is p:t••t: 

1) "C" compded application is created in monitor wo•·ksrnrion to ohrnin real-time sensor 

reading. The source code of tlus part is shown ul • \ppeodix B. 

2) .\ GSI imerface. demonsrr:ncd in Figure .W. is created in G2 applicanon whose 

obtccr.ivc is to get value of des1rtd variable from "C'' cotnpiled appliatrion. 
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Chapter 5 

APPLICATION OF METHODOLOGY AND G2 BASED 
TOOL 

In order to verify the capability and efficiency of the proposed methodology, two case studies 

are presented in this chapter. The developed GDA application with fault diagnosis function is 

demonstrated on a variety of situations. The first case study is carried out to detect well­

defined fault event in a micro steam power unit using simulated data. Second case study is 

conducted to identify abnormal material temperature drop using real-time monitored industrial 

data. 

5.1 Case Study 1: Fault Event Detection in a Micro Steam Power Unit 

Using Simulated Data 

In this case study, the input data is generated by the developed micro steam power unit 

simulator, which is discussed in chapter 3. The purpose of this case study is to test the 

performance of the developed GDA application before applying it into real process system. 

The first step is to determine the knowledge-based fault event. 

5.1.1 Fault Event Determination 

After taking suggestions from both the expert and demonstrator of this power unit, the fault 

event (F1) that most likely will lead the whole system to unsafe state has been identified with 

two patterns: 

1) The trend pattern of steam pressure in the boiler during this specific event can be 

recognized as BBG (P1) 

2) Steam pressure suddenly increases or decreases significandy(P2) 
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The steam pressure in the boiler can be obtained from sensor sp-1. 

5.1.2 Fuzzy Inference System 

According to the characteristics and patterns of knowledge-based fault event F1, the inputs 

and fuzzy logic system have been modified, which are shown below: 

Inputs: 

1) SI of sp-1 

2) Absolute ROC of sp-1(1 ROC I) 

Output: 

The possibility of this event happening: high, medium high, medium, medium low, low. 

Membership Function 

The membership function (MF) essentially embodies all fuzziness for a particular fuzzy set 

(El-Shal & Morris, 2000). The shape of membership functions used for both input and output 

are either triangular or trapezoidal. 

1) Input Membership Function: 

Three membership functions are selected for both inputs, with linguistic values: low, medium, 

and high. The range for each MF is shown in Table 4 and MF graph is shown in Figure 40. 

Table 4 range of MFs for both inputs 

Input Low l\1edium High 
SI <0.4 > 0 and <0.9 >0 5 
IROCi <2.5 >1 and <8.25 >8.25 
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2) Conseque-nce Membership Function: 
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(.fnttroj(;nni!J·dcfu:nlfication med1od is implememed for oombi.ttu1g all the COJl3tquences m 

order to m.'lke decision. which is itlu!>tnued U1 J:4uation 2 Uasicilly this method calcuL1tes the 

weighted average of the cemcr values of the consequence mcmbCNhip ti.mction cemers. 

(2) 

where J>. denotes the center of con.,equencc member!!h.ip function 

Ji,denotes rhc mcmhcr:;hip function 

5. 1.3 Diag110si1 Tutit~ RwJ/t 

ln order to evaluate the proposed meJhodology, the micro sc~m power \Ut.il simulator is 

acrivarcd under normal p•'OCCSS conditions. 'I1te finn !>Ctp of the di."lggtosJs test 1s to \'crify the 

perfomt:lllCe of FIS. It ib \ ery unportrun to confmn d1at FIS i.-; capable to idcncify d1e pre· 

defined panents of fault event succes..-;fully. 

I liD 

IlO 

·~ 

-.,..,=-----,-,.,-----=,.--1 ·100 
1':4tO:ipJII. 7~11"· 75UKI~ 
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Figure 42 illU"'tr:ltes the obsen~ed FIS inputs, which are re:tl- llme ROC and Sl of boiler steam 

press\•re. ,\hhough ROC ,•a.lue oscill:ucs betwt.•t·n -5.0 and 5.0, it is ca!:iy ro sec d'l.'lt the 

sjg._tifiaun change has O<:et•m."d gt -"Orne point. In the m:uiwd circle ~rca, ROC }'l.'lS reached to 
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12. which is lugher chan :weragc :and SJ v~lue is dose to 1 at the same llme. ~kcorUin.g to the 

dc!>ign of HS, 1ts outcome should also reacl1 the m:.ximum conscquemtr . 
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r=igure 4.3 illustr:ltes the outcome of ~unulated boiler SlC~Ull pressure and FIS ourpur. It can be 

seen th:a( FIS ourput oscilbtc:s between 0. t and 0.8 norrnaUr exceptio. the nurked circle where 

output has reached 0.9 L. 11tis is d\tC w rhc .:;ignificmt change m nvo FIS inputs dt.·scnbetl 

:alx)\te Q.,.igurc 42). Therefore, the observed I· IS CK•tpul is the same as exp«fed. Howc,·cr, rhis 

o•tlr pro\•es dut AS oocpur is rc:asonablc and can be c."(plairu __ -d by pre4 defu1.cd knowled.ge. It is 

not enough to r:use any alarm. In order to improve dle accm:acr of dC\·clopcd rtS appliC!lrion 

a11d fulfill the pu.q>ose of cri~~ring wamingc; in case of critical operations. the coothtions that 

\\' iU make raisc-:aJann dcosion shoul.cJ be detennined. For ex~unple. d1e corresponding 

i.ntelligtm 2lann \Vill be r:aiscd only after deu.•ctmg three consccuti"c outputs that exceed pre­

defined threshold "alue. ~\ft('r snadying the performance of devclopc...-d. application and 

di..<>cussing with the system opcmtor, HS 0\1lpul dueshold is SCI lO 0.85 :and the number of 

recurring O\•tpur~ beyond threshold in .3 minutc..."S 1s set to 3. 
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Figure 44- i.Uu:nr:ues t:he F IS <llilgoosis output .-.fu::r .-.dding ftll imelligem alarm co the ~irtlub.tor. 

As obstr\'ed from this figure. boiler ~t~m pressure starts to rise from 200 kPa ul the 

begtnOUlg. Wh.eo it nscs to around 500 kPa, &ult event F1 lS gcnenucd and boiler steam 

p«-"SS-tln' will d ose to critical conditio n in a couple of minutes after that. Figure 45 show-s a 

:t.oomcd marked area of Figure 44. 
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It can~ ~~:t:n from f1gurc ~5 rh:u as boiler s1cam pr~.:""'"'l' n~ou .. H ~~tonme pomh buJr en:nt \);;n 

fi_r..t he dt:tcctcd ~')r(·dtefiw: dtlcction) smce I· IS U\ltput c~<:t'(.-d<l the threshold :-ar fiJ"<>t rime. 

\fen that, thl!l ..,uu:uio1l rcpc:u~ twiCe. So the obscr\'Cd I l!'i nut pHI !I:Ui<tfi('s the C<)[)dJC.ions to 

m:ak.: raN: o~bnn dt't:I"Lon .. \sa result, the mtdhgcnt alam1 w1ll ht: rou<~cd tn cm.lcr to nouf~, the 

uptnatnr pnor to the hoLler st~m pr('ssurc rcachmg cntlc.::oll <~JX'f'.llul~ c:cmdtaon (when steam 

pk'l!outc:' rcachn aruunJ 625 kPa). 

llw o.O..n<J H' output an b< oxpbm<d b>· ...,..,.,"'!( <arbcr dnck>r<-d J.no..~. 11u> 

P"" o.1o. .. chr '"'.d.-nee that tb< propos«! m<thodoln~y lu• th.: capoabohl) uf dctccnng tb< 

dt:fint:d faull t"\cnt J·l cffttuH:k. 

-nlc de\ dnpt:d (JI) \ appbcaUol\ b ooly desagsk-d for dctt"CbOft the fauh l'\ Cf'l1 r 1. HO\\l"\t"r. 1l 

can he nllx.bfw...J t'ctr t1c:tl'CW\g other f:au1t eH:nt.s as welL f·m no ample:,,( a (ault t:\t'nt ha~ bttn 
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identified with three patterns, then the number of fuzzy logic input should be three. 

Furthermore, all membership functions have to be adjusted in order to obtain accurate and 

reasonable results. 

5.2 Case Study 2: Abnormal Material Temperature Drop (real-time 

industrial data) 

In order to test the developed GDA application in real process system, three fluid chemical 

samples are heated under high pressure. The temperature is manipulated by a PID controller. 

When temperature reaches around 100 degrees Celsius, the heater will be suddenly shut down. 

Due to this unexpected operation, the temperature of heated samples will start to reach 

beyond the normal operating level. This abnormal condition might not be detected by a 

conventional control system and difficult for an operator to identify. In order to test the 

feasibility of the proposed methodology in a real industry situation, this event is performed 

using Advanced Reactive System Screening Tool (ARSSTTM) from Fauske & Associates, LLC. 
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1) The trend pattern of sample temperature during this specific event can be recognized 

as GGB(P3) 

2) Sample temperature suddenly decreases significandy(P4) 

The sample temperature can be obtained from thermocouple TC-1. 

5.2.2 FuziY Inference System 

According to the characteristics and patterns of knowledge-based fault event F2, the inputs 

and fuzzy logic system have been modified, which are shown below: 

Inputs: 

1) SI ofTC-1 

2) Absolute ROC ifTC-1 

Output: 

The possibility of this event happening: high, medium high, medium, medium low, low. 

Membership Function: 

The shape of membership functions used for both input and output are either triangular or 

trapezoidal. 

1) Input Membership Function: 

Three membership functions are selected for both inputs in each test case, with linguistic 

values: low, medium, and high. The range for each MF and MF graph are shown below: 

Table 7 The range of MFs for both inputs for sample I 120 

Input Low J.\.Iedium High 
SI <0.4 > 0 and <0.9 >0.5 
IROCI <0.04 >0.01 and <0.06 >0.04 
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to generate fault event F2, the heater is turned off when sample temperature reached around 

100 degrees Celsius. 

The aim of this test case is the same as the previous test case. The only difference is that the 

inputs are generated by a real process system, not by simulation. 

As discussed in the previous case study, a similar intelligent alarm is added to the application. 

In addition, the conditions that will make raise-alarm decision are also determined as follows: 

1) FIS output threshold value is set to 0.88 

2) The number of recurring output beyond threshold is set to 4 

Figure 51 to 53 illustrate the outcome of sample temperature and FIS output for three tested 

materials respectively. To compare the output of normal and abnormal temperature drop, the 

outcome of system during normal operation is also illustrated. 

As observed from those figures that the FIS output oscillates between 0.1 and 0.5 normally, 

except in the marked circle where it has exceeded threshold value. Sample temperature starts 

to rise in the beginning. When it reaches around 100 degrees Celsius, fault event F2 is 

generated. The temperature begins to drop and will reach critical operating condition in several 

minutes after that. 

Final results from this test case are similar to test case 1. As sample temperature drops, at some 

points fault will first be detected since FIS output exceeds the threshold at first time. After 

that, this situation repeats three times. Therefore, the observed FIS output satisfies the 

condition to make a raise-alarm decision. As a result, warning alarm will be raised in order to 

notify the operator prior to the system reaching critical condition. 

Compared with the abnormal situation, the maximum value of corresponding normal situation 

output is always below 0.6, which is far below threshold value. This comparison means the 

developed FIS has the capability of identifying the variation between normal and abnormal 

condition. 
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Chapter 6 

RESULTS AND DISCUSSION 

6.1 Fault Diagnosis Function 

In chapter 5, two test cases are demonstrated to study the performance of fault diagnosis 

function, which is the essential part of the proposed SIS. The outcome of developed 

application is flexible, optimal and not dependent on the crisp input numbers. For example, in 

case study 1, a conventional alarm can also be added into the system to monitor boiler steam 

pressure whose limit is set at 625 kPa. As a consequence, both alarms (new alarm and alarm 

based on FIS) will be raised at some point when steam pressure reaches critical condition 

around 625 kPa. However, the fault event which causes this critical condition occurs in an 

uncertain environment. For example, when boiler steam pressure reaches 500 or 700 kPa, the 

conventional alarm will fail to provide a fast and proper notice to an operator in such 

environment. With the assistance of fuzzy logic inference system, the developed application 

will help to avoid this situation and maintain the capability of predicting the abnormal 

operating condition. The results are acceptable for current safety requirement. 

Since this is a knowledge-based approach, a variety of information needs to be collected prior 

to testing. For example, what is the applicable range of ROC, what is the special pattern 

sample temperature as illustrated, or how long the abnormal situation lasts. This information is 

necessary for developing the application and performing the test. There is no related system 

models developed in the application. 

Three industrial data case study results have been demonstrated from the previous section. 

Compared with normal process condition, there is a clear difference in the developed FIS 

responses for two (normal and abnormal) situations visually. This clarity highlights the 

importance that the proposed methodology and corresponding tool is able to detect undesired 

events. 
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The sampling rate for both case studies is 1 sample per 5 seconds. Since trend pattern defined 

for each fault event is composed of three primitives, the period between fault event 

happening and first detection response would be more than 15 seconds (5 seconds per 

primitive* 3 primitives). According to the outcomes from case study 2, the abnormal process 

condition (temperature drop) is first identified in around 30 seconds. If this is not acceptable, it 

can be improved by increasing sampling rate. 

Noise hasn't been a serious issue in case study 2. As may be seen in Figure (51 - 53), the 

thermocouple TC-1 output is very smooth. This is because of the built-in fllter of the GDA 

application, the physical isolation of TC-1 and good lab environment. 

It should be noted that the FIS application for three samples studied in case study 2 varies. 

Input and/ or output membership functions have been modified for each sample. This also 

means that the developed application can only be effective to the studied system. The change 

of material or environment would affect the accuracy of FIS outcome. Therefore, each system 

specific FIS needs to be defined. 

6.2 Safety Instrumented System 

The general fault diagnosis function can be implemented in a variety of safety systems. 

However according to the requirements of related system, it needs to be modified to satisfy 

the specified system goals. For example it might be used to predict and detect the overpressure 

hazards in offshore oil gas platform by revising FIS interface (input and output) and adjusting 

membership functions. 
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A similar SIS can also be added to the ARSST device. In second case study, fault diagnosis 

function is tested using a thermocouple, which is shared with BPCS. This can be accepted 

during current testing stage. However if this function is implemented in a SIS, an extra 

thermocouple is required in order to separate BPCS from SIS. 

To reach the desired safety objective, safety analysis should be performed after applying SIS to 

existing process system using improved combining technique introduced in Chapter1. The 

performance of fault diagnosis function can be assessed through this analysis. A judgment will 

be made whether this general safety function is acceptable or improvement is recommended. 

Summary 

This chapter explains and discusses the results from previous case studies. The advantage and 

possible improvement of fault diagnosis function are discussed. It is the essential part of the 

developed safety instrumented system. This chapter also demonstrates how to implement 

general fault diagnosis function in a specific safety system. 
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Chapter 7 

CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

Most process systems are inherently hazardous and often processing flammable and reactive 

materials at high temperature and pressure. Organizations have used a variety of techniques to 

control and reduce the risks posed by these hazards. Safety instrumented system (SIS) is a 

widely recognized tool by a number of industry sectors. In general, SIS aims to improve the 

process safety. Safety function (SF) can be considered as a method to define the functional 

relationship between inputs and outputs in SIS and is developed to implement SIS. Safety 

analysis is carried out to measure the likelihood of SIS performing the intended safety 

functions via predetermined safety integrity level (SIL). Fault diagnosis function is a common 

safety function, which works as an approach to develop a general SIS suited to various process 

systems. The primary focus of this thesis has been to design and implement a methodology of 

developing real-time SIS with general fault diagnosis function. 

The proposed methodology in this thesis is divided into three stages: system modeling and 

simulation, knowledge-based fault diagnosis and G2 application development. The first stage 

provides information and platform for testing the performance of real-time general fault 

diagnosis function. It can help developers to escape the potential hazards of modifying real 

process system. The second stage is the essential part of the methodology and based on expert 

knowledge. This knowledge-bases feature, given its human-like-reasoning nature, is easy to 

understand and implement. This stage is comprised of two important components: process 

trend recognition and fuzzy logic system. The first component establishes the relationship 

between sensor trends and process operations. The process trend is identified from discrete 

real-time process data. The second component is able to map the expert knowledge with 

process trends using if-then rules. It also handles the uncertainty caused by first component. 
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The third stage is to develop a computer-aided application, implementing previous two stages, 

on the platform of G2 expert system platform using GDA (G2 Diagnostic Assistan~ 

components. 

The proposed methodology and G2-based application have proven to be of great advantage, 

demonstrated through two case studies. It provides a fundamentally simple way to handle 

complex process systems without making itself exceedingly complex. It is straightforward, 

flexible, and easy to develop and understand. Moreover, it is a critical part of protection 

systems in a variety of process operations. 

This thesis covers all the details about design and implementation of real-time SIS with fault 

diagnosis function, including design methodology, computer application development and test 

case studies. It can be seen from this thesis that the studied SIS has the capability of capturing 

the knowledge-based fault events. 

7.2 Future Works 

The following recommendations have been suggested for the future improvement of the 

proposed works: 

1. The accuracy of primitive identification can be improved. Since this is a real-time 

approach, the fast response for capturing the primitive from input sensor data is 

necessary. However this could lead to the possibility of highly unstable outcomes and 

thus has an effect on the accuracy of real-time process trend analysis. One possible 

solution to this limitation is to introduce a redundancy majority voting system: Two-out­

if-Three (2oo3). For example, in order to identify current primitive, three Fixed Window 

Dzjrrete Data Primitive Identijication systems can be used at the same time. The final 

output will be decided by the majority vote. 

11. FIS method could be improved by defining more trend patterns. In both case studies, 

only one trend pattern is pre-defined. Due to the uncertainty of current real-time 

primitive identification system, some events might be hard to identify by only single 

trend pattern. A possible solution to this problem is to add extra trend pattern in order 
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to detect one event. Consequently this will increase the complexity of application 

development. However the knowledge-based fault event could be fully explained with 

more information. Furthermore, it will reduce the possibility of failing to identify 

desired fault. 

111. As knowledge-based fault diagnosis method is data-driven, the performance is 

dependent on the quality of expert knowledge and frequency of data processing. Ibis 

could be further strengthened by integrating such a data-driven method with a simple 

model-based method in the future research, or adding additional sensors to acquire 

more knowledge about the system. 
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APPENDIX A 

Source Code of G2 Structured Procedural Language 

Boiler Simulation Core Code 
******************************************************************* 
boiler-simO 

{***********I)efirUtion*********~****} 

FIN1, FOUT1: float; 

in-flow-rate: float = 200.0; 

sim-period: integer= 5; {update every 5 seconds} 

blr-temp: quantity= 159.1; 

before-turbine-temp-heater-off: quantity=159; 

before-turbine-temp: quantity; 

after-turbine-temp-heater-off: quantity= 106.7; 

after-turnbine-temp: quantity; 

level-boiler: quantity= the level of sg-blr-1 ; 

minimum-boiler-level: quantity =0.1; 

kgh-to-m3s: quantity = 3600000; 

unsafe-blr -pres: quantity; 

blr-pres-release-sp1: quantity= the pressure-sp of sg-pr-1 ; 

blr-pres: quantity; 

{ **********I)efirUtion End********************} 

begin 

conclude that simulate-time= simulate-time+ sim-period; 

conclude that state-update-simulate-time = state-update-simulate-time + sim-period; 

if the boiler-enable of sg-blr-1 is false then return; 

if safe-boiler-pres then begin 

collect data 

{The reason to add/250/is that I don't want simulation value start from zero} 

FIN1 = simulate-blr-pres-calculate (simulate-time + 250); 

FOUT1 = blr-flow-calculate (simulate-time+ 250); 

end; 

end 

else begin 

collect data 

FIN1 = unnormal-sim-pres; 

FOUT1 = 65+0.152*unnormal-sim-pres; 

end; 

end; 

{----------flow rate set up-------------} 

conclude that the steam-outflow-rate of sg-blr-1 = FOUT1; 

{call sg-pc1-calculate (FOUT1 );} 
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{-----------flow rate set up end--------} 

{--------valve lift position calculate----------} 

conclude that sg-lift-position =valve-position-calculate (simulate-time + 250 ); 

if sg-lift-position >= 99.4 then conclude that sg-lift-position =99.4 else if sg-lift-position <10 then conclude that 
sg-lift-position =10; 

conclude that the position of sg-cv-1 = sg-lift-position; 

{----------valve lift position calculate end---------------------------} 

{------------First high pressure release--------} 

{if blr-release-on then conclude that the boiler-pressure of sg-blr-1= the boiler-pressure of sg-blr-1 - 5 else 
conclude that the boiler-pressure of sg-blr-1 = FIN1; old backup} 

if blr-release-on then conclude that the boiler-pressure of sg-blr-1 = the boiler-pressure of sg-blr-1 - 5; 

{---------add these code for unsafe pressure simulation--------------} 

if not( safe-boiler-pres) then begin 

conclude that the boiler-pressure of sg-blr-1 = unsafe-pressure-sim (unsafe-blr-pres-sim , UNSAFE-BLR-SIM­
TIME); 

conclude that UNSAFE-BLR-Sil\1-TL\IE = UNSAFE-BLR-SIM-TL\IE + sim-period; 

{--------------add for the test----------------} 

if (UNS"\FE-BLR-SIM-Til\IE >= 90) then conclude that safe-boiler-pres is true; 

{--------------add for the test end----------------} 

end 

else begin 

conclude that the boiler-pressure of sg-blr-1 = FIN1; 

conclude that unsafe-blr-pres-sim= FIN1 +105.0; 

end; 

{ --------- unsafe pressure simulation end-------------} 

if the boiler-pressure of sg-blr-1 <= 600 and blr-release-on then begin 

conclude that blr-release-on = false; 

inform the operator that "Boiler Pressure has reached to a safety point, pressure gauge will close"; 

change the background icon-color of sg-pr-1 to white; 

end; 

if the boiler-pressure of sg-blr-1 >= blr-pres-release-sp1 and not (blr-release-on) then begin 

conclude that blr-release-on = true; 

inform the operator that "Boiler Pressure has reached to a critical point , pressure gauge will start to release 
pressure"; 

change the background icon-color of sg-pr-1 to red; 

end; 

conclude that the p-output of sg-ps-1= the boiler-pressure of sg-blr-1 + random(-.025,.025) *the boiler-pressure 
of sg-blr-1 ; 

{------------First high pressure release End--------} 

{----------------pressure after super heater---------------------------} 

conclude that the p-output of sg-ps-2= pres-after-superheater-on (simulate-time + 250 ); 

{----------------pressure after turbine boiler---------------------------} 

conclude that the p-output of sg-ps-3= 197; 

{----------------Power calcuate------------------} 

{won't use the one from thermalsynamics formula} 

{call turbine-power-calculate (condenser, the t-output of sg-ts-2, the t-output of sg-ts-3, the p-output of sg-ps-3);} 
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if not (state-update-simulate-on) then begin 

conclude that the power of sg-tubine-1 =turbine-power-estimate (FIN1, simulate-time+ 250 ); 

conclude that normal-power =0; 

end 

else 

begin 

conclude that the power of sg-tubine-1 =turbine-noise-estimate (FIN1, state-update-simulate-time); 

conclude that normal-power= turbine-power-estimate (FIN1, simulate-time + 250 ); 

end; 

{calculate condenser level} 

call condenser-sim (condenser, simulate-time+ 250 ); 

{------------------level of boiler calculation-----------------------} 

{conclude that the level of sg-blr-1 =level-boiler+((in-flow-rate* the pump-open-state of sg-pump-1 -the steam­
outflow-rate of sg-blr-1 *0.8 )/ kgh-to-m3s )* sim-period / the area of sg-blr-1;} 

{-------use a first order equation to calculate the boiler level---} 

conclude that the level of sg-blr-1 = level-boiler + blr-level-estimate ((in-flow-rate* the pump-open-state of sg­
pump-1- the steam-outflow-rate of sg-blr-1 *0.8 )/ kgh-to-m3s, simulate-time+ 250 ); 

if the level of sg-blr-1 >minimum-boiler-level then conclude that the water-inflow-enable of sg-blr-1 is false; 

if the level of sg-blr-1 <minimum-boiler-level and the water-inflow-enable of sg-blr-1 =false then begin 

conclude that the water-inflow-enable of sg-blr-1 is true; 

inform the operator that "The level of Boiler is less than [minimum-boiler-level]m, Please turn on pump"; 

end; 

{------------------Temperature set up-------------------------------------} 

conclude that the steam-temperature of sg-blr-1 = blr-temp-calculate (FIN1); 

conclude that the t-output of sg-ts-1 = the steam-temperature of sg-blr-1 + random(-0.05,0.05) * the steam­
temperature of sg-blr-1; 

if super-heater-on then begin 

before-turbine-temp= temp-after-superheater-on (the steam-temperature of sg-blr-1, simulate-time+ 250 ); 

conclude that the t-output of sg-ts-2 =before-turbine-temp + random(-0.05,0.05) *before-turbine-temp ; 

after-turnbine-temp =temp-after-turbine-superheater-on (the steam-temperature of sg-blr-1, simulate-time+ 250 
); 

conclude that the t-output of sg-ts-3 = after-turnbine-temp + random(-0.05,0.05) * after-turnbine-temp 

end 

else begin 

conclude that the t-output of sg-ts-2 = before-turbine-temp-heater-off+ random (-0.9,0.9); 

conclude that the t-output of sg-ts-3 =after-turbine-temp-heater-off +random(-0.1,0.1); 

end; 

conclude that the t-output of sg-ts-4 = 60.8 + random(-7,7); 

{ -----------------Tubine Power Calculation------------------------} 

conclude that the volts of sg-tubine-1 =random (67.1,79.7); 

conclude that the amps of sg-tubine-1 =random (10.7,11.6); 

{-----------City water input (in Liter) set up-----------------} 

if city-water-on then 

begin 

conclude that city-water-total-flow= city-water-total-flow +130; 

conclude that the source-total-flow of city-water = city-water-total-flow; 
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end; 

if process-sim-active then start boiler-sim O after sim-period; 

end 

******************************************************************* 

Start Simulation Code 

******************************************************************* 
start-sim (Button: class uil-button, W: class item, Itm: class item) 

begin 

if process-sim-active then 

return; 

call reset-sim(FALSE); 

call gdl-enable-data-input (W); 

conclude that process-sim-active = 1RUE; 

{--------Add for process trend test--------------} 

start process-trend-trial 0; 

start boiler-simO; 

{wait for 5 seconds to start codensor sim} 

{start condemsate-tank-sim ... O;} 

end 

******************************************************************* 

Reset Simulation Code 

******************************************************************* 
reset-sim(do-block-reset: truth-value) 

begin 

{-----------------Add for process trend trial ------------------} 

conclude that process-trend-time= 0; 

conclude that PROCESS-Sil\f-ACTIVE is false; 

{abort pid -evaluator;} 

{change the text of the manual-position of cv-1 to "none";} 

{conclude that the position of cv-1 = 10.0;} 

conclude that the level of sg-blr-1 = 0.3; 
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conclude that the boiler-enable of sg-blr-1 =true; 

conclude that the water-inflow-enable of sg-blr-1 = false; 

conclude that the sp of sg-pc-1 = 160; 

conclude that blr-release-on =false; 

conclude that UNSAFE-BLR-SL\f-TL\fE =0; 

conclude that the level of sg-cond-tank =0.1; 

conclude that the area of sg-cond-tank =0.359; 

change the background icon-color of sg-pr-1 to white; 

conclude that SIMUL\TE-TIJ\fE =0; 

{simulation pressure parameter set up} 

conclude that wn= wn-calculate 0; 

conclude that OJ\IEG"\= omega-calculate 0; 

{simulation flow parameter set up} 

conclude that wn-flow= wn-flow-calculate 0; 

conclude that 0.\IEGA-flow= omega-flow-calculate 0; 

conclude that state-update-simulate-on = false; 

conclude that blr-pressure-sp =640; 

conclude that the message-contents of number-of-bulbs= "10"; 

{conclude that the position of mv-1 =100;} 

{conclude that the sp oflc-1 =5;} 

{conclude that the threshold of ob-1 =1 +the sp oflc-1;} 

{conclude that level-estimate= 10.0;} 

{conclude that the error oflc-1 = 0.0;} 

{conclude that the error-1 oflc-1 = 0.0;} 

{conclude that the valve-constant of cv-1 = 3.0;} 

{conclude that flow-sensor-bias = 0.0;} 

if do-block-reset then 

call gdl-reset-all-gdl-objects (gfr-default-window, false,False); 

end 

******************************************************************* 

Reset Simulation Call Code 

******************************************************************* 
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reset-sim-call(itml: class item, itm2: class item, itm3: class item) 

begin 

call reset-sim(true); 

end 

******************************************************************* 

Stop Simulation Call Code 
******************************************************************* 
stop-sim(itml: class item, itm2: class item, itm3: class item) 

begin 

conclude that PROCESS-SIM-ACTIVE = FALSE; 

call gdl-disable-data-input(gfr-default-window); 

end 

******************************************************************* 

Process Power Load Code 

******************************************************************* 
process-power (G: class item, W: class ui-client-item, D-or-W: item-or-value, B: item-or-value, action-queue: item­

or-value) = (text) 

power-value: quantity; 

begin 

{ -- The validation method for an object validates the contents of the object, according to the format specification 

referred to by the object's uil-format-specification attribute. 

G is the UIL object on which to run the validation method 

W is the window on which D-or-W is managed 

D-or-W is the dialog or workspace on which the object is managed 

B is the button that initiated the validation action for the object (optional) 

action-queue is the list of pending actions for the dialog initiated by B (optional) 

"\text string is returned, which is "OK" if the validation succeeded, and a built-in error string otherwise. --} 

power-value =call ud-convert-from-text-to-quantity(the text of G); 

if power-value> 10 or power-value< 0 then inform the operator that "The maximum number of bulbs is 10" else 

begin 

inform the operator that "The number of bulbs has been modified to [power-value]"; 
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if power-value = 8 then conclude that blr-pressure-sp = 629 else if power-value = 7 then conclude that blr­

pressure-sp = 614; 

conclude that defined-power= power-value; 

end; 

return "OK"; 

end 

******************************************************************* 

Procedure if Primitive A is first to get 

******************************************************************* 
prim.:\-1 (actionBlock: class gdl-generic-action) 

begin 

wait for 1 seconds; 

conclude that s1=0; 

conclude that s2=0; 

conclude that s3=0; 

conclude that sl= trend-primit-matrix (""\","B"); 

if s1 > 0 then begin 

conclude that pl=false; 

conclude that r=l; 

conclude that p2= true; 

end 

else begin 

conclude that si=O; 

end; 

end 

******************************************************************* 

Procedure if Primitive A is second to get 
******************************************************************* 
primA-2 (actionBlock: class gdl-generic-action) 

begin 

wait for 1 seconds; 

conclude that s2= trend-primit -matrix (""\" ,"B "); 
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if s2 > 0 then begin 

conclude that s=s+s2; 

conclude that p2=false; 

conclude that r=2; 

conclude that p3= true; 

end 

else 

begin 

conclude that p2= false; 

conclude that p 1 = true; 

conclude that si=O; 

end; 

end 

******************************************************************* 

Procedure if Primitive A is third to get 

******************************************************************* 
prirrL\-3 (actionBlock: class gdl-generic-action) 

begin 

wait for 1 seconds; 

conclude that s3= trend-primit-matrix ("A","G"); 

if s3 > 0 then begin 

conclude that r=3; 

conclude that s=s+s1; 

conclude that si=(sl +s2+s3)/r; 

conclude that p3=false; 

conclude that p 1 = true; 

end 

else 

begin 

conclude that si=(sl +s2)/ 3; 

conclude that p3= false; 

conclude that p1 = true; 
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end; 

end 

******************************************************************* 

Procedure to calculate trend based on the acquired primitive value 

******************************************************************* 
get-trend(reset-trend: truth-value) 

begin 

if trend-primit = "A" then begin 

conclude that trend-a = true; 

change the icon-color of prima-object to red; 

wait for 1 second; 

conclude that trend-a= not (trend-a); 

change the icon-color of prima-object to blue ; 

end; 

if trend-primit = "B" then begin 

conclude that trend-b = true; 

change the icon-color of primb-object to red; 

wait for 1 second; 

conclude that trend-b =not (trend-b); 

change the icon-color of primb-object to blue ; 

end; 

if trend-primit = "C" then begin 

conclude that trend-c = true; 

change the icon-color of prime-object to red; 

wait for 1 second; 

conclude that trend-c =not (trend-c); 

change the icon-color of prime-object to blue ; 

end; 

if trend-primit = "D" then begin 

conclude that trend-d = true; 

change the icon-color of primd-object to red; 

wait for 1 second; 
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conclude that trend-d = not (trend-d); 

change the icon-color of primd-object to blue ; 

end; 

if trend-primit = "E" then begin 

conclude that trend-e = true; 

change the icon-color of prime-object to red; 

wait for 1 second; 

conclude that trend-e = not (trend-e); 

change the icon-color of prime-object to blue ; 

end; 

if trend-primit = "F" then begin 

conclude that trend-£= true; 

change the icon-color of primf-object to red; 

wait for 1 second; 

conclude that trend-£= not (trend-f); 

change the icon-color of primf-object to blue ; 

end; 

if trend-primit = "G" then begin 

conclude that trend-g =true; 

change the icon-color of primg-object to red; 

wait for 1 second; 

conclude that trend-g = not (trend-g); 

change the icon-color of primg-object to blue ; 

end; 

end 

Procedure to acquire the output from external sensor 

******************************************************************* 
process-sensor-input(new-sensor-input: class sensor-input) 

begin 

conclude that sensor-reading1 =the sensor-poind of new-sensor-input; 

conclude that sensor-reading2 =the sensor-point2 of new-sensor-input 
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end 

******************************************************************* 

Method to simulate the condenser tank 

******************************************************************* 
condenser-sim (itm1: class item, simulation-time: quantity) 

blr-flowrate: quantity= the steam-outflow-rate of sg-blr-1; 

steam-inflow: quantity; 

sim-period: integer= 5; 

kgh-to-m3s: quantity = 3600000; 

level-condense: quantity = the level of sg-cond-tank; 

water-outflow-rate: quantity= 200.0;{accordiing to the parameter I have defined in boiler} 

begin 

steam-inflow= (blr-flowrate- random (10,15)) * (1- the steam-exhausted-rate of sg-tubine-1); 

if steam-inflow < 0 then steam-inflow=O; 

conclude that the steam-inflow-rate of sg-condenser-1 =steam-inflow; 

conclude that the purewater-outflow-rate of sg-condenser-1 = condenser-output-estimate (steam-inflow, 

simulation-time); 

conclude that the level of sg-cond-tank = level-condense + cond-level-estimate (((the purewater-outflow-rate of 

sg-condenser-1- water-outflow-rate* the pump-open-state of sg-pump-1)/ kgh-to-m3s), simulation-time) 

end 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Procedure to start the ARSST monitor 

******************************************************************* 

start-arsst-sim (Button: class uil-button, W: class item, ltm: class item) 

begin 

if arsst-sim-active then 

return; 

call reset-arsst-sim(E\LSE); 

call gdl-enable-data-input (W); 

conclude that arsst-sim-active =TRUE; 

conclude that is-heater-on= true; 
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start arsst-sim0; 

{start condemsate-tank-sim ... O;} 

End 

******************************************************************* 

Procedure to stop the ARSST monitor 

******************************************************************* 
stop-arsst-sim(itml: class item, itm2: class item, itm3: class item) 

begin 

conclude that ARSST-SIM-ACTIVE =FALSE; 

call gdl-disable-data-input(gfr-default-window); 

end 

******************************************************************* 

Procedure to reset the ARSST monitor 

******************************************************************* 
reset-arsst-sim(do-block-reset: truth-value) 

begin 

conclude that ARSST-SIM-ACTI\'E is false; 

if do-block-reset then 

call gdl-reset-all-gdl-objects (gfr-default-window, false,False); 

end 

******************************************************************* 

92 



APPENDIX B 

Source Code of C Language in GSI 

: alarmer.c -- Sample GSI Bridge Code for use with gsi_exam.kb 

: %en enabled, sends a sample alarm (as if from some external system) 

: every so often to G2 for processing. 

This file contains the standard GSI toolkit functions required for 

any GSI application and several other functions coded to support 

part of the sample knowledge base 'gsi_exam.kb' provided with G2. 

This file requires the standard GSI libraries and the sample main 

module 'gsi_main.c' to create the executable 'alarmer'. 

This file conforms to GSI 4.0. 

Created 10mar95 by pa£1 

Modified by kelvin . I have made this code a example code to transfer data point between 

GSI and G2 

***********************************************************************************/ 

//#define GSI_USE_ WIDE_STRING_API 

#include <stdio.h> 

// Program needs this DLL to communicate with GSI 

#define GSI_USE_DLL 

#include "gsi_main.h" 

#include "cbw.h" 

#define TCPIP _PORT_NU"'IBER 22041 

#define G2_"\LARi\I_ATTR_COUNT 5 

#define MESSAGE_Sr'l\IBOL "MESSAGE" 

#define PRIORITY_Sr'l\IBOL "PRIORITY" 

#define DATA_POINT_Sr'l\IBOL "DATA-POINT" 

#define SENSOR_POINT1_Sr'l\IBOL "SENSOR-POINT1" 
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#define SENSOR_POINT2_S\'"1illOL "SENSOR-POINT2" 

#define F"\ILURE 1 

#define W.\RNING 2 

#define INFORM 3 

#define F.\ILURE_S\'"1illOL "FAILURE" 

#define W.\RNING_S\'"1illOL "W.\RNING" 

#define INFORM_S\'"1ill0L "INFORM" 

typedef struct { 

long data_point_tag; 

long priority; 

char *message; 

float sensor_point1_tag; 

float sensor_point2_tag; 

} p3_alarm; 

static function_handle_type process_sensor_input; 

static int sensor_enabled = F.\LSE; 

static p3_alarm sample_sensor = { 99, 

W.\RNING, 

"test string", 

23.2, 

11.2}; 

static gsi_item *g2_alarm_ptr; 

static gsi_item g2_alarm; 

extern declare_gsi_rpc_local_fn(enable_sensor_input); 

extern declare_gsi_rpc_local_fn(disable_sensor_input); 

const int BoardNumber=1; 

const int channel=3; 

const int channelO=O; 

main(argc, ar~) 

int argc; 

char *ar~O; 
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I I test data card can be passed or not 

char chipName[25]; 

if ( cbGetBoardName(BoardNumber, chipName) == 0) 

printf("Data Card Test Pass \n"); 

gsi_initialize_for_ win32(NUll, NUll); 

gsi_set_include_@e_version(GSI_INCLUDE_i\L\]_ VER_NUi\I,GSI_INCLUDE_MIN_ VER_NUi\1, 

GSI_INCLUDE_REV _ VER_NUl\f); 

GSI_SET_ OPTIONS_FROM_ COl\IPILEO; 

gsi_set_option(GSI_TRA.CE_RUN_LOOP); 

I I gsi_set_option(GSI_PROTECT _INNER_ CALLS); 

I* 

* Initialize GSI and enter the event handler loop. 

*I 

gsi_start(argc, argv); 

} I* end main *I 

RPC FUNCTION: enable_alarming 

This function, which is declared as RPC-invocable from a G2 process, sets a 

flag that enables the transmission of alarm objects to G2. 

RPC Arguments (0) 

Note, this function does not support being invoked via a 'call', and must 

be invoked with a 'start' action. 

void enable_sensor_input(arg_array, count, call_index) 

gsi_item *arg_array; 

gsi_int count; 

gsi_int call_index; 
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sensor_enabled = TRUE; 

} I* end enable_alarming *I 

I***************************************************************************** 

RPC FUNCTION: disable_alarming 

This function, which is declared as RPC-invocable from a G2 process, sets a 

flag that disables the transmission of alarm objects to G2. 

RPC Arguments (0) 

Note, this function does not support being invoked via a 'call', and must 

be invoked with a 'start' action. 

void disable_sensor_input(arg_array, count, call_index) 

gsi_item *arg_array; 

gsi_int count; 

gsi_int call_index; 

sensor_enabled = E\LSE; 

} I* end disable_alarming *I 

FUNCTION: send_alarm_to_g2 

This function sends an alarm to G2, based on an alarm structure defined by 

some hypothetical third party system. .Most of the work is in copying the 

contents of the alarm into a GSI structure for transmission to G2. 

Arguments (1 ): 

alarm_ptr A pointer to an alarm. 

Note, this could be made more efficient by using additional globals to 

maintain references to the attribute structures instead of using the API 

function attr_by_name for each every time this function is called. 

void send_alarm_to_g2(alarm_ptr) 

p3_alarm *alarm_ptr; 
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I* 

* Copy the data from the p3_alarm into the g2_alarm. 

*I 

I I this is a test code, the thermalcouple reading will be sent to the G2 

unsigned short data V alue_tcl; 

float volts_tcl; 

unsigned short data V alue_pres; 

float volts_pres; 

set_int(attr_by_name(g2_alarm,D"\ TA_POINT_SYi\IBOL),alarm_ptr->data_point_tag); 

switch(alarm_ptr->priority) { 

case E\ILURE: 

set_sym( a ttr_by _name(g2_alarm,PRI 0 RITY _Sr'i\IBOL ),F "\ILURE_Sr'i\IBOL ); break; 

case W"\RNING: 

set_sym(attr_by_name(g2_alarm,PRIORITY_Sr'i\IBOL),WARNING_Sr'i\fBOL); break; 

case INFOfu\1: 

set_sym(attr_by_name(g2_alarm,PRIORITY_Sr'i\IBOL),FAILURE_Sr'i\IBOL); break;} 

set_str(attr_by_name(g2_alarm,i\fESS"\GE_SYi\IBOL),alarm_ptr->message); 

I I read thermal couple 

cb"\In(BoardNumber,channel,l,&dataValue_tcl); 

cbToEngUnits(BoardNumber,1,dataValue_tcl,&volts_tc1); 

set_flt( attr_by _name(g2 _alarm,SENSOR_PO INT1_ Sr'i\IBO L),volts_ tc 1 ); 

I I read pressure 

cb"\In(BoardNumber,channelO, 1 ,&data Value_pres ); 

cbToEngUnits(BoardNumber,1 ,data Value_pres,&volts_pres); 

set_flt(attr_by_name(g2_alarm,SENSOR_POINT2_Sr'i\IBOL),volts_pres); 

I* 

* Send the alarm to G2 via RPC. 

*I 

gsi_rpc_start(process_sensor_input,g2_alarm_ptr,current_context); 
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* The remaining functions are the standard GSI Toolkit functions required of all 

* GSI applications. Those which are used preceed those which are stubbed out. 

********************************************************************************/ 

void gsi_set_up 0 

gsi_attr *attrs; 

/* 

* Construct the alarm item to be used each time an alarm is 

* send to G2. No initial values are given for the attributes. 

*I 

g2_alarm_ptr = gsi_make_items(l ); 

g2_alarm = *g2_alarm_ptr; 

set_class_name(g2_alarm,"SENSOR-INPUT"); 

attrs = gsi_make_attrs_ with_items(G2_.\L \R_;_\f_A TTR_COUNT); 

set_attr_name(attrs[O],DAT.\_POINT_Sr'l\fBOL); 

set_attr_name(attrs[l],PRIORITY _Sr'l\fBOL); 

set_attr_name(attrs[2],~fESSAGE_Sr'l\fBOL); 

set_attr_name(attrs[3],SENSOR_POINTl_Sr'l\fBOL); 

set_attr_name(attrs[4],SENSOR_POINT2_Sr'l\fBOL); 

set_attrs(g2_alarm,attrs,G2_.\L\RM_.\ TTR_ COUNT); 

/* 

* Declare local functions to be remotely invocable. 

*/ 

gsi_rpc_declare_local(enable_sensor_input,"ENABLE-SENSOR-INPUT"); 

gsi_rpc_declare_local(disable_sensor_input,"DISABLE-SENSOR-INPUT"); 

gsi_int gsi_get_tcp_portQ 

return(TCPIP _PORT_NU~fBER); 
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gsi_int gsi_initiahze_context (remote_process_init_string, length) 

char *remote_process_init_string; 

gsi_int length; 

/* 

* Declare G2 procedure to be invocable from GSI. 

*I 

printf("\n Find TCP"); 

gsi_rpc_declare_remote(&process_sensor_input,"PROCESS-SENSOR-

INPUT",NUIL_PTR,l,O,current_context); 

return (GSI_ACCEPT); 

void gsi_g2_poll0 

} 

if (sensor_enabled) 

send_alarm_to_g2(&sample_sensor); 

void gsi_shutdown_contextO 

sensor_enabled = FALSE; 
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APPENDIX C 

G2 Function Blocks 

G2 Function Block 

omega-calculate()= -1 * In (the pressure­
startup-as of sg-blr-1) 
/sqrt(exp~3.1415926,2)+exp~ln(the 

pressure-startup-as of sg-blr-1 ), 2)) 

wn-calculate()=3.14159261(the pressure­
startup-tp of sg-blr-1 * sqrt(1 -
exp~ omega,2))) 

simulate-blr-pres-calculate(t)=(1 - sin(wn * 
sqrt(1 - expt(omega,2)) * t + arctan 
(sqrt(1 - expt(omega,2))1 omega)) * 
exp(-1 * omega * wn * t)lsqrt( 1 -
expt(omega,2)))* BLR-PRESSURE-SP + 
pres-white-noise 

omega-flow-calculate()= -1 * In (0.12) 
/sqrt(expt(3.1415926,2)+expt(ln(0.12),2)) 

wn-flow-calculate()= 3.1415926/(the flow­
startup-tp of sg-blr-1 * sqrt(1 -
expt(omega-flow ,2))) 

Explanation 

This function is responsible to calculate the 

damping coefficient of second order equation 

of boiler steam pressure 

This function is responsible to calculate the 

undamped natural frequency of second order 

equation of boiler steam pressure 

This function is responsible to calculate the 

simulated boiler steam pressure 

This function is responsible to calculate the 

damping coefficient of second order equation 

of boiler steam flow rate 

This function is responsible to calculate the 

undamped natural frequency of second order 

equation of boiler steam flow rate 
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simulate-blr-flow-calculate(t)=(1 - sin(wn-flow 
* sqrt(1 - expt(omega-flow,2)) * t + arctan 
(sqrt(1 - expt(omega-flow,2))1 omega­
flow)) * exp(-1 * omega-flow * wn-flow * 
t)lsqrt( 1 - expt(omega-flow,2)))*the sp of 
s~c-1 

turbine-power-estimate(p,t) = (126.1- 1.281 
* p + 0.003435 * p * p) * (1 - exp(-o.025 * 
t)) 

pres-after-superheater-on (t) = (simulate-blr­
pres-calculate (t) *0.9942- 19.85) * (1 -
exp(-o.os * t)) 

blr-temp-<:alculate(p) = 106.7+ 0.0038 * p + 
0.00027 • p. p 

temp-after-superheater-on(temp, t) = temp * 
1.0058 * (1 - exp(-o.os * t)) 

valve-position-calculate(t) = 61.8+(59/ blr­
pressure-sp 
)*exp(-o.0006*(t+25D))*simulate-blr-pres-calculate 
(t) • (1 - exp(-Q.2 • t)) 

unsafe-pressure-sim(p,t) =(P - 105* 
exp(-o. 1*t)) 

blr-level-estimate (q,t) = (1 I the area of sg­
blr-1) * q * (1 - exp(-o.1 * t)) 

This function is responsible to calculate the 

simulated boiler steam flow rate 

This function is responsible to calculate the 

estimated turbine power 

This function is responsible to calculate the 

simulated steam pressure after super heaters 

when super heaters are turned on 

This function is responsible to calculate the 

simulated boiler steam temperature 

This function is responsible to calculate the 

simulated steam temperature after super 

heaters when super heaters are turned on 

This function is responsible to estimate the 

valve (SG-CV -1) position 

This function is responsible to generate the 

unsafe steam pressure event 

This function is responsible to estimate the 

water level in boiler 
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cond-level-estimate (q,t) = (1 I the area of 
sg-cond-tank ) * q * (1 - exp(-Q.0127 * t)) 

pipe-delay-recalculate(pipeiD, t) =( 
if pipeiD • 1 

then (1 - exp(-0. 1 * t)) 
else if pipeiD-2 

then (1 - exp(-0.0667 * t)) 
else if pipeiD • 3 

then (1 - exp(-0.0571 * t)) 
else 

(1 - exp(-0.0533* t)) 

condenser-output-estimate(inflow, t) = 
random (0.85,0.92) * inflow * (1 -
exp(-Q.01484 * t)) 

temp-after-turbine-superheater-on (temp, t) = 
temp * random (0.673,0.686) * (1 -
exp(-Q.0025 * t)) 

Trend-Primit-calculate(d, dd) =( 
if (d >• 0.1 and dd <= - 0.1 ) 

then ("0") 
else if (d >• 0.1 and dd >• 0.1) 

then ("B") 
else if (d >= 0.1 and abs(dd) < o. 1 

then ("C") 
else if (d <• - 0.1 and dd <• - o. 1 ) 

then ("G') 
else if (d <• - 0.1 and dd >• o. 1 ) 

then ("E") 
else if (d <• - 0.1 and abs(dd) < 0.1 ) 

then ("F") 
else 

("A") 
) 

This function is responsible to estimate the 

water level in condenser tank 

This function is responsible to calculate the 

pipe delay according to the pipe ID 

This function is responsible to estimate the 

water flow rate out of condenser 

This function is responsible to calculate 

simulated steam temperature after turbine 

when super heaters are turned on 

This function is responsible to calculate 

current primitive according to FDD and SDD 
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Trend-Prirni"t-Ma"trix(prirn 1, prirn2) - ( 
i1' (prim 1 - prirn2) 

then (1) 
else i1' (prirn1 "A" and prirn2 - "C") 

"then (0.25) 
else i1' (prirn1 "A"and prirn2 "F") 

"then (0.25) 
else i1' (prirn1 "B"and prirn2 "C") 

then (0.75) 
else i1' (prirn1 "B"and prirn2 "D") 

"then (0.5) 
else i1' (prirn1 "C"and prirn2 "A") 

"then (0.25) 
else i1' (prirn1 "C"and prirn2 "B") 

"then (0.75) 
else i1' (prim 1 "C"and prirn2 "D") 

"then (0.75) 
else i1' (prirn1 "D"and prirn2 "B") 

"then (0.5) 
else i1' (prim 1 "D"and prirn2 "C") 

"then (0.75) 
else i1' (prim 1 "E"and prirn2 "F") 

"then (0. 75) 
else i1' (prirn1 "E"and prirn2 "G") 

"then (0.5) 
else i1' (prirn1 "F"and prirn2 "A") 

"then (0.25) 
else i1' (prim1 "F"and prim2 "E") 

then (0.75) 
else i1' (prirn1 "F"and prim2 "G") 

"then (0.75) 
else i1' (prim1 "G"and prim2 "E") 

"then (0.5) 
else i1' (prirn1 "G"and prim2 "F") 

"then (0.75) 
else 

(0) 

This function 1s responsible to calculate 

similarity between two primitives according to 

the similarity table 
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APPENDIX D 

G2 Rule Blocks 

whenever the boiler-pressure P of sg-blr-1 
receives a value then conclude that the 
p-output of sg-ps-1 = P + 
random(-.025,.025)*P and conclude that 
sg-ps-1 =the p-output of sg-ps-1 

whenever the steam-outflow-rate F of sg-blr-

1 receives a value then conclude that sg­

fs-1 = F +random(-. 025,. 025 )*F 

whenever the p-out P 1 of sg-ps-1 receives a 

value then conclude that the p-output of 

sg-ps-2 =sg-ps-2 =P1 - random (0. 9, 1. 3) 

for any pressure-sensor PS 
whenever the p-output of PS receives a 

value then 
conclude that PS= the p-output of PS 

for any temperature-sensor TS 
whenever the t-output of TS receives a 

value then 
conclude that TS= the t-output of TS 
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Tbis rule is responsible to update the 

output of pressure sensor SG-PS-1 

Tbis rule is responsible to update the 

output of flow rate transducer SG-

FS-1 

Tbis rule is responsible to update the 

output of pressure sensor SG-PS-2 

Tbis rule is responsible to update 

pressure sensor reading 

This rule is responsible to update 

thermal couple reading 



for any centrifugal-pump CP 
if the pump-open-state of CP = 1.0 then 

inform the operator that "Boiler Pump 
Is ON" 

for any centrifugal-pump CP 
if the pump-open-state of CP = 0.0 then 

inform the operator that "Boiler Pump 
Is OFF" 

if safe-boiler-pres = true then inform the 
operator that "Boiler is simulated under 
safe pressure" 

if safe-boiler-pres = false then inform the 
operator that "Boiler is simulated under 

unsafe pressure" 

if super-heater-on = true then inform the 

operator that "SuperHeaters are ON" 

if super-heater-on = false then inform the 

operator that "SuperHeaters are OFF" 

if city-water-on = true then inform the 
operator that "City Water has been 
turned on" 

if city-water-on = false then inform the 
operator that "City Water has been 
turned off" 
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This rule is responsible to inform the 

operator the current state of 

centrifugal pump CP 

This rule is responsible to inform the 

operator the current state of 

centrifugal pump CP 

This rule is responsible to inform the 

operator that the steam boiler 1s 

simulated under normal condition 

This rule is responsible to inform the 

operator that the steam boiler is 

simulated under abnormal condition 

This rule is responsible to inform the 

operator that the super heaters is 

turned on 

This rule is responsible to inform the 

operator that the super heaters is 

turned off 

This rule is responsible to inform the 

operator that water source to 

condenser is turned on 

This rule is responsible to inform the 

operator that water source to 

condenser is turned off 



whenever blr-pressure-sp receives a value 
and when process-sim-active = true then 
conclude that state-update-simulate-time 
= 0 and conclude that state-update­
simulate-on = true 

whenever p-dd receives a value then 
conclude that TREND-PRIMIT = trend­
primit-calculate (p-d, p-dd) and conclude 
that trend-primit-num = trend-primit­
calculate-num (p-d, p-dd) 

whenever the source-total-flow F of city­
water receives a value then conclude that 
sg-fs-2 = F + random (-0.025,0.025) * F 

and conclude that sg-fs-3 = F * random 
(0. 32,0. 36) 

whenever sensor-reading1 receives a value 
then conclude that the t-output of tc-1 = 
max(O,sensor-reading1 * 100) 

whenever sensor-reading2 receives a value 
then conclude that the p-output of ps-1 
• max(O,sensor-reading1 * 100 + 63.8) 
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This rule is responsible to keep the 

simultaneity of simulator clock 

This rule is responsible to calculate 

current primitive value according to 

the received FDD and SDD 

This rule is responsible to update the 

output of flow rate transducer of 

SG-FS-2 and SG-FS-3 

This rule is responsible to update the 

output of thermal couple in ARSST 

device 

This rule is responsible to update the 

output of pressure transducer in 

ARSST device 



APPENDIX E 

Procedure to Set up Test Case inARSST 

GENERAL EQUPMENT DESCRIPTION: 

The ARSST consist of three major components: ARSST containment vessel, ARSST control 

box and computer (A/D) board. The containment vessel houses test cell, the heater, and 

the thermocouple and insulation assembly. 

GENERAL OPERATING PROCEDURES TO SET UP TEST CASE in ARSST: 

1) Fill the test cell with sample and put the magnetic stirrer in the test cell if 

stirring is required during the experiment. The test cell is then insulated and 

put safely in the containment vessel. 

2) The test cell is connected to heater cable wires. 

3) Now insert the tip of thermocouple in the test cell. The position ofTC so 

that tip is away from heater surface and below the mid plane of the test cell. 

4) Fit the test cell extension tube and close the containment vessel. 

5) Open the valve of extension tube and inject the accurately weighted sample 

mass in the test cell. 

6) Close the extension tube valve. 

7) Click on the ARSST setup software. Fill the required information of the test 

sample like sample name, mass, standard test volume and click on proceed 

to set up screen. 

8) In the set up screen choose the required mode of heating. Depending on 

heating mode chosen, insert the values of heating rate required, auto-off 

heater criteria and data logging interval. 
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9) Click on the calibrate temperature and pressure. Normally at start of each 

experiment pressure calibration is required. 

10) In pressure calibration, calibration of pressure from zero to highest possible 

pressure is required. The set A is normally referred to zero set pressure and 

set B refers to highest set pressure. 

11) Open the gas inlet valve and slowly pressurerize the test cell up to the 

highest required pressure and click set B.(Here Nitrogen gas is used from the 

nitrogen cylinder) 

12) Click on calibration completed and again you will back to set up screen. 

13) Double click alarmer.exe file and wait until window being activated , which 

shows GSI is ready 

14) Open the G2 software and load corresponding kb file 

15) Click GSI Defmition button on main workspace 

16) Make the value of "sensor-interface" object change to 2 and click "Enable 

Sensor Input" button 

17) Click ARSST button on main workspace and wait until the sensor output 

keep updating 

18) Switch back to ARSST setup software and click on go to test screen. 

19) Adjust the required initial nitrogen pressure by manipulating vent valve. 

20) Click on start run and observe the temperature vs. time and pressure vs time 

profile. 

21) Switch back to G2 software and open GDA interface 

108 










