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Abstract 

Epidemiological studies have linked small birth weight and rapid compensatory growth 

to a number of chronic diseases, such as type 2 diabetes, hypertension and cardiovascular 

disease (Chapter 1). Despite their many uses in biomedical research, few studies have 

used swine as a model for fetal programming. The overall goal of this research was to 

develop a Yucatan miniature pig model of fetal programming. Specifically we wanted to 

determine the effects of birth weight, postnatal growth rate and early postnatal nutrition 

on the development of type 2 diabetes in Yucatan miniature swine (Chapter 2). In order 

to do so, we needed to demonstrate compensatory growth (Chapter 3) and validate the 

miniature pig as a model for type 2 diabetes (Chapter 4). Although runt pigs displayed 

compensatory growth, growth characteristics were not related to any markers of type 2 

di~betes development (Chapter 5). 

Key Words: Yucatan, miniature pig, compensatory growth, type 2 diabetes, fetal 

programmmg 
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Chapter 1 Literature Review 

1.1 Fetal Programming 

The Barker Hypothesis 

Epidemiological studies have linked low birth weight and high postnatal growth 

rate to a number of chronic diseases, including type 2 diabetes, hypertension, obesity, and 

cardiovascular disease (McMillen and Robinson, 2005). Dr. David Barker of 

Southampton University, UK first described this relationship between low birth weight 

and later adult disease as fetal programming in the early 1990s. Fetal programming is 

defined as the long-term consequences of a nutritional insult experienced in early life. 

The nutritional insult can be anything from insufficient total nutrients to a specific 

nutrient deprivation. The nutritional insult permanently re-programs the animal's 

metabolism in such a way that the animal becomes more susceptible to the development 

of chronic diseases. The actual mechanism of this re-programming is unknown. 

The Thrifty Phenotype Hypothesis 

Hales and Barker described the thrifty phenotype hypothesis in 1992. They 

proposed that the nutritional environment sensed by the fetus in utero causes changes in 

fetal metabolism. For example, in response to nutrient shortages in utero, the fetus 

switches to a conservation metabolism that biologically prepares it for nutrient shortages 

after birth. The fetus redistributes nutrients to promote the growth of the brain at the 

expense of other organ systems such as the liver, pancreas and kidneys. This 

redistribution, termed organ sparing, has profound irreversible effects on cell number and 

organ size (Kind et al2003, Ritacco et al1997). The consequences ofthis fetal 



adaptation are dependent upon postnatal nutrition. In Westernized countries where 

infants are provided with excessive nutrients, the prenatal switch to conservation 

metabolism and organ sparing creates a situation where the large metabolic demand of 

excessive nutrients cannot be handled by the limited cell number. As a result, the infant 

experiences appetite dysregulation, obesity, and insulin resistance. However, when low 

birth weight animals receive poor postnatal nutrition from undernourished mothers, the 

risk of later obesity decreases. It is the mismatch of prenatal and postnatal environments, 

which leads to later problems. 

Defining Birth Weight 

Another interesting observation is that the risk of chronic disease development 

decreases with increasing birth weights (McMillen and Robinson, 2005). The 

observation leads to the question, how does one define low birth weight? Low birth 

weight in humans is usually defined as an infant born at term weighing less than 2500 g 

(Dewey, 1998, Rasmussen, 2001). These infants are considered small for their 

gestational age compared to normal or large birth weight infants in a reference 

population. There are many factors that influence birth weight including maternal 

nutrition, smoking, placental disease, birth order, multiple births and genetics. Regardless 

of what factors contributed to birth size, the absolute birth weight of an infant does not 

necessarily reflect its intrauterine environment. For example, a lower birth weight infant 

may have reached its genetic potential for size. This infant would not have experienced 

any perturbations in growth during gestation to account for its small size at birth. The 

opposite is true in that normal birth weight babies could have been born larger, but 

instead were growth-restricted during gestation and unable to reach their genetic potential 
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for size. It is difficult to determine whether a human infant has reached its genetic 

potential for size at birth. 

It is important to note that the majority of epidemiological studies investigating 

fetal programming do not include clinical low birth weight infants of <2500 g. Instead, 

these studies examine infants across a range of normal weights (2500- 4000 g) (Dewey, 

1998, Rasmussen, 2001 ). Although adult disease risk decreases over an increasing range 

of normal birth weights; it is not possible to determine which infants had undergone any 

disruptions in intrauterine growth. Therefore, researchers have looked to early postnatal 

growth as an indicator of the conditions of the intrauterine environment. 

Animal Models of Fetal Programming 

Although extensive epidemiological evidence has demonstrated an association 

between low birth weight and later adult disease, what causes this association is 

unknown. In order to better understand fetal programming several animal models of low 

birth weight have been developed. The rat, mouse, guinea pig, sheep and domestic pig 

have all been used as models for examining the fetal origins of adult disease. There are 

several different approaches to controlling the nutrient supply to the fetus to induce low 

birth weight animals including surgical methods, global under nutrition and protein 

deprivation. 

Surgical Methods 

In rodents, intrauterine artery ligation has been used to limit blood flow to the 

fetus. The result is impaired fetal development and severely reduced birth weight. 

Jansson and Lambert ( 1999) ligated the uterine artery of one hom on day 12 of gestation 

and rat dams delivered very low birth weight pups spontaneously on day 22. 
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Radiotelemeters were installed in the offspring at 3 months of age and these animals also 

underwent an intravenous glucose tolerance test. Although there were no differences in 

blood pressure between animals of very low birth weight and controls, females had 

significantly higher fasting blood glucose and lower fasting plasma insulin. A similar 

surgical method has been performed with sheep. The endometrial caruncles are removed 

(carunclectomy) restricting blood flow to the fetus producing lambs born half the normal 

- ---size('Bertram and Hanson, 2001). Although low birth weight is achieved in this surgical 

model, it is excessive and there is increased prenatal mortality. Placental disease in 

humans can decrease blood flow to the fetus resulting in very low birth weight. 

Global Under Nutrition 

Restriction of total nutrients, often termed global under nutrition, involves 

restricting the maternal diet to 30-90% of caloric requirement during gestation. Severe 

nutrient restriction is considered 30-50% of energy requirement, moderate restriction 50-

70% and mild ranging from 80-90% of energy requirement (Bertram and Hanson 200 I, 

Kind et al 2003). Maternal feed restriction limits the supply of nutrients to the fetus. The 

result is slowed fetal growth and development causing low birth weight animals. When 

rat dams were fed 50% of ad libitum during the second half of gestation, they gave birth 

to very low birth weight pups (Bertin et al 1999). At 80 days of age, female rats born to 

feed-restricted mothers had significantly higher glucose, lower insulin and impaired 

vascular function compared to control rats. Kind and colleagues (2003) found similar 

results in guinea pigs. The offspring of mild (85% ad libitum) and moderate (70% ad 

libitum) maternal feed restriction had significantly lowered birth weight compared to 

offspring of mothers fed ad libitum during gestation. Male offspring of mothers who 
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suffered moderate feed restriction had significantly higher fasting insulin and ratio of 

fasting insulin to glucose compared to mild restriction and control animals at 90 days of 

age. Offspring of mothers fed 50-70% of energy requirement did not experience any 

symptoms of chronic disease (Kind et al., 2001 ), suggesting that feeding mothers 30-50% 

of their requirement may be necessary to observe risk factors of disease in the offspring. 

' 
Global under nutrition models are reflective of humans that have experienced a period of 

famine or people living in underdeveloped countries. However, the majority of 

epidemiological studies examining fetal programming are performed in developed 

countries where famine situations are less frequent. 

Low Protein 

The most extensively used model for studying fetal programming is the low 

protein rat model. Since fetal growth is largely dependent upon protein supply, 

researchers have restricted maternal dietary protein by up to 50%. There are two main 

low protein diets used by researchers to induce low birth weight, the Southampton and 

Hope Farm diets. Langley-Evans performed a study that directly compared the two diets 

(2000). They found that rats whose mothers were fed the low protein Southampton diet 

had significantly higher systolic blood pressure at 4 weeks than rats whose mothers were 

fed low protein Hope Farm diet and than offspring of mothers fed adequate protein during 

gestation. These findings suggest that protein content per se may not lead to fetal 

programming. Because the fatty acid composition, total fat and methionine content, of 

the maternal diet were different any of these other nutrients can contribute to fetal 

programming. Although maternal protein restriction induces low birth weight, the model 

does not focus on the effects of low birth weight on the development of later disease, 
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rather the model focuses on how alterations of maternal nutrition during gestation leads to 

chronic disease development. The majority of epidemiological studies of fetal 

programming specifically link low birth weight to later chronic disease, and do not focus 

on maternal nutrition during gestation. 

Metabolic Mechanisms 

Through the use of animal models, several hypotheses to explain metabolic 

mechanisms of fetal programming have been proposed. One theory is that excessive 

exposure to maternal glucocorticoids in utero causes permanent changes in the 

hypothalamo-pituitary-adrenal (HPA) axis that lowers birth weight and programs adult 

hypertension and glucose intolerance (Nyirenda et al., 1998). Another recent hypothesis 

is that maternal nutritional status can cause epigenetic changes in the fetal genome 

leading to altered DNA methylation (Wu et al., 2004). Abnormal DNA methylation 

during fetal development can permanently alter fetal metabolism in such a way that the 

individual becomes more likely to develop chronic disease later in life. Although the 

metabolic mechanisms are not yet elucidated, animal models of fetal programming have 

proved to be invaluable to advance the understanding of fetal programming and its 

mechanisms. 

1.2 Compensatory Growth 

The majority of low birth weight infants will undergo a period of accelerated 

postnatal growth, termed compensatory or catch-up growth. During this period, nutrient 

efficiency is increased allowing for rapid growth. However, this increased efficiency 

does not last and once over, growth continues according to age and size (Metcalfe and 
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Monaghan, 2001 ). The period of compensatory growth usually occurs during the first 6-9 

months of life, while milk is the dominant food source (Rasmussen, 2001). It is important 

to note that low birth weight does not cause compensatory growth. Catch-up growth 

occurs as a result of periods of nutritional insult or illness; therefore, infants within the 

normal range of birth weights can also experience compensatory growth. In fact, roughly 

30% of infants experience catch-up growth (McMillen and Robinson, 2005). Moreover, 

-·----Infants. born large for their gestational age undergo catch-down growth during the first 6-9 

months of life (Rasmussen, 2001 ). There is epidemiological evidence suggesting that 

small birth weight infants that experience catch-up growth are at even higher risk for the 

development of chronic diseases (McMillen and Robinson, 2005). 

Mechanisms of Compensatory Growth 

The mechanism of catch-up growth is not well understood. One proposal is that 

the central nervous centre compares the actual body size to an age-appropriate size and 

adjusts growth accordingly (Gafni and Baron, 2000). Another theory is that 

compensatory growth involves the proliferation of growth plate stem cells (Gafni and 

Baron, 2000). Despite the fact that little is understood about the underlying mechanisms. 

most animals exhibit compensatory growth including fish, reptiles, amphibians, birds, 

rats, pigs and humans (Metcalfe and Monaghan, 2001 ). Compensatory growth increases 

short-term survival of most animals, allowing them to reach sexual maturity more 

quickly. The long-term consequences are poorly understood and have received little 

attention in most species. However, in some studies, life expectancy is compromised as a 

cost of this catch-up growth in some species such as salmon, zebra fish and rats (Metcal fc 

and Monaghan, 2001 ). Rats subjected to protein restriction in utero have reduced cell 
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numbers in key organs that can not keep up with the increased metabolic demand during 

compensatory growth (Hales and Barker, 2001). As a result, the rat is more likely to 

develop chronic diseases that can decrease life expectancy. The fetal programming 

hypothesis has brought back a resurgence of interest in understanding the metabolic 

consequences of compensatory growth. Large epidemiological studies in the United 

Kingdom and Finland have extensively studied the growth patterns of these populations. 

Epidemiological Evidence Linking Catch-Up Growth to Later Disease 

The short-term effects of catch-up growth have been studied extensively in 

developed nations. Body weight and length records at birth, 2 years and 5 years of age 

were collected from infants enrolled in the United Kingdom's Avon Longitudinal Study 

of Pregnancy and Childhood (ALSPAC) in order to examine postnatal growth (Ong et al., 

2000). Infants, who experienced catch-up growth during this period, were smaller, 

shorter and thinner at birth compared to all other infants. When examined at 5 years of 

age, those infants who experienced compensatory growth had higher body mass indices 

(BMI), percentage body fat, total fat mass and waist circumference compared to all other 

infants. Infants who caught up in length from birth to 2 years had higher BMI and fat 

mass at 5 years of age than all other infants. These findings demonstrate that 

compensatory growth in body weight and length of low birth weight infants has profound 

effects on weight gain and fat deposition at five years of age. Further studies have 

investigated whether this trend persists into adulthood and its consequences on adult 

health. 

A series of retrospective studies was performed using data from the Helsinki 

Finland cohort, which related birth weight, and growth rates between the ages of 7-15 to 
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coronary heart disease and type 2 diabetes in adulthood (Forsen et al., 1999 and 2000, 

Eriksson et al., 1999). In relation to birth weight, the odds ratio for type 2 diabetes was 

1.38 for each 1 kg decrease in birth weight. These results show that the odds for type 2 

diabetes development increase along a range of decreasing birth weights, suggesting a 

graded response. Perhaps most interesting, this study also found a strong relationship 

between growth rate between 7- 15 years and later type 2 diabetes development (Forsen 

et al., 2000). The findings of this study suggest a relationship between birth weight and 

postnatal growth rate and later development of type 2 diabetes. 

Challenges/Problems with Human Studies 

Although postnatal growth rate can be linked to the development of chronic 

diseases, there are many factors that affect postnatal growth rate. When examining 

epidemiological studies, it is important to consider the mode of feeding during the first 

year of life. According to World Health Organization growth records, breast fed babies 

grow faster during the first 2 months and slower from 3-12 months than formula fed 

infants (Dewey, 1998). Dewey (1998) performed a meta-analysis of 19 studies from 

1980-92 comparing growth ofbreast-fed and formula fed infants in the same population. 

Overall, formula fed infants gained more weight in the first year of life compared to 

breast fed infants. However, there are several limitations and confounding factors that 

impact studies of this nature. For example, each milk formula composition varies 

slightly. Also, it is impractical to quantify breast milk intake during this period. Maternal 

smoking, disease and nutrient intake during pregnancy will all affect the infant's postnatal 

growth and must be considered when drawing epidemiological conclusions. Using 
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animals to study compensatory growth is advantageous, as it is easier to control for the 

confounding factors plaguing human studies 

Animal Models of Compensatory Growth 

As mentioned previously, the low protein rat model is commonly used for 

inducing low birth weight pups. Restricting maternal protein during lactation provides a 

unique model for examining the impact of early infant nutrition on postnatal growth. In a 

recent study by Desai and colleagues (2005), pups of protein-restricted dams that were 

left on a dam restricted during lactation, remained small throughout life. However, when 

cross-fostered onto a control dam, pups grew significantly faster and were larger than 

control pups by 3 weeks of age and remained larger at 9 months of age (Desai et al., 

2005). At 9 months of age, these rats had a significantly lower percent lean body mass 

and higher percent fat mass compared to control animals indicating obesity. 

Despite their many uses in medical research, few studies have examined 

compensatory growth in pigs in relation to fetal programming of later diseases. However, 

research on compensatory growth in pigs has been widely studied by agricultural 

scientists. Ritacco and colleagues ( 1997) compared postnatal growth characteristics of 

runt piglets to larger same sex littermates from birth until 14 days of age. Runt piglets 

experienced a faster relative rate of growth than their littermates. Also, the feed 

efficiency (g feed: g gain) was significantly better (i.e. lower) in runts than larger 

littermates. Poore and Fowden (20043
) also found that the relative rate of growth was 

significantly higher in runt piglets from 3 -12 months of age compared to larger 

littermates. In terms of absolute body weight, runts were significantly smaller at 3 

months of age than littermates, but not at 12 months of age. These runt pigs were found 
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to have impaired glucose tolerance at 12 months of age. Although, there is limited 

research on pigs and fetal programming, they do demonstrate compensatory growth that 

contributed to later disease. 

1.3. Diabetes and Fetal Programming 

The prevalence of hypertension, cardiovascular disease, obesity and type 2 

diabetes in Westernized countries is increasing rapidly (Rader, 2007). Type 2 diabetes 

has become an epidemic in North America. The explosive rise in the incidence of type 2 

diabetes is paralleled with an equally explosive increase of obesity. This observation is 

not surprising as obesity, especially visceral obesity, is strongly related to type 2 diabetes 

(Rader, 2007). What is alarming is the extremely high incidence of childhood and 

adolescent obesity and type 2 diabetes. Studies in Spain, India and France have shown 

insulin resistance in children as young as 8 years of age (Bavdekar et al., 1999, Ibanez et 

al., 2003, Leger et al., 1997). Insulin resistance refers to the impaired uptake of glucose 

by muscle and typically precedes both obesity and diabetes. Insulin resistance is 

characterized by high fasting plasma insulin needed to keep the individual in euglycemia. 

However, the pancreas cannot keep up with the insulin demand. Hyperglycemia results 

and the individual becomes type 2 diabetic. It is now thought that low birth weight and 

obesity in childhood is a stronger predictor of insulin resistance than ofbeing obese as an 

adult (Hales and Barker, 2001). 

In the ALSP AC prospective cohort study of children born in the United Kingdom, 

detailed growth records were obtained from birth and compensatory growth was defined 

as children that had upwardly crossed a centile from 0-3 years of age. In a recent study 

11 



by Ong and colleagues (2004) using this cohort, children that experienced catch-up 

growth had higher BMI, waist circumferences and lower insulin sensitivity at 8 years of 

age. In children with the highest BMI, low birth weight was strongly associated with 

insulin resistance. Cohorts of children in India and North America have demonstrated 

similar results (Dunger and Ong, 2005). 

Although the data regarding childhood insulin resistance are relatively recent, 

there is extensive epidemiological evidence demonstrating a relationship between low 

birth weight and postnatal growth on the development of type 2 diabetes in adults. 

Poulsen and colleagues (1997) studied the effects of birth weight on the development of 

type 2 diabetes in monozygotic and dizygotic twins. Twins aged 55-74 were selected 

from the Danish Twin Register. Twins that participated in the study underwent an oral 

glucose tolerance test and fasting glucose, insulin, triglycerides and cholesterol were also 

determined. Individuals of the lowest birth weight had significantly higher 120 minute 

plasma glucose and glucose area under the curve during the oral glucose tolerance test. 

When twins were paired, twins that were diagnosed with type 2 diabetes were born at 

significantly lower birth weight than their non-diabetic co-twins. This finding suggests 

that birth weight is a strong predictor of later type 2 diabetes development, as factors such 

as genetics, gestational age, maternal height/weight and birth order were similar in twins. 

Timing of Nutrient Restriction 

Despite the substantial epidemiological evidence linking birth weight and 

postnatal growth to childhood insulin resistance and adult type 2 diabetes, rat studies have 
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failed to duplicate these findings. Rats whose mothers were protein-restricted during 

gestation have better glucose tolerance at weaning than rats that were not restricted in 

utero (Shepherd et al., 1997). However, later in life, the low protein rats have much 

worse glucose tolerance than control animals. These results only occurred if the rat 

protein-deprived in utero is suckled from a well-nourished dam. In order to better 

understand these findings, researchers looked into the effects of protein deprivation on 

specific organ systems involved in glucose homeostasis, specifically the pancreas. 

Pancreatic beta cell number is greatly decreased in protein-deprived pups at birth 

(Bertram and Hanson, 2001 ). A reduced beta cell number should decrease the insulin 

production and secretion capacity compared to non-restricted animals. However, in rats 

cross-fostered onto a well-nourished mother during lactation, the beta cell mass is 

restored, whereas, in those left with a dam protein-deprived during lactation, the 

restoration of beta cell number does not occur. One explanation for this oddity is that rats 

are altricial species, meaning they experience extensive maturation postnatally. 

Pancreatic islet cell neogenesis occurs in two periods in rats (Hill and Duvillie, 2000). 

Pancreatic islets are present during late gestation but are not responsive to glucose, only 

to amino acids (Hill and Duvillie, 2000). Shortly after birth in rats, the islet cells already 

present are replaced with new islet cells that are responsive to glucose and able to secrete 

insulin. It has been suggested that this new population of islet cells will have metabolic 

control in later life. Therefore, any perturbations to islet cell development in utero have 

the potential to be corrected postnatally if the second population of islet cells is unaltered 

(Hill and Duvillie, 2000). Humans, however, are precocial meaning they are born with 

highly developed cardiovascular and endocrine systems at birth. Unlike the rat, human 
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pancreatic islet cells are mature and develop glucose responsiveness during the third 

trimester of pregnancy (Hill and Duvillie, 2000). Therefore, any disruption to pancreatic 

development during late gestation can lead to altered metabolism in later life. 

Since pancreatic organogenesis occurs during the third trimester of human 

pregnancy, it is not surprising that maternal food restriction during this time would lead to 

type 2 diabetes later in life. Unique human data were generated on the effects of nutrient 

restriction in utero during the Dutch winter famine. During the Second World War, food 

was restricted to the western Netherlands from November 1944 until May 1945. Caloric 

intakes ranged from 400-1000 kcal/d. Many researchers have studied adults that were in 

utero during the famine for signs of fetal programming. Adults that were nutrient­

restricted in utero during the first trimester of pregnancy had high rates of cardiovascular 

disease. Those restricted in late gestation experienced insulin resistance, type 2 diabetes 

and hypertension in adulthood (Barker et al. 1993). Ravelli and colleagues (1998) found 

that individuals subjected to the famine in utero during mid to late gestation had 

significantly higher 2-hour glucose levels during an oral glucose tolerance test than those 

affected during the first trimester. Individuals subjected to famine during late gestation 

displayed a greater degree of glucose intolerance than those restricted during mid 

gestation. These results confirm that the timing of nutrient restriction in utero influences 

which diseases are programmed. More animal models are needed to fully understand the 

impact of maternal nutrient restriction during specific periods of gestation on 

organogenesis of the pancreas and later disease development. Specifically, precocial 

animals such as the pig would make an excellent model of study. 
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The pig has been used extensively as a model for studying many aspects of both 

insulin dependent and non-insulin dependent diabetes including pancreatic beta cell 

function and mass. The pig shares very close nutritional, physiological and metabolic 

similarities with humans making it an ideal model of study. However, few researchers 

have used the pig as a model for studying the fetal programming of type 2 diabetes. 

Recently, Poore and Fowden (2002, 2003, 2004a, 2004b) published several articles 

introducing the domestic pig as a model for fetal programming. They studied low and 

high birth weight pigs at 3 and 12 months of age for the development of hypertension, 

cardiovascular disease, obesity and type 2 diabetes. Growth characteristics including 

body weight, body length and crown rump length were taken at birth, 1, 3 and 12 months. 

Fractional growth rates (kg gained/dlkg BW) from 0-1 months, 0-3 months, 3-12 months 

and 0-12 months were determined. Low birth weight pigs had a faster fractional growth 

rate than high birth weight animals from 0-1 months of age, which was considered 

compensatory growth. At 3 and 12 months of age pigs were surgically fitted with venous 

catheters and intravenous glucose tolerance tests and insulin sensitivity tests were 

performed. There was no evidence of disease development in the pigs at 3 months of age, 

but at 12 months of age, the glucose and insulin areas under the curve were significantly 

higher in low birth weight pigs than high birth weight pigs. Low birth weight pigs also 

had significantly lower fasting plasma insulin at 12 months. Furthermore, the glucose 

area under the curve at 12 months was negatively associated with birth weight. These 

findings support the use of domestic pigs as a model for studying fetal programming, 

however, more pig studies are needed to validate the model. 

Animal Models of Fetal Programming and Insulin Resistance 
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The main animals used to study fetal programming are the sheep and rat. 

Although both species have proven to be effective models of study, each has its 

drawbacks. The sheep is a well-established model for fetal human physiology. It is easy 

to catheterize fetal sheep and study the intrauterine environment. Therefore, the 

metabolic mechanisms of fetal programming can be determined. However, long-term 

studies of the consequences of a poor intrauterine environment are rarely performed 

because the sheep is a ruminant animal. Ruminants have completely different nutrient 

requirements, feeding behaviours and digestive physiology than humans. The rat is the 

most extensively used animal for studying fetal programming. Rats are small, easy to 

handle, maintain and house, and are a widely accepted model for studying many facets of 

human metabolism and physiology. Rodents are also short-lived and can be forced to 

develop chronic diseases in aging similar in etiology to humans. However, the rat has 

very different nutrient requirements and feeding behaviours than humans. Also, rats are 

altricial, experiencing extensive maturation postnatally during suckling, whereas, humans 

are precocial, meaning they have a highly developed central nervous system, 

cardiovascular and endocrine system at birth. Very recently the domestic pig was used as 

a model for fetal programming. Like rats, pigs are litter-bearing animals, which enables 

direct comparisons of runts to genetically similar larger littermates. Pigs demonstrate 

compensatory growth (Ritacco et al. 1997, Wolter et al. 2002, Poore and Fowden 2004a) 

and are physiologically and nutritionally very similar to humans. Moreover, the pig has 

been used successfully as a model for many chronic diseases such as diabetes, 

cardiovascular disease, hypertension, and obesity (Kjems et al. 200 I, Larsen et al. 2002, 

Poore and Fowden 2002, Otis et al. 2003, Xi et al. 2004, Sebert et al. 2005). 
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1.4 Swine Models 

Although domestic swine are physiologically very similar to humans, they do 

have some disadvantages. As a livestock animal, the pig has been genetically selected for 

rapid growth rates and protein deposition. Therefore, they are less prone to develop 

obesity. Other breeds of pigs, such as the miniature pig, would make an even better 

model for fetal programming than the domestic pig. Yucatan miniature pigs are smaller 

in size than domestic pigs, reaching an adult size of roughly 70 kg. Bred solely for 

research purposes, the miniature pig grows slowly and has been shown to develop obesity 

and type 2 diabetes (Larsen et al. 2002, Otis et al. 2003, Sebert et al. 2005). However, no 

researchers have used the miniature pig as a model for studying the early origins of adult 

disease. 
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Chapter 2: Objectives 

The primary goal of this research was to develop a miniature pig model for 

studying fetal programming. Our specific objectives were as follows: 

1. Establish the Yucatan miniature pig as a model for compensatory growth. 

2. Validate the use of the Yucatan miniature pig as a model for type 2 diabetes. 

3. Determine the effects of birth weight and postnatal growth rate on the 

----------- -- -development oftype 2 diabetes. (This model was also used to investigate other 

chronic diseases including hypertension, obesity, and cardiovascular disease but 

those results are not part of this thesis). 

4. Determine the impact of early postnatal nutrition (i.e. sow fed vs. formula fed) on 

the susceptibility to type 2 diabetes. 

We hypothesize that low birth weight runt pigs will undergo compensatory growth 

and develop signs of type 2 diabetes more readily than their larger birth weight 

littermates. We also hypothesize that suckled piglets will have fewer indicators of disease 

than either formula fed runts or large littermates. 

18 



Chapter 3 Compensatory Growth 

3.1 Introduction 

Low birth weight infants typically undergo a period of accelerated postnatal 

growth, tem1ed compensatory or catch-up growth. Epidemiological evidence has shown 

that low birth weight infants that experience compensatory growth are at an even higher 

risk for the development of chronic diseases than infants born of low birth weight alone. 

This recent evidence has stimulated a resurgence of interest in understanding the 

mechanisms of compensatory growth, which still remain unclear. The purpose of the 

experiments discussed in this chapter was to validate the Yucatan miniature pig as a 

model for compensatory growth. 

3.2 Methods 

Animals and housing 

A total of 18 Yucatan miniature pigs were obtained from the Memorial University 

of Newfoundland Vivarium, where they were housed until 8 months of age. One day 

after a sow gave birth, the entire litter was weighed. A runt piglet was defined as 

weighing less than 900 grams. A same sex larger littermate weighing at least 300 grams 

more than the runt was chosen as a littermate control. A third littermate (sow-fed control) 

was selected at this time and left with the sow until weaning. We attempted for the sow­

fed control to be the next largest same sex littermate, however, it was not possible in all 

litters. Therefore, in two of the triplets the sow-fed control is a different sex from the runt 

and littermate. Overall there was an equal number of males and females used in this 

study. The runt and larger littermate were taken from the sow at 3 days of age, allowing 
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for adequate colostrum intake. Piglets were housed together and provided with straw 

bedding and an infrared heat lamp. Milk replacer (Piglet-Oro, Grober Nutrition, 

Cambridge Ontario) was rehydrated and was bowl-fed ad libitum eight to ten times daily. 

Individual milk intake was measured and recorded after each feeding. At one month of 

age, piglets were adapted to standard pig chow (Eastern Co-op Pig Grower, 16% crude 

protein) over a 3-day period. At this time, the third (sow-fed) control piglet was 

introduced and also adapted to chow. Pigs were then housed in triplets, but fed separately 

for 5 hours daily from 12- 5pm ad libitum. Feed intake was measured daily and animals 

had free access to water. The Institutional Animal Care Committee in accordance with 

the Canadian Council of Animal Care guidelines approved this study. 

Procedures 

Serial growth measurements were taken from birth to 8 months of age. During the 

milk feeding phase, body weight, snout to tail length, and abdominal circumference were 

measured 1-2 times weekly. After adaptation to chow, these measurements were made 1-

2 times a month. The largest part of the abdomen was measured as the abdominal 

circumference (em). Ten millilitre blood samples in EDTA tubes were taken via jugular 

venipuncture from one month until 3 months of age 1-2 times monthly; pigs were 

restrained in a V -trough. From 3 months until eight months of age, 20 ml blood samples 

in EDT A tubes were collected 1-2 times per month. Blood samples were centrifuged for 

1 0 minutes at 4000 x g at 4 °C. The plasma was obtained and stored at -20 °C for later 

analysis. At roughly 8 months of age pigs were transported to the Health Sciences Center 

(HSC), Memorial University of Newfoundland where they remained for the remainder of 

the study. Shortly after arrival at the HSC, two catheters were implanted into the femoral 
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vein and a radiotelemeter into the femoral artery. Details of the surgical procedure will 

be discussed in the following chapter. Four weeks after surgery pigs were killed. 

Statistical Analysis 

All statistical analyses were performed using Graph Pad Prism 4 software. The 

analysis was divided into milk feeding phase (ages 3-31 d) and chow feeding phase (1-8 

months). Linear regression was used to determine growth rates during both phases and 

--------- - - · --------sfopeswere compared. During the milk feeding phase, comparisons between runt, 

littermate and sow-fed were made by repeated measures 1-way ANOVA, with repeated 

measures analysis used to assess blocking by litter. Because two of the sow-fed piglets 

were gender mismatched to their littermates, we could not compare gender effect and 

litter blocking effect simultaneously (2-way ANOVA repeated measures). So to 

accommodate gender matching in formula-fed piglets, paired students t tests were also 

used to make runt and littermate comparisons. During the chow feeding phase, we 

expected gender blocking to have a larger effect than litter matching on growth 

parameters; so during this phase, differences between groups and gender were determined 

using non-repeated measures 2 way ANOV As. In analyses where gender had no effect 

we presented the data as group means. When gender had an effect, the data was 

represented as figures. In all analyses, statistical significance was declared ifp < 0.05. 

All data are expressed as mean, plus or minus standard deviation. 
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3.3 Results 

Growth characteristics at birth 

The average litter size was 7.0 ± 1.0 with the mean weight being 0.896 ± 0.084 

kg. The body measurements of piglets one day after birth are found in Table 3 .1. Runt 

piglets were significantly smaller in weight, length and abdominal circumference than 

their larger littermate and sow-fed control one day after birth. There were no significant 

differences in size between littermate and sow-fed controls. 

Table 3.1: Body weight (kg) and linear growth and abdominal circumference (em) (body 

length and abdominal circumference, em) one day after birth in runt, littermate and sow­

fed control piglets. 

Runt Littermate Sow-fed Control 

Body weight (kg) 0.730 ± 0.106 a 1.1097 ± 0.1337 ° 1.0149 ± 0.1609 ° 

Body length (em) 31.7±2.7 a 35.5 ± 1.5 ° 35.6 ± 2.1 ° 

Abdominal 23.1 ± 1.6 a 27.6 ± 1.1 b 27.4 ± 0.5 b 

circumference (em) 

a p< 0.001 (ANOVA) 

22 



Growth characteristics during the milk feeding phase (3 days-1 month of age) 

Feed intake 

Milk intake was measured in runts and littermates only, as it was not possible to 

quantify sow-fed control sow milk intake while with their mothers. Large littermates 

consumed more milk replacer than runts on a daily basis (Figure 3.1). 

.-.. -
3500 

3000 

! 2500 

12 2000 = ..... 
,.9 1500 

"i 1000 
~ 

500 

a 

• 
• 

• 

0~------~------~------~------~ 
0 10 20 

Day 

30 40 

Figure 3.1: Average daily milk replacer intake (ml/d) of 
runt and littermate pigs during milk feeding. 

• Runt 
a Littermate 

-Line of regression of Runt (r2=0.80) 

---·Line of regression ofLittermate (r2=0.66) 
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Feed efficiency was calculated as the kilograms of feed required to produce one 

kilogram of gain. The overall average feed efficiency for the month of milk feeding was 

not different between runts and littermates. Therefore, weekly averages were determined 

to look for changes in feed efficiency over time (Table 3.2). The most efficient growth 

was experienced during the first week of milk feeding, and declined over time. During 

the second week of formula feeding only, runt piglets had significantly better feed 

efficiency than their littermates (p=0.03). This short period of increased nutrient 

efficiency is characteristic of compensatory growth. 

Table 3.2: Average feed efficiency (kg feed: kg gain) from day 3-31,3-10, 11-17, 18-24 

and 25-31 in runt and littermate piglets. 

Runt Littermate 

Average feed efficiency (Day 3-31) 1.3 ± 0.2 1.3 ± 0.1 

Feed efficiency (Day 3-10) 0.7± 0.2 0.8± 0.2 

Feed efficiency (Day 11-17) 1.0 ± 0.1 a 1.3 ± 0.2 D 

Feed efficiency (Day 18-24) 1.2 ± 0.1 1.2 ± 0.2 

Feed efficiency (Day 25-31) 1.7±0.3 1.8 ± 0.2 

a p=0.03 

Growth rates during milk feeding 

During the milk-feeding phase, the growth rates of all piglets were linear (Table 

3.3). Runt piglets grew at a significantly slower rate than other pigs (p=0.008) (Figure 
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3.2, table 3.3). Large littermates grew at the same rate as sow-fed controls. Body length 

and abdominal circumference also increased linearly during milk feeding (Table 3.3). 

The rate of length gain and rate of abdominal gain was not significantly different between 

pigs. 

Table 3.3: Growth rates (body weight, kg/d, body length and abdominal circumference, 

em/d) of runt, littermate and sow-fed control piglets during milk feeding (1st month of 

life) 

Growth Rates Runt Littermate Sow-fed 

Body weight (kg/d) 0.1389 ± 0.0060 a 0.1668 ± 0.0087 ° 0.1780 ± 0.0118 ° 

r2=0.93 r2=0.89 r2=0.85 

Body length (em/d) 0.74 ± 0.05 0.82 ± 0.03 0.76 ± 0.05 

r2=0.83 r=o.93 r2=0.88 

Abdominal circumference 0.71 ± 0.03 0.69 ± 0.03 0.63 ± 0.06 

(em/d) r2=0.92 r=o.9o r2=0.81 
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Figure 3.2: Lines of regression of runt, littermate and sow-fed 
control pigs for growth rate (kg! d) during milk feeding 

o Runt -Runt r2=0.93 

a Littermate --· Littermate r2=0.89 
• Sow-fed ---·Sow-fed r2=0.85 

Runt and sow-fed piglets grew at a similar rate as a percentage of their initial body 

weight. Large littermates grew significantly slower as a percentage of their initial weight 

compared to runt and sow-fed controls (p=O.OOl) (Figure 3.3). When examining body 

length and abdominal circumference as a percentage of initial values, there were no 

significant differences between runts, littermate and sow-fed controls (Table 3.4). 
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Figure 3.3: Relative rate of body weight gain (rate of body weight 
gain as a percentage of initial body weight) expressed as line of 
regression in runt, littermate and sow-fed control pigs. 

0 Runt -Runt r2=0.95 

a Littermate --· Littermate r2=0.89 

• Sow-fed ----- Sow-fed r2=0.75 
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Table 3.4: Relative rate of body weight, body length and abdominal circumference gain 

in runts, littermates and sow-fed control piglets during milk feeding. The rate of gain 

expressed is as a percentage of initial weight, length and circumference measurements. 

Runt Littermate Sow-fed 

Relative rate of body 0.20 ± 0.01 D 0.22 ± 0.02 a 0.15 ± 0.01 b 

weight gain r2=0.95 ?=0.89 r2=0.75 

Relative rate of body length 0.02 ± 0.001 0.02 ± 0.001 0.03 ± 0.006 

gam ?=0.80 r2=0.91 ?=0.49 

Relative rate of body 0.03 ± 0.002 0.02 ± 0.002 0.02 ± 0.003 

abdominal circumference r2=0.76 r2=0.83 1=0.80 

gam 

Data within a row a p>0.05 

Absolute growth during milk feeding. 

In terms of absolute body weight and body length runts remained significantly 

smaller than other piglets at week 1, 2, 3, 4 (Table 3.5, 3.6). However, by four weeks the 

there was no significant difference in abdominal circumference between runts and other 

pigs (p=0.06) (Table 3.7). 
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Table 3.5: Average weekly absolute body weights, kg (day 3-10, 11-17, 18-24, 25-31) of 

runt, littermate and sow-fed piglets during milk feeding. 

Average Body Runt Littermate Sow-fed 

Weight (kg) 

Week 1 (Day 3-10) 1.1863 ± 0.1559 a 1.7418 ± 0.2385 D 1.6068 ± 0.4156 D 

Week 2 (Day 11-17) 1.9460 ± 0.3901 a 2.7575 ± 0.8369 D 3.0064 ± 0.8492 D 

Week 3 (Day 18-24) 2.9102 ± 0.6169 a 3.8698 ± 0.9688 D 3.9121 ± 0.9421 D 

Week4 (Day 25-31) 4.1005 ± 0.4723 a 5.3765 ± 0.7964 D 5.2919 ± 1.1096 D 

Table 3.6: Average weekly absolute body lengths, em (day 3-10, 11-17, 18-24, 25-31) of 

runt, littermate and sow-fed piglets during milk feeding. 

Average Body Runt Littermate Sow-fed 

Length (em) 

Week 1 (Day 3-10) 34.5 ± 2.3 a 38.5 ± 2.4 b 36.8 ± 2.8 b 

Week 2 (Day 11-17) 39.5 ± 4.9 a 43.3 ± 4.1 D 43.5 ± 5.6 D 

Week 3 (Day 18-24) 45.7 ± 2.4 a 51.0 ± 2.8 D 50.4 ± 4.2 D 

Week 4 (Day 25-31) 51.3 ± 2.8 a 58.1 ± 2.6 b 55.8 ± 1.8 b 
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Table 3.7: Average weekly absolute abdominal circumference, em (day 3-10, 11-17, 18-

24, 25-31) of runt, littermate and sow-fed piglets during milk feeding 

Average Abdominal Runt Littermate Sow-fed 

Circumference (em) 

Week 1 (Day 3-10) 25.6 ± 0.9 a 29.3 ± 1.4 b 27.5 ± 0.7 b 

Week 2 (Day 11-17) 31.0 ± 3.0 a 35.0 ± 3.9 ° 34.8 ± 3.5 ° 

Week 3 (Day 18-24) 38.0 ± 2.2 a 42.1±3.4° 39.7 ± 2.6 ° 

Week 4 (Day 25-31) 41.7 ± 1.6 ° 45.2 ± 2.2 ° 43.7 ± 3.2 ° 

Growth characteristics during the chow feeding phase (1- 9 months of age) 

Feed intake 

Average daily feed intake (kg/d) did not significantly differ between pigs 

throughout the study. Upon visual inspection, it increased linearly from day 40 until 

approximately day 110 of study. Feed intake then became more variable as animals 

reached sexual maturity (Figure 3.4). Feed efficiency (kg feed per kg gain) steadily 

declined over time and was not different between groups of animals (Figure 3.5). 
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Figure 3.4: Average daily feed intake (kgld) from adaptation to chow 
(day 40) to the end of study in runt, littermate and sow-fed controls. 

o Runt -Runt r2=0 .83 
c Littermate --· Littermate r2=0.82 
t:J. Sow-fed ----- Sow-fed r2=0.80 
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Figure 3.5: Average feed efficiency (kg feed per kg gain) 
during chow feeding in runt, littermate and sow-fed control 
ptgs. 
ADFI =Average daily feed intake 
ADG =Average daily gain 

• Runt r2 = 0.68 
T Littermate r2 = 0.68 
0 Sow-fed r2 = 0.62 

Growth rates 

Weight gain, body length and abdominal circumference once the piglets were 

adapted to chow increased linearly throughout the study (Table 3.8). Runt pigs grew at a 

significantly slower rate than other pigs from day 40 -110 of study (p=0.002) but not 

from day 110 until the end of study (Figure 3.6). Body length and abdominal 
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circumference increased significantly more rapidly from day 40 until 110 than from day 

110 until the end ofthe study (p<0.0001) (Figure 3.7, 3.8). There were no differences in 

these indices between runts, littermates or sow-fed controls at either time period. 

Table 3.8: Rate of body weight gain (kg/d), body length and abdominal circumference 

gain (em/d) from day 40-110 and 110 until the end of study in runt, littermate and sow­

fed pigs 

Runt Littennate Sow-fed 

Growth rate (kg/d) 

Day 40-110 0.270 ± 0.011 a 0.321 ± 0.011 b 0.309 ± 0.011 b 

r2=0.94 r2=0.95 r2=0.95 

Day 110-220 0.301 ± 0.016 0.301 ± 0.011 0.277 ± 0.017 

r2=0.89 r2=0.95 r2=0.87 

Body length gain (em/d) 

Day 40-110 0.5 ± 0.022 0.5 ± 0.02 0.6 ± 0.02 

r2=0.97 r2=0.94 r2=0.95 

Day 110-220 0.2 ± 0.01 0.2± 0.02 0.2 ± 0.02 

r2=0.89 r2=0.71 r2=0.82 

Abdominal Circumference 

gain (em/d) Day 40-110 0.4 ± 0.02 0.4 ± 0.02 0.4 ± 0.02 

r2=0.85 r2=0.93 r2=0.91 

Day 110-220 0.2 ± 0.02 0.19±0.01 0.17 ± 0.03 

r2=0.65 r2=0.75 r2=0.56 

p=0.002 
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Figure 3.6: Lines of regression for rate of body weight gain 
(kg! d) during chow feeding in runt, littermate and sow-fed pigs 

o Runt -Runtr2 =0.89 
c Littermate 
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Figure 3.7: Lines of regression for the rate of body length gain 
(em/d) from adaptation to chow to day II 0 and day II 0 until the end 
of study in runt, littermate and sow-fed control pigs 

-Runt ( d40 - dii 0, r2 = 0.97; dii 0 to end, r2 = 0.89) 
--·Littermate (d40- diiO, r2 = 0.94; diiO to endr2 = 0.7I) 

----- Sow-fed ( d40 - dii 0, r2 = 0.95; dii 0 to end r2 = 0.82) 

o Runt 
c Littermate 

" Sow-fed 
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Figure 3.8: Lines of regression for the rate of abdominal 
circumference gain (em/d) from adaptation to chow to day 110 and 
day 110 until the end of study in runt, littermate and sow-fed control 
p1gs 

-Runt (d40- d11 0, r2 = 0.85; d11 0 to end, r2 = 0.66) 

--·Littermate (d40- d110, r2 = 0.93; d110 to end r2 = 0.75) 

·----·Sow-fed (d40- d11 0, r2 = 0.91; d11 0 to end r2 = 0.56) 

o Runt 

a Littermate 

" Sow-fed 

Absolute Growth. 

Absolute growth was examined at two time points, day 11 0 and day 220 (Tables 

3.9, 3.10). In analyses where gender had no effect the data was presented as group 

means. When gender had a significant effect, the data was presented as figures (Figures 

3.9, 3.10, 3.11). At day 110, the pigs approximately 3.5 months of age and their rate of 
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length and abdominal growth was just beginning to slow down. Most animals reach 

sexually maturity around 3.5-4 months of age (i.e. when we observed standing heat in 

females). Day 220 was toward the end of the study and the pigs were roughly seven 

months of age. Runts were significantly smaller than other pigs in terms of body weight 

and body mass index at day 110 of study (p=0.0048). Abdominal circumference was not 

different between groups of pigs, but was greater in females than males (p=0.0101) 

(Figure 3.9). Runts were significantly smaller in terms of body length than other pigs 

(p=0.005). Female large littermates were significantly shorter in body length than male 

littermates (p=0.02) (Figure 3.10). Towards the end of study at day 220, there were no 

differences in body weight, length, body mass index or abdominal circumference between 

pigs. Abdominal circumference was greater in females than males (p<0.0001) (Figure 

3.11). 

Table 3.9: The effects (p value) of group (runt, littermate, sow-fed) and gender on 

absolute body weight (kg), body length and abdominal circumference (em) and body 

mass index (kg/m2
) on day 11 0 

Runt Littennate Sow-fed Group Gender Group X 

p value p value Gender 

p value 

Body weight 22.81 ± 27.53 ± 26.42 ± 0.005 0.16 0.13 

(kg) 2.00 2.74 2.16 

Body length 90.1 ± 2.9 96.7 ± 6.0 96.2 ± 4.3 0.005 0.008 0.02 
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(em) 

Abdominal 70.8 ± 4.8 75.9 ± 3.4 74.4 ± 5.1 0.08 0.01 0.39 

circumference 

(em) 

Body mass 22.8 ± 1.0 27.5 ± 2.9 26.4 ± 0.8 0.005 0.16 0.13 

index (kglm2
) 

Table 3.10: The effects (p value) of group (runt, littermate, sow-fed) and gender on 

absolute body weight (kg), body length and abdominal circumference (em) and body 

mass index (kg/m2
) on day 220 

Runt Littermate Sow-fed Group Gender Group X 

p value p value Gender 

p value 

Body weight 58.60 ± 64.86 ± 63.34 ± 0.09 0.60 0.21 

(kg) 5.75 3.55 4.58 

Body length 124.3 ± 4.5 129.4 ± 3.7 129.1 ± 2.3 0.051 0.46 0.25 

(em) 

Abdominal 97.3 ± 6.3 102.1±4.9 99.8 ± 7.0 0.10 p<0.0001 0.48 

circumference 

(em) 

Body mass 58.6 ± 0. 2 64.9 ± 2.2 63.3 ± 4.7 0.09 0.60 0.21 

index (kglm2
) 
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Female Male 

Figure 3.9: Abdominal circumference (day 110) in runt, littermate and 
sow-fed control pigs. Female pigs had statistically significantly higher 
abdominal circumference at day 110 than male pigs (p=O.O 1 0). There 
were no statistically significant differences between runt, littermate and 
sow-fed control pigs (p=0.08) 

mB:Runt 

~ Littermate 

=sow-fed 
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Female Male 

Figure 3.10: Body length (em) at day 110 in runt, littermate 
and sow-fed control pigs. Runts were significantly smaller 
than other pigs (p=0.005). Female large littermates were 
significantly shorter in body length than male littermates 
(p=0.02) 
~Runt 

~ Littermate 

=sow-fed 
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Female Male 

Figure 3.11: Abdominal circumference (em) on day 220 in 
runt, littermate and sow-fed control pigs. Female pigs had 
significantly greater abdominal circumference (em) than male 
pigs (p<O.OOOI). 

mBRunt 
~ Littermate 

=sow-fed 
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3.4 Discussion 

Low birth weight is often the result of an insufficient supply of nutrients to the 

fetus. In litter-bearing species such as the pig, naturally occurring low birth weight 

neonates (runts) are born as small as one-third the size of their littennates. Runting is 

thought to be caused by placental insufficiency resulting in decreased oxygen and nutrient 

delivery to the fetus (Foxcroft et al., 2006). Often, runts do not gain access to an 

adequate teat at birth due to litter competition and as a result, have lower feed intakes, 

slower growth and decreased survival rates. In addition to limited postnatal nutrient 

supply, runt piglets are born with less muscle fibres leading to slower growth rates 

making them less capable to achieve the same size as their littermates (Foxcroft et al., 

2006). Powell and Aberle found that runt piglets grow less efficiently and produce 

carcasses with more fat than their littermates (Powell and Aberle, 1980). Because runt 

piglets in our study were provided ad libitum nutrients via individual formula feeding 

(eliminating competition), we did not expect to see this typical marked decrease in gro\\rth 

rate. Therefore, in this chapter we wanted to examine and compare the growth patterns of 

well-nourished runt piglets from birth to early adulthood to their larger litternmtes. 

In response to nutritional insults in utero, neonates will undergo a period of 

accelerated postnatal growth, termed compensatory or catch-up growth. During this 

period, nutrient efficiency (utilization) is increased allowing for rapid gro\\rth. However, 

this increased efficiency is transient and once over, growth continues along a trajectory 

according to age and size. If the animal continues to receive abundant nutrients once the 

period of compensatory gro\\rth is complete, the excess nutrients will be catabolized and 

deposited as fat. We expected runt piglets to experience a period of increased nutrient 
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efficiency during milk feeding, but not completely catch up in size to their littermates as 

adults. Since piglets were being fed ad libitum throughout the study we expected runt 

piglets to deposit fat once the period of compensatory growth finished. Sow-fed controls 

were used as a reference group ofnom1al growth and development. We expected large 

littermates to display similar growth patterns to that of sow-fed control piglets. 

Milk Feeding Phase 

Since compensatory growth typically occurs in early postnatal life, our results 

were divided into "milk feeding phase" and ·'chow feeding phase'' and analyzed 

separately. During milk feeding, runts grew in weight, length and abdominal 

circumference at a significantly slower rate than other piglets, despite being fed ad 

libitum. Similar growth response in domestic runt piglets fed milk replacer ad libitum has 

been observed in other studies (Ritacco, Wolter 2002). Poore and Fowden (2004) found. 

that lower birth weight (not runts) domestic piglets grew at a significantly slower rate 

than higher birth weight piglets during the first month of life. Although, the slower 

growth rate in our runts was expected, the reason is unkno\\-n. It is possibly due to 

reduced absorptive capacity. meaning the runt's maximal absorptive capacity is 

propmtionately lower than their larger litte1mates. It could also have been due to reduced 

muscle fibres in runts. The longissimus dorsi muscle and gastrocnemius muscle ofthe 

pigs were obtained at necropsy as adults. Measuring the number of muscle fibres in these 

muscles could be useful to better understand early postnatal growth patterns in miniature 

p1gs. 
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The growth rates (milk feeding) of runts and sow-fed controls relative to their 

birth weights were similar, whereas, larger littermates grew more slowly relative to their 

birth weight. A faster relative rate of growth indicates catch up growth. Poore and 

Fowden (2004) also found that low birth weight pigs had a significantly quicker relative 

rate of growth compared to high birth weight pigs during the first month of life, indicative 

of compensatory growth. The indication of catch-up growth in sow-fed piglets was 

surprising, but might be due to the fact that these piglets had greater access to more milk 

f):om the sow after the runt and large littemmtes were removed. Litters in miniature pigs 

are smaller (i.e. 5-7 piglets) than those in domestic pigs (1 0-15) and so removal of two 

piglets would lead to greater milk availability for the remaining piglets. Indeed, some 

litters were relatively small (3-5) and in other litters, some of the remaining piglets were 

taken for other studies, leaving only the sow-fed control piglet with the mother. This late 

removal of piglets could lead to a catch-up growth scenario for the remaining sow-fed 

control in this study. 

Absolute weekly body weights, lengths and abdominal circumferences were not 

different between large littermates and sow-fed controls. Runt piglets reii?ained 

significantly smaller than other piglets in terms of length and weight throughout the milk 

feeding period. This observation was expected, as runts do not usually completely catch 

up in body size to their littermates. At 4 weeks of age, there was no significant difference 

in abdominal circumference between groups, suggesting that rw1t piglets were using 

excess nutrients for fat deposition. In order to characterize growth more accurately, more 

sophisticated in vivo measures should be made. For example, dual energy X-ray 

absorptiometry (DEXA) could be used to determine the percentage of fat and lean mass 
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of the animals in vivo over time. Future studies using serial slaughter and subsequent 

carcass composition analysis could also be employed to more accurately determine the 

composition of growth in these animals over time. 

During milk feeding, runt piglets experienced a period of increased feed efficiency 

during the third week of milk feeding, characteristic of compensatory growth. Ritacco 

and colleagues ( 1997) observed a similar period of nutrient efficiency in domestic piglets 

during the first two weeks of milk feeding. Establishing compensatory growth is 

important in this model, because in epidemiological studies, humans who are hom small 

and experience compensatory growth are at an even higher risk for the development of 

chronic diseases than infants who are born of low birth weight alone. 

Chow Feeding Phase 

During the chow feeding phase, we expected pigs to grow linearly throughout 

'childhood' and then to level off towards the end ofthe study once the pigs were past 

sexual maturity. Few studies have examined the growth of runt pigs into adulthood, as 

there are few economic benefits to doing so in swine production. Of the few studies that 

have examined growth to adulthood in domestic swine, runt piglets do not completely 

catch up in body size to their littermates (Powell et al, 1980, Wolter et al 2002). 

Therefore, we expected runt piglets to remain somewhat smaller than their littermates 

throughout the study. 

Growth continued linearly in two phases throughout the entire study, with no 

differences between groups. Body length and abdominal circumference during the chow 

feeding phase was rapid until approximately 3.5 months of age and then slowed from 4 

months until the end of the study (9 months). Feed efficiency steadily declined with age. 
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As expected, large littermates and sow-fed controls displayed similar growth patterns. 

The growth pattern displayed by these pigs is similar to that of humans. As the animals 

aged, their feed efficiency worsened, they stopped growing in length and continued 

gaining weight, likely as fat. In order to better describe the growth pattern, detern1ining 

the composition of gain is necessary. It would have been useful to take DEXA 

measurements throughout the chow feeding phase to characterize the composition of 

----gro\\.1:11-throughout this period. At necropsy the viscera and carcasses were collected 

separately for composition analysis. Once these results have been compiled, the 

percentage lean mass, fat mass and bone ash will be identified, allowing us to confirm the 

composition of gain for the entire protocol. 

By the end of the study, there were no significant differences in body size between 

runts and their littermates. This finding was unexpected, as runts typically do not 

completely catch up in body size to their littermates, but rather usually maintain a gro\\-1h 

tr~jectory based on their weaning size. Wolter and colleagues (2002) examined the 

growth patterns of low and high bitth weight domestic pigs fed ad libitum from 3 days of 

age until market weight (110 kg). They found that low bi1th weight pigs took 

significantly more days to reach market weight than high birth weight pigs. However, 

unlike the Wolter study (2002) we intentionally removed the runts from the sow to allow 

ad libitum feeding and catch up growth. When runts are left on the sow they usually 

cannot compete for a teat. Moreover, market weight was achieved at approximately 5 

months of age, much younger than the pigs used in our study. Poore and Fowden (2004) 

compared the growth pattems of feed-restricted high and low birth weight pigs and found 

no difference in body weight between groups at one year of age. The pigs in their study 
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were at a similar stage of development (past sexual maturity) as our pigs, making their 

results more comparable. It is likely that the reason for complete catch up growth in our 

pigs was due to a combination of ad libitum feeding, decreased feed efficiency and 

increased fat deposition with age. 

It is difficult to draw direct comparisons between the Yucatan miniature pigs used 

in this study to domestic breeds of pigs. Domestic breeds have been genetically selected 

for fast growth rates and protein deposition, whereas, miniature swine have been 

developed as a research model with a demonstrated propensity to obesity. Few studies 

carefully detailing the characteristics and composition of growth in miniature pigs are 

available. However, the results from this study support the use of the miniature pig as a 

model for human growth. 

Epidemiological studies have shown that low birth weight infants who experience 

compensatory gro\\-1h are more likely to develop obesity later in life (Taylor and Poston 

2007). In pigs at 9 months of age (i.e. young adulthood), there were no differences in 

abdominal circumference between runts and larger pigs. Females had a significantly 

higher abdominal circumference than males. However, abdominal circumference is a 

rough estimate of obesity much like waist circumference in humans. In order to 

determine if our pigs developed obesity, carcass composition analysis will be completed. 

These results will reveal the degree of visceral obesity, which is considered a major risk 

factor for diabetes and cardiovascular disease in humans. 

Studies in sheep and rats have suggested that appetite may be programmed in 

utero leading to hyperphagia and obesity in later life (Langley-Evans et al 2005). We 

measured feed intake throughout the entire study but the results were difficult to interpret. 
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From adaptation to chow (5 weeks of age) until roughly 4 months of age (sexual 

maturity), feed intake increased linearly with no differences between groups. After 

sexual maturity, feed intake results were difficult to interpret, as they were highly 

variable. Feed consumption in females was greatly influenced by their ovulation cycles. 

When in heat, females did not consume as much feed as when they were not in heat. 

Male pigs consumed roughly the same amount of feed daily once past sexual maturity. 

However, feed intake was influenced by social behaviours, such as fighting for status 

among the group. Stress also inf1uenced feed intake in the pigs. Animals subjected to 

stress, for example during blood sampling, did not consume as much food after the 

procedure. These are simply observations; a more systematic method of quantifying the 

factors affecting feed intake should be developed. Another factor affecting feed intake in 

swine is temperature. In cold temperatures, pigs tended to consume more feed than in 

warm temperatures. Since the housing facility did not have tightly controlled temperature 

environment, feed intake results were likely affected by environment. Based on our 

results. runt piglets did not appear to be hyperphagic as observed in other animal models, 

although our data were probably too variable to detect modest differences. We found no 

evidence to support that appetite was programmed in utero given our measurement 

protocols. 

Conclusion 

It is not surprising that the Yucatan miniature pig proved to be a successful model 

for studying compensatory growth, as the domestic pig is already a well-characterized 

and established model of compensatory growth in the field of animal science (Foxcroft et 

al., 2006, Mitchell, 2007). Fetal programming has brought about a resurgence of interest 
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in compensatory growth in the hwnan population. Low birth weight infants who 

experience compensatory growth appear to be at an even higher risk for later disease 

development than if they were born of low birth weight alone. In animal models of fetal 

programming such as the rat and pig, accelerated growth postnatally correlates to markers 

of diabetes (Langley-Evans et al 2005). The following chapter explains the relationships 

between birth weight and postnatal growth rates and markers of type 2 diabetes Yucatan 

miniature pigs. 
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Chapter 4.0 Diabetes 

4.1 Introduction 

Diabetes Mellitus is a metabolic disease characterized by a dysregulation in 

glucose, insulin and lipid metabolism. The most prominent types of diabetes are insulin 

dependent diabetes mellitus (type 1 diabetes) and non-insulin dependent diabetes mellitus 

(type 2 diabetes). Type 1 diabetes is an autoimmune disease causing destruction of the 

pancreatic beta cells. Patients with type 1 diabetes are unable to produce insulin resulting 

in hyperglycemia. These patients require insulin therapy to keep them in euglycemia. 

Ninety percent of people suffering from diabetes have type 2 diabetes (World Health 

Organization). The metabolic defect causing type 2 diabetes is unknown but insulin 

secretory capacity and mass of pancreatic beta cells are often reduced (Donath and 

Halban 2004). Insulin resistance typically precedes type 2 diabetes. 

Insulin resistance refers to the impaired glucose uptake by peripheral tissues. 

When insulin resistant, peripheral tissues are no longer sensitive to insulin causing 

impaired glucose uptake and utilization, leaving cells starved for glucose. The pancreas 

compensates by increasing insulin production and secretion causing hyperinsulinemia. 

The pancreas cannot keep up with the insulin demand and insulin production is impaired, 

resulting in hyperglycemia and type 2 diabetes. The cause of insulin resistance is 

unknown. Insulin resistance is considered a risk factor for diabetes development and is 

one of the main components of the metabolic syndrome. 

The metabolic syndrome was first defined in 1988 by Reaven to be a 

dysregulation in glucose, insulin and lipid metabolism combined with hypertension. 
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Since then, the definition has been expanded to include obesity (Desroches and Lamarche 

2007). Extensive research into the metabolic syndrome has identified it as a major risk 

factor for diabetes and cardiovascular disease, gaining prevalence worldwide (Ardem and 

Janssen 2007). Although the epidemiology of the metabolic syndrome is well 

characterized, the metabolic mechanisms are unclear. Currently there are several 

definitions for diagnosing of the metabolic syndrome that all include varying 

combinations of hyperinsulinemia, hyperglycemia, hypertriglyceridemia, obesity and 

hypertension. Identifying components of the metabolic syndrome is useful for the 

prediction of diabetes and cardiovascular disease development. 

There are several tests to measure symptoms of diabetes and the metabolic 

syndrome. Fasting plasma analysis of glucose, insulin and lipids is a simple, quick and 

inexpensive method of identifying symptoms such as hyperglycemia, hyperinsulinemia 

and dyslipidemia. The findings from fasting plasma analysis may warrant the use of 

more sophisticated in vivo measurements of glucose and lipid metabolism such as glucose 

tolerance tests and insulin sensitivity tests. 

Glucose tolerance tests measure the pancreatic beta cell's responsiveness to 

glucose. The oral glucose tolerance test is used to diagnose diabetes in humans. The 

individual consumes a glucose solution and a glucose concentration in the plasma is 

measured over a 2-hour period. If plasma glucose is still elevated(> 11 mmol/L) at 2 

hours, then the individual is considered diabetic (World Health Organization, 2006). Oral 

glucose tolerance tests can be impractical to perform in animals because animals may not 

voluntarily consume the glucose dose orally. Therefore, the intravenous glucose test has 

been used. A glucose bolus is given intravenously and glucose clearance from the plasma 
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is measured. The outcomes in this test respond much more quickly as there are no effects 

of gastric emptying. The rate of glucose clearance is a measure of how responsive the 

pancreatic beta cells are to glucose. Slower rates of glucose clearance indicate impaired 

glucose tolerance. 

Insulin sensitivity tests measure insulin-stimulated glucose uptake by peripheral 

tissues, which is a measure of insulin sensitivity (Co belli et al 2007). A large bolus of 

insulin is given and glucose clearance from the plasma is measured. The rate of glucose 

clearance from the plasma is a measure of insulin-stimulated glucose uptake. Slower 

rates of clearance suggest the individual is insulin sensitive which indicates insulin 

resistance. The gold standard method for assessing glycemic status is the 

hyperinsulinemic eugylcemic clamp method. In this method, somatostatin is infused to 

inhibit endogenous insulin secretion, insulin is continuously infused to create 

hyperinsulinemia, and glucose is infused and frequently and rapidly measured in the 

blood in order to keep the individual in euglycemia (Cobelli et al2007). The rate of 

glucose infusion needed to maintain steady state is a direct measurement of whole body 

glucose uptake, which describes the individual's insulin sensitivity. The clamp method 

has beeh used successfully in several species including humans, rats and pigs (Cobelli et 

al 2007). However, this method is very expensive and requires trained personnel. 

Several animal models have been used to study various aspects of diabetes. Rats 

and mice are the most extensively used animal models. Type 1 diabetic rat and mice 

models include spontaneous diabetic strains, chemically induced diabetes and transgenic 

models. Transgenic and knockout models have provided great insight into the genetic 

causes of type 1 diabetes (Gannon 2001). Type 2 diabetic rat and mice models are well 
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characterized and include transgenic models, chemical induction, high fat feeding, 

overfeeding, and fetal programming. Rat and mice models are advantageous for studying 

type 2 diabetes as they have a shorter life span, are small and easy to handle and are a 

well-established model for studying human physiology. However, rodents have different 

feeding behaviours, nutrient requirements and pancreatic development than humans. 

The miniature pig is a more recent model for studying diabetes (Bellinger et al. 

2006). The pig makes an excellent model for studying the metabolic mechanisms of 

diabetes because of their similar physiology, feeding habits (omnivores) and nutrient 

requirements to humans. Also, the pig's pancreas resembles the human's in size, shape, 

position and function (Larsen and Rolin 2004). The majority of studies using miniature 

pigs focus on therapeutic treatments for type 1 diabetes (Larsen and Rolin 2004) and 

chemical induction of type 1 diabetes is the most common technique. Type 2 diabetic pig 

models are not as common. Unlike rat strains, there are few reported cases of 

spontaneous diabetes in pigs. This finding is likely due to the expense and resources 

associated with housing adult pigs. Recently, researchers have used high fat feeding and 

overfeeding to induce obesity in miniature pigs, accelerating diabetes development 

(Sebert et al. 2005). Poore and Fowden (2002) observed impaired glucose tolerance at 1 

year of age in low birth weight pigs. Their findings suggest that low birth weight may 

accelerate diabetes development in pigs. The potential use of the pig as a model for type 

2 diabetes warrants further research. 

53 



4.2 Chapter Objectives 

1. Validate the use of the miniature pig as a model for type 2 diabetes. 

2. Determine the effects of birth weight and postnatal growth rate on the 

development of type 2 diabetes 

3. Determine the impact of early postnatal nutrition and mode of feeding on the 

susceptibility to type 2 diabetes. 

4.3. Methods 

Animals and housing. 

For detailed information on animals and housing see Chapter 3: Compensatory 

Growth. 

Oral Glucose Tolerance Test (OGTT) 

At approximately six months of age, an oral glucose tolerance test was performed 

after an overnight fast. Ear pricks were made with a lancet and blood glucose was 

measured instantly with an Ascensia Contour blood glucose meter (Bayer, Toronto ON). 

Two fasting measurements were made before administering 2 g/kg D-Glucose (Sigma) 

dissolved in 1 00 ml of tap water via gavage. Ear prick glucose measurements were made 

every 10-15 minutes for roughly 2.5 hours until blood glucose values returned to fasting. 

Surgical Procedures. 

At approximately eight months of age, animals were transported to the Health 

Sciences Center at least one day before surgery and were fasted overnight. Pigs were 

anaesthetized using an induction dose of20 mg/kg ketamine hydrochloride (Ketalean, 

Bimeda-MTC Cambridge ON) and 2 mg/kg xylazine (Rompum, Bayer Toronto ON) and 
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maintained with 0.5 - 1.5 % halothane gas and 3/2 oxygen/nitrous oxide. A small 

incision was made on the inside of the left leg in order to isolate the femoral vessels. 

Two 2.4 meter tygon catheters, internal and outer diameters of0.040 and 0.070 (Norton 

Performance Plastics, Akron Ohio), respectively, were inserted into the femoral vein and 

advanced to the inferior vena cava. Catheters were tunnelled under the skin and 

exteriorized by a small incision on the animal's back between the shoulder blades. The 

catheter of a TA11PA-D70 radiotelemeter implant (cat# 270 0044 835, Data Sciences 

International, St. Paul MN) was inserted into the femoral artery and advanced to the 

femoral artery. The telemeter body was implanted under the skin between the peritoneum 

and inner thigh. Before surgery and two days immediately following surgery, 0.067 

mL/kg trimethoprim sulfadoxine (Borgal, Intervet Canada Ltd. Withy ON) was given. 

300 J..Lg buprenorphrine hydrochloride (Temgesic, Schering-Plough Ltd. UK) was given 

immediately after surgery and again 24 hours later to alleviate pain. 

Experimental Design 

Animals were allowed to recover for 4-5 days after surgery before any in vivo 

testing began. The in vivo testing period included several other tests not considered in 

this thesis including blood pressure by telemetry and fat tolerance tests and lasted 

approximately one month. During this period catheters were flushed daily with 5 mL of 

0.2% heparinized saline. Body temperature was also measured daily with a digital ear 

thermometer and Hibitane antibiotic/antifungal cream (Ayerst, Guelph ON) was rubbed 

on all wound sites to monitor and prevent infection. Antibiotics were only given if the 
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animal presented a temperature of greater than 40°C. The five-hour daily feeding regime 

was re-established the day immediately following surgery. 

Five days after surgery, provided the animal had no fever, an intravenous glucose 

tolerance test (IVGTT) was performed after an overnight fast. Two fasting 4 mL blood 

samples were taken in EDTA tubes before intravenous administration of 0.5 g/kg body 

weight 50% glucose solution. Blood was sampled from the other catheter every five 

minutes and blood glucose was measured using an Ascensia Contour blood glucose meter 

(Bayer, Toronto ON). The test was stopped when blood glucose returned to fasting 

levels. Blood samples were centrifuged for 10 minutes at 4000 x g at 4 °C. The plasma 

was obtained and stored at -20 °C for later analysis of plasma glucose and insulin. 

Six days after surgery an insulin sensitivity test (IST) was performed after an 

overnight fast. A fasting 4 mL blood sample was taken in EDT A at time -10 min. Next, 

somatostatin was administered intravenously ( 4J..Lglk:g) at time -5 min to inhibit the 

endogenous release of insulin from the pancreas. At time 0, a 0.5 g/kg 50% glucose 

solution was given intravenously. Blood samples were taken every 3 minutes and whole 

blood glucose was measured instantly with an Ascensia Contour glucose meter. 

Somatostatin has a short half life and therefore, a maintenance dose was given after each 

blood sample. When blood glucose concentrations stabilized, Humulin R insulin (Eli 

Lilly, Toronto ON), 0.5 U/kg body weight was given intravenously. Blood samples were 

then taken every 5 minutes until blood glucose concentrations returned to fasting levels. 

Blood was centrifuged for 10 minutes at 4000 x g at 4 °C. The plasma was obtained and 

stored at -20 oc for later analysis of plasma glucose, insulin and C-peptide. 

56 



Two days following the 1ST, a fat tolerance test was performed after an overnight 

fast. Two days after the fat tolerance test, continuous 48-hour baseline blood pressure 

recordings began. Only one pig could be recorded at a time, therefore, pigs were rotated 

into and out of the recording pen. Immediately following baseline measurements, pigs 

were fed a high salt diet for 8 days. Blood pressure was recorded continuously for the last 

48 hours of high salt feeding. Once high salt feeding ceased, pigs were fed their regular 

chow for at least three days before being killed. Since my primary objective was to look 

for the development of type 2 diabetes in these pigs, I will only discuss the results of the 

IVGTT and 1ST. 

Necropsy 

Pigs were anaesthetized with 105 mg/kg sodium pentobarbital (Euthanyl, 

Biomeda-MTC Cambridge ON) and ventilated and maintained with 0.5 - 1 % halothane 

gas mixed with oxygen. Organs were removed from anaesthetized animals and samples 

stored in 10% neutral buffered formalin and/or liquid nitrogen for later analyses. Animals 

died by exsanguination. Carcasses and visceral organs were homogenized separately and 

frozen ( -20°C) for later composition analysis. 

Biochemical Analyses 

Fasting plasma glucose and insulin were measured at 6 months of age and in the 

initial fasting sample of the IVGTT (approximately 8.5 months). Plasma glucose and 

insulin were measured in all samples during the IVGTT and 1ST. In order to verify that 

endogenous insulin secretion was suppressed during the 1ST, C-peptide was measured in 

plasma. Plasma glucose was measured using a Rapid Lab blood biochemistry analyzer 

(Bayer Diagnostics, Toronto ON). Plasma insulin was measured using a porcine insulin 

57 



radioimmuoassay kit (Linco Research, St. Charles Missouri). Briefly, a known 

concentration of radio labelled insulin and an unknown amount of insulin in plasma 

compete for a fixed amount of binding sites on anti-insulin antibody. The radiolabelled 

insulin and plasma insulin reach equilibrium such that the amount of radio labelled insulin 

bound decreases as the amount of plasma insulin increases. A standard curve is 

constructed with fixed concentrations of insulin and radio labelled insulin. Radioactivity 

is counted and plasma insulin concentrations can be determined using the standard curve. 

C-peptide was also measured using a porcine insulin radioimmunoassay kit (Linco 

Research, St. Charles Missouri) using similar principles. 

Statistical Analysis 

All statistical analyses were performed using Graph Pad Prism 4 software 

(GraphPad Software, Inc. San Diego, CA). Area under the curve (AUC) was calculated 

when glucose versus time plots were made using Graph Pad Prism 4 software. 

Comparisons between groups of pigs and gender were made by non-repeated measures 2 

way ANOVA using Graph Pad Prism 4. This test could not compare litter effect because 

sow fed piglets were not the same sex for two groups (one for each gender); as a result the 

non-repeated measures approach was used to compare overall group effect and overall 

gender effect (which was balanced). Table 4.1 illustrates the gender imbalance. 

Comparisons between runt and littermate (i.e. the litter effect) and gender were made 

using repeated measures 2 way ANOV A; this test was possible because all pairs of runt­

littermates were same-sex. When gender tested non-significant, paired students t tests 

were used to make runt and littermate comparisons. Linear regression was used to 
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determine correlations. Statistical significance was declared ifp < 0.05. All data are 

expressed as mean, plus or minus standard deviation. 

Table 4.1: Representation of gender inequality. Similar numbers represent siblings, for 

example, Runt 1 is sibling ofLittennate 1 and Sow-fed 1 (all females). Sow-fed control 

pigs from litters 3 and 6 are of different gender than the runts and littennates of litters 3 

and 6. 

Runt Littennate Sow-fed 

Female 1 2 3 1 2 3 1 2 6 

Male 456 456 453 

4.4 Results 

Pilot Data from OGTT 

Results from the OGTT were highly variable (Table 4.2). Fasting glucose was not 

different between animals. The areas under the curve for glucose were extremely 

variable, with littennates experiencing the most variance. Time to baseline was not 

different between animals. 
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Table 4.2: Pilot results from the oral glucose tolerance test (OGTT) performed on runt, 

littermate and sow-fed pigs at 6 months of age. 

Runt (N=4) Littermate (N=3) Sow-fed (N=4) 

Body Weight (kg) 39.8 ± 5.7 44.0 ± 4.4 44.5 ± 8.4 

Glucose Given (g) 79.50 ± 11.36 88.00 ± 8.72 89.00 ± 16.69 

-Fasting Glucose (mmol/1) 2.5 ± 0.3 2.9± 0.5 2.8 ± 0.4 

AUC 106.5 ± 40.6 173.1 ± 130.5 105.2 ± 48.8 

Time to Baseline (min) 114± 19 144± 7 103 ± 29 

Fasting Plasma Analyses 

Fasting plasma glucose and insulin were examined at 6 and 8.5 months of age. At 

six months of age there were no differences in plasma glucose, insulin or glucose: insulin 

between runt, littermate and sow-fed (Table 4.3). Sow-fed pigs were then excluded from 

the analysis and repeated measures 2 way ANOVAs were performed to examine 

differences between runts, littermates and gender. Plasma glucose and glucose: insulin 

was still not different between runts and litterinates. Larger littermates had significantly 

higher fasting insulin than runts (p=0.045). 
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Table 4.3. Fasting plasma concentrations of glucose (mmol/L) and insulin (JlU/mL) and 

glucose: insulin ratio in runt, larger littermate and sow-fed pigs at 6 months of age. 

Runt Littermate Sow-fed 

Plasma glucose (mmol/L) 6.4 ± 2.5 5.3 ± 0.79 5.5 ± 1.0 

Plasma insulin (JlU/mL) 21.60 ± 14.37 3 36.55 ± 12.60 b 29.93 ± 12.42 

Glucose: Insulin 0.41 ± 0.30 0.17 ± 0.09 0.23 ± 0.15 

At 8.5 months of age there were no differences in plasma glucose, insulin or 

glucose: insulin between runt, littermate and sow-fed (Table 4.4). When sow-fed pigs 

were removed from the analysis and repeated measures two way ANOV As were 

performed, there were still no differences between runts and littermates. 

Table 4.4: Fasting plasma concentrations of glucose (mmol/1) and insulin (JlU/ml) and 

glucose: insulin ratio in runt, larger littermate and sow-fed pigs at 8.5 months of age. 

Runt Littermate Sow-fed 

Plasma glucose (mmol/1) 5.4 ± 0.2 5.3 ± 0.4 5.3 ± 0.2 

Plasma insulin (JlU/ml) 14.47 ± 4.92 18.18±8.67 13.37 ± 3.23 

Glucose: Insulin 0.41 ± 0.1 0.36 ± 0.18 0.41 ± 0.09 

Fasting glucose did not change over time and remained in the normal non-diabetic 

range for plasma glucose. Insulin decreased significantly from 6 months to 8.5 months. 
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The ratio of fasting plasma glucose to insulin increased significantly from 6 to 8.5 months 

in littermates only (Figure 4.1 ). Fasting insulin was hypothesized to increase, not 

decrease over time. 

--~ 0.75 
~ 
:::l .._ 

= ·­-; 0.50 
= ~ .. --:a 
a o.25 

= .._ 
~ 

8 
..: 0.00 
Co-' R L s R L s 

6 Months 8.5 Months 

Figure 4.1: The ratio offastingplasmaglucose (mmol/1): fasting 
plasma insulin (f.lU/ml) at 6 and 8.5 months of age in runt, littermate 
and sow-fed control pigs. The ratio was significantly higher at 8.5 
months than 6 months in littermates only. 
mwRunt 

~ Littermate 

=Sow-fed 
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Intravenous Glucose Tolerance Test (IVGTT) 

Time for glucose and insulin to return to baseline, area under the curve (AUC) for 

glucose and insulin (calculated from initial baseline measurement to the final plasma 

sample), the ratio of AUC of glucose to AUC insulin, peak glucose and insulin, time to 

peak glucose and insulin and the rate of glucose clearance were also determined (Table 

4.5). All of these measurements were later correlated to fasting insulin and fasting 

glucose (Table 4.6). There were no differences in any measurement from the intravenous 

glucose tolerance test between groups of pigs. Sow-fed pigs were removed from the 

statistical analysis and repeated measures two way ANOV As were done to look for 

differences between runt, littermate and gender. However, there were still no differences 

between runts and littermates. Gender had an effect on glucose area under the curve 

(AUC), peak glucose (mmol/1) and the ratio of insulin AUC to glucose AUC (Table 4.7). 

Females had a higher AUC for glucose (p=0.0349) and peak glucose than males 

(p=0.0030). The ratio of insulin AUC to glucose AUC was higher in males than females 

(p=0.0172). In 5 pigs, insulin did not return to baseline before the test was stopped 

(Table 4.8). The test was stopped when glucose concentrations returned to baseline. 

These five animals were still included into the statistical analyses. Therefore, the insulin 

area under the curve was underestimated in these animals. 
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Table 4.5: Measurements of glucose tolerance derived from intravenous glucose 

tolerance tests (IVGTT) performed in runt, littermate and sow-fed pigs at 8.5 months of 

age. 

Runt Littermate Sow-fed 

Glucose AUC 461.97 ± 227.48 461.35 ± 165.09 510.78 ± 142.61 

Insulin AUC 4287 ± 1152 4125 ± 716.3 4338 ± 2000 

Insulin AUC: Glucose AUC 11.08 ± 6.13 9.73 ± 3.17 8.98 ± 0.52 

Peak glucose (mmol/1) 30.9 ± 6.0 32.1 ± 7.8 32.5 ± 2.2 

Time to peak glucose (min) 3.0 ± 1.3 3.0 ± 1.3 3.1 ± 1.7 

Peak insulin (J.!U/ml) 204.30 ± 43.64 185.75 ± 7.58 194.05 ± 98.04 

Time to peak insulin (min) 16.4 ± 7.6 13.7 ± 9.8 12.6 ± 3.2 

Slope ln bG -0.048 ± 0.014 -0.051 ± 0.017 -0.051 ± 0.015 

Glucose time to baseline 41.5 ± 16.3 37.3 ± 11.5 38.3 ± 10.0 

(min) 
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Table 4.6: Measurements of glucose tolerance derived from the intravenous glucose 

tolerance test (IVGTT) were correlated to fasting plasma glucose (mmol/1) and fasting 

plasma insulin (!J.U/ml) at 8.5 months of age. 

Fasting Insulin (!J.U/ml) Fasting Glucose (mmol/1) 

Fasting plasma glucose (mmol/1) Sow-fed 

at 6 months -- R2=0.77 

p=0.02 

Fasting insulin (!J.U/ml) at 6 -- --

months 

Glucose area under the curve Runt 

(AUC) -- R2= -0.85 

p=O.Ol 

Insulin area under the curve -- --

(AUC) 

Insulin AUC: Glucose AUC -- --

Peak glucose (mmol/1) All pigs 

-- R2= -0.28 

p=0.02 

Time to peak glucose (min) Littermate 

R2= -0.93 --

p=0.002 
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Peak insulin (11U/ml) -- --

Time to peak insulin (min) Sow-fed(+) Runt 

R2=0.83 R2= -0.67 

p=0.01 p=0.05 

Rate of glucose clearance Runt(+) Littermate 

-- R2=0.66 R2= -0.72 

p=0.049 p=0.03 

Glucose time to baseline (min) Runt 

-- R2= -0.92 

p=0.002 

-- indicates no significant correlation 

Table 4.7: Gender differences in measurements of glucose tolerance derived from 

intravenous glucose tolerance test performed at 8.5 months of age 

Female Male P value 

Glucose AUC 578.9 ± 26.9 377.1 ± 73.0 0.0349 

Peak glucose (mmol/1) 36.2 ± 2.4 27.5 ± 2.8 0.0030 

Insulin AUC: Glucose AUC 7.21 ± 0.66 15.41 ± 5.57 0.0172 

Table 4.8: Final insulin concentrations (11U/ml) were elevated above fasting 

concentrations before the intravenous glucose tolerance test was stopped in 1 runt, 2 
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larger littennates and 2 sow-fed control pigs. The difference in insulin concentration 

(f..lU/ml) from initial concentrations and when the test was stopped. 

Glucose Time to Final Insulin Fasting Insulin Difference 

Baseline (min) (f..lU/ml) (f..lU/ml) (f..lU/ml) 

Runt (male) 32 37.22 15.09 22.13 

Littennate (female) 32 66.50 7.80 58.70 

Littennate (male) 29 59.83 34.69 25.14 

Sow-fed (male) 32 23.71 10.23 13.48 

Sow-fed (female) 57 19.24 6.556 12.68 

When looking at all pigs there were no significant correlations between any 

measurement made during the IVGTT and fasting insulin (Table 4.6). Therefore, 

correlations were sought in runts, littennates and sow-fed controls separately. As fasting 

insulin increased in littennates the time to reach glucose decreased (r2=0.93, p=0.002). In 

sow fed controls, the time to reach peak insulin increased with increasing fasting insulin 

concentrations (r2=0.83, p=0.01). All measurements made during the IVGTT were next 

correlated to fasting plasma glucose. The time to peak plasma glucose was negatively 

correlated to fasting plasma glucose (r2=0.28, p=0.02). There were no other significant 

correlations when looking at all the pigs together. In runts, glucose area under the curve, 

time to peak insulin and glucose time to baseline were negatively correlated to fasting 

glucose. The rate of glucose clearance was positively correlated to fasting glucose in 

runts, but negatively correlated to fasting glucose in littennates. In sow-fed controls 
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fasting glucose at six months was positively correlated to fasting glucose before the 

IVGTT. 

Insulin Sensitivity Test (1ST) 

C-peptide concentration (J.lg/ml) remained constant throughout the insulin 

sensitivity test (Figure 4.2). The rate of glucose clearance was determined by plotting the 

natural log of blood glucose values against their respective t time point. The slope after 

the insulin administration was considered the rate of glucose clearance in response to 

insulin. Female sow-fed control pigs had a significantly higher rate of glucose clearance 

than sow-fed male pigs (p=0.04). There were no differences between runts and 

littermates (Figure 4.3). The rate of glucose clearance did not correlate to fasting insulin 

or glucose. 
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* 
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Figure 4.3. The average rate of glucose clearance during an 
insulin sensitivity test (ISl) in runt, littermate and sow-fed 
control pig. Female sow-fed pigs had a statistically significantly 
higher rate of glucose clearance than male sow-fed pigs 
(p=0.04) 
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~Sow-fed 

Correlations 

In order to determine the relationships of birth weight and postnatal growth rate to 

symptoms of type 2 diabetes, birth weight and postnatal growth rates were correlated to 

all measurements of type 2 diabetes including fasting plasma glucose, insulin and all 

measurements from the IVGTT and 1ST (Table 4.9). When looking at all pigs there were 
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no significant correlations found between any measurement of diabetes and birth weight, 

growth rate or abdominal growth rate. 

Table 4.9. Correlations were made between measurements of glucose tolerance and birth 

weight (kg), postnatal growth rate (kg/d) during milk feeding, and abdominal 

circumference growth rate (em/d) during milk feeding. 

Birth weight Growth rate during Abdominal 

(kg) . milk (g/d) circumference 

growth rate (em/d) 

Insulin 8.5 months (!-LU/ml) -- -- --

Glucose AUC -- -- --

Insulin AUC -- Littermate --

R2=0.74 

p=0.03 

Insulin AUC: Glucose -- -- --

AUC 

Peak glucose (mmol/1) -- -- --

Peak insulin (!lU/ml) -- -- Runt 

R2= -0.09 

p=0.006 

Time to peak insulin (min) Littermate -- --

R2=0.76 
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p=0.02 

Glucose clearance (IVGTT) -- -- Runt 

R2= -0.81 

p=0.02 

Glucose clearance (IST) -- -- --

-- means no stgmficant correlatiOn 

Correlations were then made between all measurements of diabetes and current 

weight, current abdominal circumference and current body mass index (Table 4.1 0). 

Again when looking at all pigs there were no significant correlations observed. 
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Table 4.1 0. Correlations were made between measurements of glucose tolerance and 

body weight (kg), abdominal circumference (em) and body mass index (kg/m2
) at 8.5 

months of age. 

Current weight Current abdominal Current BMI 

(kg) circumference (kg/m2
) 

(em) 

Insulin 8.5 months -- Runts --

{!JU/ml) R2= -0.81 

p=0.01 

Glucose AUC Littermate -- Littermate 

R2= -0.69 R2=0.72 

p=0.04 p=0.03 

Insulin AUC -- -- --

Insulin AUC: Glucose -- -- Littermate 

AUC R2= -0.75 

p=0.03 

Peak glucose (mmol/1) -- Sow-fed --

R2=0.66 

p=0.05 

Peak insulin (!JU/ml) -- Littermate --

R2=0.72 

p=0.03 
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Time to peak insulin -- -- --

(min) 

Glucose clearance -- -- --

(IVGTT) 

Glucose clearance (IST) Littermate -- Sow-fed 

R2=0.83 R2=0.79 

·------------ --

p=O.Ol p=0.02 

-- means no significant correlation 
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4.5. Discussion 

Validating the miniature pig as a model for type 2 diabetes 

When an individual is type 2 diabetic, glucose is not readily transferred into cells 

because there is a lack of response to insulin. Initially the pancreas overcompensates by 

producing excess insulin in an attempt to drive glucose into cells and to keep the 

individual in euglycemia. At this point the individual is considered insulin resistant, 

characterized by high fasting plasma insulin, normal fasting plasma glucose and a low 

ratio of glucose to insulin. An individual can remain insulin resistant for years before 

developing diabetes. Eventually the pancreas cannot keep up with the insulin demand 

and decompensates insulin production. Since cells are no longer normally responsive to 

insulin, there is reduced glucose uptake resulting in hyperglycemia and type 2 diabetes. 

The liver responds by increasing gluconeogenesis adding to the hyperglycemia and cells 

begin using fatty acids as an energy source. Diabetic individuals present dyslipidemia, 

high concentrations of fasting glucose, low concentrations of plasma insulin and a high 

ratio of glucose to insulin. In humans, fasting plasma analysis of insulin, glucose and 

lipids is the first step in assessing an individual's glycemic status. 

Fasting plasma insulin and glucose concentrations were measured in our pigs at 6 

Guvenile) and 8.5 months of age (young adult). Since insulin resistance generally 

precedes type 2 diabetes, we expected to see indicators of insulin resistance such as high 

fasting plasma insulin and a low ratio of glucose to insulin before seeing evidence of type 

2 diabetes. Type 2 diabetes would be suspected if fasting glucose was higher than 

normative values found in the literature combined with a high ratio of glucose to insulin. 

Hematological and serum biochemistry values of healthy sexually mature Yucatan pigs 
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were determined by Radin and colleagues (1986). They found serum glucose ranged 

from 2.40 to 7.40 mM (ll = 3.71 mM) and was not different between males and females at 

80 weeks of age. A normal range of3.0-5.0 mM for glucose and 5 -16j..lU/mL for 

insulin has been observed in recent studies using the Yucatan miniature pig as a model for 

diabetes (Xi et al 2004, Larsen et al2002, Otis et al2003). When diabetes was induced in 

other wise healthy Yucatan swine by using streptozotocin treatment, fasting plasma 

glucose was markedly higher, 15-20 mM, while insulin remained normal (Larsen et al 

2002, Otis et al2003). The pigs in our study had fasting glucose of approximately 5.7 

mM at 6 months and 5.3 mM at 8.5 months. The observed glucose concentrations were 

within the normal range for glucose found in the literature. Fasting glucose over the 

course of the study (3 months- 8 months) did not change significantly and was not 

different between groups of pigs. At 6 months of age, fasting insulin was 31.2 j..lU/mL, 

much higher than the values of healthy pigs used in other studies (Larsen, et al2002, Otis, 

et al2003). Plasma insulin was within the normal range for miniature swine 15.3 j..lU/ml 

at 8.5 months of age. When examining the ratios of glucose and insulin at 6 and 8 

months, the results were unexpected. At 6 months of age, the ratio of glucose to insulin 

was very low (0.18), suggesting the pigs were insulin resistant. However, insulin 

resistance was not present at 8.5 months of age. The brief period of insulin resistance was 

surprising, as insulin resistance was expected to develop into diabetes. 

At 6 months of age the majority of the pigs were coming into sexual maturity 

(puberty). Sebert and colleagues (2005) observed a similar spike in plasma insulin in 

healthy non-castrated male Yucatan miniature pigs undergoing sexual maturity (N=5). 

Plasma glucose, insulin and lipids were measured at 4, 10 and 16 months of age. At 4 
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months, plasma insulin and glucose were within the normative values found in the 

literature. However, at sexual maturity plasma insulin was elevated to 28.8 J.I.U/ml ± 7.82, 

while glucose remained approximately 4.5 mM. Extensive research has been performed 

investigating hormonal changes affecting growth during puberty in swine. However, 

Sebert and colleagues are the only researchers, to my knowledge, to examine insulin 

sensitivity during puberty in swine from a diabetes perspective. Insulin resistance during 

- ---piiberlfis thought to be influenced by growth hormone, insulin-like growth factor-1 

(IGF-1) and changes in body fat distribution. Moran and colleagues (1999) performed the 

hyperinsulinemic euglycemic clamp method (the gold standard method for assessing 

insulin sensitivity) in 357 children. Puberty was associated with high fasting serum 

insulin concentrations and insulin resistance, irrespective of body weight. A recent 

longitudinal study by Hannon and colleagues (2006) found significant differences in 

glucose homeostasis in prepubescence compared to pubescence using the 

hyperinsulinemic euglycemic clamp method. Puberty was associated with a 50% 

decrease in insulin sensitivity compensated by a doubling in insulin secretion. Similar 

studies in pig models of diabetes are needed to better understand the mechanisms of 

insulin resistance during puberty. Also, the onset of sexual maturity in miniature pigs 

needs to be defined. In future studies, careful notes should be taken as to when signs of 

sexual maturity are occurring and when they subside. Identifying when sexual maturity is 

occurring may help to understand and explain unanticipated results. To further enhance 

our study, additional biochemical analyses should be conducted at several time points 

throughout the study to better characterize the observed episode of insulin resistance. In 

addition, fasting plasma IGF-1, and lipids including cholesterol and triglycerides should 
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be analyzed throughout the study to understand changes in metabolism and identify 

indicators of disease development. 

In humans, fasting plasma analysis is a quick and cost-effective screening method 

for chronic disease development. However, it only provides a snap shot of an animal's 

glycemic status. Therefore, in vivo tests are executed to better assess glucose tolerance 

and insulin sensitivity. Two practical in vivo methods for determining glycemic status 

were successfully performed in our pigs: the intravenous glucose tolerance test (IVGTT) 

and insulin sensitivity test (IST). In contrast, the oral glucose tolerance test proved to be 

impractical, stressful and ultimately unsuccessful in our pigs. An oral glucose tolerance 

test (OGTT) measures the pancreas' responsiveness to glucose and is the most common 

test used to assess glucose tolerance and subsequently diagnose diabetes in humans. 

During our OGTT, the oro-gastric gavage technique was used to administer glucose with 

limited success, as it was too difficult to restrain the animals and accurately determine the 

amount of glucose consumed by the animal. Also, the gavage technique was extremely 

stressful, as was the ear prick glucose measurements made throughout the test. 

Glucocorticoids from such stress stimulate gluconeogenesis in the liver. As a result, 

blood glucose concentrations rise above normal within minutes of being subjected to the 

stressor. Since the animals were extremely stressed during the initial dosing phase, it was 

not possible to interpret the results from the oral glucose tolerance test. A variation of the 

oral glucose tolerance test termed the mixed meal has been used successfully in Gottingen 

miniature pigs (Kjems, et al2001, Larsen, et al2002, Xi et al2004). After an 18-24 hour 

fast, animals were offered a mixed meal of 2 g/kg glucose and 25 g standard pig chow 

and blood glucose was monitored over a 2 hour period. Typically during the mixed meal 
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glucose tolerance test, the animals are surgically fitted with a venous catheter for easy, 

non-strenuous blood sampling. The mixed meal method was attempted in our pigs after 

an overnight fast at 6 months of age and later at 8.5 months of age when the pigs were 

surgically fitted with catheters. However, the animals did not consume the mixed meal 

even when the fast was extended to 24 hours. Therefore, the mixed meal test was 

abandoned. An alternative to the oral glucose tolerance is the intravenous glucose 

tolerance test (IVGTT). 

Like the OGTT, the IVGTT measures the pancreatic beta cell responsiveness to 

glucose. During an IVGTT, glucose is infused intravenously causing a rapid rise in 

plasma glucose followed by an incremental decrease in plasma glucose typically over a 

one hour period. Plasma insulin displays a similar curve to that of plasma glucose 

throughout the test. The IVGTT is much quicker than OGTT as there are no effects of 

gastric emptying rates and intestinal absorption. In our animals, the IVGTT provided a 

quick, non-stressful method for determining glucose tolerance. The IVGTT generated 

many results, the most significant of which being glucose and insulin time to baseline, 

glucose and insulin area under the curve (AUC), and the rate of glucose clearance. When 

an animal is glucose intolerant, insulin secretion and function is impaired leading to 

impaired glucose uptake. When glucose is infused, a glucose intolerant animal will be 

unable to or will take longer to clear glucose from the plasma resulting in a slow rate of 

glucose clearance, an inability for glucose to return to baseline, and a large glucose AUC. 

All individual pigs in this study displayed normal glucose curves and glucose 

returned to fasting levels within one hour after infusion. The rate of glucose clearance 

was similar to that of non-diabetic control animals used by Otis and colleagues (2003). It 

79 



is difficult to compare glucose AUC values found in our study to those found in literature 

due to differences in study methodology. The glucose AUC is affected by the 

concentration of glucose infused and how the AUC is calculated. Johansen and 

colleagues studied 9-1 0 month old female Gottingen miniature pigs fed either a low fat 

(13% fat) or a high fat (55%) diet for 5 weeks. At the end of the 5 weeks an IVGTT was 

performed using a 0.3 g/kg glucose bolus. The glucose AUC was measured over a 120 

minute period after glucose infusion. Pigs fed the high fat diet had a higher AUC for 

glucose than pigs fed the low fat diet, 636 ±.26 and 578 ± 10, respectively. The authors 

did not explain how AUC was calculated. Poore and Fowden (20042
) performed an 

IVGTT (0.5 g/kg) in low and high birth weight domestic pigs at 3 and 12 months of age. 

The glucose AUC was calculated from the mean of the pre-infusion fasting glucose 

values until 120 minutes after glucose infusion. At 12 months of age low birth weight 

pigs had significantly higher glucose AUC than high birth weight pigs, approximately 

280 and 200, respectively. The overall average glucose AUC of all our pigs was 478 ± 

172. Females had a statistically significantly higher AUC than males (p<0.05), 578.94 ± 

26.86 and 377.12 ± 72.96, respectively. Our methodology was most similar to that of 

Poore and Fowden (2004), yet our pigs experienced much higher glucose AUC. 

However, there is not enough evidence to define the glucose tolerance of our animals. 

Insulin AUC in our pigs was difficult to interpret. In the majority of our animals, plasma 

insulin followed the expected decay curve and returned to fasting levels within one hour. 

However, five of the pigs had plasma insulin concentrations still elevated when the test 

was stopped, even though plasma glucose had returned to fasting levels. The ratio of 

glucose to insulin when the test was stopped was low, suggesting these pigs were 
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somewhat insulin resistant. In future studies, the test should be extended after glucose 

has returned to fasting levels to better assess insulin sensitivity. 

Insulin sensitivity tests (1ST) are different from glucose tolerance tests in that they 

measure the insulin-stimulated glucose uptake by the muscle. In most insulin sensitivity 

tests, a large bolus of insulin is given and glucose clearance in response to that insulin is 

examined. The rate of glucose clearance from the plasma represents glucose uptake by 

peripheral tissues. Otis and colleagues (2003) administered several doses of insulin (0, 

0.05 and 0.10 U/kg) to diabetic and non-diabetic control, young adult Yucatan miniature 

pigs. They found that 0.10 U/kg insulin induced comas and seizures in non-diabetic 

animals due to severe hypoglycemia. This observation led them to develop a novel 

alternative insulin sensitivity test where non-diabetic pigs were made hyperglycemic 

before giving insulin. Since our animals had normal fasting plasma glucose values, we 

did not suspect the animals to be overtly diabetic. Therefore, we used this alternative 

insulin sensitivity test in our study. First, somatostatin was given intravenously to inhibit 

endogenous insulin secretion. Somatostatin has a short half life and therefore, a 

maintenance dose was given after each blood sample. Glucose was infused next making 

the pigs hyperglycemic which is necessary to avoid symptoms of severe hypoglycemia in 

response to the large insulin bolus subsequently administered. This bolus dose of insulin 

was given and the rate of glucose clearance from the plasma was determined with serial 

blood sampling. The test was successful in that all pigs followed a similar pattern of 

plasma glucose and insulin clearance. Also, somatostatin successfully inhibited 

endogenous insulin secretion, as shown by the unchanging C-peptide concentrations in 

response to glucose. Furthermore, none of the pigs exhibited any symptoms of 
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hypoglycemia. The rate of glucose clearance in our pigs was similar to that of the non­

diabetic control animals of Otis and colleagues (2003) indicating that the pigs were not 

insulin resistant. This novel adaptation of the traditional insulin sensitivity test was 

successful in our pigs. More studies using this novel technique are needed to determine 

the reproducibility of results. 

Table 4.11 summarizes the expected outcomes and observed outcomes. 
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Table 4.11: Summary of expected and observed results of fasting plasma analysis, oral 

glucose tolerance test, intravenous glucose tolerance test and insulin sensitivity test 

Expected Results Observed Results 

Fasting If an animal is diabetic Pigs did not exhibit hyperglycemia 

Plasma hyperglycemia and a high ratio of or hyperinsulinemia. 

Analysis glucose: insulin would be observed. 

Hyperinsulinemia and a low ratio of 

glucose: insulin indicates insulin 

resistance. 

Oral If an animal is glucose intolerant The OGTT was unsuccessful and 

Glucose they will exhibit a high glucose area yielded no reliable results. 

Tolerance under the curve and plasma glucose 

Test will not return to fasting levels. Area 

under the curve for glucose will be 

positively correlated to fasting 

glucose. 

Intravenous If an animal is glucose intolerant The animal's AUC, rate of glucose 

Glucose high glucose area under the curve clearance and time for glucose to 

Tolerance (AUC), slow glucose clearance and return to baseline were similar to 

Test inability for glucose to return to non-diabetic pigs. 

baseline would be observed. The There were no correlations between 

AUC and time to return of baseline fasting glucose and any outcomes 

83 



would be positively correlated to of the IVGTT when looking at all 

fasting glucose, whereas, the rate of pigs. In large littermates there was 

glucose clearance would be inversely a negative correlation between the 

correlated to fasting glucose rate of glucose clearance and 

fasting glucose. 

Insulin If an animal was insulin resistant The rate of glucose clearance was 

Sensitivity then the rate of glucose clearance similar to that of non-diabetic 

Test would be slow and negatively control animals used by Otis et al 

correlated to fasting glucose (2003). There was no correlation 

between the rate of glucose 

clearance and fasting glucose. 

Determining the effects of birth weight and postnatal growth rate on the 

development of type 2 diabetes 

In order to determine the effect of birth weight on glucose intolerance and insulin 

sensitivity, comparisons between runt and larger littermates were made. We expected 

runts to develop symptoms of diabetes more readily than their larger littermates, as 

observed in other models (Poore and Fowden 20042
). However there were no differences 

in any measurements of glucose tolerance or insulin sensitivity between runts and larger 
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littermates at 8.5 months of age. Also, there were no significant correlations between 

birth weight and any measurement of type 2 diabetes. These findings differ from those of 

Poore and Fowden (20042
) who found that lower birth weight pigs had significantly 

higher fasting glucose and insulin area under the curve during an intravenous glucose 

tolerance test than higher birth weight animals at 12 months of age. However, low birth 

weight rats have been shown to have better glucose tolerance in young adulthood (12 

weeks) compared to later in life (17 months). An age-dependent decline in glucose 

tolerance has been observed in humans (Preuss 1997), rats (Reavan et al 1983, Muzumdar 

et al2004) and pigs (Larsen, et al2001), irrespective of birth weight. Therefore, it is 

possible that the pigs in this study were too young to develop glucose intolerance or 

insulin sensitivity. In future studies, pigs should be tested for symptoms of diabetes in 

mid-to-late adulthood. 

Epidemiological studies out of Helsinki, Finland showed that low birth weight 

infants that experienced catch up growth had higher rates of type 2 diabetes than children 

that did not experience compensatory growth (Forsen, et al 2000). Their findings suggest 

that low birth weight combined with compensatory growth puts individuals at an even 

higher risk for developing chronic diseases in adulthood than low birth weight alone. As 

a result of those studies, we expected postnatal growth rate to be positively correlated to 

fasting glucose and insulin and glucose and insulin area under the curve. The rate of 

glucose clearance during the IVGTT and 1ST were expected to be negatively correlated to 

post natal growth. However, overall postnatal growth rate (g/d) during milk feeding in 

our pigs was not correlated to any measurement of glucose tolerance or insulin sensitivity. 

Again, these results differ from those of Poore and Fowden (2002), who found that 
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glucose AUC during an IVGTT was significantly positively correlated to growth rate 

from birth to one month. Since runt piglets were growing rapidly in abdominal 

circumference during milk feeding, correlations between abdominal growth rate and 

measurements of type 2 diabetes were also performed. Combining all pigs into the 

analysis, there were no significant correlations observed. However, within runts, the rate 

of glucose clearance was negatively correlated to abdominal circumference growth rate. 

Although this observation was expected, it was not enough evidence to suggest that 

postnatal abdominal growth rate significantly impacted later glucose tolerance. Since 

symptoms of glucose intolerance and insulin resistance were not related to birth weight or 

postnatal growth rate, the effects of current body weight, current abdominal 

circumference and current body mass index were determined. In humans, type 2 diabetes 

is strongly associated with obesity, particularly visceral obesity (Keller 2006). Therefore, 

we hypothesized a positive correlation between abdominal circumference and various 

measurements of type 2 diabetes. However, no significant relationships were found 

between any measurement of type 2 diabetes and current weight, abdominal 

circumference or body mass index. Presently, visceral fat is being measured and will be 

correlated with our measures of type 2 diabetes. 

Determining the impact of early postnatal nutrition and mode of feeding on the 

susceptibility to type 2 diabetes. 

The major goals of this study were to determine the effects of birth weight and 

postnatal growth rate on development of later chronic disease. Birth weight is primarily 

influenced by fetal nutrition, whereas, postnatal growth rate is affected by infant nutrition. 

Human studies have shown that infants that are breastfed grow more slowly than formula 
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fed infants (Dewey, 1998) and may be less likely to develop chronic diseases in 

adulthood. Therefore, we also wanted to determine the impact of early postnatal nutrition 

on the development of type 2 diabetes. In this study, the sow-fed group served as a 

breastfed control group. Where possible, sow-fed pigs were the same sex as their 

littermates and were closest in birth weight to the larger littermate. Therefore, the major 

difference between sow-fed pigs and large littermates was early postnatal nutrition and 

mode of feeding. If breastfeeding protects against later disease development, then sow­

fed controls should experience better glucose tolerance and insulin sensitivity than large 

littermates. However, in this study, there were no differences in any of the measurements 

of type 2 diabetes between sow-fed controls and formula-fed littermates. Therefore, 

infant nutrition did not impact glucose tolerance or insulin sensitivity at 8.5 months of 

age. Considering neither formula-fed group of pigs showed any signs of early 

development of insulin resistance and glucose intolerance, it is not surprising that the 

sow-fed group did not offer any additional protection. 

4.6. Summary 

Although the in vivo tests for diagnosing diabetes were successful, none of the 

pigs were found to be insulin resistant or type 2 diabetic at 8.5 months of age. There were 

no relationships found between indicators of insulin resistance or diabetes and birth 

weight or postnatal growth rate. 

Since the pigs were young adults it is not surprising that they did not develop 

overt diabetes. However, symptoms of insulin resistance and glucose intolerance were 

expected, with runts predicted to be worse than larger littermates and sow-fed controls 
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better than other animals. It is possible that conswning a healthy diet of standard pig 

chow protected the pigs from developing disease in early adulthood. Currently there are 

parallel groups of pigs consuming a high trans and saturated fat, high sugar and high salt 

diet. This poor diet may challenge the pigs to develop markers of disease earlier in life 

than when consuming chow. Desai and colleagues (2005) challenged male rats born from 

protein-restricted dams with a highly palatable high fat diet from weaning to young 

~~ -~----- - - ··· · - -~---~aoultnood ( 12 weeks). They found that low birth weight rats developed insulin 

resistance, but not high birth weight animals, irrespective of diet. Low birth weight rats 

fed the high fat diet had worse insulin resistance than low birth weight animals 

conswning the control diet. Male Gottingen miniature pigs fed a high fat, high sugar 

diets have been shown to develop obesity, and have increased fasting glucose compared 

to pigs fed regular chow (Larsen, 2001 ). Similar findings were observed in Ossabaw pigs 

fed a high fat diet (Dyson, et al2006). Feeding a poor diet to the pigs may allow for 

differences in glucose tolerance and insulin sensitivity to be observed between groups of 

animals. 

In this study, there may have been very subtle differences in insulin sensitivity 

between groups of pigs that went undetected because the IVGTT and IST were not 

sensitive enough. The gold standard for assessing insulin sensitivity is the 

hyperinsulinemic euglycemic clamp method (Cobelli et al 2007). In this method 

somatostatin is infused to inhibit endogenous insulin secretion, insulin is continuously 

infused to create hyperinsulinemia, and glucose is infused and frequently and rapidly 

measured in the blood in order to keep the individual in euglycemia. The rate of glucose 

infusion needed to maintain steady state is a direct measurement of whole body glucose 
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uptake, which describes the individual's insulin sensitivity. In practice this method is 

very expensive, time consuming and requires trained individuals to complete safely and 

effectively. The clamp method is not used routinely in clinical practice and is used only 

in specialized research trials where steady state conditions are required. Therefore, it was 

not employed in this study, but should be considered in future studies to determine subtle 

differences in insulin sensitivity between groups of animals. 

Bellinger and colleagues (2006) recently published an extensive review of all 

swine models of type 2 diabetes and insulin resistance. There are several breeds of pigs 

which have been used as models of diabetes including: Yucatan miniature pigs, Sinclair 

miniature pigs, Gottingen miniature pigs, Chinese Guizhow miniature pigs, Yorkshire 

(and Yorkshire crosses) and Ossabaw pigs. The Gottingen miniature pig is the most 

extensively used pig model for diabetes. The plasma glucose, insulin and lipoprotein 

concentrations have been well characterized. These pigs have primarily had chemically 

induced diabetes, but have also been shown to become type 2 diabetic in response to high 

fat feeding. The Ossabaw breed is found on the Ossabaw islands offthe coast of Georgia. 

They have been living in genetic isolation for centuries and are considered obese animals. 

A recent study by Dyson and colleagues found that Ossabaw pigs fed a high fat diet had 

higher triglycerides, and blood pressure compared to pigs fed a low calorie diet. The 

Ossabaw pig model is in its infancy but it may prove to be a model for fetal programming 

in the future. The Yucatan pig has primarily been a type 1 diabetes model, but has also 

been shown to develop impaired insulin sensitivity in response to overfeeding. Until 

now, no studies have used Yucatans as a model for fetal programming. 
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Bellinger and colleagues (2006) recently formulated a step-wise reference guide to 

validate the pig as a model for studying type 2 diabetes (Table 2 of Bellinger et al. 2006). 

Using this reference guide, we have only begun to validate our Yucatan miniature pig 

model of diabetes and fetal programming. There are several measurements that still need 

to be performed on our animals in order to more clearly determine their glycemic status. 

1. The major focus of this chapter has been defining Step 1. Fasting insulin, glucose 

and insulin sensitivity were measured using fasting plasma analysis, and in vivo 

tests of glucose tolerance and insulin sensitivity. 

2. The next step will be to determine the lipid profile throughout the study. Plasma 

cholesterol and triglycerides will be determined. This step is important, as the 

majority of diabetic individuals suffer some form of dyslipidemia. The previous 

chapter on compensatory growth discussed the body fat measurements made 

throughout the study. In the future, proximate analysis will be completed to 

determine the percentage fat in viscera and whole body. These percentages will 

then be correlated to measurements of type 2 diabetes making stronger 

comparisons than with abdominal circumference. 

3. The metabolic mechanisms and progression of diabetes is not completely 

understood. Many serum markers are thought to be related to diabetes including: 

C-reactive protein, leptin, TNFa, and resistan. Homocysteine is another serum 

marker that we did measure, but more markers should be measured in the future. 

4. Diabetic individuals are often hypertensive. We have measured mean arterial 

pressure by radio-telemetry. These data should be correlated to plasma insulin to 

see if there is a positive relationship. 
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5. End-organ damage often observed in animal models of diabetes includes: 

reduction in beta cell mass, atherosclerosis and endothelial dysfunction. 

Pancreatic beta cell mass is typically reduced in type 2 diabetes which limits the 

capacity for insulin secretion. In the protein-restricted rat model, low birth weight 

pups are born with a reduction in beta cell number (Bertin et al 1999). This 

reduction is thought to be a direct consequence of poor fetal nutrition which 

----~·-·--~--------- ·- ...... -· ... ··- - -~---· ----- --

(depending on infant nutrition) permanently alters beta cell function leading to 

glucose intolerance in later life. Beta cell mass will be measured by histological 

examination of the pancreas and total pancreatic insulin in our pigs. The aortic 

arch and the coronary artery will be examined for evidence of atherosclerosis. 

Endothelial dysfunction is also being measured. 

6. The final step in the reference guide refers to future studies examining the 

reduction of the above mentioned criteria when treated animals are compared to 

controls. 

It is obvious that validating an animal model of disease takes considerable time, 

effort and resources. This chapter is the initial step in identifying the Yucatan miniature 

pig as a model for type 2 diabetes and fetal programming. Completing the remaining 

analyses will help determine the impact of birth weight and postnatal growth rate on 

glucose tolerance and insulin sensitivity. 
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Chapter 5.0 Conclusions 

The overall goal of this research was to determine the effects of birth weight, 

postnatal growth rate and early postnatal nutrition on the development of type 2 diabetes 

in Yucatan miniature swine. In order to do so, we needed to demonstrate compensatory 

growth and validate the miniature pig as a model for type 2 diabetes. 

Runt piglets experienced a period of increased nutrient efficiency during the 

second week of milk feeding, characteristic of compensatory growth. Although, the 

composition of growth is yet to be determined, runt piglets appeared to be depositing fat 

towards the end of milk feeding based on abdominal circumference measurements. Runts 

eventually caught up in body size to their littermates in early adulthood. It was not 

surprising the Yucatan miniature pig proved to be a successful model for studying 

compensatory growth, as the domestic pig is already a well-characterized and established 

model of compensatory growth in the field of animal science (Foxcroft et al., 2006, 

Mitchell 2007). 

In order to determine the relationship between postnatal growth and the 

development of type 2 diabetes, we needed to validate the Yucatan miniature pig as a 

model for type 2 diabetes. We expected pigs to develop markers of insulin resistance and 

diabetes, with runts presenting markers more readily and severe than their littermates. 

Fasting plasma analyses and in vivo tests of glucose tolerance and insulin sensitivity were 

successfully developed in this model, but the results did not indicate diabetes 

development in any of the pigs or differences between groups of pigs. When 

measurements of insulin resistance and diabetes were correlated to birth weight and 

postnatal growth rate, no relationships were found. 
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Although the results from this study did not reveal any relationship between birth 

weight, postnatal growth rate or early postnatal nutrition and markers of type 2 diabetes, 

the miniature pig should not be ruled out as a model for fetal programming. Additional 

analyses including plasma lipid analysis, and beta cell mass are currently being completed 

to more accurately understand their metabolism. Risk factors of other diseases, including 

hypertension and cardiovascular disease, are also being performed to determine if this 

miniature pig model is valid for other diseases suspected to be programmed in utero. A 

parallel group of pigs fed a high fat, high sugar, and high salt diet is also currently being 

studied. It is possible that this poor diet may challenge the miniature pig to develop 

markers of disease more readily. 
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