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Abstract 

This thesis demonst rates a real time automated hybrid method for process monitor­

ing. Motivation of this research comes from the fact that there is hardly any single 

techniques available which is decent enough for process fault detection and diagnosis 

simultaneously. Process history based methods are well known as early fault detec­

tors but operators require complex analysis to find out the root cause of the fault. 

Knowledge based qualitative models are worthy for root cause analysis but mostly 

done in off-line fashion. Moreover, modern processes are equipped with thousands 

of variables and structurally they are very complex in nature. All these influences 

make manual diagnostic task more complicated for the operators. Therefore, there is 

a need for automated process monitoring tool that has good detection and diagnosis 

performance. 

In this work, a hybrid method based on principal component analysis (P CA) and 

Bayesian belief network (BBN) is described for process monitoring. P CA is very 

proficient as early faul t detector but not for faul t diagnosis. On the other hand , 

BBN is good for diagnosis. This hybrid method combines t he strong features of both 

PCA and BBN to an automated monitoring system that can detect fault early as well 

as diagnose the root cause precisely. Upon successful detection of fault from PCA, 

diagnostic information from the P CA is passed to the BBN for root cause analysis. 

Pearl's message passing algorithm is used for belief updating. This monitoring tool 
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integrates prior process knowledge along with the present observed evidence processed 

by the multivariate sta tistical method to come up with the most probable explanation 

of process fault. Efficacy of the proposed method is verified by simulating different 

scenarios on a simulated dissolution tank model. The monitoring tool is also validated 

using indust rial data from a pure terephthalic acid (PTA) plant . 
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Chapter 1 

Introduction 

1.1 Motivation 

Although large scale accidents do not happen frequently in the industries but these 

accidents can have significant consequences. It has been reported in the literature 

that petrochemicals industry alone losses estimated 20 billion dollars every year due 

to such accidents [Venkatasubramanian et al. , 2003c]. In the recent era, researchers 

from both academic and industries are concentrating more on the topics like early 

fault detection and correct diagnosis of the root cause of a process fault. While the 

plant is still operating in a controllable region early detection and diagnosis can help 

to avoid abnormal event progression and reduce productivity loss. 

The term fault is generally defined as a departure from an acceptable range of an 

observed variable or a calculated parameter associated with a process [Himmelblau, 

1978] . For example, no coolant flow rate resulting in high temperature in a reactor 

can be considered as process fault . The underlying cause of this abnormality could 

be a failed coolant pump or a poorly tuned controller , is called the basic event or the 

root cause. The main sources of process faults are mainly parameter changes in a 
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system due to the disturbance, process structural change due to hard failure of the 

equipment, malfunctioning sensors and actuators. Monitoring is established to detect 

and diagnose such faults. Process monitoring is served in two steps: first step is to 

detect the process fault; in second step, the root cause of the fault is diagnosed to 

help the operators to take the most appropriate corrective action. Many automated 

fault detection and diagnosis methods are available. But human operators play a very 

important role both in control task and monitoring the process plants during both 

the normal and abnormal conditions. 

Success of the diagnostic tasks largely depends on the operators expertise. Re­

sponding to the abnormal events in a process is crucial as erroneous judgement of an 

operator can lead to a catastrophic accident. Complexity and the size of the modern 

process plants add more hurdle in monitoring task. In addition, quick diagnosis is 

desired to successfully mit igate the abnormal condition in the process plants. Ac­

cording to the industrial statistics, human error is the main reason for about 70% of 

the industrial accidents. These abnormal events have significant economic, safety and 

environmental impact [Venkatasubramanian et al. , 2003c]. 

To avoid the human error and help the operators during process fault, automa­

tion in detection and diagnosis is the first step in abnormal event management. Var­

ious computer aided approaches have been developed over t he years to solve the 

process fault diagnosis problem. T hey cover a wide variety of techniques including 

multi-variate statistical techniques (e.g. principal component analysis (PCA), partial 

least square (PLS)), observer based methods (e.g. Kalman filter , particle fi lter), fault 

trees and digraphs, analytical approaches, knowledge-based systems, neural networks 

etc. In general the multivariate statistical techniques are successful in detecting fault 

early and knowledge based methods are preferred for fault diagnosis. There is a lack 

of a comprehensive fault detection and diagnosis tool that can detect the fault early, 
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diagnose the root cause and guide the operator in the recovery of the process. In 

this t hesis, this problem has been investigated and a hybrid method is proposed as a 

solut ion of t his problem. 

1.2 Objective 

The main objective of this research is to build an automated fault diagnostic tool for 

process plants that can use both on-line measurements and process knowledge to find 

root cause of the fault precisely. The aim of this monitoring tool is to minimize the 

human error in the diagnosis of fault and improve the overall safety of the process. 

The objectives of the current research is summarized as below 

Develop an automated monitoring tool that can detect fault early and diag­

nose the root cause precisely. Thus help operators to steer the process to safe 

operating condition, prevent loss in productivity and accidents in process. 

ii Minimize complex analysis by operators for root cause analysis and to reduce 

both human error and ambiguity in diagnosis. 

iii Incorporate on-line measurement with process knowledge for precise diagnosis. 

1.3 Thesis Structure 

This thesis consists of six chapters. This first chapter provides a brief description 

about process fault and its consequences followed by motivation and objectives of this 

thesis. 

Chapter 2 covers extensive literature review on process fault detection and di­

agnosis. The advantages and deficiencies of the different methods are discussed and 

the gap in the research is ident ified. 
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Chapter 3 describes the method to construct a Bayesian belief network (BBN) 

for process systems. The BBN is mapped from signed directed graph (SDG). The 

methodology is validated by simulation. 

Chapter 4 introduces the hybrid methodology for process fault detection and 

diagnosis. This hybrid tool is a combination of PCA and BBN. Detailed steps of the 

algorithm are discussed in this chapter. 

Implementation of the proposed method is described in Chapter 5 with both 

simulation and industrial case studies. The results confi rm competence of the moni­

toring tool by detecting and diagnosing the fault precisely. 

Chapter 6 concludes the thesis with crit ical findings of this research followed by 

recommendations for future work. 



Chapter 2 

Literature Review 

On-line process monitoring is one of the most important research topic in process 

industries. Researchers developed various amount of methodologies for process mon­

itoring from different perspectives. The most popular FDD methods used in the 

process industries are discussed in the following sections. 

2.1 Quantitative Model Based FDD 

Quantitative model based methods use explicit system models developed either from 

laws of physics or identified models from identification experiment. T he most widely 

used approaches for quantitative model based algorithms are diagnostic observers, 

parity relations, Kalman filt ers, state-space models, input-output relationship, first 

Principal models, frequency response models etc are reported in different literatures 

[Venkatasubramanian et al. , 2003c, Venkatasubramanian et al., 2003a]. 

The observer-based FDD algorithms use a bank of observers to generate residuals 

[Frank and Ding, 1997]. Each one of this residual is sensitive to a particular type of 

fault while it remains insensit ive to the remaining faults and unknown inputs. During 

normal operating condition , observers track the process closely and the residuals from 
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the unknown inputs will be small. However, when a fault occurs, all observers which 

are made insensit ive to the fault by design, continue to develop small residuals. On 

the other hand , observers which are sensitive to the fault will deviate from the process 

significantly and result in residuals of large magnitude. Fault isolation become easy 

since these observers are designed for part icular faults . [Yoon and MacGregor, 2000] 

applied this observer based methodology successfully for a CSTR plant for detecting 

fault. More application of observer based FDD methods can be found in [Frank, 1994]. 

The fault signal might get obscured due to sensor noise and disturbance. Filters are 

designed to separate t he effect of faults and noise from the residual signal so that they 

can be easily differentiated [P.M. Frank, 1989]. 

Parity equation relations check is one of popular method for model based FDD 

and application of this method can be found in [Gertler and Monajemy, 1995]. The 

main idea is to check the inconsistency of the plant models prediction compare to the 

sensor outputs (measurements). 

( ) = (A(s) _ A(s)) () 
r s B ( ) ~ u s s B(s) 

(2. 1) 

Eqn. 2. 1 is called the parity equation where r( s) is the residual generated by 

the parity equation. Process is described by ;f:~ where A(s) is the output parameters 

and B ( s) is the input parameter of the process. Model is described by ~~:~ where 

A ( s) is the output parameters and B ( s) is the input parameter of the process model. 

Assumptions associated with the parity equation method are no process uncer-

tainty, no modelling errors and explicit model can explain all faults. If any of these 

assumptions is violated, the performance will be degraded. Another assumption is 

that parity relations are considered as linear model. Linear models are valid only 

around the operating conditions at which the non-linear process is approximated as 

linear. The parity relation approach thus cannot be easily applied to batch or non-
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linear processes where operating conditions vary continuously. 

Kalman filter is very popular in chemical industries as state estimator. Kalman 

filter estimates all process states and can be used for residual generation for measured 

process states. Generated residuals indica te the presence of fault [Benkouider et al. , 

2009, Chang and Chen, 1995]. 

[Isermann, 1997] proposed a model parameter estimation method for fault de­

tection. Model parameters are also affected by process faults . Through parameter 

estimation method model parameters for the normal operating condition are deter­

mined initially. These parameters are compared to the parameters obtained from 

the on-line process measurements. Any significant change from the normal operating 

range is denoted as fault. 

In the early days hardware redundancy was mainly used for fault detection. 

Measurements from the redundant sensors were compared for variat ion. If inconsis­

tency is found in the measurement , sensor fault is reported. This technique is for 

sensor fault detection is known as voting scheme [Willsky, 1976]. If hardware redun­

dancy is available, voting schemes can quickly identify sensor fault. The advantage is 

that the faulty sensors are removed smoothly from consideration reducing the num­

ber of false alarms. Application of this type of FDD method can be found in aircraft 

space vehicles and nuclear power plants. Due to the extra cost and additional space 

required , hardware redundancy is less popular and more interest is shifting towards 

analytical redundancy [Frank, 1990]. 

Analytical redundancy uses functional dependency of the process variables. 

Input-output relation of the process variables are expressed in terms of algebraic 

relation. This is useful for computing the value of a particular variable given that the 

states of the process variable and the measurements of the other sensors are known. 

Difference between the measured signal and the calculated value from the algebraic 
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relation is known as residual. If significant deviation is found between the measured 

value and calculated value, fault is ident ified [Chow and Willsky, 1984] . 

The problem associated with model based FDD is an explicit mathematical 

model of the system is required to generate the diagnostic residual. Most of the FDD 

model is constructed assuming the process to be linear which is seldom in practical 

life. Their application to a non-linear system requires a modellinearisation around the 

operating point . On top of that these models include some modelling error. Another 

lapse of the model based FDD approach is if the fault is not modelled properly then 

the fault may not be detected by the residual. All this can reduce the effectiveness of 

the method drastically. Often computational cost associated with deriving a model is 

very high and most of all very few mathematical models for a process can be found. 

2.2 Qualitative Knowledge based FDD 

Knowledge based models are usually developed from the fundamental understand­

ing of process dynamics. Signed directed graph (SDG), Baysian Network, Possible 

cause and effect graph (PCEG) etc are most common knowledge based model FDD 

approaches. 

Prior process knowledge is the key ingredient to build a knowledge based model. 

These models capture the cause and effect relationship among different process vari­

ables. and are expressed in terms of qualitative functions. These knowledge based 

systems are often computer aided programs which consists of various logics and con­

dit ional reasoning (If-else) [Venkatasubramanian et al. , 2003a]. 

Rule based expert systems applied for fault diagnosis are reported in a number 

of papers. These expert systems are often if-else rule based system with process 

knowledge extracted from the first principal of the process. The main objective of t he 
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expert system is to diagnosis a process fault and make a suggestion for the human 

operator to handle the fault properly. [Chen and Modarres, 1992] proposed an expert 

system which is capable of process fault diagnosis and suggestive to the operators for 

correct action during the abnormal condition in the process. The main advantages of 

expert systems as a diagnostic tool are ease of development and the ability to provide 

explanations for the solutions provided. 

Fault tree analysis (FTA) is the most popular method in the industries for 

root cause analysis. FTA is a top down deductive failure analysis. Boolean logic 

and lower-level events are combined to analyse an undesired state of a system in 

FTA [Sklet, 2004] . Logical "AND" and "OR" gates are used to describe basic events 

propagation up to top-events. The qualitative structure of how fault occurs can be 

analysed using cut set analysis. The smallest number of events that leads to top-event 

is known as minimal cut set. Minimal cut sets can imply the safety of the system 

qualitatively [Woodward and Pitbaldo, 2010]. Fault t ree is used mainly for analysing 

system reliability and risk analysis along with detecting root cause of an abnormal 

condition. 

Cause-effect relationship of the process variables or models can be represented 

in the form of signed directed graphs (SDG). SDG was first introduced for process 

fault diagnosis by Iri, Aoki, O'Shima, and Matsuyama [Iri et al. , 1979]. Digraph 

consists of directed arcs between the nodes which represent each process variables. 

In SDG each directed arcs have a positive or negative sign attached to them. The 

directed arcs lead from the cause nodes to the effect nodes. Each node in the SDG 

represents the steady state of a process variable. SDG is relatively easy and simple to 

implement. The causal information can easily be converted into rules. SDG can be 

obtained either from the mathematical model of the process or from the operational 

data or differential equation of the process model [Umeda et al. , 1980] . SDGs are 
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very efficient way of represent ing qualitative models graphically. It has been the most 

widely used as causal knowledge based process fault diagnosis algorithm [Yang et al. , 

2010] . Once a process fault has been detected , knowledge based model can find the 

root cause. 

Several enhanced version of SDG are developed , such as, possible cause effect 

graph (PCEG), to overcome some of the limitations of SDG is proposed by [Leung 

and Romagnoli, 2000]. In traditional SDG approach, state of each node is restricted 

to the high, normal and low states. In PCEG, more meaningful state description 

about the nodes are used. This makes knowledge representation more user-friendly 

and flexible. Another major improvement in P CEG over SDG is the distinct definition 

of root causes. PCEG diagnose the root cause with the proper process knowledge. 

Although all the above methods are very easy to set up but one of the main 

limitations of these diagnosis methods is they do not give a measure of the uncertainty 

in the diagnostic information. Since in a diagnosis numerous noisy and incomplete 

sources of evidence are assimilated , it is important to quantify the uncertainty in 

the decision. In this context, Bayesian belief network (BBN) can overcome some 

limitation of the above stated knowledge based methods. A Bayesian belief network 

is a probabilistic graphical model (a type of statistical model) that represents a set 

of random variables and their condi tional dependencies via a directed acyclic graph 

(DAG) in terms of conditional probability table. BBN can represent the probabilistic 

relationships among the causal variables. Given effects, the network can be used to 

compute the probabilities of the presence of various causes [Krieg, 2001, eapolitan 

and Jiang, 2010, eapolitan, 2004]. This allows to diagnose the root cause for ab­

normal conditions. Bayesian belief networks are very popular in process reliability 

assessment and root cause analysis [Wilson and Huzurbazar, 2007]. 

BBN is a probabilistic approach and thus it can capture the uncertainty in 
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the diagnosis. Some of t he benefits are capability to model complex systems, make 

predictions as well as diagnose the root cause, compute the occurrence probability 

of an event, update the calculations according to evidences, represent multi-modal 

variables and to help modelling user-friendly by a graphical and compact approach 

[Bobbio et al. , 2001]. An early warning system for root cause analysis using BBN is 

developed by [Pradhan et al. , 2007]. Since it is difficult to represent process knowledge 

directly in a BBN an equivalent model was built from first principle of the system and 

used for probabilistic reasoning and root cause analysis . [Azhdari and Mehranbod, 

2010] showed application of BBN for industrial fault diagnosis. Tennessee Eastman 

process was selected for testing the effectiveness of BBN as an industrial diagnostic 

tool. BBN was developed from the process knowledge of the system and it diagnosed 

some known faults successfully. However, it is assumed that faults do not occur 

simultaneously. A comprehensive review on BBN as a fault diagnosis tool can be 

found in [Weber et al. , 2012, Guo and Hsu, 2002] . 

[S . Dey, 2005] used BBN for fault diagnosis. Pearl's direct message passing 

algorithm was implemented to update probability of each node in BBN. Posterior 

probabili ty of each node is updated from evidence. To explain very simply, when new 

evidence is introduced into the network, each node updates its own belief, based on 

message received from its parents and children and correspondingly generate message 

to be sent to its children. This process is repeated unt il the network is stabilized . 

The successive stages of belief propagation is shown in Fig. 2.1. Here, it is 

assumed that evidences e1 and e2 are introduced. Initially the BBN is in equilibrium 

Fig. 2.1(a). As soon as two evidences are introduced Fig. 2.1(b) belief propagation 

is init iated . At this stage belief of the child node (evidence entering node) is updated 

and a message to the corresponding parent node is sent. Then in Fig. 2.1(c) the 

intermediate node updates its belief and sent message to its parent and child node. 
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e2 

(a) (b) (c) 

(f) (e) (d) 

Figure 2.1: Impact of new evidence on belief propagation 

The top root node receive two messages from its children and updates its belief. This 

process continues for the six cycles, at which point all messages are propagated and the 

network reaches a new equilibrium. After that the network is ready to take another 

new evidence. However , this diagnosis method is not applicable for cyclic process 

since BBN is acyclic [Pearl , 1988] . 

Introduction of process knowledge to perform diagnose a fault has been recent 

interest of research. BBN brings value as it quantifies the uncertainty in the diagnosis 

and it can incorporate process knowledge. More recently BBN has been used to 

combine various fault detection and diagnosis methods. [Huang, 2008] used BBN 

to unite diagnostic information from various diagnostic tools to calculate the overall 

control loop performance. [Khakzad et al. , 2013] proposed BBN for dynamic safety 

analysis. Although bow tie is very popular method but they can not handle the 
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process uncertainty due to their static nature. Mapping bow tie into BBN helps to 

overcome the limitation. A case study from the U.S. Chemical Safety Board has been 

used to illustrate the application BBN techniques as a fault diagnosis tool. 

2.3 History based FDD 

Process data based historical methods rely on the availability of large amount of 

historical data. When the process is under control, the observations have distributions 

corresponding to the normal mode of operation. This distribution changes when the 

process is out of control. If a monitored variable is in normal operating condition, then 

its statistical parameters like mean and the standard deviation will be close to their 

normal values. But for faulty conditions, either the mean or the standard deviation or 

both may deviate from their nominal values. In on-line statistical approach, samples 

are taken sequentially and decisions are made based on the observations up to the 

current time [Venkatasubramanian et al., 2003b] . 

History based method includes both univariate and mult ivariate methods. In 

univariate analysis process measurements are compared to the threshold values for de­

tecting fault . Probability of fault increases as the process moves away from the normal 

operating condition [Mah and Tamhane, 2004] . Univariate statistical techniques are 

easy to implement. But they cannot distinguish between normal operational changes 

and abnormal changes which leads to significant number of false alarms. Also oper­

ators need to monitor trend of each variable separately this can easily overwhelm an 

operator. 

Compared to the univariate analysis, multivariate techniques are more robust 

to false alarm and successfully reduces the dimensionality of the system. Multivariate 

techniques monitor the correlation among different variables as well as the variables 
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in a lower dimensional space. They are also robust to the changes in the process 

due to controller actions, set point change or noise in the process. These techniques 

are capable of compressing data so that the original huge data set can be analysed 

easily with essential information is retained. For these reasons mult ivariate statistical 

methods such as principal component analysis (PCA) , independent component anal­

ysis (ICA), partial least squares (PLS) , Fisher discriminant analysis (FDA), subspace 

aided approach (SAP) are very popular in industries. [Yin et al. , 2012] applied dif­

ferent data driven techniques such as standard PCA, Dynamic P CA (DPCA), TPLS, 

MPLS, ICA,Subspace aided(SAP) to the bench-mark Tennessee Eastman process to 

compare their performance in fault detection. 

Multi-scale PCA (MPCA) is commonly used to monitor batch process. MPCA 

that combines wavelet filtering with PCA is proposed by [Misra et a l. , 2002] for process 

fault diagnosis. Multi-scale PCA is widely used for condit ion monitoring to detect 

equipment fault such as compressor, pump etc. 

Several variation of P CA has been developed to fulfi ll different needs for process 

monitoring. Dynamic PCA (DPCA) has been developed to account for the dynamic 

varia tion in the system . For non-linear systems, several non-linear P CA methods have 

been developed. [Choi et al. , 2005] proposed non-linear PCA-based method that uses 

kernel functions and showed better results. 

These statistical methods use contribut ion plots for fault diagnosis [Miller et al. , 

1998, Kourt i and MacGregor, 1996a] . The contributions are very easy to calculate. 

When the square prediction error (SPE), T 2 or Q-statistics violates its t hreshold limit 

the fault is detected. The contributions of the individual variables can be analysed 

for diagnosis. Those variables having large contributions to the fault are examined. 

The maximum contribut ion is indicated as possible causes [J ackson and Mudholkar, 

1979, Joe Qin, 2003]. Application of the contribution plots as a diagnostic tool in an 
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industrial batch processes can be found in [Kourti and MacGregor, 1996b, Westerhuis 

et al. , 2000]. For a more complex and realistic process, the operator needs to employ 

his experience to determine whether he should look at t he magnitude or the sign of 

the contributions, or a combination of both sign and magnitude. Monitoring hundreds 

of variables can be overwhelming to examine and it requires a complex analysis to 

find out the root cause from this cont ribution plot . Two common problems associated 

with the contribution plots are 

• A fault of small magnitude may not have the largest contribution . However, 

when fault magnitude is very large significant contribut ion is observed. This 

can be a source of misdiagnosis. 

• Often more than one variables are shown as faulty since the contribut ion of the 

each variable is calculated by a matrix multiplication [He et al. , 2005]. This is 

known as "smearing" effect and can reduce the significance between contributing 

and non-contributing variables. This can insert ambiguity in diagnosis task 

[CHEN et al. , 2011 , Alcala and Qin, 2009]. 

Data based process monitoring methods are very easy to implement and effective 

in detecting faults early but the diagnosis is not precise. The residual analysis is not 

enough to aid the operator in identifying the root cause. This is because, for a large 

process with many variables, t he interpretation of measured variable contributions is 

difficult. It needs complex analysis for the operators to detect the root cause from 

the contribution plot . Moreover, for the diagnosis task there is no mechanism to 

incorporate the expert knowledge. Therefore, recognizing the inadequacy of single­

method based approaches, researchers are now giving more attention to the hybrid 

methods. 
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2.4 Hybrid FDD 

Hybrid FDD models are the combination of two or more than two independent FDD 

models. The mot ivation for designing hybrid diagnostic systems arises due to the fact 

that there is no single method that meets all the requirements of a good diagnostic 

system, [Mylaraswamy and Venkatasubramanian , 1997]. Qualitative knowledge based 

diagnosis models such as signed directed graphs (SDGs) are good for root cause anal­

ysis rather than being early detectors. For large-scale or non-linear process, building 

a SDG based diagnosis model is tedious, [Yang et al. , 2010]. On the other hand, 

quantitative model-based methods are very efficient and sensitive to process fault . 

However requires significant computat ional effort and often explicit models for t he 

process are not available. Computational cost associated with developing statistical 

classifiers and neural networks are very low. They are relatively robust to noise and 

other model uncertainties present in the process but cannot provide adequate expla­

nations about the diagnostic reasoning. For example, PCA/ PLS based FDI scheme 

are efficient and quick at fault detection but from the contribution plot it requires 

a complex analysis to find out the root cause. Sometimes more than one variable is 

shown as faulty due to the smearing effect in the P CA which leads to an ambiguity 

in root cause analysis, [Yoon and MacGregor, 2000, Liu, 2012]. 

It is evident from the above discussion that one single method is not enough to 

develop an efficient FDI scheme. To combine the strength features and to comple­

ment for the shortcomings of various methods, hybrid methods have been proposed. 

[Becraft et al. , 1991] proposed an integrated methodology for faul t diagnosis with a 

neural network and an expert system. To diagnose the most commonly encountered 

faults in chemical process plants, a neural network was used. Once the faults are 

detected within a particular process by the neural network, a deep knowledge expert 
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system analyse the result and suggests mitigating action. 

A DKit (combination of neural network and SDG) based hybrid model was 

proposed by [Mylaraswamy and Venkatasubramanian, 1997]. The inability of SDG 

for timely fault detection is overcome by the strength of early detection abilit ies of 

neural networks and the inability of neural networks to provide insights for diagnosis 

was compensated by the SDG's accurate diagnostic power. The salient features of the 

DKi t and its performance was demonstrated successfully by simulating 13 different 

scenarios wi th Amoco FCCU process. 

[Vedam and Venkatasubramanian, 1999] proposed a P CA-SDG based hybrid 

methodology for fault detection and diagnosis. In order to perform diagnosis using 

SDGs alone, each measured variable need to be compared against the high and low 

thresholds to identify its deviation which is very difficult for a large process. PCA 

plays a vital role in dimension reduction of the analysis. 

A hybrid system with signed directed graphs (SDG) and fuzzy logic was proposed 

by [Enrique E. Tarifa, 2003]. The SDG model of the process was used to perform 

qualitative simulation to predict possible process behaviour for various faults. Those 

predictions are used to generate if-else rules that are evaluated by an expert system 

using information about the actual process state. 

[Weiqing et al., 2012] proposed an abnormal root cause diagnosis method com­

bining Kernal PCA (KPCA) and fuzzy probabilistic SDG (FPSDG). KPCA-FPSDG 

based hybrid model has the multivariate monitoring characteristics of KPCA and 

fault explanation capability of SDG. All the variables are monitored using KPCA. 

When a fault is detected , the abnormal variable is isolated from the FPSDG. Case 

studies show that the KPCA-FPSDG method can effectively monitor the thermal 

system process and find the anomaly source promptly. 

Although these SDG hybrid based models are efficient for the standard process 

~--------------------------------------·--------------
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but its application for t he complex process is limited . To overcome this limitation 

[Ozyurt and Kandel, 1996] int roduced a hybrid FDD technique combining neural net­

work and expert fuzzy logic. Author suggested hierarchical mult ilayer neural network 

structure to deal with the complex process. Fault is discovered by the neural network 

by pattern recognit ion comparing to the normal operating condition pattern. The 

fuzzy expert system diagnose the fault using process knowledge and input from the 

supervisory network and sub-networks. The result shows effectiveness of the proposed 

hybrid system and adaptive capability to deal with noise in the process. A hybrid 

system with signed directed graphs (SDG) and fuzzy logic have been proposed by 

Tarifa and Scenna. The SDG model of the process is used to perform qualitative sim­

ulation to predict possible process behaviours for various faults. Those predictions 

are used to generate if-else rules that are evaluated by an exper t system using infor­

mation about the actual process state [Enrique E. Tarifa, 2003]. [Sun et al., 2012] 

used a first-principle knowledge based model combined with a data-driven art ificial 

neural network model for process fault detection and diagnosis. It demonstrates good 

performance both in process moni toring and fault diagnosis. 

Extended Kalman filter (EKF) and neural network based hybrid FDD is pro­

posed by [Benkouider et al. , 2012]. T he EKF estimates the state of reactor as well as 

the overall heat t ransfer coefficient and x2 test is conducted on residual for the fault 

detection. T he identification of the fault is based on a probabilistic neural network 

model. Estimated EKF states of t he reactor along with the overall heat t ransfer coef­

ficient are the inputs for t he neural network model. The neural network model, with 

the help of process knowledge diagnoses the root cause precisely. T his hybrid model 

is validated both for simulated and experimental data sets for a chemical process re­

actor. Although this method is effective, it requires an explicit process model and 

neural network needs to be trained with process faults which limits its applicability. 
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2.5 Conclusion 

It is evident from the review that each method has its own strength and shortcomings. 

PCA can detect the fault early and has overwhelming popularity in process 

industries for fault detection. 

ii BBN is convenient for capturing process knowledge and the associated uncer­

tainty. 

m Combining more than one method can complement each other to over come 

limitations. Combination of knowledge based and data driven methods can 

deliver best result. Thus hybrid methods are becoming popular as FDD tool. 

These hybrid models could be a solution for automated process fault detection 

and diagnosis. 

iv Though many hybrid methods are available but they are not hybrid in true sense. 

The knowledge based diagnostic tools are not utilizing the limited diagnostic 

information from the quantitative methods. Also in many cases the diagnostic 

tools (e.g. neural network) requires huge database of faulty data which are 

difficult to obtain. 

v Considering the above facts hybrid method which combines PCA and BBN 

together is proposed in this thesis. P CA is very efficient for early fault detection 

and BBN captures process knowledge with uncertainty which can give accurate 

diagnosis of the root cause. This hybrid method combines the strong features 

of both PCA and BBN to overcome their individual limitations. 



Chapter 3 

Development of BBN for Process 

Systems 

In this chapter a method to develop a BBN for process system is described . Signed 

Directed Graph(SDG) is well known for representing cause and effect relation among 

the different variables. The method described here, maps a SDG to a BBN. First a 

brief overview on SDG is provided. Methods of obtaining SDG from mathematical 

equations and process knowledge are discussed. The mapping of SDG to a BBN is 

described. 

3.1 Signed Graph 

Signed graphs were first int roduced by Harary to handle a problem in social psychology 

[Cartwright and Harary, 1956] . Since then it has been applied in many fields of study 

such as physics, data clustering, diagnosis of root causes etc. In graph t heory, a signed 

graph refers to a graph in which each edge has a positive or negative sign. This is a 

graphical representation of cause effect relation among different variables. T he graph 

20 
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(i) (ii) 

Figure 3.1: Signed Graph 

may have loops and multiple edges as well as half-edges (with only one endpoint) and 

loose edges (with no endpoints). Half and loose edges do not receive signs. In formal 

terms a digraph is a pair G = (X , Y ) Where 

• X is a set whose elements are called vertices or nodes, 

• Y is a set of ordered pairs of vertices, called arcs, directed edges, or arrows. 

Two signed graphs are shown in Fig. 3.1. Both graphs have t hree nodes A, B 

and C. Both A and B are connected to C by two arcs. 

In Fig. 3.1(i) Edges of these two arcs have a positive and a negative sign rep­

resenting the types of relations between nodes A - C and B - C respectively. The 

positive sign at the edge of the arc A - C means, if t here is an increase in A, this 

will result in an increase in C. The negative sign at the edge of arc B - C indicates 

an inverse relationship. An increase in A will result in a decrease in C or vice versa. 

This type of causal relations can be graphically represented by signed graphs. Both 

A and B nodes are called root nodes or causal nodes and node C is t he effect node. 

This is shown by the arc direction from the root nodes to the effect node. 
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-
(i) ( i i) 

Figure 3.2: Signed Directed Graph (SDG) 

In Fig. 3.1 (ii) A - C edge is a multi edge arc which has two positive signs. 

T his multi edge represents that both nodes A and C can now act as cause and effect 

nodes simultaneously. The signs assigned to the arc represents the relation between 

the nodes. 

3.2 Signed Directed Graph 

An extended version of signed graph is signed directed graph (SDG) which deals with 

only single edge arcs. Nodes of the SDGs are assigned with posit ive, negative or a 

zero state. T hese represent the states of a nodes higher than, lower than or normal 

operating condit ion respectively. T he SDG can be defined as below 

In F ig. 3.2 two simple SDG is shown. Fig. 3.2 (i) shows relation between 

variable X and Y and Fig. 3.2 (ii ) shows relation between variable P and Q. 



Sign of node Sign of SDG nodes can be defined as below 

'lj;(v) = 0 faT I ::r:v- .f-v I< Ev, 

'l/J(v ) =+joT (xv - Xv) 2:: Ev, 

'lj;(v) =-for (.i'v - .Tv) 2:: Ev-
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(3.1) 

where xv is the measurement of the variable v , Xv is the normal value, and Ev is 

the threshold. 

Sign of arc This can be illustrated by Fig. 3.2(i) node X and node Y is 

connected by an arc from node X to Y. When X increases, Y also increases. Deviation 

of X and Y in the same direction. This relation is shown by the posit ive sign arc a1 . 

On the other hand , in Fig. 3.2(ii) node P and node Q is connected by an arc from 

node P to Q. When P increases, Q decreases. Deviation of P and Q in the opposite 

direction. This relation is shown by the negative sign arc a2 = -. 

3.3 Modelling of SDG 

SDGs can be constructed either from operational data and system knowledge, or 

mathematical models of the system. Various methods for building SDG are discussed 

below. 

3.3.1 SDG Modelling from Mathematical Equations 

SDG can be derived from the differential and algebraic equations of the system. The 

structure as well as signs of the graph can be derived from the different ial equations. 

An arc is drawn from the variables in the right hand side of an equation to the 

variables in the left hand side of that equation . The sign of the arc between the 
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Figure 3.3: SDG of a system with first order differential equation 

variables depends on the sign of the variables in the equation [Maurya et al., 2003]. 

A typical dynamic system can be expressed as a set of ODEs, 

(3.2) 

where (x1 , x2 , . . . . .. xn ) are state variables of the system, u 1 , u2 , u3 , .. ... un are input 

variables of the system and e is the disturbance. 

A first order system state variable x, input u and disturbance e, 

dx = - (!!!L)x + k u + (l...)e. 
dt a t a t 

(3.3) 

For the system defined by the Eqn. (3.3) , SDG can be constructed as shown in 

Fig. 3.3. An arc is constructed from e to x with a sign sgn[l / a 1] =+, an arc from u to 

x with a sign sgn [k] = + and a self-cycle on the node x with a sign - sgn[a0 / a1] = -

on the arc. 
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v 
L -

Figure 3.4: Simple tank model 

3.3.1.1 SDG Modelling of a Simple Tank System from Mathematical 

Equations 

A simplified tank model is shown In Fig. 3.4. Water flows into the tank with flow 

rate F1 . The flow coming out of the tank, F2 is controlled by a flow valve V and level 

of water accumulation is denoted as L . 

Governing equations for the system are as below 

dL 
A-= F1- P.2 dt , (3.4a) 

F2 = v'L;v, (3.4b) 

here, A is the cross sectional area of the tank and Vis the valve resistance acting 

on the flow. 

SDG derived from the Eqn. (3.4) is shown in Fig. 3.5. Water flow F1 and F2 

have direct influence to water level accumulation in the tank described by Eqn. (3.4a) . 

Any positive change in F1 , will make positive change to L. This means that if inflow 

increases the accumulation will increase. To capture this process dynamics in SDG, 
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Figure 3.5: SDG of a simple tank model 

an arc from F1 (right side of equation) to L (left side of equation) with a positive sign 

is constructed. Again, a posit ive change in F2 , will make negative change to L. When 

out flow increases t he accumulation will decrease. To capture this process dynamics 

in SDG, and an arc from F2 to L with a negative sign is drawn . 

Outflow F2 is a function of both accumulated level and valve resistance V . An 

arc from V to F2 and another arc from L to F2 is drawn according to the Eqn. (3.4b). 

When the valve is open, valve resistance V on the flow is low, and there will be high 

out flow F2 . T his will decrease the water level L. Because the type of the relations 

among the variables V, F2 and L are opposite, the arcs are assigned with negative 

signs. 

3.3.2 SDG Modelling of a Simple Tank Syst em from Process 

Knowledge 

In most cases SDGs are built with process knowledge and experience. Often math­

ematical equation or model for a process is not available. P rocess dynamics and 

qualitative process knowledge remains as last resource to build a SDG. 

A simple tank model with controlled flow rates is shown in Fig. 3.6. Inflow F1 is 

cont rolled by a valve with flow resist ance VJ. . Since there is no controller F1 does not 
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Figure 3.6: Simple tank model with cont rolled flow rates 

Figure 3.7: SDG with controlled flow rates 
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affect V1. The relationship is unidirectional from V1 to F1 . Inflow F1 depends on the 

V1 , hence V1 is the cause and F1 is the effect of that. An arc from the V1 to F1 is draw 

with a negative sign. Accumulation is directly influenced by both inflow and outflow 

rates F1 , F2 and F3 . When inflow increases the accumulation increases. Therefore, a 

positive signed arc is drawn from F1 to L. Two arcs with negative sign are drawn from 

F2 to L and F3 to L. Because both out flow F2 and F3 will reduce accumulation in 

the tank. Both out flow F2 and F3 is controlled by two flow valves with flow resistance 

V2 and V3 respectively. When valve resistance 112 decreases, out flow F2 increases. 

Flow cont roller regulates the valve (resistance) to control the flow F2 . Similarly, when 

valve resistance V3 decreases, outflow F3 increases. Level controller regulates the valve 

(resistance) to control the flow F3 . Flow control and level control is shown by the 

other two negative arcs from F2 to V2 and L to V3 . Thus SDG can be obtained from 

only process dynamics without any process model or governing equation shown in 

Fig. 3.7. 

3.4 Mapping of SDG to BBN 

In SDG the type of relation among the variables is expressed in terms of arc sign 

where in BBN this relation is expressed in terms of conditional probability table. 

Mapping of SDG to BBN is shown in Fig. 3.8. Mapping of the SDG into 

BBN is done in two steps. First, SDG is developed from either process knowledge or 

mathematical equations described in section 3.3. After a SDG has been developed, 

it is mapped to the BBN based on both graphical and numerical translation. The 

structure of BBN is obtained from the graphical translation. T he nodes are connected 

in the same way as they are connected in the SDG. The root nodes, intermediate 

nodes and effect nodes are mapped into the BBN as parent nodes, intermediate nodes 
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Process Mathematical 
Knowledge Equation 

I SDG I 

~ 

I Mapping SDG to BBN I 

Root Nodes Gc.phl"l Tc.o.l•tl"{> Parent Nodes 

Intermediate 
Gc.phk• l Tc.o.l"loo~ Intermediate 

~ ~ 
Nodes Nodes 

Gc.phl"" ""''"''"~ Chi I d Nodes Effect Nodes 

Arcs and edges 
" '"hl"l '""'''"'"~ Arcs and edges 

Arc Sign N"m"'" ' '""''"''"~ CPT Table 

BBN 
, 

BBN 
Consistent Make it acyclic 

? No 

Yes 

STOP 

Figure 3.8: Mapping SDG to BBN 
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B 

A TRUE FALSE 

TRUE 0 .95 0.05 

FALSE 0.1 0.9 

Figure 3.9: Mapping SDG to BBN 

and child nodes. On the other hand , in the numerical t ranslation, t he conditional 

probability tables of the BBN nodes are filled up based on the signs of the arcs in 

SDG. 

An arc with positive sign between the two nodes in the SDG refers that the 

direction of change in the causal node, will be followed by the effect node. This 

behaviour is mapped in BBN conditional probability table (CPT) between the same 

two nodes. In the CPT those two variables will be assigned with high probability 

value (greater t han 0.5) for the same state. Fig. 3.9 a SDG with two variables A and 

B is shown. With the graphical translation the structure of the BBN is obtained. 

The CPT for node B is obtained from the numerical translation. The arc from A to 

B is denoted with positive sign . In the CPT, when both A and B are in the same 

state, high probability value is assigned. P(B IA) = 0.95 with both A and B in the 

True state and P(BIA) = 0.9 with both A and B in t he False state. 

On the other hand, an arc with negative sign between the two nodes in the SDG 

refers t hat the direction of change in the causal node, will be opposite to the effect 

node. In the BBN CPT those two variables will be assigned with higher probability 
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B 

A TRUE FALSE 
TRUE 0.15 0.85 

FALSE 0.92 0.08 

Figure 3.10: Mapping SDG to BBN 

value (greater than 0.5) for the opposite state. The probability values can be obtained 

from the frequency analysis or expert judgement. Conditional probability tables il­

lustrate how intermediate nodes are related to precedent intermediate or root nodes 

which is similar to the arc sign in the SDG. Fig. 3.10 a SDG with two variables A 

and B is shown. The CPT for node B is obtained from the numerical translation. 

The arc from A to B is denoted with negative sign . In the CPT, when both A and 

B are in the opposite state, high probability value is assigned. P(B IA) = 0.85 with 

A in True state and B in the False state and P(BIA) = 0.92 with A in the False 

state and B in the T rue state. 

Often exact graphical translation of SDG into BBN may result in cyclic network. 

This is not consistent for BBN analysis. T herefore the cyclic network need to be 

converted to acyclic network without altering the process behaviour captured by the 

network. To avoid a loop, indirect relationship between the variables may be useful. 

This is demonstrated with example in t he next section. 



0 

High 75% 

Low 25% 

L 0 

Figure 3.11: Scenario 1: BBN of simple tank 

v 

3.4.1 Mapping of BBN Model for Simple Tank System 
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BBN for t he simple tank model shown in the Fig. 3.4 can be drawn as Fig. 3.11. 

The BBN structure is same as the SDG shown in Fig. 3.5, except for t he arc from V 

to L. Since BBN is acyclic by the definition, to make t he network consistent an arc 

from F2 to L is avoided. Instead of that, an arc from the V to L is drawn. From Eqn. 

(3 .4) it is evident that L is a function of both F1 and F2. Outflow F2 depends on V . 

Therefore, L has a dependency with V . This process knowledge is used to avoid the 

cyclic loop in BBN to make it consistent . 

Relation among the different variables are quant itatively expressed in terms of 

conditional probability. Prior probability and conditional probability table is shown 

in Table.(3.1 , 3.2, 3.3 and 3.4). 

Accumulat ion of water in the tank is function of both inflow rate F1 and valve 

st ate (open or close) . When inflow increases and valve is closed , accumulation is 



F1 

High 0.85 
Low 0.15 

Table 3. 1: Prior probability of inflow F1 

F1 High Low 

v Close Open Close Open 
L 

High 0.95 0.05 0.15 0.02 
Low 0.05 0.95 0.85 0.98 

Table 3.2: Conditional probability table for level L 
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higher. These relations are shown with different signs in the SDG. In BBN, posit ive 

and negative relation can be defined by the conditional probability table (CPT) shown 

in Table.(3.2). Accumulation is 0.95 when F1 has higher flow rate and the valve is 

closed. But accumulation is 0.02 when F1 has lower flow rate and the valve is open. 

This is how the posit ive or negative relation among the variables in the SDG can be 

transformed to the CPT to map a BBN from SDG. 

L High Low 

v Close Open Close Open 
F2 

High 0.3 0.95 0.05 0.8 
Low 0.7 0.05 0.95 0.2 

Table 3.3: Conditional probability table for outflow F2 

Probability inserts uncertainty into consideration. Prior probability of F1 and 

Vis set according to the Table.(3. 1 and 3.4) . 

3.4.1.1 Scenario 1: Validation of Conditional Probability 

From the process knowledge it is evident that if the inflow F1 is high and valve V is 

closed outflow F2 will be lower and it will result in high accumulation of level L. This 



v 
Close 0.9 
Open 0.1 

Table 3.4: Prior probability of valve V 
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process dynamics is justified by the BBN in Fig. 3.11 . When inflow is set to high 

probabili ty 85% and the valve is close with high probability of 90%, outflow F2 is low 

with 69%. The chance of accumulation of water in the tank is higher with 75%. 

3.4.1.2 Scenario 2: Validation of Conditional Probability 

0 F1 

0 v 

Figure 3.12: Scenario 2: BBN of simple tank 

A different scenario where inflow rate is high and the outlet valve is fully open 

is shown in Fig. 3.12. Here F1 has very high probability 100% and the valve opening 

has very high probability of 100%. 

It is evident from process dynamics, there will be very low amount of water 

accumulation in the tank. Because outlet valve is kept open . T his will result in 



Open 90% 

Close 10% 

Figure 3.13: Validation of Conditional Probability for controlled tank model 1 
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high out flow rate F2 . This process dynamics is illustrated by the BBN. L has low 

accumulation probability of 85% and F2 has high flow rate probability of 81%. 

It can be concluded that a BBN can be constructed from SDG if process model is 

available. If process model is not available, BBN can be built from process knowledge 

itself. Positive or negative arc which express the type of relations among the variables 

in SDG, can be defined in terms of conditional probability in BBN. 

3.4.2 BBN of Controlled Tank Model 

The tank model and corresponding SDG shown in the Fig. 3.6 and 3.7 is mapped 

to the BBN shown in the Fig. 3.13. The structure of the BBN is obtained from the 

graphical translation of the SDG model. To avoid loops in the BBN and to make it 

consistent , control loops are made acyclic. This is done by introducing two controller 

nodes C2 and C3 . One arc from the F2 to C2 is drawn to denote the flow control action. 

Depending on the flow F2 t he controller will take action to maintain the optimal flow 
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by opening or closing the valve which is shown by the Close Valve and Open Valve 

states of V2 . Another arc from the L to C3 is drawn to represent level control action. 

Depending on the level L the controller will take action to maintain the optimal level 

by opening or closing the valve which is shown by the Close Valve and Open Valve 

states of V3 . Here, no controller action is implemented since it will make the network 

a cyclic one. The controller action can be implemented by superposition to replicate 

the process behaviour. The following simulation results show how dynamic process 

behaviour was captured in BBN. 

In Fig. 3.13 shows that accumulation L is very low 97% due to high flow rate 

of both of F2 and F3 respectively 91% and 88%. To maintain the desired flow rate 

of F2 , controller 2 needs to close the valve. To implement this action, an arc from 

the C2 to \12 is needed. But the arc will make the BBN cyclic. Therefore to avoid 

this loop and make t he BBN an acyclic model In Fig. 3.14 the controller 2 action 

is implemented. Valve V2 is closed a bit to make flow rate F2 to optimum level. 

Therefore, accumulation is raised and controller action C2 is also minimised. The 

control loop of the level controller was avoided similarly. 

3.5 Conclusion 

The simulation results show that BBN for a system can be deduced from the governing 

equation of the model. The complete methodology is demonstrated with several 

simulation examples using GeNie 2.0. Various faults were assumed to calibrate the 

BBN and to verify cpt table and prior probability values. The cpt table values and 

the prior probability values are the inputs for BBN constructed in GeNie 2.0. These 

faults were assumed from the process dynamics. Often the model or the equations are 

not available. In that case system dynamics and process knowledge can be helpful to 



Open 40% 

Close 50% 

Open 90% 

Close10% 

Figure 3.14: Valida tion of Conditional Probability for controlled tank model 2 
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build a BBN model. First SDG is built, than SDG can be mapped into BBN discussed 

in Fig. 3.8. The prior probability and conditional probability tables can be obtained 

by expert judgement where enough historical data is not available. In addit ion to 

that, BBN can be useful for diagnosis or in root cause analysis. For process with 

complex structure, operators often performs very complex analysis to find the root 

cause of a fault . Often due to lot of factors (Mental pressure, Working conditions 

etc.) t his manual diagnosis is erroneous during the process fault conditions. In this 

context BBN provide solution in need for an automated diagnostic tool. 



Chapter 4 

PCA-BBN Based Hybrid Method 

for Process Fault Detection and 

Diagnosis 

In this chapter an automated fault detection and diagnosis tool is described. This 

hybrid tool is the combination of PCA and BB . PCA detects the fault and prelim­

inarily diagnose the root cause. BBN takes detection and diagnosis results of PCA 

and further refines it based on the process knowledge to accurately pinpoint the root 

cause of a fault . 

4.1 PCA-BBN Hybrid Method 

The PCA-BB hybrid FDD algorithm is shown using a flowchart in Fig. 4.1. This 

algorithm has two essential parts. They are fault detection using PCA. Once fault is 

detected , diagnosis is done using BBN. The loop execu tion will occur at each sampling 

instant of the available data set. 

38 



Off-line PCA 
modelling 

Detection On-line Fault 
Diagnosis 

39 
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Figure 4.1: P CA-BBN hybrid fault detection and diagnosis method 
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Before a sensor measurement is fed to the PCA-BBN, it needs to be validated. 

Sensor validation allows to detect sensor faults locally and does not require any fur­

ther analysis. Typically in a process system measurement will always show small 

random variations due to t he fluctuation in t he system and measurement noise of the 

sensors. If the a sensor does not shown any movement for an extended period that 

is indication of sensor malfunction. Simple logic check is implemented here to detect 

the sensor fault. For example, If no variation is found in the measurement for the 

seven consecutive samples (i.e. less than 10- 6 ) compare to the present measurement, 

the sensor is said to be faulty. 

( 4.1) 

Here ·i = 1, 2, 3, .. .. , 7. 

Again, if the change in the measured data is unusually high or low the sensor is 

said to be faulty. This can only happen when measured variable has a sharp rise or 

sharp fall. For a slow system like process these sharp changes are unusual. 

A faulty sensor can be pinpointed correctly through sensor validation. This 

sensor authentication makes the diagnostic tool more robust. Whenever a fault is 

detected for a variable, sensor validation algorithm ensures the integrity of sensor 

measurement. 

If sensor is found to be operating, The PCA model (the loading vectors) is used 

for process monitoring by projecting the on-line data onto the PC subspace. On-line 

data set Xt is projected by linear transformation and PCs of on-line data set can be 

expressed by the following equation, 

(4.2) 
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Here, Sis the PC or score vectors of on-line data, i = 1, 2, 3 .... .. m, PiERmxr and 

r is the number of principal component r ::; m . 

Each of the Principal components or score vectors capture as much variation as 

possible which has not been explained by the former PCs. The maximum number of 

principal components are equal to the total number of the variables. 

For on-line fault detection, PCA model is built from the normal operating con-

dit ion data. Off-line PCA model is built from a given dat a matrix X , of normal 

operating condition , of dimension ER Nxm where N is t he number of sample data and 

m is the number of the correlated variables in the data set . Init ially data set X 

is pre-processed by auto-scaling (mean zero and variance one) . Then off-line P CA 

model is obtained from the SVD analysis of covariance matrix of auto-scaled data set 

[Jackson, 2005, Afifi and Clark, 2004]. 

The covariance matrix of X can be defined as 

xrx 
cov(X) = -N . 

- 1 

SVD analysis of covariance matrix X decomposes as follows: 

SV D[cov(X)] = PAPT. 

(4.3) 

(4.4) 

where A is a diagonal matrix with significant eigenvalues and P contains the 

respective eigenvectors also known as loading vectors and the basis vector of the 

principal subspace [Smith, 2002]. T his obtained eigenvectors P is the PCA model is 

used for on-line process monitoring. This principal subspace has a lower dimension 

than the original data set X and yet is able to capt ure or explain significant portion 

of the information content (or the variance) in the original data set . 
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PCA model prediction for all variables can be expressed by as follows , 

r 

it= "£8iPi . ( 4.5) 
·i=l 

it is the model prediction. 

Residual is calculated from the difference between the model projection and 

projected data set [Jolliffe, 2005]. Residual E for an on-line sample X t , is calculated 

according to the following formula, 

A confidence limit for E can be calculated as follows 

Q = () (c,J202!iJ + 1 + 02ho(ho- l ) ) (f-) 
e 1 o, ~~ 0 ) 

1 

fJi = L:j=r+l(-\j )i, 

ho = 1- 2&,ga 
3112 • 

(4.6) 

(4.7) 

where C,:x is obtained from the normal distribution limits for the upper (1 - a) 

percentile [Jackson and M udholkar, 1979]. 

During the normal operating condition threshold defined by Eqn. ( 4. 7) is not 

violated and data for new time instant is monitored for fault . But for the abnormal 

condition the residual exceeds its threshold limit. Upon successful detection of fault , 

PCA contribution of each variable is analysed. 

Contribution of i - th variable to the Q-statistic can be calculated as 

(4.8) 

Here (3 is a column vector i-th element is one and the others are zero and 
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Figure 4.2: Message passing in BBN after evidence coming to the nodes 

i = 1, 2, 3 ..... m [Liu, 2012]. 

For on-line fault diagnosis contribution of each variable is used as evidence for 

the BBN. Depending upon this on-line evidence, BBN updates its belief of each node. 

Contribut ion as evidence input for the parent nodes is denoted as c+ and contribution 

as evidence input for the child nodes is denoted as c- . The contribution matrix is 

(4.9) 

In Fig. 4.3 a BBN with tree structure is shown. U1 , U2 and U3 are parent nodes 

and Y1 , Y2 and Y3 are child nodes. Message from the parent nodes to the child nodes 
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are denoted as 1r messages and message from t he child nodes to the parent nodes are 

denoted as >. message. 

Init ially each parent node in BBN is initiated by prior probability. Prior belief 

of parent nodes is calculated by evidence from the PCA and init ia lly calculated prior 

probability. 

bel(Ui) - P(c{IU;)P(U;) 
P(cf) (4.10) 

here P(Ui) is prior probability of node Ui, bel(Ui) is prior belief of node Ui and 

i = 1, 2, 3 .... , p number of the pa rent nodes. 

By top-down propagation parent nodes prior belief is passed to the child nodes. 

Child nodes calculate the prior belief with the help of the condit ional probability table 

and the prior belief of the parent nodes. 

bel(}j) = a17rz(}j)P(}ji Z), 

= BEL(Z)P(}jiZ) 
(4.11) 

here a 1 is a normalizing constant and for all states of }j, bel (}j ) is prior belief 

of node }j and j = 1, 2, 3 ... . , c number of the child nodes. 

Belief of node Z is calculated simultaneously insp ecting the message from its 

parents 1r(Z) and t he messages from its children >. (Z) . Using this inputs, it updates 

its belief 

BEL(Z) = az>. (Z)1r(Z). (4.12) 

here CXz is a normalizing constant and for all states of Z 

l: BEL(Z) = 1. (4. 13) 
z 
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where 
p 

1r(Z) = L 1fu; (Z)P(Z IUi). (4.14) 
i=l 

c 

>.(Z) = L Ayj (Z)P(Yj iZ ). (4.15) 
j = l 

Then each child node updates its prior belief to posterior belief based on the 

evidence coming from PCA. 

BEL(Yj ) = a.ibel (Yj )P(cj ). (4.16) 

Posterior belief of the child node in sent to the parent node by bottom up belief 

propagation. 

( 4.17) 

Then each parent node updates its prior belief to posterior belief based on the 

posterior belief of the child nodes. 

( 4.18) 

(4.19) 

This updating process continues until each node is updated to the posterior 

belief. At next time instant each node receive new evidence from the PCA and 

posterior belief of the previous time instant becomes prior belief for next time instant. 

Belief propagation start again unt il t he network is converged. 

Belief propagation between the parent nodes and child nodes follows Pearl's mes-
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sage passing algorithm. Prior belief of every node is rectified by both PCA evidence 

and process knowledge. Initially some non-faulty variables may show up as faulty in 

the PCA contribution plot . But when they are updated based on the evidence and 

current process knowledge in t he BBN, their posterior belief reflects the real condition 

of the variable and removes the ambiguity of diagnosis. In this fashion the inference 

network can track a changing environment and provide the most updated possible 

condition. 

A real t ime hybrid process monitoring technique based on PCA and BBN for 

process fault detection and diagnosis is described here. The proposed hybrid method 

uses the diagnostic results from PCA and combines with process knowledge captured 

in a BBN. Thus the method is able to accurately pinpoint the root cause of a fault 

which is shortcomings of PCA and other statistical fault detection and diagnosis 

approaches. 

4.2 Diagnosis using Sensor Measurement as Evi­

dence 

Sensor measurements can be used as evidence instead of P CA contribution informa­

tion. The complete algorithm for this is shown in Fig. 4.3. Initially measurement 

is validated by sensor validation algorithm. If sensor is found normal operating then 

sensor measurement is further processed. 

Sensor measured data is compared with the corresponding set point value to 

obtain the residual. Residual of each variable is used as evidence input for the BBN. 

( 4.20) 
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Figure 4.3: Diagnosis using sensor measurement as evidence 
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Here, Xr is the residual of variable X , X m is the measurement from the sensor 

and X s is the set point of X. 

Probability of fault increases as residual of a variable goes away from the normal 

operating limit . In this case absolute value of residual is considered and the normal 

operating condit ion limit is defined as p, + 3o- of normal operating data. When the 

residual exceeds this limit the process is said to be in faulty condition. The probability 

that X is faulty is calculated from the following equation 

(4.21) 

Here, X r is the absolute residual value of variable X. 

These obtained values are introduced as evidence for the BBN nodes. BBN 

diagnosed the fault using message passing algorithm discussed in t he previous section. 

4.3 Conclusions 

A PCA-BBN based hybrid monitoring tool is proposed in this chapter. Performance 

of the proposed method is demonstrated using a PTA tank model. Various fault 

scenarios were considered. Results are shown in the next Chapter. 



Chapter 5 

Results and Discussions 

In this chapter the performance of the proposed diagnostic tool is demonstrated using 

simulation and industrial case study. The system is a model of a dissolution tank to 

dissolve terephtalic acid crystals in order to remove impurities to form pure tereph­

talic acid (PTA) . After testing the diagnostic tool in simulation environment , data 

was collected from the real process. The diagnostic tool was validated using industrial 

data. The organization of this chapter is as follows, first the construction of the BBN 

for t he dissolution tank system is described. Prior probability and conditional proba­

bility were assigned and verified by simulating several different scenarios. Next, with 

various simulated faults in the system the proposed hybrid method was applied to 

detect and diagnose the root cause of the fault . Performance of the proposed method 

was compared with the BBN where sensor measurements were used as evidence. Fi­

nally, the PCA-BBN hybrid method is validated using industrial data from the PTA 

dissolution tank for a known fault condition. 

49 
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5.1 Dissolution Tank Model 

A simplified process diagram for the dissolution tank system , is shown in Fig. 5.1 

[Mallick and Imtiaz, 2011]. In this system solid terepthalic acid crystals are dissolved 

in a tank with water. Water is pumped into the tank under flow control. PTA 

crystals are fed to the dissolution tank from a hopper using a rotary feeder. The 

feed ra te of solid crystals to the mixing vessel is controlled by the speed of the rotary 

feeder (RPM) . The water level in tank and the concentration of the liquid going 

out of the tank are continuously measured variables. The solid flow is calculated 

intermittent ly from loss of weight of the load-cell. The control objectives of the system 

are to maintain the concentration at desired set point and prevent overflow or dry out 

in the tank. Under the existing control strategy, two PID controllers are used to meet 

these objectives, the concentration of the outlet stream is controlled by manipulating 

the rot ary valve rpm, while t he flow cont roller under cascade control maintains the 

tank level. 

However, the concentration at t he outlet is subject to frequent large disturbances 

when the operators have to take control of the process and manually drive the process 

out of the abnormal condition. Major cause of the disturbance is the difficulty in 

solid dispensing. Occasionally because of the variation in moisture content the solid 

gets lumped in the rotary feeder. As a result solid does not dispense from the feeder 

uniformly. After a while when the lump gets too big it falls into the tank creating a big 

disturbance in the concentration which causes a further problem in the downstream 

process. The other causes include disturbances in the water level due to the poor 

cont rol of water flow sensor malfunction, stiction of water flow valve etc. Objective 

of the monitoring scheme is to develop an au tomated fault detection and diagnosis 

system that will detect the fault early and will also precisely point to root cause of 
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Figure 5.1: Dissolut ion tank model with existing cont rol strategy 
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fault. 

5.2 SDG for Dissolution Tank Model 

First order different ial equations for the PTA dissolution tank model are as below, 

(5.1a) 

(5.1b) 

Here, F1 is inflow of water into the tank, F2 is t he outlet flow. Solid inflow rate 

is F3 and C is the outpu t concentration. A is t he cross sectional area of the tank, V 

volume of the tank, a 1 and a 2 are process constants. 

With these governing Eqn. (5.1) SDG model for the dissolut ion tank model can 

be developed following t he methodology discussed in Section. 3.3. Three arcs from 

node F1 , F2 and F3 to node L are drawn. The sign of the arcs are positive, negative 

and positive respectively according to Eqn. (5.1a). Three arcs from node F1 , F2 and 

F3 to node C are drawn. The signs of the arcs are positive, negative and positive 

respectively according to Eqn. (5.1b). Rest of the network is developed based on the 

process knowledge. The simplified SDG model is shown in Fig. 5.2. 

Since RPM drives the solid flow rotary valve RV, a positive arc from the RPM 

node to the RV node is drawn. The solid flow rate is proport ional to rotary valve 

revolution which is denoted by a positive arc from the RV node to the solid flow rate 

S uode. Solid flow has direct impact on concentration. This relation is shown by an 

arc drawn form S node to node C. Water flow is controlled by the flow valve FV 

and water flow is directly related to the water level L . These relations are captured 
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+ 

Figure 5.2: SDG for dissolution tank model 

+ + 

Figure 5.3: SDG for dissolut ion tank model 

in the SDG by arcs drawn from F V to F1 node and from F1 to L node respectively. 

Outflow F2 has inverse impact on the water level L . This is shown by a negative arc 

from F2 to L. For this process outflow F2 was maintained controlled manually and 

there was no flow sensor for F2 . T herefore, the impact of F2 can be neglected and a 

simplified SDG can be obtained as shown in Fig. 5.3. 

5.3 Mapping of Dissolution Tank SDG to BBN 

The SDG for dissolution tank model shown in Fig. 5.3 is mapped to BBN shown 

in Fig. 5.4 following the methodology described in Section. 3.4. In this case there 
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Figure 5.4: BBN for dissolut ion tank model 

is no cycle in the SDG therefore the graphical structure for BBN is same as the 

SDG. Conditional probability values and prior probability values for the BBN were 

assigned based on process knowledge and expert judgement. The network is init iated 

with the probability values given in Table. 5.1-5.7. The numerical translation requires 

conversion of signed relationships to conditional probability tables. T hese assigned 

probability values were validated by simulating various scenarios described in the 

following sections. 



OK NOT OK 

RPM 0.8 0.2 

Table 5.1: Prior probability of RPM 

RPM 

Rotary Valve OK NOT OK 
OK 0.9 0.05 

Not OK 0.1 0.95 

Table 5.2: Conditional probability table for rotary valve 

OK NOT OK 

Water Flow Valve 0.85 0.15 

Table 5.3: Prior probability of water flow rate 

Water Flow Valve 

Water Flow OK 
OK 0.93 

Not OK 0.07 

NOT OK 
0.08 
0.92 

Table 5.4: Conditional probability t able for water flow 

Solid Flow 
OK 

Not OK 

Rotary Valve 

OK Not OK 
0.85 0.1 
0.15 0.9 

Table 5.5: Conditional probability table for solid flow 

Density 
OK 

Not OK 

Water Flow OK Not OK 

Solid Flow OK Not OK OK Not OK 

0.95 
0.05 

0.1 
0.9 

0.65 
0.35 

0.01 
0.99 

Table 5.6: Conditional probability table for density 
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Solid Flow OK Not OK 

Water Flow OK Not OK OK Not OK 
Water Level 

OK 0.9 0.05 0.75 0.01 
NOT OK 0.1 0.95 0.25 0.99 

Table 5.7: Conditional probability table for water level 

65% 
Not OK35% 

Density 
K 61% 

Not_OK39% 

o Water Flow Valve 
OK 

Water Level 
OK 69% 
Not OK31 % 

Figure 5.5: Scenario 1: No fault condition 
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Variable 

RPM 

Rotary Valve 

Water Flow Valve 

Solid Flow 

Water Flow 

D ensity 

Water Level 

State in BBN 

OK 
ot OK 

OK 
Not OK 

OK 
Not OK 

OK 
Not OK 

OK 
Not OK 

OK 
Not OK 

OK 
Not OK 

Actual State 

RPM tracking set point 
Controller or Sensor Fault 

Smoot h operating valve 
Sticky valve or other faults in the valve 

Smooth operating valve 
Sticky valve or other faults in the valve 

Uniform flow of solid 
Uneven flow due to clogging of solid 

Uniform flow of water 

57 

Non uniform water flow due to the faulty valve 

Density tracking the set point (no fault condition) 
Density not tracking the set point (fault condition) 

Water Level tracking the set point (no fault condition) 
Water Level not tracking the set point (fault condition) 

Table 5.8: Varia ble states in BBN 
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5.3.1 Validation of Condit ional Probability 

The mapped BBN captures the process cause and effect relationship between differ­

ent variable. Several simulations are shown to demonstrate validation of conditional 

probability values assignment. 

5.3 .1.1 Scenario 1: No fault condition 

Fig. 5.5 shows BBN for dissolution tank model initiated with prior probability val­

ues given in Tables 5.1-5.7. Here, RPM node is initiated with 80% OK state and 

Water- Flow Rate node is initiated with 85% OK state. Rotar-y Valve node has 

high probability for being in the operating state as RPM node has high value of OK 

states. This results in uniform solid flow of 65%. Since water flow directly depends 

on the performance of water flow valve which is held at 0 K state cause water flow 

to be at OK state with 80% of probability. Consequently the probability of both 

Density and Water- Level are at desired level is high 61% and 69% respectively. This 

result reflects the causality between process variables in terms of probability values 

correctly. 

5.3 .1.2 Scenario 2: Fault in t he Rotary Valve 

We need the same probability values given in Table. 5.1-5.7 and use those to investi­

gate the diagnosis ability of the network in case of a fault in the rotary valve. When 

rotary valve is not operating properly due to valve stiction , density at the outlet is af­

fected. This may results in non-uniform solid flow at 90% probability. The probability 

for D ensity and Water- Level to be at the desired level are 16% and 62% respectively 

are affected by high probability of non-uniform solid flow. This is expected process 

behaviour because solid flow has more influence on density and disturbance in solid 
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OK 16% 
Not_OK84% Not OK38% 

Figure 5.6: Scenario 2: Fault in the Rotary Valve 
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flow has significant effect on density. On the other hand, water flow and water flow 

valve are in 0 J( state. Therefore, fault in solid flow should not affect the tank level 

significantly as shown in Fig. 5.6. 

5.3.1.3 Scenario 3: Fault in the Water Flow Valve 

In this case we consider fault in water flow valve. To simulate this scenario BBN for 

dissolut ion tank model shown in Fig. 5.7 is initiated with prior probability given in 

the Tables 5.1-5.7. Since WateT F low Valve node is set at Nat OK state, this will 

result in non-uniform water flow of 92%. Solid flow is not affected as rotary valve is 

held at the operating state with 73% probability. The probability for both Density 

and Water Level to be a t desired set points drops to 44% and 10% respectively. In a 

process we expect similar behaviour as water flow is a strong handle for the controller. 

The density will also be impacted but to lesser degree. 

BBN can be very handy diagnostic tool. Root cause of any incident can easily 
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0 

OK 44% 
Not OK56% 

Figure 5. 7: Scenario 3: Fault in the Water Flow Valve 

be detected using BBN. The following simulation results demonstrate the power of 

BBN as diagnost ic tool. 

5.3.2 Scenario 4: Fault in Density Node 

To demonstrate the power of diagnosis, a simulation case study for the dissolution tank 

model is shown in Fig. 5.8. A fault in density was introduced by setting Densdy node 

at Not OK with 100% probability. Solid flow has more influence on the density than 

water flow. Therefore, Not 0 K state of Density must be the result of non-uniform 

solid flow 82% probability. The nature of solid flow whether it will be uniform or not, 

will completely depend on the rotary valve performance. Simulation result shows that 

non-uniform solid flow is because of Rotary Valve malfunction with 57% probability. 
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Figure 5.8: Scenario 4: Fault in Density Node 

5.3.3 Scenario 5: Fault in Water Level Node 

A fault in water level was introduced by setting W ate1· Level node at Not OK state 

with 100% probability. This simulation case study is shown in Fig. 5.9. Water flow 

has more influence on the water level than solid flow. Therefore, Not OK state of 

Water Level must be the result of non-uniform 55% probability water flow. The 

nature of water flow whether it will be uniform or not, will completely depend on the 

water flow valve performance. Simulation result shows that non-uniform water flow 

is because of WateT Flow Valve in Not OK condition with 52% probability. 

5.4 PCA-BBN Hybrid M ethod as a Diagnostic Tool 

The hybrid method was successfully implemented on the dissolution tank model for 

simulated faults. First, in case study 1, a fault is introduced in water flow and in case 

study 2 a fault is introduced in solid flow rate. In both cases fault was det ected and 
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Not OK34% 

0 

K 44% 
Not OK56% 

Figure 5.9: Scenario 5: Fault in Water Level Node 

diagnose correctly. Sampling rate for this data was 1 sec. 

5.4.1 Diagnosis of Simulated Fault 

5.4.1.1 Scenario 1: Fault in Water Flow 

A ramp type fault of maximum magnitude which is about 6% of the nominal signal 

variation was introduced in water flow at t = 3100 m·in as a result water level exceeded 

threshold level at t = 3190 min in Fig. 5.10. This fault is detected at t = 3160 min 

from PCA residual plot, as it violates Q-statistic threshold level shown in Fig. 5. 11. 

From PCA contribution plot Fig. 5.12 its difficult to diagnose the fault correctly, as it 

is seen that all the variables have significant cont ribution for the fault except density. 

This is due to the smearing effect discussed in Section 4.1. This preliminary diagnosis 

information was supplied to the calibrated BBN which correctly diagnose the water 

flow as root cause the fault in Fig. 5.13. Evidence from both density and water level 
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Figure 5.10: Scenario 1: A ramp type fault in water level 
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Figure 5. 11: Scenario 1: PCA residual plot detecting the fault in water level 

63 



c:: g 
::::1 
.0 ·.::: -c:: 
0 

(.) 

64 

Contribution Plot 
1~----.-----------.-----------.-----------.-----, 

Water Flow Solid Flow Water Level Density 

Figure 5.12: Scenario 1: PCA contribut ion plot 
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Solid Flow 

Figure 5.13: Scenario 1: Root cause diagnosis from BBN 
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Posterior Probability 

Water Flow Valve Sensor 
Variable 

Figure 5.14: Root cause diagnosis from BBN within the water flow loop 

updates the posterior probability of both water flow rate and solid flow node. Because 

fault in water level has stronger relation with water flow rate than solid flow, the root 

cause of t he fault was diagnosed correctly. Further to find out whether the fault is 

associated with t he sensor or valve, diagnosis in the water flow loop is conducted. 

Sensor validation provided a very little chance of sensor fault . Since the measurement 

instruments was no faulty, the only remaining cause for the water flow fault is found 

to be the water flow valve (Fig.5.14). 

5.4.1.2 Scenario 2: Fault in Solid Flow 

A fault was int roduced in solid flow at t = 3100 min, as a result a fault in density is 

observed at t = 3160 min in Fig. 5.15. This fault is detected early at t = 3130 min 

from PCA residual plot, as it violates Q-statistic threshold level shown in Fig. 5.16. 

From PCA contribution plot Fig. 5. 17 its difficult to diagnose the fault correctly 

contribut ions of all variables are comparable. This is due to the smearing effect dis­

cussed in Section 4.1. Using this preliminary diagnosis information the BBN correctly 

diagnose t he solid flow as root cause of the fault in Fig. 5.18. Evidence from both 
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Figure 5.15: Scenario 2: Fault in density 
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Figure 5.16: Scenario 2: PCA early fault detection 
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Figure 5.17: Scenario 2: PCA contribution plot 
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Figure 5.18: Scenario 2: Root cause diagnosis from BBN 
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Posterior Probability 

0.9 

Solid Flow Valve Sensor 

Figure 5.19: Root cause diagnosis from BBN within solid flow loop 

density and water level updates the posterior probability of bot h water flow rate and 

solid flow node. Because fault in density has stronger relation with solid flow than 

water flow rate t he root cause of the fault was diagnosed correctly. Further to find 

out whether the fault is associated with the sensor or valve, diagnosis in the solid flow 

loop was conducted. Sensor validation provides a very little chance of sensor fault. 

Since the solid flow sensor was not faulty, the only remaining cause for the solid flow 

fault is found to be the solid flow valve (Fig.5 .19). 

5.4.2 Comparison of PCA-BBN Method with BBN using 

Sensor Data Directly as Evidence 

In order to compare the hybrid PCA-BBN with the tradit ional use of BBN, a fault 

was int roduced in t he solid flow at t = 3100 min, as a result a fault in density was 

observed at t = 3160 min in Fig. 5. 15 when it violates the threshold limit . Residuals 

are calculated from difference between set point (desired value) and observed value of 

each variable. The BBN correctly diagnosed the solid flow as root cause of t he fault 

as shown in Fig. 5.20. Evidence from density and water level update the posterior 
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Figure 5.20: Root cause diagnosis from BBN 
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Figure 5.21: Root cause diagnosis from BBN within solid flow Loop 
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probability of both water flow rate and solid flow node. Because fault in density has 

stronger relation with solid flow than water flow rate the root cause of the fault was 

pinpointed correctly. Furt her to find out whether the fault is associated with the 

sensor or valve, diagnosis within the solid flow loop was conducted. Sensor validation 

provides a low probability of sensor fault . Since the measurement instruments are 

validated successfully, the only remaining cause for the solid flow fault is found to be 

the solid flow valve shown in Fig. 5.21. 

From the above results it is seen that for both cases (PCA contribution as 

evidence and sensor data as evidence) root cause of the fault was detected successfully. 

When sensor data was used as evidence, the fault was detected at t = 3160 min 

shown in Fig. 5.15 compare to the hybrid case where fault was detected at t = 

3130 min shown in Fig. 5.16. PCA Q-statistic detects the fault earlier. This early 

fault detection initiates the root cause analysis earlier compare to the sensor data as 

evidence case. This lead t ime in diagnosis can provide the operators an opportuni ty 

to steer the process to the normal operating condit ion during the process fault. 

5.5 Industrial Case Study : PTA Dissolut ion Tank 

Industrial data from the dissolution tank of a PTA plant was collected. The data 

set contained normal operational data as well as a known process fault in the solid 

discharge. The data set consists of measurements of four process variables. They are 

water flow rate, solid flow rate, tank water level and solution density at the outlet of 

the tank. T he sampling frequency of the data was 15 sec. This data set was used 

to validate P CA-BBN hybrid algorithm and the tradit ional BBN with sensor data as 

evidence. 
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Figure 5.22: PCA early fault detection 

5.5.1 Diagnosis using Hybrid Method: Industrial Case Study 

Due to the actuator problem a chunk of solid drops into the tank at 10352 sample, as a 

result a fault in density is observed at 10512 sample in Fig. 5.26. This fault is detected 

early at 10383 sample from PCA residual plot , as it violates Q-statistic t hreshold level 

shown in Fig. 5.22. From PCA contribution plot Fig. 5.23 it is difficult to diagnose 

the fault correctly as it is seen that all the variables have significant contribution 

for the fault due to the smearing effect discussed in Section 4.1. These contributions 

were used as evidence to update the BBN. The BBN is init iated with prior probability 

calculated from the expert judgement. The trained BBN correctly diagnosed the solid 

flow as root cause of t he fault as shown in Fig. 5.24. When ever new evidence come 

to solid flow node, the node update its own belief and propagates its belief to the 

density node and the water level node. Evidence coming to the density node updates 

the prior belief of density to the posterior belief and propagates its belief to the both 

water flow node and solid flow node. Solid flow node then updates its belief based 

on the information it gets from the density node. With the similar process belief 
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Figure 5.24: Root cause diagnosis from BBN 
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Figure 5.25: Root cause diagnosis from BBN within solid flow loop 

is propagated among water flow , water level and solid flow node. When belief of all 

node is updated network stabilizes and wait for the next evidence. Further to find out 

whether t he fault is associated with t he sensor or valve, diagnosis in the solid flow loop 

is conducted. Sensor validation provided a small probability for sensor fault. Since 

the measurement instruments are validated successfully, the only remaining cause for 

the solid flow fault is found to be the solid flow valve as shown in Fig.5 .25. 

5.5.2 Industrial Case Study: Comparison of PCA-BBN Method 

with BBN using Sensor Data Directly as Evidence 

Residuals are calculated from t he difference between set point (desired value) and 

observed value of each variable was used to detect fault. Residuals were calculated for 

density water flow rate and water level. Solid flow was a calculated signal from the 

loss of weight of t he load cell and such residual could not be calculated for solid flow. 

T he fault was detected by the density residuals at 10512 sample. After the fault was 

detected the posterior probability of density node was set to 1. The BBN correctly 

diagnose the solid flow as root cause of t he fault in Fig. 5.29. Evidence from density 
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Figure 5.31: Comparison of PCA-BB Method with BBN using Sensor Data Directly 
as Evidence 

and water level updated t he posterior probability of water flow and solid flow node. 

Because fault in density has stronger relation with solid flow than water flow the root 

cause of the fault was ident ified as solid flow problem correctly. Further to find out 

whether the fault is associated with the sensor or valve, diagnosis in the solid flow loop 

is conducted. Sensor validation provides a very low probability of sensor fault. Since 

the measurement instruments are validated successfully, the only remaining cause for 

the solid flow fault is found to be the solid flow valve Fig.5 .30. 

From the above results it is seen that for both cases (PCA contribution as 
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evidence and sensor da ta as evidence) root cause of the fault was detected successfully. 

When sensor data was used as evidence, the fault was detected at 10512 sample 

compared to the hybrid case where fault was detected at 10383 sample in Fig. 5.31. 

This early fault detection initiates the root cause analysis earlier for the hybrid model 

compared to the sensor data as evidence case. This lead time for diagnosis can provide 

the operators an opportunity to steer the process to the normal operating condition 

during the process fault. 

5.6 Conclusion 

Hybrid method is applied for both simulated faulty scenarios and industrial case study. 

PCA detected the fault early but diagnosis was not precise since PCA contribution 

plot showed more than one variables to be faulty. BBN resolve this diagnosis problem 

with the help of both PCA evidence and process knowledge. Again the proposed 

hybrid method detects and diagnose the fault early compare to the existing methods 

where sensor measurements are use as evidence for the BBN. It is assumed for this case 

study that quality of input material and temperature will not change. Moreover, these 

parameters were considered to be constant in the dataset provided by the industry. 

Mult ivariate analysis (PCA) is used to taken care of any input changes. 



Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

An automated fault detection and diagnosis method is developed. T his hybrid method 

is a combination of both PCA and BBN. The proposed hybrid method uses the diag­

nostic outputs from P CA and combines with process knowledge captured in a BBN. 

T he method is able to accurately pinpoint the root cause of a fault which is lacking in 

PCA and other statistical fault detection and diagnosis approaches. T he methodology 

is demonstrated using a solid crystal dissolution tank example. Various fault scenarios 

were considered along with a industrial case study. The method successfully detected 

the fault early allowing the operator to take corrective action. Also, it diagnose the 

root cause precisely. 

T he outcome of the current research can be summarized as below 

A methodology to construct BBN for process fault detection and diagnosis is 

developed. T he proposed network is slight ly different from the BBN found in 

the literature. Typically a separate BBN is built for each fault. In the proposed 

approach we built one universal network that can be used for mult iple fault. 
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11 A method of mapping BBN from the SDG is proposed. 

m A method of calibrating BBN using simulation scenarios is proposed. Calibra­

tion is pivotal in diagnosing different faults using single BBN. 

IV Updating mechanism of BBN using evidence from PCA is described in the thesis. 

v A real time automated hybrid methodology based on Principal Component 

Analysis (PCA) and Bayesian Belief Network (BBN) for fault detection and 

diagnosis is described. The proposed hybrid method detected fault early and 

diagnosed the root cause precisely. BBN overcome the limitations of P CA in 

diagnosis fault accurately. The effectiveness of t he proposed methodology is 

demonstrated using both simulated and industrial data. 

vi This proposed monitoring tool can detect and diagnose the fault ahead of time. 

T his lead time can be significant for ensuring safe operation of a process plant. 

6.2 Future Work 

Since BBN is a directed acyclic graph, this method is applicable for acyclic 

process only. Further research is required to represent a general class of systems 

(process systems with cycles) using BBN. 

ii This hybrid tool can work as building block for fault tolerant cont roller. Once 

root cause of a fault is diagnosed correctly wit h sufficient confidence t hat in­

formation can be processed by a decision making tool to take the appropriate 

corrective action and the whole process can be automated . 

iii This method is verified for single fault scenarios. Further research is required 

to investigate multiple fault scenarios. 
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iv Further research is required to evaluate performance of this proposed method 

in case of process knowledge. 

v The SDG can be developed from either mathematical equations or first principle 

model of the process. In case where the first principle model is not available 

SDG can be built from the mathematical equations. For a large system this 

could be complicated. To overcome this, t he system can be divided into few 

subsystems and for each subsystem a different SDG can be built and further 

mapped to a BBN. 
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