
CENTRE FOR NEWIO\..Nl>Li\Nl) STUI)IhS 

TOTAL 01' 10 I'AGES ONLY 
MAY BE Xt:ROXf:l) 









1+1 National Library 
of Canada 

Bibliotheque nationale 
du Canada 

Acquisitions et Acquisitions and 
Bibliographic Services services bibliographiques 

395 Wellington Street 
Ottawa ON K1A ON4 
canada 

395. rue Wellington 
Ottawa ON K1A ON4 
Canada 

The author has granted a non
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
penmss1on. 

Your life Votre reference 

Our life Notre reference 

L' auteur a accorde une licence non 
exclusive permettant a Ia 
Bibliotheque nationale du Canada de 
reproduire, preter, distribuer ou 
vendre des copies de cette these sous 
Ia forme de microfiche/film, de 
reproduction sur papier ou sur format 
electronique. 

L' auteur conserve Ia propriete du 
droit d' auteur qui protege cette these. 
Ni Ia these ni des extraits substantiels 
de celle-ci ne doivent etre imprimes 
ou autrement reproduits sans son 
autorisation. 

0-612-55525-9 

Canada 



M-Buffer: A Practice of 

0 b ject-Oriented Con1puter G rap hies 

St. John's 

""ith UML 

by 

@Yi Miao 

A thesis submitted to the School of Graduate Studies 

in partial fulfillment of the requirements for the degree of 

Master of Science 

Department of Computer Science 

:Niemorial University of Newfoundland 

April 2000 

Newfoundland 



Abstract 

In many applications such as virtual reality and computer-aided design (CAD), 

time-critical rendering of pictures and adequate display of information are fundamen

tal to real-time human-computer interactions. In compassion with shaded pictures 

that present a simulated level of photo-realism, line drawing ( wireframe) pictures are 

commonly used to show the shapes and movements of three-dimensional objects dur

ing the modeling and testing stage of computer-aided design/manufacturing. This 

thesis presents a practice of object-oriented computer graphics. It applies object

oriented methodology in the development of a mixed-buffer hidden-line rendering 

algorithm, namely the M-Buffer algorithm. The developed l\II-Buffer algorithm com

bines the Z-Buffer algorithm, which is a traditional hidden-line removal algorithm in 

image-space, with the D-Buffer algorithm, which is a modified hidden-line render

ing algorithm. In addition, as it has been constructed by means of object-oriented 

methodology, the i\II-Buffer algorithm has the unique capability of rendering pictures 

quickly in the image space and revealing hidden structures according to users' atten

tion. 

i 



Acknowledgements 

I would like to express my highest gratitude to my supervisor, Dr. Xiaobu Yuan, 

for his continuous advice and encouragement in pursuing this research. Without his 

support, guidance and challenges, this thesis would not have taken this final form. 

Thanks are due to the graduate students and postdoc in the Department of Com

puter Science for vigorous and helpful discussions, e.g. Bating Yang, Vasantha Adluri, 

Xiaoming Dong, Kaleem Momin, Dr. Guangda Hu, and many more. Many thanks 

to the faculty and staff of the Department of Computer Science for their assistance 

and support throughout my program. 

Last but not the least, I would like to thank my mother and father for their 

unlimited encouragement and support. I am also very grateful to my husband, Ning 

Zhong, and my brother for their great help and understanding. 

ii 



Contents 

Abstract 

Acknowledgement 

Table of Contents 

List of Figures 

1 Introduction 

1.1 Objective of the thesis 

1.2 Outline of the Thesis . 

2 Related Work 

2.1 Level of Detail (LOD) 

2.1.1 Introduction . . . 

iii 

i 

ii 

iii 

vi 

1 

3 

4 

5 

6 

6 



2.1.2 Level of Detail Implementation Criteria and Their Im.plemen-

tation .... 

2.2 Focus of Attention 

2.2.1 Intent-Based 3D illustrations 

7 

10 

11 

2.2.2 Focus of Attention Applied on Buildings in an Automated System 12 

2.3 Transparency . . . . . . . 

2.4 Hidden-Line Algorithms 

2.4.1 Introduction . . . . 

2.4.2 Z-Buffer (Depth-Buffer) Algorithm 

2.4.3 P-Buffer Algorithm . 

2.4.4 D-Buffer Algorithm . 

3 Object-Oriented Computer Graphics and UML 

3.1 Object-oriented Graphics . . . . . . . . . . . . .. 

3.2 Function-oriented Design and Object-oriented Design 

3.3 

3.2.1 Function-oriented Design . 

3.2.2 Object-oriented Design .. 

Unified Modeling Language (UML) 

4 M-Buffer 

iv 

13 

14 

14 

16 

17 

18 

21 

22 

25 

25 

26 

28 

32 



4.1 Introduction . . . . . . . . . 32 

4.2 Strategy of M-Buffer . . 33 

4.3 Employing Use Cases to Define i\!f-Buffer . . . . . . . 34 

4.4 Preparing for Conceptual Models . . . . 35 

4.5 Constructing Activity Diagrams . . . . 38 

4.6 Creating Interaction Diagrams . . . . . . 40 

4.7 Modeling Other Use Cases . 43 

4.7.1 Modeling Move Object . . . . . . . 44 

4.7.2 Modeling Create Object . . . . 45 

4.7.3 Modeling Change Dash Length . . . . 47 

4.8 Modeling Class Diagram . . . . . . . . . 47 

5 Implementation and Discussions 51 

5.1 Implementation 51 

5.2 Experiments . . . . . . . . . . 53 

5.2.1 Experiments . . . . 53 

5.2.2 Measure of Visual Detail 57 

5.2.3 Result Analysis 58 

5.3 Discussion . . . . . . 60 

v 



6 Conclusion and Future Research 62 

Bibliography 65 

vi 



List of Figures 

4.1 M-Buffer Use Case ........... . 

4.2 A Use Case Diagram of the System 

4.3 A Sequence Diagram and Conceptual Model 

4.4 An Activity Diagram . . . . . . . . . . . . 

4.5 A Collaboration Diagram of M-Buffer 

4.6 A Collaboration Diagram of Move Object 

4. 7 A Sequence Diagram of Create Object . . . 

4.8 A Collaboration Diagram. of Change Dash Length . 

4.9 A Class Diagram for the System 

5.1 An Architecture of the System 

. . 

35 

36 

37 

39 

41 

45 

46 

48 

50 

53 

5.2 Wireframe, Z-Buffer and D-Buffer Images of Machine Pieces 54 

5.3 Focus of Attention of Machine Pieces 56 

vii 



5.4 Relevant Spatial Frequency Analysis for lower_shoe's (a) Z

Buffer and (b) D-Buffer Generated Image . . . . . . . . . . . . 59 

viii 



Chapter 1 

Introduction 

In the past thirty years, computer graphics has proven to be beneficial in a large 

range of applications such as electrical and mechanical computer-aided design (CAD), 

computer animation, medical imaging, and chemistry. In fact, it would be very 

difficult to solve many of today's problems in these fields without the assistance of 

computer graphics. 

Rendering images from models is an important part of computer graphics. Two 

of the most frequently used rendering techniques for three-dimensional objects are 

solid-object (surface-rendering) mode and wireframe (line-drawing) mode [12]. The 

solid-object mode provides more information about the shape and surface of objects. 

It also generates more realistic images than the wireframe mode does. The solid-object 

1 



mode may be implemented in either software or hardware. The software implementa

tion of solid-mode is time-consuming due to the complexity of shaded areas. Though 

researchers have developed different ways to deduce the rendering time, such as level 

of detail and focus of attention, the problem of time consumption is still an inevitable 

weakness of the solid-object mode in time-critical interactive applications. Even with 

hardware support, images rendered by solid-object mode can display only those sur

faces that are close to the viewer, concealing the information of the objects' internal 

and rear structure. Hence, the computational inefficiency and inability of visualizing 

the rear and internal structure of objects become two major disadvantages of the 

solid-object mode method. 

In comparison, the wireframe mode is able to provide sufficient information of 

three-dimensional objects at a significantly lower computational cost. The concise

ness of data representation and accuracy of boundary description make wireframe 

mode particularly useful in many circumstances where internal structures are more 

important than surface shapes for the tasks of object manipulation. vVhen pictures 

are rendered with the wireframe mode, users can "see through" objects. Thus, peo

ple can visualize the internal structure and shape of normally invisible surfaces. In 

addition, the wireframe mode significantly reduces the need of computing power. Its 

rendering time is much faster than that of the solid-object mode. Therefore, the wire-

2 



frame mode is a better choice than the solid-object mode to meet the requirement of 

time-critical rendering and to show the intemal structure of objects. 

However, when all visible and invisible lines are dra,vn in the same style, as what 

a typical \Yireframe picture presents, it is difficult for viewers to distinguish the back 

from the front because of the lost depth information. On the other hand, if the 

wireframe picture presumes opaque object surfaces and shows only those boundary 

lines or segments that are in the front, the result is similar to the solid-object mode 

that conceals the objects' internal structures. Hence, more elaborate treatments of 

hidden-lines are required for providing adequate information of three-dimensional 

objects while meeting the requirement of time-critical rendering. 

1.1 Objective of the thesis 

This thesis intends to develop a new algorithm that renders pictures not only quickly, 

but also with adjustable contents of object details according to the viewers' interest. 

This algorithm is called the :NI-Buffer algorithm because it mixes the classical Z-Buffer 

algorithm with a newly developed D-Buffer algorithm. The main objective is to apply 

object-oriented methodology to construct a prototype system of virtual assembly, in 

which users can control the style of hidden-line rendering by removing or displaying 

3 



hidden lines adaptively. 

1.2 Outline of the Thesis 

The rest of this thesis is structured in the following manner. Chapter 2 gives a 

brief description of the related techniques and research on time-critical rendering. 

Chapter 3 highlights the benefits of object-oriented computer graphics, and intro

duces UML (Unified Nlodeling Language) as a graphic, standard notation for object

oriented software development. Chapter 4 discusses in detail about the development 

of the ~'!-Buffer algorithm with UML. Chapter 5 describes implementation and dis

cusses experiment results. Finally, Chapter 6 concludes the thesis by summarizing 

the advantages and shortcomings of the proposed algorithm, and pointing out the 

direction for future research. 

4 



Chapter 2 

Related Work 

Interactive computer graphics systems require three-dimensional obj-ects to be dis

played smoothly and quickly. They make users feel as if they are working with 

objects in the physical world eventhough they are actually manipulating objects on 

the screen. The following sections will introduce methods used by interactive systems 

for picture rendering. 

5 



2.1 Level of Detail (LOD) 

2.1.1 Introduction 

The first concept of using multiple geometric representations of objects for improving 

performance was introduced by Clark in 1976 (7]. Since then, level of detail is a pop

ular technique in time-critical virtual environments or real-time computer graphics. 

The general idea is the adoption of different representations with variable complexity 

for objects. Depending on a decision criterion, e.g. the distance to a viewer, the 

graphics system selects the most appropriate model to display. i\!Iore detailed repre

sentations are used when an object is perceptually more important, and less detailed 

representations are used when the object is less significant. This method allows the 

graphics system to achieve higher frame rates while maintaining good visual realism. 

Polygon reduction, texture mapping, and illumination models are three most com

mon methods used to adjust the levels of detail for a polygonal object. Among these 

three methods, polygon reduction decreases the number of polygons by introducing 

a new model over the original object_ The new model presents the general form and 

genus of the old one but with a simplified shape. For the texture mapping method, 

the essential is to substitute regions of high geometric detail with a single textured 

polygon such that, from a certain viewpoint, the polygon's te:x-ture is simply a ren-

6 



dered image of that section. :tvioreover, the method of different illumination models 

controls the shading details of objects and thus the time to render a picture is differ

ent. For example, the computational complexity of flat-shading is much lower than 

smooth-shading [12], such as Phong illumination model and Gouraud illumination 

model, at the expense of picture quality. 

2.1.2 Level of Detail Implementation Criteria and Their Im

plementation 

There are a number of criteria to implement LOD, including distance LOD, velocity 

LOD, size LOD, eccentricity LOD, and fixed frame rate LOD. The first in the list 

is the original method in this category, and the rest are recently developed. The 

following discussion will introduce them in detail. 

Distance LOD is a simple method. In this method, model selection is based upon 

the distance between the viewpoint and a predefined point inside the object volume. 

When the distance between the observer and the object is short, a high LOD model 

of more polygons is used. If the object progresses away from the observer, a cruder 

model of less polygons is invoked. The reason is that when the distance is Longer than 

a certain value, the object can only be displayed with less accuracy and detail due to 

7 



the limited resolution of display devices. Some details become unavailable. Hence, it 

is useless to generate a highly detailed object. 

Distance LOD has been extensively applied in applications because of its simplicity 

and efficiency. For example, almost all flight simulators [30, 43] and vehicle simulators 

[20] use the distance LOD technique. 

Size LOD is particularly popular for optimizing digital terrain models in real-time. 

This method is employed when an object's representation is selected based upon the 

value of its projected size (or area) in screen coordinates. Size LOD provides a 

common and proper way of modulating LOD. The first reason is that it offers a 

measurement to determine the features' visibility within an object, regardless of the 

display device's resolution and object scaling. Secondly, it avoids the necessity of 

selecting an arbitrary point for the computation. 

One of the typical implementations of size LOD is provided by Silicon Graphics, 

Inc. with its open inventor graphics toolkit. The toolkit can automatically select 

different levels of detail based on a screen area criterion. Also Lindstron et al. (22] 

introduced a digital terrain system which uses the size LOD technique. 

Eccentricity LOD is based on the level to which the object exists in the visual 

periphery. The technique assumes that a user would be looking at the center of 

the display when provided without any suitable eye tracking technology. Objects 

8 



therefore should be degraded according to their displacements from the center point. 

"Vatson et al. performed a user study to evaluate the perceptual effect of eccen

tricity LOD in head-mounted displays (HMDs) [37], and Funkhouser et al. exploited 

eccentricity LOD in their architectural walk through of Soda Hall [14]. Other prac

tices of eccentricity LOD include NASA Ames Virtual Planetary Exploration (VPE) 

tested by Hitchner and :rYicGreevy [17], and head-tracked desktop system by Ohshima 

et al. [26]. 

When an object's relative velocity to a viewer's gaze determines the rendering de

tail of this object, this type of LOD is called velocity LOD. Similar to the eccentricity 

LOD, when there is not a suitable eye tracking system, the velocity of an object refers 

to the display device. 

Unlike the other methods, the original velocity LOD received little attention. 

However, there have been more investigations in this direction recently, such as the 

ones made by Hitchner and ~IcGreevy [17], Ohshima et al. [26], and Funkhouser et 

al. [14]. 

Fix:ed frame rate LOD degrades the LOD of objects in a scene in order to achieve 

a desired frame rate. It focuses more on computational optimization, instead of 

perceptual optimization. 

To implement fixed frame rate LOD, a system must contain a scheduler to analyse 

9 



the system's load and allocate a LOD rating to each object. Examples of reactive 

system are viper systems developed by Holloway [18] and architectural walk through 

system by Airey et al. [1]. Wloka's update rate system [41] is an example of predictive 

models in the scheduling system. 

2.2 Focus of Attention 

In addition to level of detail, there have been wide researches on other time-critical 

image rendering techniques, such as focus of attention. The basic idea comes from 

biological considerations, i.e., from the analysis of a phenomenon observed in the 

Human Visual System (HVS). It is known that the human visual field does not have 

a uniform resolution. The parts of a scene which are focused upon are referred to 

as Focus of Attention (FOA). Several stimuli drive the position of the FOA in the 

human visual field. For example, a viewer's attention is attracted to special colors 

or combinations of colors. Human visual acuity is the highest towards the center of 

the retina which is called fovea. This is partially relied on the physiological reasons. 

Based upon this biological phenomenon, focus of attention technique uses a different 

method to depict objects or parts of objects that are of particular interest. In such a 

way, the interested objects or interested parts of objects stand out from the others, 

10 



and a viewer's attention will be caught right away. 

Focus of Attention may be applied to eye movement system to track a viewer's 

attention. Model based gaze tracking system developed by the interactive systems 

laboratories located at Carnegie Mellon University and University of Karlruhe em

ploys this concept. Everything that moves in a viewer's visual field strongly attracts 

the viewer's attention. In fact, motion information is treated fastest by a viewer's 

visual system, and may control directly viewer's actions even before any high level 

understanding of the scene has been performed. These reflexes push the viewer to 

tum his head towards the moving object so as to focus his attention on it. The model 

based gaze tracking system can identify where the viewer is looking at, and what 

he is paying attention to according to the orientation of the viewer's head and the 

orientation of his eyes. 

2.2.1 Intent-Based 3D Illustrations 

Seligmann and Feiner [32] developed IBIS (Intent-Based Illustration System) which is 

an automated intent-based illustration system. The key idea is to apply the knowledge 

of visual effects generation and evaluation (generate-and-test) to achieve goal-driven 

illustration process. 

This system renders objects with different levels of detail according to a user's 

11 



requirement of information about objects' locations, relative locations, properties, 

and states. Some information is provided with the focus of attention methods, such 

as highlighting part of an object to drawv attention to this part. It also cuts off parts 

of an object's outside shell to reveal the objeces inner structure. 

2.2.2 Focus of Attention Applied on Buildings in an Auto

mated System 

Another practice of focus of attention its in an automated building recognition sys

tem. In such applications, the general strategy is to apply a rapid focus of attention 

algorithm to identify areas that are likeny to contain objects of interest. 

R. Collins [8] utilized the focus of aittention technique to develop a multi-image 

focus of attention mechanism which cam quickly distinguish raised objects such as 

buildings from structured backgrounds. The features from multiple images are back

projected onto a virtual, horizontal pla..ne that is methodically swept through the 

scene. Back-projected gradient orienta.tions from multiple images are highly cor

related when they come from scene locations containing structural edges that are 

roughly horizontal, like building roofs &nd terrain. These observations are used to 

define a structural salience measure tha~t can determine whether a given volume of 

12 



space contains a statically significant number of structural edges. 

Another example is the FOA mechanism developed by Grirnson et. al [16] for 

object recognition. It uses binocular stereo to determine groups of line segments that 

are near each other in three-dimensional space, and therefore likely to belong to the 

same object. 

2.3 ~ansparency 

In comparison with the methods mentioned in the previous sections, transparency is 

useful for depicting multiple overlapping surfaces in a single image. The principle of 

transparency is to allow viewers to see not only surfaces behind a transparent medium 

but also the transparent medium or object itself [23]. Therefore, an image region is 

transparent when it is perceived in front of another region and has a boundary that 

provides information of that object visible through this region. 

When there are several objects with irregular shapes in a scene, an overlap ex

ists among objects; level of detail or photorealism cannot accurately describe the 

object's structure and complex spatial relationship between each. On the contrary, 

by using transparency, each surface is visible in the context of the other, and the 

three-dimensional structure of a scene can be more accurately and efficiently appreci-

13 



ated. Nloreover, objects and the spatial relationships among objects can be precisely 

interpreted when the layered elements are displayed in their entirety. 

V. Interrante etc. [19] used transparency technique and added opaque texture 

elements to a layered transparent surface to describe overlapped objects. In such a 

way, not only objects' three-dimensional shape can be readily understand, but also 

their depth distance from underlying structures clearly perceived. 

2.4 Hidden-Line Algorithms 

The wireframe mode has received a number of research interests as wireframe images 

ar:e widely used in time-critical systems. This section introduces algorithms in this 

category. 

2.4.1 Introduction 

To determine the visibility of an object from a particular viewpoint is one of the 

principal problems in computer graphics. Usually, this process is defined as visible

line or visible-surface determination, or hidden-line or hidden-surface elimination. 

Objects are assumed to be opaque. The surfaces that are closer to a viewer may 

obscure the edges or surfaces farther from the viewer. In wireframe mode, an object's 

14 



boundary edges or silhouette lines of surfaces are presented as lines. Hidden-line 

elimination is usually used in this problem. 

Due to the requirements of computing time and processing power, hidden-line 

elimination has been developed into numerous solutions. These solutions, in general, 

fall into two major categories: image-space method and object-space method. 

The image-space algorithms, such as Warnock's area subdivision algorithm [34, 

35], Z-Buffer (Depth-Buffer) algorithm [6], and scan line algorithms [4, 5, 36, 42), 

determine, at each pixel, the visibility of each object according to the object's distance 

along the viewing ray through that pixel. On the other hand, a direct comparison 

of any two of the objects in the space is used by object-space algorithms. These 

algorithms work in the physical coordinate system in which the objects are described. 

They use geometric computation to decide visible lines or line segments in a picture. 

:Niethods like the back-face culling algorithm and the list priority (depth sorting) 

algorithm are object-space algorithms. 

Theoretically, the computation complexity of an object-space algorithm increases 

with the number of objects. The computation complexity is slow since each object in 

the scene must be compared with every other object. On the contrary, image-space 

algorithms are fast because these algorithms do not need the time-consuming object

object comparisons, sorting, and intersection checking. This advantage of image-space 

15 



algorithms leads to a wide application where rendering time is critical, such as in the 

modeling and testing stage of virtual reality and computer aided design (CAD). 

2.4.2 Z-Buffer {Depth-Buffer) Algorithm 

The Z-Buffer algorithm is a typical and famous image-space method. It can be 

implemented in either software or hardware. The Z-Buffer algorithm employs not 

only a frame buffer to store color values, but also a depth buffer (Z-Buffer) to keep 

depth information. These two buffers have the same number of entries. The depth 

buffer is used to accumulate the z value or the depth of each visible pi.xel in an image. 

In the initialization stage, the depth buffer is set to zero which represents that the z 

value is at the back clipping plane. The frame buffer is set to the background color. 

In use, the z value of a new pixel to be written to the frame buffer is compared with 

the value stored in the depth buffer. If the comparison indicates that the new pbcePs 

depth value is no farther from the viewer than the one whose depth value is already 

in the depth buffer, the new pixel is written to the frame buffer, and the depth buffer 

is updated with the new z value. The Z-Buffer algorithm goes over each pair of x 

and y values in the frame and depth buffers to update them with the objects that 

contribute to the largest value of z(x, y). By comparing to those pixels, objects can 

be rendered in a line drawing picture with their hidden lines being removed. 

16 



The most powerful aspect of the Z-Buffer algorithm is its simplicity. It can be used 

to render complex surfaces without the necessity of explicit intersection algorithms. It 

therefore does not have the problem of computation time associated 'vith the object

object comparisons and depth pre-sorting. However, the Z-Buffer algorithm discards 

all the information except the "closest" surface, thus it is unable to depict the rear 

and internal structure because the surfaces and lines that belong to the rear and 

internal structures are eliminated. The following two algorithms, i.e. the P-Buffer 

algorithm and D-Buffer algorithm, provide a solution to this problem. 

2.4.3 P-Buffer Algorithm 

The P-Buffer algorithm was introduced by Yuan and Sun [4~]. It is an image-space 

algorithm based upon the Z-Buffer algorithm. In addition to the frame buffer and 

depth buffer used in Z-Buffer algorithm, the P-Buffer algorithm employs an additional 

buffer called pattern buffer to keep a two-dimensional grid of filtering pattern. The 

size of this buffer is the same as the depth and frame buffer. In the pattern buffer, the 

value of each element can only be either "1" or "0". For a pixel (x, y) on an interior 

boundary line, the frame buffer element at (x, y) is updated only if the patter buffer 

element at (x, y) is equal to 0. Otherwise, the content of the frame buffer (x~ y) will 

be left unchanged. In such a way, the hidden lines are displayed with "l"s while also 

17 



dashed with "0" s. 

The selection of a filtering pattern is the key to the final result of the line-drawing 

image rendered by the P-Buffer algorithm. Usually, complicated objects have a wide 

range of shapes. This pattern must be able to handle all kinds of boundary lines. 

However, no one filtering pattern can guarantee that it may draw hidden lines with 

evenly dashed and spaced lines. 

2.4.4 D-Buffer Algorithm 

The D-Buffer algorithm is also an image-space algorithm, it can generate dashed 

hidden lines with adjustable length of dashes and spaces for any three-dimensional 

shapes. The D-Buffer algorithm [11] is an improved algorithm based on the P-Buffer 

algorithm. 

The basic idea of the D-Buffer algorithm is simple. It applies neighborhood oper

ations to trace and dynamically generate the hidden lines in the image plane. Neigh

borhood operations combine a small area of pi...xels or neighborhood to generate an 

output pixel. Unlike the Z-Buffer algorithm, the D-Buffer algorithm employs three 

buffers. It has a frame buffer and a depth buffer that are the same as the ones in 

the Z-Buffer algorithm. In addition, it uses an extra boundary buffer. All the three 

buffers have the same size as that of the image. The boundary buffer contains all the 

18 



boundary information as well as their depth values. Pi."'Cels for boundary points are 

set to their closet z-values, while the non-boundary pi."'Cels are set to a background 

value. As in the Z-Buffer algorithm, the depth buffer maintains the closest depth 

value of every pixel of the image, and the final content of the frame buffer is the 

created picture. In initialization, the frame buffer is initialized to UNDECIDED, the 

depth buffer and boundary buffer are both set to background color. For each pixel 

of every object, the D-Buffer algorithm updates the depth buffer if the new value of 

a pL"'Cel is in front of the value stored in the depth buffer. It also records the new 

depth value into the boundary buffer if that pixel is on an object's boundary line. 

The result is a boundary buffer whose elements distinguish boundary points from 

non-boundary points with their corresponding depth value or a distant value. The 

D-Buffer algorithm then recursively traces the boundary line to determine if the line 

should be solid or dashed. To adjust the distance between dashes and spaces on a 

hidden line, the algorithm uses a threshold to control the length of the dashes and the 

spaces in between. As a result, different effects can be produced by simply adjusting 

the threshold value. 

The greatest advantage of the D-Buffer algorithm is revealing the hidden lines or 

hidden surfaces so that the viewer knows the rear or internal structure of objects. 

Nloreover, this algorithm can rapidly display sufficient information of objects with 

19 



complicated shapes at a low computational complexity as close as that of the Z-Buffer 

algorithm. 

20 



Chapter 3 

Object-Oriented Con1puter 

Graphics and UML 

Object-oriented technology has become one of the most heavily used slogans in Com

puter Science. Consequently, its influence on computer graphics is becoming more 

and more significant. In fact, object-oriented technology has been used in three dif

ferent contexts of computer graphics applications: in describing user interfaces, in 

modeling systems, and in connection with object-oriented programming languages 

and environments. This chapter introduces the evolution of object-oriented com

puter graphics, the benefits of the object-oriented technique, and the object-oriented 

modeling language UNIL. 

21 



3.1 Object-oriented Graphics 

In 1963, Sutherland [33] introduced, as forerunners of object-oriented technologies, the 

concepts of creating objects by replication of standard templates, hierarchical graphics 

structures with inheritance of attributes, and programming with constraints. In the 

1980s, objects began to move away from the research labs and took their first steps 

toward the "real" world. :rvreanwhile, a hardware and software system called Dynabook 

was created at the Xerox Palo Alto Research Center (P ARC), and the software portion 

of Dynabook became the language Smalltalk [15]. Since then, almost all workstations 

come with some sort of object-oriented user interface toolkit. 

Like the identification of Human-Computer Interaction, an object-oriented user 

interface has the features of visibility and affordance which is defined as a 'technical 

term that refers to the properties of objects - what sorts of operations and manip

ulations can be done to a particular object [25]. Controls need to be visible, with 

good mapping of their effects, and their design suggest their functionality. An object

oriented approach may produce a straightforward interface which is closer to the "real 

world". An object-oriented user interface allows the direct manipulation of objects 

which represent components of the entire on-screen information, using overlapping 

windows, pulldown menus: buttons, icons and other graphical techniques to repre-

22 



sent "real world objects," such as documents, to the end user. Object-oriented user 

interface is an improvement on the kinds of "user-hostile" interfaces, for example, 

command line interfaces, and can thus be considered user friendly. 

In this thesis, the virtual assembly system, a prototype of the J\ti-Buffer algorithm, 

is an application of object-oriented user interface. The overall structure of this system 

is immediately visible to a user. There is no requirement for the user to understand 

the command syntax. A user simply presses the menu button to select a function, 

and the feedback is immediate and clear. Because of the graphic user interface, users 

may feel close to the task, and devote more attention to manipulating models, and 

studying the model's structure. 

However, friendly user interface is not the unique reason for developing object

oriented computer graphics. Defects in traditional graphics systems are one of the 

reasons that lead to the necessity of object-oriented techniques. For example, working 

with traditional graphics libraries, a programmer draws a square by calling one of the 

square drawing routines, which has the immediate effect of displaying the square on 

the screen. However, the effects can only be shown on the screen, for the square is 

composed of an array of dots. In a sense, the image is bitmapped, and the system itself 

has no record showing that the square exists. Therefore, in an event-driven system, 

subsequent events do not know about the existence of the square. It becomes the 

23 



responsibility of the application programmer to explicitly take care of and maintain 

this information. 

By contrast, in an object-oriented system, a square is drawn by first creating a 

square object and placing it in the graphical hierarchy, and then issuing a "redraw" 

command. In this way7 the graphical state of the system is always known from one 

event cycle to the other: every visible figure on the screen (geometric figures, windows, 

or widgets7 etc.) is an object fitted into a single graphical database. All details of 

the object's appearance, such as color, dimensions, position, etc., are maintained as 

state variables within the objeces data structures. In such a case, once the screen 

needs to be refreshed, this can be done by traversing these data structures. 

In addition, the idea of objects with associated methods provides a direct descrip

tion of the items relevant to graphics in their visual appearance, such as geometric 

data, and in their behavior, such as reaction to graphics input. Intuitiveness of apply

ing object-oriented concepts to graphics becomes a bonus of using the object-oriented 

graphics system. 

24 



3.2 Function-oriented Design and Object-oriented 

Design 

Like many developments in software1 since the 1980s, objects have been driven by 

programming languages. Currently, from the viewpoint of programming, there are 

two kinds of software design strategies: function-oriented design and object-oriented 

design. 

3.2.1 Function-oriented Design 

Function-oriented design involves decomposing the design into functional components. 

Functions have local state, but shared system state is centralized and accessible by all 

functions. Usually, it leads to a top-down design style. A programmer starts with a 

high-level description of what the program does, then, in each step, takes one part of 

the high level description and refines it. Samples of functional design are Structured 

Design [9], SSA.DJ\II [10, 38], and step-wise refinement [39, 40}. 

The function-oriented design conceals the details of an algorithm in a function but 

system state information is not hidden. Therefore, changes to a function and the way 

in which it uses the system state may cause unanticipated interactions with other 

functions. _I\ functional approach to design is most successful when the amount of 

25 



system state information is minimized and information sharing is explicit. However, it 

is not a perfect way to implement large systems, because it focuses on the function of 

the program. This method works fine for small programs, but, may cause difficulties 

in designing and maintaining large systems. 

3.2.2 Object-oriented Design 

Unlike function-oriented design, object-oriented design focuses on the data to be 

manipulated by the users. The basic idea of object-oriented design is information 

hiding (27]. Each object manages its own state information by grouping similar 

objects into classes, and by defining appropriate fields, such as attributes, which 

define the object's state, and operations, which act on the attributes, into each class. 

In practice, objects communicate by an object calling a procedure associated with 

another object. 

Object-oriented programming allows easier creation and use of abstract data type 

(ADT). Inheritance mechanism allows programmers to conveniently derive a new type 

from an existing user-defined type. The attributes and operations of an object class 

may be inherited from one or more super-classes so that a class definition needs only 

to set out the differences between that class and its super-classes. Another benefit 

of object-oriented programming is encapsulat·ion. It hides parts of the program that 

26 



do internal processing, and consequently, these parts of the program should not be 

of concern to anybody from outside. In this case, users of the code may know what 

can be used safely, and what is not of users' concern. Furthermore, programmers 

can change what is hidden without influencing the public interface. In addition to 

inheritance and encapsulation, polymorphism makes it possible for objects to act 

depending on their run-time type: and saves programmers a great deal of duplication 

of code. Polymorphism refers to a situation in which an entity could have any one of 

several types. It is a mechanism to deal with the awareness of the run-time class of 

the particular object. 

These are the main reasons that lead to a wide application of and broad research 

interest in object-oriented techniques in the computer graphics domain. It is also 

based upon these reasons that this thesis uses the object-oriented approach to model 

l\/f-Buffer algorithm and its prototype system. By defining machine parts ·which are 

samples of the virtual assembly system as objects and by using encapsulation mech

anism, it is easy for users to modify or change one model without affecting the the 

other models and other object classes. Polymorphism allows l\ti-Buffer to smoothly 

integrate the Z-Buffer and D-Buffer algorithms by reusing part of the code, thereby 

avoiding duplication of some codes. 

27 



3.3 Unified Modeling Language {UML) 

In the past ten years, user interface design has been the most successful application 

of object-oriented graphics. Meanwhile, object-oriented modeling and architectures 

of graphics systems have undergone development too. .A.rnong the object-oriented 

analysis and design techniques that appeared in the late 1980s and 1990s, the Unified 

:Niodeling Language (UJ\IIL), that is a commonly applied graphic, standard notation 

in system modeling, is the most favorable. 

UiviL most directly unifies the methods of Booch, Rumbaugh, and Jacobson, but 

its reach is wider than that. It is a notational system aimed at modeling systems 

using object-oriented concepts [3, 29}. It is "a language for specifying, visualizing, 

constructing, and documenting the artifacts of software systems, as well as for busi

ness modeling and other non-software systems" [2]. It can be used to understand 

user requirements, to design components at different stages, and to browse, config

ure, maintain, and control information. It supports most existing object-oriented 

development processes. 

The techniques in the UiviL were to some degree designed to help programmers do 

good object-oriented analysis and design; however, for different techniques, they still 

have their own different advantages. For example, patterns, which has become vital 

28 



to learning object-oriented concept, lets programmers concentrate on good obj.~ct

oriented designs and learning by following examples. Iterative development lets pro

grammers exploit object-oriented analysis and design effectively. Interaction dia

grams which make the message structure explicit are very useful for highlighting 

over-centralized designs. These characteristics and advantages of UwiL allow it to be 

a favoring modeling language for object-oriented modeling. 

In the analysis and design phases, the U:NIL catches the static structure and 

dynamic behavior information of the M-Buffer algorithm and its prototype system. 

For example, use case diagrams help to catch scenarios, interaction diagrams I:..elp 

to capture the behaviors of use cases, and class diagrams help to catch objects and 

describe the types of objects involved in the the system. The diagrams work togetJJ.er 

to delineate and depict various aspects of the system. Because of these, the UNIL is 

used to model the M-Buffer algorithm and its prototype system. 

To understand the requirements and capture the behavior of a system, its sub

system and its external environment, a modeler first uses the "use cases diagram" to 

describe the sequences of scenario for the processes requested by external actors. The 

use cases diagrams contain different use case scenarios, and these use case scenarios 

illustrate the system in terms of actors, actions and the relationship among them. 

Use cases diagrams are central to understanding what users want. They help mth 

29 



communication about abstract concepts. Since they control iterative development, 

they also present a good way for project planning which gives regular feedback to the 

users about where the software is going. 

Defining a conceptual model is the second step. The conceptual model is illus

trated in a set of diagrams that describe objects. It involves an identification of the 

concepts, attributes, and associations in the problem domain. 

In the meantime, interaction diagrams work on object interaction and message 

passing. These diagrams describe sequences of message exchanges among roles that 

implement behavior of a system. Typically, there are two kinds of interaction dia

grams: sequence diagrams and collaboration diagrams. In sequence diagrams, a set 

of messages are shown in time sequence. Lifelines represent each classifier's role, and 

arrows represent message passing between different lifelines. Though a collaboration 

diagram allocates the responsibilities to objects and illustrates how they interact via 

messages, it also shows the roles as geometric arrangements. The messages are shown 

as arrows attached to the relationship lines connecting classifier roles, and a sequence 

of numbers which are pr~pended to message descriptions indicate the sequence of 

messages. 

Finally, the specification of a system is then presented in forms of class diagrams. 

A class diagram not only shows a collection of static model elements, such as classes, 

30 



types, and their contents and relationships, but also contains certain operations which 

are expressed in other diagrams, such as collaboration diagrams. In most modeling 

processes, class diagrams are the final product. 

31 



Chapter 4 

M-Buffer 

4.1 Introduction 

The purpose of this thesis is to develop a new algorithm by means of object-oriented 

methodology to render images quickly and adjustably. 

Although Z-Buffer algorithm is the fastest approach among hidden-line removal 

algorithms, it cannot provide sufficient structure information of the displayed objects. 

The D-Buffer algorithm can reveal the concealed information by rendering the hidden 

lines or hidden surfaces with dashed/dotted lines. However, the rendering time of the 

D-Buffer algorithm is slower than that of the Z-Buffer algorithm, especially when the 

scene is composed of a large number of objects. In addition, If hidden lines of all 

32 



objects in a scene are displayed as dashed lines while a viewer's interest is merely in 

one or two objects, a viewer's attention will be easily distracted by so many lines, 

rather than focus on the interested objects. It is also a waste of computational power 

to display every object's geometric structure. 

In time-critical applications, it is necessary to display objects with different level 

of details according to a viewer's interest to the objects. For instance, hidden lines can 

be removed or displayed as dashed lines. In such a way, not only is the computation 

time saved, but also the user's requirement of understanding the object's structure is 

satisfied. This leads to the necessity of NI-Buffer that combines both the Z-Buffer and 

D-Buffer algorithms to convey the right amount of information for human-computer 

interaction. 

4.2 Strategy of M-Buffer 

The basic strategy of the NI-Buffer algorithm is to use one more buffer, named status 

buffer, to record the status information of pixels on the boundary lines. Each pLxel 

in the status buffer belongs to either a NORM.A.L object or a SPECIAL object. An 

object is defined as SPECIAL when a viewer is interested in its structure, or as 

NORMAL otherwise. For a SPECIAL object, therefore. its hidden lines must be 

33 



displayed as dashed; but for a NORMAL object, its hidden lines should be removed. 

If the value of a pixel in the depth buffer is greater than or equal to the one in 

the boundary buffer, then, the status buffer is checked to see to which object this 

pixel belongs. If the pixel belongs to a SPECIAL object, the dashed hidden-line 

method is invoked. Otherwise, if the pixel is on a NORMAL object's boundary line, 

the hidden-line removal method is called. For those pixels whose value in the depth 

buffer are less than those in the boundary buffer, the hidden-line removal method is 

directly invoked without checking the status buffer. 

4.3 Employing Use Cases to Define M-Buffer 

To achieve the rvi-Buffer by means of object-oriented methodology, the objects to be 

used must be clarified. Therefore, it is important for object-oriented modeling to 

adopt a proper modeling process during system analysis and design. 

In Ul\tiL, a use case is a narrative document that describes the sequence of events of 

an actor using a system to complete a process [29]. Usually, use cases are scenarios or 

cases of using the system. They elucidate and indicate requirements in the scenarios. 

Thus, use cases capture the behaviors and functional requirements of a system, and 

define processes in terms of goals, responsibilities, pre-conditions and post-conditions. 

34 



Figure 4.2 shows the use case diagram of a virtual assembly prototype system. There 

are five use cases in the system. The M-Buffer use case is one of the system's use 

cases. Use case Move Object "uses" M-Buffer use case, which means that an instance 

of the Move Object use case will include the behavior as specified by the M-Buffer 

use case. Figure 4.1 shows the definition of the M-Buffer use case. 

Use Case: M-Buffer 
Purpose: Invoke different algorithms in different cases 
Type: Primary and essential 
Description: An instance of System retrieves each object one 

by one in the container, determines each pixel's 
projected position and depth value z, and 
indicates whether one pixel is on a boundary 
line. Then instance of Decider decides to invoke 
Z-Buffer or D-Buffer algorithm according to 
each pixel's depth buffer, boundary buffer value, 
and the pixel's status. 

Figure 4.1: M-Buffer Use Case 

4.4 Preparing for Conceptual Models 

These use cases sho'v how users interact with the system. Capturing the objects 

involved in the system is one of the major works. Sequence diagrams illustrate user-

system interactions and help designer clarify the object involved in the system. Hence, 

sequence diagrams contain the basic information for the construction of conceptual 

35 



Figure 4.2: A Use Case Diagram of the System 

models. A conceptual model is a preliminary form of a class diagram. At this stage, 

conceptual models can be understood as sets of static structure diagrams without op

erations of the concepts. Figure 4.3 (a) is a sequence diagram which shows a particular 

scenario of the ivi-Buffer use case. 

As can be seen from Figure 4.3(b), in the problem domain, the M-Buffercontains 

several concepts which may be potential classes of the system. They are concepts 

of System, Container, Decider, Object. The System is a system manager that 

controls the whole process and connects users with the system. It is responsible for 

creating instances of classes, communicating with external agents, etc. The Con

tainer stores the graphics representation of physical objects, keeps track of the num

ber of objects, and provides services for accessing its elements. The Decider is a key 

36 



(a) 

(b) 

:Decider :Container 

I l & 

.------------~U= l .. numOfObjects] retrfeve()lT;----------111iJ~; 
' ' 

~ntitializePixels() .; : 
' ' 
~ixeiDetermine() IIJ; 

r----..L.I[pixel·s z value > the one stored in -----1.,.,.: 
depth buffer] upd~teDepth8uffer() ; 

' 
.----,,..-:.u[pixel is on boundary ·line && z > the one =-~--tlliJ ... : 

stcrted in boundary bufferl update8oundary8uffer() • 
' ' ' 

~ixel is on boundary lin~] updateStatusBuffer(~ 
' 

'"[y-l .. height, x•l .. width] [(pixel(x,y) depth buffer> 
oundary buffer) &&. statu~ is special] dashButfer(~ 

' ' ' ' I I l 

~------~z~uffer()~----~-~.~IIJ; 
l I 

' ' \ I 
I I 

I I 

'I .. 
u 

For each pixel rn the screen. 
at (x,y) position 

Container 1 

'f. 
co·Tns ·I 

Object 

If ((pixel"s z value in depth 
butrer > boundary butrer) 
&& plx:el"s status is special 

then dashBuft'ero 
else zButrer() 

1 System 
as ........ 

1 

1f 

~~ 

Figure 4.3: A Sequence Diagram and Conceptual Model 

37 



concept that decides which algorithm to invoke according to the depth position and 

status of an object. The last is the Object concept whose instances are machinery 

parts in the virtual assembly system. They are stored in Container~ and a user 

operates on the object instances. 

4.5 Constructing Activity Diagrams 

An activity diagram shows the flow from activity to activity within a system [3]. It 

illustrates the dynamic aspects of the system, since it emphasizes the flow of control 

between activities. Figure 4.4 is such a diagram which illustrates the control flow of 

the NI-Buffer algorithm. Each round-corner box contains an execution of a statement 

or activity. For example, the activity diagram starts at the initialization of each 

buffer. After the completion of initialization, an arrow leads to the next step that 

retrieves objects in the container one by one. The flow in the activity diagram provides 

important perspectives to complex operations. vVith proper notation, such as a start 

state sign, a final state sign, arrows, and diamond decision signs with multiple labeled 

exit arrows, the flow of control and data can be directly depicted by the activity 

diagram. 

38 



u,dllle ... ......., ln:ff'erirz .,.,.. >Ute ne in 
deptll bal'fer & current pixel is on 11teuDUr9 

Yes 

Yes 

Yes.Fmh 

~ 

=>----e~---;!1+ Draw pixel(x, 9) 
as wlaite 

Z-Barrer 

Figure 4.4: An Activity Diagram 

39 



4.6 Creating Interaction Diagrams 

Both interaction diagrams and activity diagrams deal with the dynamic aspects of 

a system. Interaction diagrams focus on the interactions between objects and their 

message passing relationships, whereas activity diagrams are flowcharts that empha

size the activity taking place over time. Both of the two types of interaction diagrams~ 

sequence diagrams and collaboration diagrams, describe a system's dynamic aspects, 

but they have different emphases. A sequence diagram focuses on the sequential oc

currence of messages in time. For example, Figure 4.3 shows messages passing one 

by one in time ordering. A collaboration diagram, as shown in Figure 4.5, describes 

behaviors between different objects. Collaboration diagrams are often used in the de

sign phases of software development, since they contain more contextual information, 

such as visibility between objects and exception handling. It is also easier to express 

conditional logic using collaboration diagrams than using sequence diagrams. 

Figure 4.5 is a collaboration diagram that contains several iterations and condi

tional logics. Four instances are involved in this diagram: System, Object, Decider 

and Container, and all of them are unnamed instances. The action begins with a re

quest of retrieving object ( ''retrieve()") from the System instance to the Container 

instance. The star sign following the sequence number represents an iteration call. 

40 



1-I:j ...... 
~ 
1'1 
ct> 
.p,. 
CJ1 .. 
> 
a 
0 ...... ...... 
~ 
0 
1'1 

.p,. ~ .... 

......... 0 
1:1 
tj .... 
~ 

~ s 
0 
~ 

~ 
t:C 

~ 
"1 

I~ P 
9 I 

I: ~1=1 .. numOfObjec~ retrieve() 

W!--------1 

1.2.1: ~1=1 .. num0f0bjects •j .. J .. eachPixeiOfRetrlevedObject updateDepthBuffer(x, y, z) 

:Container 

~ I I 1.1: "l=l .. numOfObjects~nltlalizePlxels() 

1.2.2: •J=1 . .numOf0bjects "j=l .. ea.chPixeiOfRetrlevedObject update Boundary Buffer() 

~ I 
1.2: "l=l .. numOfObjects "J=l .. eachPix~etrlevedObJect plxeiDetermlne() 

1.2.3: •J .. l .. numOfObject~ "j=t .. eachPixeiOfRetrlevedOb)ect update5tatusBuffcr() 

~ I 

display decided bv 
I 

2a: ·r-, .meenhelght "'"' .. scroenwldth depiln"'"'"ndary jlufrer~~>peclol doohBurrero 

2b: "y•l .. Oorec!lhe/ghf "X• I .• cr .. nwldlh d<prluffor>bOUndlll)' J>Uffet""orm• zDutror(O 

2c: •y .. t .. screenhe\tht •x=J .. screenWidth depth_buffer<boundary_buffer zBuffer() 

1 ,o.L~ 1 



The iteration clause indicates the recurrence value1 which starts from the first object 

in the container to the last one. The iteration clauses on each of the subsequence mes

sages indicate that those messages happen within the same iteration. After this call 7 

System sends "initializePixels{}" signal to each Object instance to reset an iterator 

to the first pixel of each object. Procedure "pixelDetermin(}" then starts to iterate 

through each pixel in the projection of the retrieved object. This call makes available 

all the pixel information of every object, including the x, y, z values, and whether a 

pixel belongs to a boundary line. This information is compared with the values in 

the frame buffer, depth buffer, and boundary buffer. For each pixel on the retrieved 

object, after a comparison of it's z value and the value of the one in the depth buffer, 

if the current pixel's depth is greater than or equal to the one in the depth buffer, 

the System instance sends an "updateDepthBuffer()" request to Decider so that the 

greater value is stored in the depth buffer. If the pi.""{el is on a boundary line and its 

z value is greater than or equal to the value in the boundary buffer, then Decider 

updates the boundary buffer's value by calling "updateBoundaryBuffer(} ". wioreover, 

the Decider instance gets the pixel's status and sets pi.xel to either "NORIVIAL" or 

"SPECIAL" by calling "updateStatusBuffer()". After all objects in the container are 

retrieved, the iterations terminate their operations of retrieving objects and pi.xel. 

Then every pixel on the image screen is analyzed to decide whether a pi.xel on an 

42 



obscured line should be drawn as white dot, or black dot. Furthermore, if the z 

value of a pixel in the depth buffer is greater than the one in the boundary buffer, 

and this pixel's status is special which indicates the viewer has special interest in 

the object's structure, the System instance then sends a "dashBuffer{)" message to 

Decider to draw the hidden lines or hidden surfaces with dashed lines. Otherwise, 

the "zBuffer{) " will be invoked to draw the pixel in black, which removes the hidden 

lines or hidden surfaces. 

4. 7 Modeling Other Use Cases 

As shown in Figure 4.2, M-Buffer is just one of the five use cases of the virtual 

assembly system, which is a test-bed of the M-Buffer display scheme. The other use 

cases include Create Object, Move Object, Delete Object, and Change Dash Length. 

To build up the whole system, all the use cases need to be analyzed so that all the 

objects required by the system can be identified. This section describes the modeling 

procedure of several use cases, including Move Object, Create Object, and Change 

Dash Length. Since the Delete Object use case is similar to the Create Object use 

case, it will not be introduced in this section. 

43 



4.7.1 Modeling Move Object 

The Move Object use case depicts how a viewer operates on an object and interactions 

between the viewer and the system. 

The action starts with a user pressing the MOVE button, which invokes "move

ButtonPressed{)" and returns a true value to notify System that the viewer intends 

to manipulate objects on the screen. If the viewer presses down a mouse button, 

System sends "isButtonPressed(}" signal to inform Mouse that an object has been 

selected. Then System sends "getX()" and "get Y(}" methods, respectively, to get 

the x, y values of the object's origin. After these calls, System invokes "pickOb

ject{)" to decide which object has been selected by the viewer. After the object is 

determined, "isDragged(}" is sent to Mouse to check if this object has been moved. 

If the selected object is moved, the System needs to know object's new position. 

This process is finished by the "setX() '' and "set Y()" methods. In this way, the 

System updates an object's position with its new origin. Then the moved object 

\vill be displayed by a adisplay{)" message sent from System to Screen. During 

the manipulating process, if one object is moved by the vie,ver, its hidden lines are 

displayed with dashed lines, but the hidden lines of all the other objects are removed. 

If the moving object overlaps with another one, both of the two objects are displayed 

with dashed hidden lines. It allows the viewer to see their geometric structure. 

44 



This process requires two other classes: Screen and Mouse. A Screen object is 

used to display objects on the window, and a Mouse object detects the movement 

of the mouse, such as button pressed, release, or drag, and reports its status to the 

System object. Figure 4.6 is a collaboration diagram of this use case. 

4: pickObJe9t() 
~ 

2: getX() 3: getY() 

~ ~ 
6: setX(x) 7: setY(y) 

has 

~ ~ 

is I d 

a: dis~ 

Figure 4.6: A Collaboration Diagram of Move Object 

4.7.2 Modeling Create Object 

The Create Object use case takes care of the creation of machinery parts. 

Once a viewer clicks the PIECES button, a pull down menu appears with all the 

necessary machine pieces, so that the viewer may select the piece he wants. vVhen 

the PIECES button is pressed ( "pieceButtonPressed(} "), System sends a "request-

Depth()'' message to retrieve the object's depth value along z a..xis in a left hand coor-

45 



dinate system. The depth value is then written into the system with a return message 

from Requester to System. After determining the machinery part chosen by the 

user with "determinePieceType()", System sends this information to ShapeAdder 

so that the selected object can be put on the screen. Afterwards, ShapeAdder 

sends "setX()" and "set Y()" messages to Object, respectively, so that an instance of 

object is created. To keep track of each object displayed on the screen, Container 

needs to have a record of this object. ShapeAdder sends an "add{ obj)" message to 

the Container class and asks it to add a new object to the object list. If updating 

the object list is successful, System calls "display{)'' to require the Screen class to 

display the new object. Figure 4. 7 is a sequence diagram of this scenario. 

User 

iece8urrcnPressed(r-.,: : 
!-rec;uestDepthO---+i . . 
:c;-retum depth value-~ 

~ 
determlnePieceType() 

~ 
all specific:·. method which matche:·.s object''s-s --~)' : 

• • ~etX(~ 
:----setV(~ 
· dd(obJr----.. 

o------dlspl!r;Q 11: 

Figure 4.7: A Sequence Diagram of Create Object 

46 



4. 7.3 Modeling Change Dash Length 

As mentioned in the previous sections, the distance between the line segments and 

spaces is adjustable by controlling the threshold. This is completed by Change Dash 

Length use case. 

Usually, for dashed hidden lines:r the default space of black dashes and white 

space is set to five pixels, respectively. To increase or decrease the distance, the user 

first presses a DASH LENGTH button. Once System receives this message from 

( ''dashButtonPressed{)"), it sends a request to Requester. Requester then calls 

the "requesDashLength{)" method to pop up a window for the user to input the new 

value. After System gets the new dash length, Decider invokes "setDashLength{)" 

to reset dash length threshold to the new length. Finally, System sends a signal 

to Screen, and Screen invokes display{) to redraw the object. Figure 4.8 is the 

collaboration diagram that interprets this process. 

4.8 Modeling Class Diagram 

The procedure of developing use cases, conceptual models, activity diagrams, in

teraction diagrams is a congenial and seamless modeling process. The purpose of 

creating these diagrams is to generate class diagrams, so that they could eventually 

47 



* dashButto~sed() 
1: requesDashLength() 

I 
2: In ut new dash length 

~ 

~ has 

3: setDashLength( dashlength) 
~ 

L-----dis I d b 

4:displa~ 

:Decider 

:Screen 

Figure 4.8: A Collaboration Diagram of Change Dash Length 

produce codes. Class diagrams not only contain the static structure and behavior of 

objects, but also indicate the dynamic interactions between objects at run-time. Fig-

ure 4.9 shows a class diagram of the virtual assembly system. This diagram contains 

all necessary classes and methods for the virtual assembly system. Each class has 

characteristics (attributes) that describe the class's static structure, operations that 

are design details, and associations that are significant connections between different 

classes. 

Except for the Object and ShapeAdder classes, all the other classes have an 

aggregation relationship (an open diamond at the end of a line) with System. It 

indicates that the instances of these objects are part of the whole system. A.t the 

bottom-left of this diagram, class Object has a many to one association with Con-

48 



tainer, specifying that each instance of class Container may contain many instances 

of class Object. Therefore, a star sign appears at the far end of the association of 

Container and Object. In the attributes field of Object, object's origin is de

scribed by x, y whose data types are float. Another attribute is status whose data 

type is integer. The instances of the Object class are created by the ShapeAdder 

class, which is given a role name as adder. For class Container, the data type of 

its attribute numOfObjects is integer, and the default value of numOfObjects is zero. 

Class Decider's attribute field has frame buffer, depth buffer, boundary buffer and 

status buffer. These buffers have necessary information for Decider to decide which 

algorithm to invoke according to the pL""{el values in the four buffers. Class Shape 

is an enumeration class. It has neither behaviors nor relationships with the other 

classes. In the attributes field, it's data type can only be enum. A "$"sign indicates 

that this attribute is static. Its value applies to the entire class of objects, rather 

than to each instance. 

In the operation fields of each classes, some methods have a "+" sign and some 

others have a "-" sign. "+" sign identifies public operations and the "-" sign identifies 

private operations. In addition, data types following the operations indicate the data 

types of their return values. Moreover, the data types within "(" and ")" of operations 

indicate the data types of parameters. 

49 



Celt liner svstem Screen 
1 1 l numOfObjects: ilteger50 = 

,....., 
... 1 ..., ..., $played by 

1 _. .. 
displa.yer 

+retrieve() tpleceButtonPrmed() tdl3pl~() 
hj ..... 
~ 
1"1 ro 
~ 

to .. 

+~d(ob}; Object); boo\ +moveButtonPremd() 

ll)objocl co 1 tu 
tdep1hButton Pre~~ed() 
+d=hButtonPrmed() 
tdelcteButlonPreS3ed() 
-plckObJect(): Integer 
-determine Piece Type() 

add to object II$ I I 1 I C) I c ) l (} 

> 
() 
~ 

~ 
Cll 

I 1_1 

Shi~eMder 
~l~ay dec lded by 

t:j 
CJl .... 
0 I» 

Cltl 
I"S 

a 
S' 
I"S 
("to 

=--CD 

r.n 
~ 
Cll 
C't-
CD 

13 

contains 
h= 
1~ 

+add Upper Dler() 
taddloYier Shoe() 
taddt>ln() 
taddPiale() 
taddPole() 

~~ 

'.ladder 
1 

Requester 

·td ·I . 
Objed +requcsiDeplh()Jnleger 

x: float 1 
+reque~t O~hlenljJth(currenllength: Integer) 
+requestNeYIDepth(); Integer 

y:float 
status: Integer Mouse 

+lniHallzoPtxel~) Shape 

1 

Ded4er 

frwne_buffer 
depth_buffer 
boundary _buffer 
~latu~_buffer 

mtOasnlenglh(d~hlenoth: Integer) 
-updateDepthBuffer(x: Integer, y: Integer, z: ilteger) 
-update Boundary Buffer() 
-updateStatusBuffer() 

+pixel Determine() 
$special: enum +get X(): float +isBullonPremd(): bool 

+getV(); float tiS Drag(); bool $normal: enum 

-d=hBuffer() 
-zBuffer() 

+sotX(off$el_x: noal) 
+$eiV(of($el_y: float) 



Chapter 5 

lrnplelllentation and Discussions 

This chapter describes the architectural design and the implementation of the proto

type system, and then discusses experimental results tested on the system. 

5.1 Implementation 

The virtual assembly system has been analyzed, designed with COOL:Jex, which is a 

Computer-Aided Software Engineering environment developed by Sterling Software 

Inc. It supports U:NIL and allows models-to-code generation. 

The system development has gone through four phases using the UNIL diagrams: 

analysis phase, package design phase, object design phase, and implementation phase. 

51 



Diagrams are created and modified in the first three phases, adding more details at 

each phase until the application codes in the final phase are generated. i-\.t the analysis 

phase, system requirements are analyzed. Use case diagrams, interaction diagrams 

are created to describe scenarios in the virtual assembly system. In addition, concepts 

of the system are identified and a conceptual model containing attribute information 

is achieved. Upon finishing the requirement analysis, system development goes to 

the package design phase. At this stage, application architecture is defined. The 

third stage is for object design, in which class diagrams are refined and enhanced to 

generate codes. Figure 4.9 is an actual diagram refined in the stage. The final stage 

deals with implementation and code generation. Using the class diagram created 

in the object design stage, COOL:Jex generates codes to implement the classes and 

their relationships, attributes, and operations. Based upon the generated codes, some 

more codes are added to complete the system. 

This system is implemented in C++, OpenGL, and FLTK (Fast Light Tool Kit) 

on UNIX. FLTK is a C++ graphical user interface toolkit for X windows. In this 

system FLTK is used to build the interactive user interface, while OpenGL builds the 

graphics routines. Figure 5.1 shows the architecture of the system. 

52 



billmp.cpp performs a ,..---------. 

objects data files 

Figure 5.1: An Architecture of the System 

5.2 Experiments 

D c-code 

[j!!l OpenGL c:ocLoe 

~ FLTKcode 

This section presents the experiments conducted for the :NI-Buffer algorithm and the 

analysis on the experimental results. 

5.2.1 Experiments 

To test the M-Buffer algorithm, complex objects, such as machinery parts, a.re used. 

Some machinery parts are polyhedrons that consist of a set of smoothly joined poly-

gons, and some are curved objects. 

Figure 5.2(a) is a wireframe picture of a number of machine pieces. "Though 

53 



(a) 

(b) 

(c) 

Figure 5.2: Wireframe, Z-Buffer and D-Buffer Images of Machine Pieces 

54 



this picture contains all the information of objects, the viewer may still be confused. 

The reason is that there is no difference between visible boundary lines and invisible 

boundary lines. As a result, it is hard to distinguish front from behind even for a 

simple object, such as the plate, in the figure. 

In comparison, Figure 5.2(b) shows objects only with their surfaces or lines close to 

the viewer. It eliminates the visual perception ambiguity by removing invisible lines, 

but the objects' inner structures are not available. For instance, from Figure 5.2 (b) 1 

it is not clear that if there is a cylinder hole on the top-most object in the picture. 

This hole is necessary to stand up one of the two poles. 

As an improvement to Figure 5.2(a) and (b), Figure 5.2(c) is picture rendered 

with the D-Buffer algorithm. It contains all the information about object boundaries 

and shapes, and it tells invisible lines apart from visible lines by displaying them 

in a different style. In this way, the viewer can easily comprehend the structure of 

objects. However, since object manipulation in the virtual assembly system involves 

two objects at a certain point, it is not necessary to display all object boundary 

lines. Displaying of all boundary lines, especially all the invisible lines, is a waste of 

computation power. In addition, it does not help focus attention with so many lines. 

Figure 5.3 is rendered by the M-Buffer algorithm. Hidden lines of the top-most 

two pieces in the image are dashed, because of their involvement in the current object 

55 



Figure 5.3: Focus of Attention of Machine Pieces 

56 



manipulation. For instance, when the top-most pole is moved and has overlap with the 

shoe-shaped machine piece, the system will display the hidden lines of this two pieces 

as dashed, so that the user may understand their geometric structure clearly. In the 

meantime, the hidden lines for the other objects are removed. The illustration with 

dashed hidden lines makes these two objects stand out from the others. Furthermore, 

their internal and rear structures become available for manipulation. 

5.2.2 Measure of Visual Detail 

To analyze the perceptual nature of pictures rendered by the M-Buffer algorithm, the 

following discussion introduces a measuring method, i.e., spatial frequency. 

Spatial frequency (28] was initially introduced by Schade [31 J in 1956. It is a 

quantitative measure for the space between a series of alternating light and dark 

vertical bars. It can be applied to measure the details presented to a visual system, 

e.g., a computer graphics system. Spatial frequency is defined in units of contrast 

cycles per degree of visual field (c/deg). When the view point is stationary, as in the 

virtual assembly system, the orientation of spatial frequencies is of little importance. 

In such cases, relevant spatial frequency becomes a measure of visual detail. By 

feature we mean a region enclosed by boundary lines for any two-dimensional visual 

segment. In a picture, its fundamental relevant spatial frequency is calculated in 

57 



units of cycles per pixel ( cfpixel ). In essence, it measures how many pi..xels a feature 

extends over each orientation. 

The spatial frequency of a feature is inversely proportional to its size. The largest 

size of a feature is the longest contiguous line of pi..xels at a horizontal direction. 

Applying a scaling of 1/2 to the calculation then produces the bars in a contrast 

grating. Since a full cycle has a peak and a trough, the line of pixels is, in fact, half 

of a contrast cycle. Therefore, a general relationship can be developed as follows: 

1 
RSF=-

2l 
(5.1) 

where RSF represents the relevant spatial frequency, and l is the length of the longest 

contiguous line of pi..xels in a feature. 

5.2.3 Result Analysis 

With the measure standard set, it is now ready to analyze the pictures created by 

the M-Buffer algorithm. Figure 5.4(a) and (b) are diagrammatic results of relevant 

spatial frequencies for lower_shoe that is located at the top of Figure 5.2(b) and (c) 

respectively. In the figures, the x axis denotes increasing spatial frequency (c/pLxel) 

while the y axis represents the number of features of lower_shoe at a particular spatial 

58 



7 
"lowershoel" 

6 

.!i 
• ,.. 
:J ., 
:.c ... ... 
0 

03 
S\1 

2 

1 

0 

0 o.02 o.04 o.os o.oa o.1 o.12 0.14 0.16 

(a) Relevant Spatiu Prequtmc:y (c/pixe1) 

7 

6 

.!i 
G 

"' :::s ., 
:4 .. 
.... 
0 

03 
z 

2 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 

(b) Relevant Spatial Prequaacy (c/pizel) 

Figure 5.4: Relevant Spatial Frequency Analysis for lower_shoe's (a) Z-Buffer 
and (b) D-Buffer Generated Image 

59 



frequency. 

Figure 5.4(a) shows the relevant spatial frequencies of the lower_shoe in Fig

ure 5.2(b) as created by the Z-Buffer algorithm. The total number of features is 

23, each of which represents one of the visible facets of the lower_shoe. As can be 

seen from Figure 5.4(b), in addition to the twenty-three spatial frequencies, there are 

some more spatial frequencies that represent the features not displayed in the picture 

generated by the Z-Buffer algorithm. 

From the figures, as well as spatial frequencies analysis, a conclusion can be drawn 

as follows: pictures generated by the D-Buffer algorithm contain more information 

about objects as it reveals the invisible surface and boundary lines by creating dashed 

boundary lines. They present object structures to the viewer. In contrast, an image 

rendered by the Z-Buffer algorithm has less information. As a combination of the 

two algorithms, the M-Buffer algorithm produces pictures with adjustable contents 

according to the viewer's interest in objects. 

5.3 Discussion 

Z-Buffer, D-Buffer and M-Buffer are image-space algorithms. The Z-Buffer algorithm 

calculates the depth value of every pixel of every object's projection, and compares 

60 



this value to that stored in the depth buffer to determine the visibility. The D

Buffer algorithm employs a boundary buffer and performs one more operation than 

the Z-Buffer algorithm. This additional operation performs simpler processing on 

fewer pixels. The D-Buffer algorithm has the same time complexity as the Z-Buffer 

algorithm does. Therefore, the computational complexity of both algorithms are 

O(n), where n is the number of objects. 

Moreover, the M-Buffer algorithm uses a status buffer to check the status infor

mation of pixels on the boundary lines, and it employs the operations of the D-Buffer 

algorithm and the Z-Buffer algorithm. Therefore, the l\II-Buffer algorithm is in the 

same computational complexity level as the Z-Buffer algorithm and the D-Buffer 

algorithm. 

61 



Chapter 6 

Conclusion and Future Research 

After a brief survey of the methods for time-critical rendering, three image-based 

hidden-line algorithms are reviewed. They are the Z-Buffer, P-Buffer and D-Buffer 

algorithms. All of them can display complicated objects quickly and informatively 

with line-drawing pictures. The advantages of efficiency, simplicity, and unlimited 

range of processable shapes have made the Z-Buffer algorithm a good choice for time

critical rendering. However, the Z-Buffer algorithm cannot display the invisible lines 

because it removes the hidden lines. The P-Buffer algorithm may render hidden lines 

as dashed lines, but its effectiveness depends on the static filter pattern that may 

not be available to evenly dash hidden lines. In comparison, The D-Buffer algorithm 

is able to generate dashed (with adjustable length of dashes and spaces) hidden-line 

62 



segments of any three-dimensional shapes by employing one more buffer: a boundary 

buffer. But the computing time of the D-Buffer algorithm is slightly slower than the 

Z-Buffer algorithm. 

By adding one more buffer, the status buffer, the l\11-Buffer algorithm combines 

the advantages the of Z-Buffer and D-Buffer algorithms, meanwhile overcoming the 

disadvantages of these two algorithms. Through the M-Buffer algorithm, pictures not 

only may be rendered quickly, but also may display hidden lines in different styles 

adaptively according to a user's interest in the objects. However, there are still several 

improvements that will enhance the performance of the l\11-Buffer algorithm. 

• At present, the algorithm is applied to binary pictures. It is desirable to in

troduce greylevel line-drawings into the algorithm, so that pictures of more 

diversity can be produced. 

• Currently, the algorithm works only with wireframe pictures. l\t1ore rendering 

styles, such as shading, can be added to the algorithm. Even different shading 

methods, such as phone shading, gouraud shading or raytracing, can be used. 

In this case, not only can the pictures be color ones, but also objects can be 

displayed as different styles: wireframe or shading. 

• The current l\!I-Buffer algorithm works only with stationary view points. It may 

63 



be improved by allowing users to observe the object from different view points 

or by rotating the object. 

• This algorithm may be extended to the multimedia rendering. A medium player, 

such as audio, can be used to describe special events. For example, when conflict 

happens between two objects, sound may be produced to indicate the user that 

the moving object conflicts with another object. Moreover, objects made from 

different materials may have different conflict sounds. 

64 



Bibliography 

[1] Airey, J. M., J. H. Rohlf, P. Frederick, and J. Brooks, Towards Image Realism 

with Interactive Update Rates in Complex Virtual Building Environments, In 

ACM SIGGRAPH Special Issue on 1990 Symposium on Interactive 3D Graphics, 

24(2), pp. 41-50, 1990. 

[2] Booch, G., I. Jacobson, and J. Rumbaugh, The UML Specification Documents, 

Rational Software Corp., website: http:/ jwww.rational.com, 1997. 

[3] Booch, G., I. Jacobson, and J. Rumbaugh, The Unified Modeling Language User 

Guide, Addison-Wesley Publishing Co., 1998. 

[4] Bouknight, W. J. and K. C. Kelly, An algorithm for producing halp-tone com

puter graphics presentations with shadows and movable light sources, In Pro

ceedings of the Spring Joint Computer Conference, pp. 1-10, 1970. 

65 



[5] Bouknight, W. J., A procedure for generation of three-dimensional half-toned 

computer graphics presentations, In Communications of the ACM, 13(9), pp. 

527-536, 1970. 

[6] Catmull, E., A Subdivision Algorithm for Computer Display of Curved Splines, 

PhD thesis, Computer Science Department, University of Utah, Salt Lake City, 

UT, 1974. 

[7] Clark, J. H., Hierarchical Geometric l\/Iodels for Visible Surface Algorithms In 

Communications of the ACM, 19(10), pp. 547-554, 1976. 

[8] Collins, T. Robert, lVIulti-Image Focus of Attention for Rapid Site lVIodel Con

struction, In http://www.cs.cmu.edu/ rcollinsj. 

[9] Constantine, L. L., and E. Yourdon, Structured Design, Englewood Cliffs N J: 

Prentice-Hall. 

[10} Cutts, G., Structured Systems Analysis and Design :Niethodology, In Information 

Technology for Organisational Systems, Amsterdam: Elsevier, pp. 363-370, 1988. 

[11] Dong, Xiaoming, D-Buffer: A New Hidden-Line Algorithm in Image-Space, lVIas

ter thesis, Department of Computer Science Department, l\/Iemorial University 

of Newfoundland, St. John's, NFLD, 1999. 

66 



[12] Foley, J. D., A. van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics: 

Principles and Practice, Addison-Wesley Publishing Co., 1996. 

[13] Freeman, H., Computer processing of line-dra"'ing images, In ACM Computing 

Surveys, 6(1), pp. 57-97, 1974. 

[14] Funkhouser, T. A. and C. H. Sequin, Adaptive Display Algorithm for Inter

active Fram Rates During Visualization of Complex Virtual Environments, In 

Computer Graphics (SIGGRAPH '93 Proceedings), Vol. 27, pp. 247-254, 1993. 

[15] Goldberg, A. and D. Robson, Smalltalk-80: The Language and Its Implementa

tion, Addison-Wesley, Reading, Massachusetts, 1983. 

[16] Grimson, W., G. Klanderman, P. O'Donnell and L. Ratan, An Active Visual 

Attention System to 'Play Where's Waldo\ In Arpa Image Understanding Work

shop, Monerey, CA, pp. 1054-1065, Nov 1994. 

[17] Hitchner, L. E. and i\11. W. IvlcGreevy, JVIethods for User-Based Reduction of 

Model Complexity for Virtual Planetary Exploration, In Proceeding of the SP lE

The International Society for Optical Engineering, Vol1913, pp. 622-636, 1993. 

67 



[18] Holloway, R. L., Viper: a Quasi-Real-Time Virtural- Worlds Application, UNC 

Technical Report No. TR-92-004, Department of Computer Science, University 

of North Carolina, Chapel Hill, NC, 1991. 

[19] Interrante, V., H. Fuchs and S. M. Pizer, Conveying the 3D Shape of Smoothly 

Curving Transparent Surfaces via Texture In IEEE Transactions on Visualiza

tion and Computer Graphics, Vol. 3, No. 2, pp. 98-117, April-June, 1997. 

[20] Kemeny, A., A Cooperative Driving Simulator, In Proceedings of the interna

tional Training Equipment Conference (ITEG), London, UK, pp. 67-71, 1993. 

[21] Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented 

Analysis and Design, Prentice-Hall, 1998. 

[22] Lindstrom, P., D. Koller, L. F. Hodges, W. Ribarsky, N. Faust, Level-of-Detail 

Management for Real-Time Rendering of Phototextured Terrain, Technical Re

port No. TR96-06, Graphics, Visualization and Usability Centre, Geogia Insti

tute of Technology, Atlanta, GA, 1995. 

[23] Metelli, Fabio, The Perception of Transparency Scientific American, v. 230, No. 

4, pp. 91-98, April, 1974. 

68 



[24] Nakayama, K., S. Shimojo and V. Ramachandran, Transparency: relation to 

depth subjective contours, luminance, and neon color spreading, Perception, 

Vol. 19, pp. 497-513, 1990. 

[25] Norman, D. A., Turn Signals are the Facial Expressions of Automobiles, Reading, 

MA: Addison-vVesley, 1992. 

[26] Ohshima, T., H. Yamamoto and H. Tamura, Gaze-Directed Adaptive Render

ing for Interacting with Virtual Space, Proceeding of the IEEE Virtual Reality 

Annual International Symposium (VRAIS}, Santa Clara, CA, pp. 103-110, 1996. 

[27] Parnas, D., On the criteria to be used in decomposing systems into modules, 

Communication ACM, 15(2), pp. 1053-1058, 1972. 

[28] Reddy, Martin, A Measure for Perceived Detail in Computer-Generated Images 

Technical Report ECS-CSG-19-96, Department of Computer Science, University 

of Edinburgh, 1996. 

[29] Rumbaugh, J., I. Jacobson and G. Booch, Unified Modeling Language Reference 

Manual, Addison-Wesley Publishing Co., 1999. 

[30] Schachter, B. J., Computer Image Generation for Flight Simulation, IEEE 

Computer Graphics and Application, Vol. 1, No.4, pp.29-68, 1981. 

69 



[31] Schade, 0. H., Optical and Photoelectric Analog of the Eye. The Optical Society 

of Americas, Vol. 46, No. 9, pp.721-739, 1956. 

[32] Seligmann, D. D. and Steven Feiner, Automated Generation of Intent-Based 3D 

Illustrations In Computer Graphics, Vol. 25, No.4, pp. 123-132, July 1993. 

[33] Sutherland, I., Sketchpad, A Man-Machine Graphical Communication System 

PhD thesis, Massachusetts Institute of Technoloty, Jan. 1963. 

[34] Warnock, J. E., A hidden line algorithm for halftone picture representation, 

Technical Report TR 4-5, NTIS AD 761 995, Computer Science Department, 

University of Utah, Salt Lake City, UT, :Niay 1968. 

[35] \Varnock, J. E., A hidden-surface algorithm for computer generated half-tone 

pictures, Technical Report TR 4-15, NTIS AD 753 671, Computer Science De

partment, University of Utah, Salt Lake City, UT, June 1969. 

[36] Watkins, G. S., A Real Time Visible Surface Algorithm, PhD thesis, Computer 

Science Department, University of Utah, Salt Lake City, UT, 1970. 

[37] Watson, B., N. Walker, and L. F. Hodges, A User Study Evaluating Level of 

Detail Degradation in the Periphery of Head-Mounted Displays, In Proceedings 

of the FIVE '95 Conference, QMW, University of London, UK, pp.203-212, 1995. 

70 



[38] Weaver, P., Practical SSADM, Version 4, London: Pitman, 1993. 

[39] Wirth, N., Program development by stepwise refinement, In Communication 

ACM, 14( 4), pp. 221-227. 

[40] Wirth, N., Systematic Programming: An Introduction, Englewood Cliffs NJ: 

Prentice-Hall, 1976. 

[41] \Vloka, M. M., Incorporating Update Rates into Today's Graphics Systems, Tech

nical Report CS-93-56, Department of Computer Science, Brown University, 

Providence, RJ, 1993. 

[42] Wylie, C., G. vV. Romney, D. C. Evans and A. C. Erdahl, Halftone Perspective 

Drawings by Computer, In Proceedings of the Fall Joint Computer Conference, 

pp.49-58, 1967. 

[43] Van, J. K., _Advances in Computer Generated Imagery for Flight Simulation, In 

IEEE Computer Graphics and Applications, 5(8), pp.37-51, 1985. 

[44] Yuan, Xiaobu and H. Sun, P-Buffer: A Hidden-Line Algorithm in Image-Space, 

In Computer & Graphics, 3(21), pp. 359-366, 1997. 

71 












