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Abstract 

Familial adenomatous polyposis (F AP) is an autosomal dominant colon cancer 

predisposition that results from gennline mutations in the adenomatous polyposis coli 

(APC) gene. F AP shows substantial phenotypic variability: classical F AP patients 

develop more than 100 colorectal adenomas, whereas those with attenuated FAP (AFAP) 

have fewer than 100 adenomas and those with multiple adenomas present fewer than 50 

polyps. The incidence of colorectal cancer (CRC) in Newfoundland is 27% higher than 

the national average. However, the mutation spectrum in this population has not been 

well characterized. Using direct DNA sequencing and multiple ligation-dependent probe 

amplification (MLPA), we performed mutation scanning oftheAPC gene in 48 unrelated 

Newfoundland patients with FAP/AFAP/multiple adenomas. Three previously described 

and one novel truncating mutation were identified in four PAP patients (44 %). Exon14 

deletion was detected in one patient with AFAP (5%). Two previously known missense 

variants were found in 15 individuals. In addition, eight silent variants were also 

identified in studied patients and four of them are novel. Our results suggest: 1) the 

genetic predisposition to F AP in Newfoundland population is similar to that in other 

populations; 2) gennline APC mutation may not be the major cause for AFAP; 3) the 

search for exonic deletion of the APC gene is necessary for mutation study on patients 

withAFAP. 
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Chapter 1 

Introduction and Overview 
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Colorectal cancer (CRC) is a common cancer that affects the digestive system, and is 

responsible for 10% of all cancer deaths. Approximately two-thirds of CRCs are found in 

the large intestine and one-third in the rectum (http//www.medicinenet.com/colon 

cancer/). CRC usually develops from small noncancerous adenomatous polyps found in 

the bowel. Over time, some of these polyps become cancerous due to the sequential 

accumulation of mutations. Symptoms of CRC may include change in bowel habits, stool 

streaked or mixed with blood, discomfort or pain in the lower abdomen and tiredness 

(Canadian Cancer Society. 1993). CRC represents a major health burden in Western 

countries. Globally, CRC is the third leading cause of cancer in males and the fourth 

leading cause of cancer in females. The incidence of CRC differs around the world. It is 

common in the Western world, but rare in Asia and Africa. CRC is the second leading 

cause of cancer death in Canada (http//www.medicinenet.com/colon cancer/). The 

population of Newfoundland and Labrador has one of the highest rates of colorectal 

cancer in North America (Woods et al. 2005). 

Although the etiology of CRC remains uncertain, a number of pre-existing medical 

conditions, environmental and genetic factors can be involved. Environmental factors, for 

example, diets high in fat and low in fiber, are implicated in the pathogenesis of CRC 

(Giovannucci and Willett 1994; Winawer et al. 1997). Other risk factors for CRC include 

inflammatory bowel disease (IBD), Crohn's disease and Ulcerative colitis (UC) 

(Potter.l999). Investigations have shown that the majority of CRC cases are sporadic 

with no significant family history of CRC. However, some individuals with CRC are 
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shown to have an inherited susceptibility, therefore, a whole family is identified as at 

high risk. Hence, understanding an inherited susceptibility to CRC cancer is a key to the 

identification of individuals at high risk and recommendation of effective surveillance 

procedures to them. 

A scheme for types of CRC susceptibility is illustrated in Figure 1. Chance and the 

environment probably account for at least 70% of all sporadic cases, while the inherited 

susceptibilities to CRC including familial adenomatous polyposis (F AP), hereditary 

nonpolyposis colorectal cancer (HNPCC) ) and other polyposis syndromes, in total, 

account for no more than 5%. However, the remainder, perhaps about 25% represents a 

"multifactorial" contribution that has no identifiable hereditary cause (Walter and 

Bodmer. 2006). There may be other genes not yet identified, particularly those with 

reduced penetrance, or a multifactorial predisposition to CRC (Park et al.1999; Wei et al. 

2003; Woods et al. 2005). 
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Figure 1 Scheme for inherited susceptibility to colorectal cancer (Walter et al. 2006) 

1.1 APC-associated disorders involving an inherited susceptibility to CRC 

Adenomatous polyposis coli (APC) - associated disorders involving an inherited 

susceptibility to CRC include familial adenomatous polyposis (F AP), attenuated F AP 

(AF AP) and multiple colorectal adenomas. 

1.1.1 Familial adenomatous polyposis (FAP) 

FAP (MIM 175100) is a hereditary colon cancer syndrome, first clearly described as a 

dominantly inherited Mendelian trait by Lockhart-Mummery in 1925 (Lockhart

Mummery. 1925). The incidence ofF AP is estimated at about 1 in 8000 live newborns, 
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and PAP affects both sexes equally (Peamhead et al. 2001). The most common symptoms 

of PAP are rectal bleeding, diarrhea, abdominal pain, mucous discharge and some 

symptoms related to cancer, such as weight loss, anemia, intestinal obstruction (Lynch 

and de la Chapelle. 2003). Some affected individuals may have extra-colonic features, 

such as bony growths (benign bone tumors called osteomas), which give early evidence 

that they are affected. Patients with PAP typically develop hundreds to thousands of 

adenomatous polyps throughout the entire colon and rectum. The diagnosis can be made 

earlier when fewer than 100 polyps are present if there is a first-degree relative with FAP. 

Investigations have demonstrated that almost all individuals over 40 years of age with 

PAP would inevitably develop colon cancer from these polyps unless they undertake 

prophylactic colectomy (N agase et al. 1992). Other investigators revealed that the 

penetrance of PAP for inherited cases was close to 100% in the 40's (Bisgaard et al. 

1994). Therefore, the risk of cancer is virtually 100% if the polyps are not detected and 

removed in time. Among all PAP patients, approximately 75-80% of FAP cases are 

familiar, and the 20-25% of sporadic cases are the result of de novo mutations (Bisgaard 

et al. 1994; Ripa et al. 2002). This is why some individuals with PAP have no previous 

family history of PAP. 

In addition to colorectal polyps and cancer, the variable phenotype of PAP can include 

various extracolonic manifestations (ECMs) ( Giardiello et al. 1994 ). Congenital 

hypertrophy of the retinal pigment epithelium (CHRPE) occurs in about 60% of PAP 

kindreds (Blair and Trempe. 1980). CHRPE has no impact on sight, nor any malignant 
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potential. It can, however, be detected by ophthalmoscopy from birth, thus helping to 
. 

identify individuals at risk ofF AP from an early age in those kindreds where CHRPE is 

present (Diaz-Llopis and Menezo.l988). Currently, it is regarded as a reliable early 

marker for FAP in relevant families (Berk et al. 1988; Valanzano et al. 1996). Other 

extra-colonic manifestations ofF AP include upper gastrointestinal tumors (adenomas or 

carcinomas of the small intestine, fundic gland polyps or carcinomas of the stomach), 

intra-abdominal desmoid tumors, osteomas (bony tumors), and benign abnormalities, 

such as dental abnormalities, or epidermal cysts (Goss and Groden. 2000; Fearnhead et 

al. 2001). Other malignancies seen in a relatively small proportion of FAP patients 

include non-medullary thyroid cancer (usually papillary thyroid cancer), hepatoblastoma, 

medulloblastoma and duodenal carcinoma (Fearnhead et al. 2001; Nandakumar et al. 

2004). Peri-ampullary carcinoma is the commonest cause of death in F AP patients who 

have undergone prophylactic colectomy (Jagelman et al. 1988; Offerhaus et al. 1992), 

making endoscopic screening of the upper gastrointestinal tract mandatory in F AP 

patients. 

Importantly, studies show that there is significant variation in the associated phenotypic 

features of F AP, both between carriers with different mutations and, to a lesser extent, 

within family members with the same mutation (Giardiello et al. 1994, Nugent et al. 

1994). Although the extra-colonic manifestations of this syndrome and its variants have 

been know for many years (Bussey. 1990), and they are to some extent helpful as 
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diagnostic features, the diagnosis still relies largely on the detection of numerous 

colorectal polyps during the second or third decade of life. 

F AP follows an autosomal dominant inheritance pattern, caused by germline mutation in 

the adenomatous polyposis coli (APC) gene on chromosome 5q21-22. 

Tablel. Benign and malignant lesions associated with familial adenomatous polyposis 

(Nandakumar et al. 2004). 

Malignant tumours (lifetime risk) 

Duodenal (5-11 %) 

Pancreatic (2%) 

Thyroid (2%) 

Brain (medulloblastoma) (<1 %) 

Hepatoblastoma (0.7% of children <5 yrs) 

1.1.2 Attenuated F AP (AF AP) 

Other lesions 

Osteomas 

Radiopaque jaw lesions 

Supernumerary teeth 

Lipomas, fibromas, epidermoid cysts 

Desmoid tumours 

Gastric adenomas I fundic gland polyp 

Duodenal, jejunal and ileal adenomas 

Nasopharyngeal angiofibromas 

AF AP or attenuated adenomatous polyposis coli (AAPC) is a more variable version of 

classical F AP. Affected individuals often present with fewer polyps ( <1 00 colonic 

adenomas), and tend to be older at the diagnosis of their polyps (average age of 44 years). 

However, within a family there may be variable age at onset and variable number of 
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polyps (from <100 to hundreds or thousands) (Spirio et al. 1999; Plawski et al. 2007). 

Individuals with AF AP are still at very high risk of developing colon cancer, but the 

average age of colon cancer diagnosis is 50-55, 10 to 15 years later than in classical F AP 

(Spirio et al. 1993; Friedl et al. 1996; Giardiello et al. 1997). In some AF AP patients, 

extra-colonic features are infrequent (Rozen et at. 1999), although other AF AP patients, 

such as those with hereditary desmoid disease, have severe extra-colonic disease (Eccles 

et al. 1996; Scott et al. 1996). The incidence and frequency of AF AP is thought to be up 

to 10% of adenomatous polyposis families (Vasen. 2000). However, the true incidence 

and frequency of AF AP remains unknown. Similar to F AP, AF AP follows an autosomal 

dominant inheritance pattern, and is caused by germline mutations in the APC gene. 

1.1.3 Multiple colorectal adenomas 

Patients with multiple colorectal adenomas have a phenotype like AF AP, with 3 to 99 

polyps throughout the colorectum. Affected individuals are also at high risk of 

developing colorectal cancer. The condition can be inherited as a Mendelian trait, either 

autosomal dominant or recessive, but can also occur in the form of isolated cases. Some 

patients with the multiple adenoma phenotype are classified as having attenuated 

polyposis (AFAP) owing to a germline APC mutation, usually in exons 1-4, exon 9, or 

the 3'-end (distal to codon 1580) (Knudsen et al. 2003; Young et al. 1998; Soravia et al. 

1998; Sieber et al. 2006). However, most multiple adenoma patients have no identifiable 
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germline APC mutations and do not have the extracolonic manifestations sometimes 

associated with AF AP (Vasen. 2000; Sieber et al. 2002). 

Studies have shown that a substantial proportion of multiple adenoma patients are 

associated with a novel type of DNA repair defect. Recent studies indicate that mutations 

in the base excision repair gene- human MutYhomologue (MYH) cause a new autosomal 

recessive form of polyposis characterized by the presence of a variable number of 

colorectal adenomas, referred to as MYH associated polyposis (MAP). Oliver et al (2003) 

reported that of 152 patients with 3 to 100 adenomas, about 5% had disease attributable 

to MYH mutations. However, they frequently do not have an autosomal dominant family 

history of polyposis, (Jones et al. 2002; Sieber et al. 2003; Galiatsatos et al. 2006). 

The cause of the phenotype of multiple colorectal adenomas is probably genetically 

heterogeneous. It is difficult to distinguish between patients with APC mutations and 

those with biallelic MYH mutations on the basis of clinicopathological features, although 

family history can be useful. Therefore, the cause of the phenotype of multiple colorectal 

adenomas should be elucidated by molecular classification. Patients with multiple 

adenomas should be classified as having APC-associated or MYH-associated polyposis. 

1.2 Model for genetic alterations in the developments of APC-associated colorectal 

cancer 

9 



It is well established that development of CRC is a complex and multi-step process, in 

which several defective genes coordinate with each other in tumorigenesis. CRC usually 

develops from an adenoma (commonly known as a polyp) on the inner lining of the 

gastrointestinal tract. Abnormal cells arising within these adenomas will eventually 

progress to adenocarcinomas through histologically distinct stages, the "adenoma to 

carcinoma sequence" (O'Brien et al. 1990, Muto et al. 1995). Fearon and Vogelstein 

(1990) proposed a model that has improved the understanding of the molecular genetics 

of sporadic CRC (Figure 2). This model states that a series of genetic changes take place 

in order for the development of CRC. The process includes the interdependence of 

different pathways and involvement of many more gene mutations than previously 

recognized (Bodmer. 1996; Ilyas et al.1999). These changes include major chromosomal 

alterations, germline and somatic mutations. Loss of heterozygosity (LOH) commonly 

but variably occurs on chromosomes 5q, 8p, 17p, 18q and 22q during the adenoma

carcinoma sequence (Nowak. 2002). Mutations occur in tumor suppressor genes (e.g. 

APC, DCC, SMAD4, and P53) and proto-oncogenes (e.g. K-ras), which are also involved 

in the development of hereditary CRCs (Fearon and Vogelstein. 1990; Fodde. 2002). The 

APC gene, the primary cause of F AP, is described as a gatekeeper, because evidence 

reveals that mutations in this gene perhaps set a stage for mutations in other genes such as 

K-ras, DCC, andp53 (Groden et al. 1991; Nishisho et al. 1991). An APC gene mutation 

appears to be an early and critical event in the progression of normal colonic epithelium 

to adenoma, and then to carcinoma by disturbance of proliferation regulation of colonic 

cells (Kinzler and Vogelstein. 1996; Fearnhead et al. 2001 ). However, this genetic model 
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is also controversial. Smith et al (2002) analyzed the mutation spectra in APC, p53 and 

K-ras in more than 100 patients with colorectal cancer. In contrast to the prediction of the 

sequential model of mutation accumulation, only 6.6% of tumors were found to carry 

mutations in all three genes, with 38.7% of tumors containing mutations in only one of 

the three genes. The most common combination of mutations was p53 and APC (27 .1 %), 

whereas, mutations in K-ras and p53 co-occurred less frequently than expected by 

chance. 

Lamlum et al (1999) found that in patients carrying an APC germline mutation, tumor 

development starts in the polyps when the remaining wild-type APC allele is mutated by 

somatic mutation which is consistent with Knudson's ''two hit" hypothesis. However, 

some contradictary observations have also been reported. Polakis (1997) noted that in 

some circumstances one defective gene copy alone may be enough to trigger the cancer 

development, because the mutant APC gene product can influence the function of the 

wild-type gene product, resulting in the total loss of APC function (dominant negative). 
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Figure 2. Model for genetic alterations in the development of colorectal cancer (Fearon 

and Vogelstein. 1990) 

1.3 The APC gene and the gene product 

1.3.1 APC gene 

Herrera and Sandberg in 1986 demonstrated an interstitial deletion of the chromosomal 

band 5q21 in a patient with colorectal polyposis and mental retardation, but no family 

history ofF AP (Herrera et al. 1986). This observation greatly helped to localize the APC 

gene in 1987 (Bodmer et al. 1987). Subsequent DNA linkage analysis of families with 

FAP led to the refined mapping oftheAPC gene to 5q21-22 (Bodmer et al. 1987; Leppert 

et al. 1987) (Figure 3). Loss of heterozygosity (LOH) studies had already strongly 

indicated the involvement of this locus in a high proportion of sporadic colorectal 

carcinomas (Solomon et al. 1987). Studying a smaller deletion, the location of APC gene 

12 



was refined by Groden et al (1991) and Kinzler et al (1991). Ultimately, the APC gene 

was cloned, characterized, and identified as the specific gene responsible for F AP by 

means of positional cloning (Joslyn et al. 1991; Nishisho et al. 1991). 

Figure 3. Chromosomal location oftheAPC gene 

The APC gene has 15 exons with an 8535 base pair open mRNA reading frame (VanES 

et al. 2001; Fearnhead et al. 2001; Foulkes et al.l995). Exon 15 is the largest exon (6500 

bp length), comprising more than 75% of the coding sequence of APC (Powell et al. 

1992; Horii et al. 1993 ). The APC gene encodes for a 312 KDa protein that consists of 

2843 amino acids (Van Es et al 2001; Fearnhead et al. 2001; Foulkes. 1995). The 

transcriptional initiation of APC occurs at three sites in two distinct non-translated exons 

at the 5-prime end of the gene (Horii et al. 1993). At least five different forms of 5-prime 

noncoding sequences have been identified, which are generated by alternative splicing 
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(Horii et al. 1993). The splicing mechanism appears to be regulated in a tissue-specific 

fashion, and one transcript, expressed exclusively in brain, contains an extra exon. A 

diagram of the structure oftheAPC gene is presented in Figure 4. 
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Figure 4. APC gene structure, eDNA (below) and important protein motifs (above). 

(VanEs et al2001) 

1.3.2 The APC protein 

The APC protein is a multidomain protein containing 2,843 amino acids, an:d expressed 

constitutively in a variety of fetal and adult tissues, including mammary and colorectal 

epithelium (VanES et al. 2001). Within a cell, the APC protein exists predominantly in 

the cytoplasm, although nuclear localization has also been reported. It was reported to 

occur in several isoforms within cells, probably as a result of alternative splicing at the 

mRNA level (Sulekova et al. 1995). The APC protein is multifunctional and contains 
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several amino acid motifs and domains, which interact with numerous other molecules 

having diverse functions within the cells. The structure of the APC protein with different 

protein interaction domains is illustrated in Figure 5. At the N-terminal site, the APC 

protein contains oligomerization and Armadillo-repeat binding domains. At the C-

terminal site, there are end-binding protein 1 (EB 1) and human discs large tumor 

suppressor protein (hDLG) binding domains. Furthermore, the APC protein binds 13-

catenin through two motifs: the first contains three imperfect 15 amino acid repeats and 

the second comprises seven repeats of 20 amino acids, involved in the negative regulation 

of ~-catenin protein levels in cells (Suet al. 1993; Rubinfeld et al. 1993; Rubinfeld et al. 

1996; Rubinfeld et al. 1997). 
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Figure 5. Structural features of the APC protein (Narayan et al. 2003) 
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1.3.3 Functions of the APC protein 

The APC protein is multifunctional and plays a major role in tumor suppression by 

antagonizing the Wnt-signaling pathway. Inappropriate activation of this pathway 

through loss of APC function contributes to cancer progression. APC also has roles in cell 

migration, adhesion, chromosome segregation, spindle assembly, apoptosis, and neuronal 

differentiation. 

i) APC protein plays a role in the control of cell proliferation 

The APC protein plays an integral role in the Wnt-signalling pathway, especially in 

regard to the degradation of ~-catenin within the cell cytoplasm (Bienz. 1999; Willert et 

al. 1998). The APC protein binds ~-catenin and regulates intracellular levels of ~-catenin 

through Wnt-signaling pathway, which regulates the proliferation, migration, and 

differentiation of cells in the intestinal epithelium. The details of Wnt-signaling pathway 

are illustrated in Figure 6. 
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A. Normal colonic epithelia) cells B. Colon cancer cells 

~ ~ 
Controlled cell growth Uncontrolled cell growth 

Figure 6. A model for the Wnt-signaling pathway (Narayan et al. 2003) 

ii) The APC protein is involved in actin cytoskeletal integrity, cell-cell adhesion and cell 

migration 

Actin cytoskeletal integrity has a very important role in maintaining the shape and 

adherence junctions of cells. If the balance in actin cytoskeletal integrity is destroyed, it 

will affect intercellular adhesion and cell migration. The APC protein is indirectly linked 

to actin cytoskeleton with ~-catenin and a-catenin establishing a bridge between them 

(Serrano et al. 1997). It also interacts with E-cadherin through ~-catenin. This forms a 

cell-cell adhesion complex with actin cytoskeleton, which maintains stable cell-cell 

adhesion (Polakis. 2000; Gumbiner. 2000) (Figure 7). 
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The APC protein also contributes to orderly migration of intestinal cells within the 

intestinal crypt (Moss et al. 1996; Mahmoud et al. 1997). 

A. Normal colonic epithelial cells B. Colon cancer celts 

Figure 7. Mutations in APC gene impair actin cytoskeletal integrity, cell-cell adhesion 

and cell migration properties of colon cancer cells (Narayan et al. 2003) 

iii) The APC protein is associated with chromosomal instability (CIN) 

Studies demonstrate that APC acts as a linkage between microtubules and chromosomes, 

which may facilitate the spindle formation. Therefore, it is crucial in maintaining normal 

segregation of chromosomes at mitosis (Kaplan et al. 2001) (Figure 8). 
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Figure 8. Chromosomal instability (CIN) in cells carrying mutations in APC gene 

(Narayan et al.2003) 

iv) The APC protein has a role in the regulation of apoptosis 

It is possible that APC may play an indirect role in regulation of apoptosis, as the 

restoration of expression of wild-type APC in colorectal cancer cells lacking endogenous 

APC expression has been reported to promote cell death through apoptosis (Morin et al. 

1996). It is likely that APC may stimulate the apoptosis of cells by an indirect influence 

on intercellular adhesion and the extracellular matrix (ECM). 
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1.4 Molecular pathogenesis ofF API AF API multiple colo rectal adenomas 

1.4.1 Germline mutations of APC 

In approximately 80% of individuals with F AP, germline mutations can be identified 

within the APC gene (Kinzler and Vogelstein.1996; Miyoshi et al. 1992; N agase et 

al.1992; Powell et al. 1993). The spectrum of identified mutations is extremely 

heterogeneous. To date, more than 1 000 different germline mutations in the human APC 

gene have been compiled from the literature in online databases 

(http://perso.curie.fr/tsoussi, and http://www.cancer-genetics.org). In the majority of 

cases, the reported mutations cause a premature truncation of the APC protein (94%), 

usually through either a nonsense mutation (33%), or a frameshift mutation (6% small 

insertions, 55% small deletions) (Beroud and Soussi. 1996). Therefore, loss of function in 

one APC allele is suggested to underly the genetic susceptibility for F API AF AP /multiple 

adenomas. The reported germline mutations in APC are unevenly distributed over the 

entire gene sequence (Figure 9), and are predominantly located in the 5' end of the gene, 

particularly at the 5' end of exon 15 between codon 713 and 1597, referred to as the 

mutation cluster region (MCR) (Nagase and Nakamura. 1993). The most common 

germline APC mutations are the two 5-bp deletions, which result in frameshift mutations 

at codon 1061 (c.3183_3187delACAAA) and 1309 (c.3927_3931delAAAGA) (Beroud 

and Soussi. 1996). These two deletions account for about 11% and 17% of all germline 

mutations, respectively (Groden et al. 1993; Fearnhead et al. 2001). The cause of 
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mutational hotspots at these codons may be the repeat sequences located near these two 

deletions, which can cause misalignment errors in DNA replication (Mandl et al. 1994; 

De Rosa et al. 2003 ). 
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Figure 9. Distribution of identified APC germline mutations in 327 of 680 F AP families 

(Friedl et al. 2001) 

Large genomic rearrangements are also found in patients with F AP, accounting for 

approximately 8-12% FAP cases (Sieber et al. 2002; Bunyan et al. 2004; Aretz et al. 

2005; Michils et al. 2005). These genomic rearrangements may be large enough to be 

cytogenetically visible or may only involve one or a few exons. Cytogenetically visible 

interstitial deletions of chromosome 5q22, which include the APC gene, have been 

reported in individuals with adenomatous polyposis and mental retardation (Pilarski et al 

1999). However, the majority of reported genomic arrangements associated with 

FAP/AFAP/multiple adenomas are not cytogenetically visible but are sometimes 
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detectable using fluorescence in situ hybridization (FISH). Deletions of ex on 4, 11, 12, 

14, and 15 (Suet al. 2002; Cao et al. 2001; Sieber et al. 2002), and duplication of exon 4 

( McCart et al. 2006) have been described. Of these rearrangements, partial or total 

deletions of ex on 14 are the most frequent (Su et al. 2000; Cao et al. 2001; Sieber et al. 

2002). These large deletions are found more frequently in patients with classical F AP 

than in patients with AF AP (Sieber et al. 2002, Su et al. 2002). In Michils study (2005), 

large deletions were identified in 15% of classical F AP patients ( 4 of 27), but were absent 

in AF AP patients (0 of 28). However, Su et al (2002) identified deletion of the entire 

exon 15 of APC (caused by 56 kb and 73 kb deletions) in two patients. One patient 

presented with the typical F AP phenotype, whereas the other exhibited an AF AP 

phenotype. 

Missense or silent variations are rarely associated with F AP. Two missense variants in 

APC, 11307K and E1317Q, are reported to be linked to an increased risk of colorectal 

adenoma and carcinoma. The mutation 11307K is reported to create a hypermutable 

region that does not lead to classic FAP, 'but causes an increased risk of colon cancer 

(Laken et al 1997). Approximately 6% of all individuals of Ashkenazi Jewish ancestry 

have the I1307K mutation. These individuals are predisposed to developing only a few 

colon polyps, but have an approximate 10-20% lifetime risk of developing colon cancer. 

The E1317Q mutation may be associated with a predisposition to colon adenomas and/or 

colon cancer (Frayling et al 1998; Lamlum et al 2000; Popat et al 2000 and Hahnloser et 

al2003). 
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1.4.2 Genotype-phenotype correlations in FAP 

Correlations between the location of a particular gennline APC mutation and clinical 

features have been suggested by a large number of studies. Mutations in the central 

region of the APC gene have been correlated with a severe phenotype with thousands of 

polyps at a young age and with additional extracolonic manifestations (Caspari et al. 

1995; Miyoshi et al. 1992). The most frequent mutation in the APC gene is located in this 

region at codon 1309. Mutations at this codon lead to PAP-related symptoms because of 

multiple colorectal adenomas at an average age of 20 years (Friedl et al 2001; Bertario et 

al 2003). Individuals with mutations between codon 168 and 1580 (excluding 1309) 

presented with symptoms at an average age of 30 years, and individuals with mutations 5' 

of codon 168 and 3' of codon 1580 presented with symptoms at an average age of 52 

years (Friedl et al 2001). Profuse polyposis (an average of 5000 polyps) has been 

associated with mutations between codons 1250-1464 (Nagase et al1992). 

Mutations in the first or last third of the gene are associated with an attenuated polyposis 

with a later onset and a small number of polyps (Spirio et al. 1993; van der Luijt et al. 

1996; Friedl et al. 1996). The AF AP associated regions in the APC gene include the 

5' -end ( codons 1-177 in exons 1-4), the alternatively spliced part of ex on 9 ( codons 

311-408), and the 3 '-end (distal to codon 1580) (Knudsen et al. 2003; Young et al. 1998; 

Sora via et al. 1998; Sieber et al. 2006) (Figure 1 0). Mutations at the 5' end of APC have 

been reported as the most frequent mutations associated with the AF AP. It was 



speculated that the wild-type APC protein might be unable to fonn dimers with the very 

small truncated proteins generated from 5' end mutations, thus, causing an attenuated 

phenotype (Dobbie et al. 1994). This speculation was supported by another study, in 

which an identical 5' splice-site acceptor mutation (in APC intron 3) was detected in five 

attenuated FAP families from Newfoundland resulting from a founder effect (Spirio et al. 

1999). 
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Figure 10. Attenuated F AP -associated regions in APC gene (Sieber et al. 2006) 

Prominent extracolonic manifestations often correlate, but not completely, with more 

distal APC gene mutations. Mutations between codons 1444 and 1580 are associated with 

a higher incidence of desmoid tumors (Caspari et al 1995; Davies et al 1995). Mutations 

between codons 463 and 1387 are associated with congenital hypertrophy of the retinal 
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pigment epithelium (CHRPE) (Olschwang et al. 1993; Caspari et al. 1995), whereas, 

absence of CHRPE was correlated with mutations between codons 1444 and 1578 

(Caspari et al 1995; Davies et al 1995). Individuals with mutation between codons 976 

and 1067 were reported to have a fourfold increased risk in duodenal adenomas (Bertario 

et al. 2003). Hepatoblastoma and brain cancer were seen only in individuals with 

mutations in codons 457-1309. Mutations in codons 177-452 seem to be associated with 

absence of CHRPE, osteomas, hepatoblastomas, periampullary region tumors, or brain 

cancers. 

1.4.3 Molecular genetic testing for mutations in APC gene 

Because germline mutations of APC gene are well known to cause genetic susceptibility 

to FAP and AFAP, detection of APC germline mutations could be a powerful tool for 

clinical diagnosis or predictive testing for FAP/AFAP/multiple adenomas. Testing for 

known mutations in APC genes has been routinely offered in the majority of molecular 

diagnostic laboratories in North America, which is mainly used in confirmative, 

predictive and prenatal diagnosis of APC-associated polyposis conditions. 

Mutation scanning of the entire APC gene by using direct DNA sequencing or other 

mutation scanning methods can detect up to 90% of mutations. The majority of germline 

mutations identified from individuals with FAP/AFAP/multiple adenomas will lead to 

truncation of the APC protein, which forms the basis for their detection by the protein 
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truncation test (PTT) (Powell et al. 1993). Therefore, PTT is commonly used for 

searching for APC germline mutations in most clinical diagnostic laboratories. 

Approximately, 80% of individuals with F AP are found to be positive for PTT. 

Duplications and deletions in the APC gene can be detected by using methods including 

Southern blot analysis, multiplex ligation-dependent probe amplification (MLP A), and 

quantitative PCR. However, these APC duplication/deletion analyses are still more 

commonly performed as a research protocol. 

Germline mutations identified from the APC gene are highly heterogeneous and widely 

spread throughout the very large APC gene. Because of this, targeted mutation analysis, a 

common and efficient method for mutation analysis in molecular genetic diagnosis is not 

feasible. Although mutation scanning of the entire APC gene by using direct sequencing 

can detect up to 90% of mutations, this is time-consuming, costly and labor-intensive. 

Therefore, it is difficult for direct se9uencing to be applied as a routine test in clinical 

service. Moreover, direct sequencing analysis cannot detect large genomic 

rearrangements or possible transcription defects. Southern blot is the traditional but still 

commonly used molecular method for analyzing large genomic rearrangements. The 

detection of these genomic rearrangements is based on the determination of the gene 

dosage changes. However, hybridization-based techniques are relatively expensive, time

consuming and large amounts of high-quality DNA are needed. Multiplex amplification 

and probe hybridization (MAPH) and multiplex ligation-dependent probe amplification 

(MLP A) are recently developed techniques used for facilitating measurement of 
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alterations of gene dosage, especially for detecting gene dosage changes in much smaller 

fragments (Armour et al. 2000; Schouten et al. 2002). These techniques have been 

successfully used to screen for deletions/duplications of the APC gene in families with 

F API AF AP, in which APC point mutations are not found. 

1.5 FAP/AFAP/multiple colorectal adenomas in the Newfoundland population 

The population of the island of Newfoundland consists mainly of descendants of English 

and Irish settlers who arrived in the 1 ih and 18th centuries (Martin et al. 2000). The 

geographical and social isolation of this island has ensured very little inward migration 

for several hundred years (Bear et al. 1987) and thus has lead to a small population 

(530 000 individuals; Statistics Canada 2001) with a relatively homogenous genetic 

background. Founder mutations have been demonstrated in a number of genetic diseases 

including F AP (Spirio et al. 1999). 

Newfoundland has the highest incidence of CRC among all Canadian provinces, which is 

27% higher than the national average (Canadian Cancer Statistics. 2003). Currently, at 

least 25 Newfoundland families with FAP/AFAP/multiple adenomas have been clinically 

identified, and there are approximately 50 families, which are suspected to have FAP, 

AF AP or multiple colorectal adenomas. 
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1.6 Rationale for the proposed study 

The spectrum of APC mutations in a large number of families with FAP/AFAP/multiple 

adenomas in the Newfoundland population remain unknown: Searching for germline 

mutations of the APC gene in the Newfoundland population has only been performed in a 

limited number of families with clinically diagnosed F AP or AF AP or multiple adenomas 

and three mutations have been identified. However, molecular defects in the majority of 

Newfoundland families with FAP I AFAPI multiple adenomas have not been identified. 

Genetic testing is therefore not possible for these families with unidentified mutations. 

Members ofF AP or AF AP or multiple adenomas families are at risk of developing colon 

cancer, and identification of genetic predisposition will be of clinical benefit: Individuals 

with an APC germline mutation will develop multiple polyps in the colon and have an 80 

-100% lifetime risk that one or more polyps will progress to colon cancer. Morbidity and 

mortality can be significantly reduced if at-risk individuals are followed with a 

colonoscopy-screening program, and the colon is removed surgically when multiple 

polyps are identified. Since FAP/AFAP is an autosomal dominant condition, each first

degree relative of an affected person has a 50% chance of having inherited the same 

mutation. The screening program is most efficient when the family-specific mutation in 

the APC gene is known and genetic testing is offered to those at-risk. Then colonoscopy 

screening is only required by those who have the identified mutation. Therefore, genetic 
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testing and management that will detect or avoid CRC cancer in these families are very 

cost effective. 

Identification of non-carriers for the family germline mutation will also have clinical and 

social benefits: Many individuals in high-risk families are not at increased risk ofF AP or 

AF AP or multiple adenomas because they did not inherit the "family" mutation (non

carriers). They usually suffer an unnecessary physical challenge from routine 

colonoscopy screening if their non-carrier status is unknown. For those who did not 

inherit the family mutation, genetic testing will allow the tested individual to have a 

permanent release from psychosocial and physical suffering resulting from unnecessary 

routine colonoscopy and worry about cancer risk. There will also be savings in health 

care costs when unnecessary colonoscopy screening and clinical follow-up can stop. 

The purpose of the study: The proposed project is a) to perform a mutation study in all 

Newfoundland families with patients who have clinical indication ofFAP/AFAP/multiple 

adenomas; b) to understand the population genetics ofFAP/AFAP/multiple adenomas in 

Newfoundland, its origin, and potentially a better understanding of the phenotypic 

variation associated with particular mutations in this isolated population. Mutation 

screening by using a combination of direct sequencing analysis and MLP A analysis will 

allow us to identify all possible point mutations and also to detect large genomic 

rearrangements in the APC gene. Successful identification of these mutations will be of 

long-term benefit to the Newfoundland population because a) genetic predisposition 
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screening can be offered to family members who are at risk for F AP; b) definitive genetic 

counseling and clinical guidance can then be provided to at-risk individuals who have the 

genetic testing. 
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Chapter 2 

Patients and Methods 
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2.1 Clinical criteria used in phenotype classification 

i) Classical F AP 

• Individual with or without an autosomal dominant family history of CRC and/ or 

polyps who has more than 100 colorectal polyps. 

• Or, individual with an autosomal dominant family history of CRC and/ or polyps 

and I or extra colonic features associated with F AP who has fewer than 100 

colorectal polyps before age of 35 years. 

ii) Attenuated F AP 

• Individual who has an autosomal dominant family history of CRC and/ or polyps 

with a variable number of polyps (fewer than 20 polyps to 100 polyps), variable 

age at onset, and variable location of polyps. 

• Or, individual with no family history who has 10-100 polyps 

iii) Multiple colorectal adenomas 

Patients of this category include those who have family history of CRC 

and/ or polyps (<50 polyps), but do not meet the criteria either for classical F AP or 

for AF AP. The majority of these patients have fewer than 1 0 polyps. 
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2.2 Patients 

In total, 48 unrelated patients (29 males, 19 females) were involved in present study. 

These patients represent 48 different families from Newfoundland. All patients had been 

examined by colonoscopy or had a colectomy, and histological studies, and the diagnoses 

of classical F AP, AF AP or multiple colorectal adenomas for these patients were 

determined using the clinical criteria mentioned above. 

Of the 48 selected patients, nine were classified as classical FAP; 20 as AFAP; 19 as 

multiple adenomas. The details of clinical features from all of the patients are presented 

in Table 2. Two healthy individuals (unaffected with any cancer) were included in the 

study panel as healthy controls. 

The present study was approved by the Human Investigations Committee of the Faculty 

of Medicine, Memorial University of Newfoundland, and the Health Care Corporation of 

St. John's. All informed consents for genetic testing were obtained. 
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Table 2. Clinical characteristics of the 48 patients tested for APC germline mutations 

Patient # of polyps/ age at CRC/ age at Extracolonic Family Phenotype 

No diagnosis of polyps diagnosis of CRC Manifestation History 

75 1 00-1 000/ 63 No No FAP 
195* >1000/ 57 No No FAP 
222 >1000/ 36 Yes/ 49 desmoids,osteomas,epidermoid Yes FAP 
884 >1000/ 51 Yes/51 No FAP 
1168 100-1000/ 27 No CHRPE, others Yes FAP 
1213 1 00-1 000/ 40 Yes/ 40 Yes FAP 
10912 100-1000/ II No CHRPE, Yes FAP 
11572 >1000/ 31 No duodenal polyposis No FAP 
12426 10-100/25 No desmoids, other Yes FAP 
18 10-100/54 Yes/ 54 gastric adenomas Yes AFAP 
648* 10-100/45 Yes/ 45 No AFAP 
954 150/56 Yes/ 56 Yes AFAP 
1101 10-100/47 Yes/47 other Yes AFAP 
1167 200/59 Yes/ 59 Yes AFAP 
1212 10-100/77 No Yes AFAP 
1215 10-100/46 No Yes AFAP 
1320 150/44 Yes/44 Yes AFAP 
1606 10-100/52 No Yes AFAP 
2052 10-100/62 Yes/62 Yes AFAP 
10620 100/45 Yes/ 45 other Yes AFAP 
11160 10-100/51 No duodenal polyposis Yes AFAP 
11417 10-100/57 No Yes AFAP 
11468 150/25 No Yes AFAP 
11988 <10/ 60 Yes/ 69 Yes AFAP 
12071* 10-100/38 No Yes AFAP 
12082 10-100/52 No other Yes AFAP 
12127 10-100/29 No Yes AFAP 
12204 10-100/40 No other Yes AFAP 
12597 10-100/ 55 Yes/ 65 Yes AFAP 
63 10-100/71 Yes/71 Yes MA 
213 <10/ 51 No Yes MA 
415 <10/ 58 Yes/ 58 No MA 
464 10-100/54 Yes/ 56 Yes MA 
931 0/44 Yes/44 Yes MA 
1096 10-100/54 Yes/54 Yes MA 
1307 <10/54 Yes/56 Yes MA 
1349 10-100/47 No Yes MA 
1685 0145 Yes/45 Yes MA 
1744 Unknown Yes/43 Yes MA 
11069 10-100/52 No Yes MA 
11102 <10/ 43 No other Yes MA 
11308* <10/61 Yes/ 61 Yes MA 
11431* 10-100/58 No other Yes MA 
11867 <10/ 79 Yes/ 79 Yes MA 
12174 <10/63 No Yes MA 
12566 0/70 Yes/ 70 Yes MA 
12603 <10/54 Yes/ 57 Yes MA 
12905 <10/ 57 Yes/ 57 No MA 
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FAP indicates familial adenomatous polyposis 

AF AP indicates attenuated familial adenomatous polyposis 

MA indicates multiple adenomas 

Asterisk(*) indicates that DNA samples were not available for MLP A test 

2.3 DNA extraction from whole blood 

Genomic DNA was extracted from the white cells of venous blood, which was collected 

from subjects in Na2-EDTA vacutainer tubes. DNA extraction was performed using a 

salting-out method described by Miller et al (1988) with the following modifications: 

5 ml ofTKMt buffer (10 mM Tris, 10 mM KCL, 10 mM MgCh, 2 mM EDTA, pH 7.6) 

was added to the blood, followed by 1.25 ml of a membrane-lysing agent, 10% lgepal 

(Sigma - a non-ionic detergent; Octylphenyl-polyethylene glycol). The tube was mixed 

by inversions, and then centrifuged at 2200 rpm for 1 0 minutes at room temperature. The 

supernatant was poured off and the nuclear pellet was saved. The pellet was then washed 

twice with 1 Oml of TKM1 buffer, re-suspended in 0.8 ml of TKM2 buffer (1 OmM Tris 

HCl, 10mM KCl, 10mM MgCh, 4M NaCI, 2mM EDTA pH7.6), and transferred to a 1.5 

ml microcentrifuge tube containing 50 f..ll of 10% SDS, and then incubated for 30 minutes 

at 50 °C for complete nuclear membrane lysis. Following this incubation, 0.4 ml of 5M 

NaCl was added to the tube, mixed and centrifuged at 14000 rpm for 20 minutes. The 

supernatant was saved and transferred to a 15 ml centrifuge tube, and 2.4 ml of 90% 

ethanol was added to precipitate DNA. The precipitated DNA was transferred to an 



eppendorf tube and dissolved in 100-200 Jll TE buffer (IOmM Tris-HCl, 0.2 mM 

Na2EDTA, pH 7.5). Then the concentration was determined by UV spectrophotometry 

measured absorbance at 260 and 280. 

2.4 Mutation scanning- direct DNA sequencing 

2.4.1 Primers for PCR amplification 

Direct DNA sequencing was used to perform germline mutation screening for the APC 

gene in the present study. The genomic DNA sequence of the APC gene was amplified in 

a total of 38 PCR amplicons, which cover the entire coding region, the splice sites and 

partial 5' and 3' non-coding regions of the APC gene. The sequences of all 38-paired 

primers used for APC gene analysis are presented in Table 3. All the primers are 

described from 5' 7 3'direction. The sequences of the majority of the primers were 

reported in a previous study (Groden et al. 1991). The remainder (denoted with *)were 

designed using the computer software of IDT's Primer Quest 

(http://scitools.idtdna.com/primerquest/) (All primers were purchased from Applied 

Biosystems Foster City, CA). 
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Table 3. PCR primers for sequence analysis of 15 exons of the APC gene 

Ex on Forward primer 5'-3' Reverse primer 5'-3' 

1* ccactgtttcatcctcttagatgc atcactgtactgaggcaaggt 
2* gtgcgtgctttgagagtgatctga gcttgttgctattctgccagtcac 
3* tttaccctgacccaagtggac cgtttcctgggattctgaagacct 
4* ttagcactttaggtagagaagtttgc caagcactaaagctggtttgttt 
5* ggatccagattgagtctgacacct tagatggtggtcttccggtagcta 
6 ggtagccatagtatgattatttct ctacctatttttatacccacaaac 
7 aagaaagcctacaccatttttgc gatcattcttagaaccatcttgc 
8* cagtctttggttaagtccattctgc cttgaactcctggcctcaagtgat 
9-1 agtc gtaattttgtttctaaactc tgaaggactcggafftcacgc 
9-2 tcattcactcacagcctgatgac gctttgaaacatgcactacgat 
10 aaacatcattgctcttcaaataac taccatgatttaaaaatccaccag 
11 gatgattgtctttttcctcttgc ctgagctatcttaagaaatacatg 
12* gaccaaggcaagtgttacacacaca tgcagtgagctgagattgcacaac 
13* agtcaccacggctagccagaattt aggttgcagtgagccaagatcaga 
14 tagatgacccatattctgtttc tagatgacccatattctgtttc 
15-1 gttactgcatacacattgtgac gctttttgtttcctaacatgaag 
15-2 agtacaaggatgccaatattatg acttctatctttttcagaacgag 
15-3 atttgaatactacagtgttaccc cttgtattctaatttggcataagg 
15-4 ctgcccatacacattcaaacac tgtttgggtcttgcccatctt 
15-5 agtcttaaatattcagatgagcag gtttctcttcattatattttatgcta 
15-6 aagcctaccaattatagtgaacg agctgatgacaaagatgataatg 
15-7* agaggcagaatcagctccatccaa actgcatggttcactctgaacgga 
15-8 atctccctccaaaagtggtgc tccatctggagtactttccgtg 
15-9* agctcaaaccaagcgagaagtacc acaatacacccgtggcaatcatcc 
15-10 cccagactgcttcaaaattacc gagcctcatctgtacttctgc 
15-11 ccctccaaatgagttagctgc ttgtggtataggttttactggtg 
15-12 acccaacaaaaatcagttagatg gtggctggtaactttagcctc 
15-13 atgatgttgacctttccaggg attgtgtaacttttcatcagttgc 
15-14 aaagacataccagacagaggg cttttttggcattgcggagct 
15-15 aagatgacctgttgcaggaatg gaatcagacgaagcttgtctagat 
15-16 ccatagtaagtagtttacatcaag aaacaggacttgtacttgagga 
15-17 cagccccttcaagcaaacatg gaggacttattccatttctacc 
15-18 cagtctcctggccgaaactc gttgactggcgtactaatacag 
15-19 tggtaatggagccaataaaaagg tgggagttttcgccatccac 
15-20 tgtctctatccacacattc gt atgtttttcatcctcactttttgc 
15-21 ggagaagaactggaagttcatc ttgaatctttaatgtttggatttgc 
15-22 tctcccacaggtaatactccc gctagaactgaatggggtacg 
15-23 caggacaaaataatcctgtccc attttcttagtttcattcttcttcctc 
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2.4.2 PCR amplification and product purification 

DNA PCR amplification was carried out in a total of 25 )ll of PCR reaction consisting of 

approximately 100-200 ng genomic DNA, 2.5 )ll dNTPs (10 mM), 0.5 )ll (2.5 )lMI)ll) 

each primer and 0.3 )ll (5 units /)ll)Taq DNA polymerase, 1.5 )ll (50mM) MgCh, 2.5 )ll 

( 10 mM KCl, 10 mM (NH4)2S04, Tris-HCl, 2 mM MgS04, 0.1% Triton X-1 00 PH 8.8) 

lOx buffer (All dNTPs, PCR buffer and DNA polymerase were purchased from Applied 

Biosystems Foster City, CA). The PCR amplifications were performed by using the 

Eppendorf MasterCycler (Eppendorf AG, Hambeug, Germany). All samples were 

amplified by using the conditions as follows: 95 °C for 5 min followed by 35 cycles of94 

°C for 1 min, 50 °C -58 °C for 1 min, 72 °C for 1 min, plus a final extension of 72 °C for 

lOmin. 

The quality of the DNA amplification was analyzed by electrophoresis of the PCR 

products on 2 % ethidium bromide stained agarose gels, which were visualized under UV 

transilluminator. The presence of bands of the appropriate length confirmed the 

successful PCR amplification. 

Purification of PCR products was carried out using the QIAquick Multiwell PCR 

purification kit (Qiagn) on a Mastercycler. Briefly, each 5 )ll of PCR amplification 

mixture was mixed with 1 )ll ( 10 units I )ll) of Exonuclease I and 2 )ll (1 unit I ul) of 

Shrimp Alkaline Phosphatase (SAP), to remove excess primers and free dNTPs. The 
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reaction was carried out at 37 °C for 15 min, and terminated by heating at 80 °C for 15 

min (inactivation of the enzyme within the reaction). 

2.4.3 Taq-polymerase catalyzed cycle sequencing using fluorescent-labeled dye 

terminator reactions and post-reaction cleanup 

Cycle sequencing was performed in a 20 !ll PCR reaction by using CEQ DTCS-Quick 

Start Kit (Dye Terminator cycle sequencing) on a Mastercycler according to the 

manufacturer's instructions, with certain modifications. Briefly, each 4 !ll of purified 

PCR product was added to 16 !ll of mixed solution containing DNA polymerase, CEQ 

Dye terminators (ddUTP, ddUTP, ddGTP, ddCTP, and ddATP), dNTPs, sequencing 

reaction buffer (Applies Biosystems), and primers. The reaction was then subjected to 95 

°C for 4 min, as an initial denaturing step, followed by 40 cycles of 95 °C for 30 sec, 55 

°C for 30 sec, and 72 °C for 1 min. 

Subsequently, ethanol precipitation was used to clean up the free ddNTPs and the 

residual salts from each reaction. Briefly, the sequencing products were transferred to a 

0.5 ml microcentrifuge tube containing 5 !ll of stop solution (2/ll of3 M NaOA pH 5.2, 2 

!ll of 100 mM EDTA pH 8.0, and 1 !ll of 20 /lg /Ill Glycogen), 60 !ll of cold ( -20 °C) 95 

% ethanol was then added and the tube was centrifuged at 14, 000 rpm for 15 min. The 

DNA pellet was saved by discarding the supernatant, and rinsed two times with cold ( -20 

°C) 200 !ll of 70% ethanol to remove the unincorporated dye-terminators and the residual 



salts. For each rinse, cold (-20 °C) ethanol was added and followed by an immediate 

centrifugation at 14, 000 rpm for 2 min. Finally, the DNA pellet was dried in a sealed 

vacuum centrifuge for 15 min, and then re-suspended in 20 111 of sample loading solution 

(SLS). 

2.4.4 Gel electrophoresis and data analysis on the DNA sequencer 

Each 20 111 of the purified reaction mixture was loaded and analyzed on an automated 

CEQ Beckman 8000 Genetic Analysis System (Beckman Coulter, Inc, Fullerton, CA) 

according to the manufacturer's instructions. Sequence analysis was conducted using 

software according to the manufacture's guidelines. All analyzed DNA fragments were 

sequenced in both directions. Sequence results were aligned with wild type sequences 

achieved from Genbank: (M73547), and the identified sequence variances were evaluated 

by the sequencher sequence alignment program (ACGT Codes). We are using HGVS 

nomenclature to describe mutations, i.e. numbering from the first A of the start codon, as 

opposed to the first residue given in the Genbank: entry used. 

2.5 Genomic rearrangement analysis - multiplex ligation-dependent probe 

amplification (MLPA) 
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2.5.1 MLPA test kit 

The MLP A analysis was carried out using the kit SALSA P043 APC from MRC Holland 

(Amsterdam, The Netherlands, www.mrc-holland.com). The kit contains 23-paired 

probes, which were designed for analyzing each exon of the gene in question (exons 1-

15, including exon 1 OA) including promoter regions. The promoter region was covered 

by two paired probes, and each individual ex on (ex on 1-14, plus ex on 1 OA) was analyzed 

by a single probe. The largest exon, exon 15, was assayed by five paired probes, which 

are located in different regions of exon 15. Among the five paired exon 15 probes, two 

were specifically designed for the two mutation hotspots in ex on 15 (codon 1061, codon 

1309). In addition, 14-paired probes from other chromosomal regions plus further 

controls to check for adequate quality of test DNA and efficient ligation were used as 

controls. 

2.5.2 DNA denaturation and hybridization of the SALSA-probes 

For each sample, approximately 250 ng of genomic DNA in 5 ~1 of TE buffer (1 0 mM 

Tris-HCl, pH 8.5 and 1 mM EDTA) was denatured at 98°C for 10 min. Hybridization 

was performed by adding 1.5 ~1 SALSA-probes mixture (1 finol of each synthetic probe 

oligonucleotide in TE) and 1.5 ~1 MLP A buffer (1.5 M KCl, 300 mM Tris-HCI pH 8.5, 

1 mM EDT A) to denaturized genomic DNA. The reaction was first incubated at 95°C 

for 1 min and then at 60°C for 16 hours. 
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2.5.3 Ligation reaction 

After hybridization, ligation of annealed paired probes was perfonned by adding ligase-

65 enzyme buffer (1 unit ligase-65 enzyme, 2.6 mM MgCh, 5 mM Tris-HCl pH 8.5, 

0.013% non-ionic detergents, 0.2 mM NAD) to each of the reactions. The ligation 

reaction was incubated at 54°C for 15 min and then tenninated by heating at 98°C for 5 

mm. 

2.5.4 PCR amplification of the ligated probes 

Ligated products were amplified by PCR. 30 ~1 SALSA PCR buffer was added to 10 ~1 

of the ligation reaction. 10 ~1 of polymerase mixture were added when the temperature 

reached 60°C. The polymerase mixture contained the PCR primers (10 pmol each of 

unlabelled and fluorescent dye D4-labelled primer), 2.5 nmol dNTPs and 2.5 units 

SALSA polymerase. The PCR reaction was carried out for 35 cycles (95°C for 30 sec, 

60°C for 30 sec and 72°C for 1 min). 

2.5.5 PCR products electrophoresis 

The PCR products were separated by using the CEQ8000 capillary electrophoresis 

system (Beckman Coulter, Inc, Fullerton, CA). The amplified PCR fragments from wild 
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type sequence of the APC gene presented a peak pattern of 37 and the sizes of these 

peaks ranged from 95 to 445 nt. 
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2.5.6 Data analysis 

Peak areas from each tested individual were then exported to a Microsoft Excel 

spreadsheet, which was designed to assess the ratios of each test peak relative to all other 

peaks for the same individual. Ratios of test peaks to control peaks and control peaks to 

other control peaks in each patient sample were compared to the same ratios obtained for 

two normal individuals, which were included in each run. 

For normal sequences, a dosage quotient of 1.0 was expected. If a deletion or duplication 

was present, the dosage quotient should be less than 0.6, or greater than 1.4, respectively. 

All samples with suspected deletions/duplications were confirmed in a duplicate 

analysis, and the determination of deletion/duplication was made based on consistent 

results from the duplicated analyses. 
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Chapter 3 

Results 
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3.1 Point mutation scanning- direct sequencing of the entire APC gene 

The genomic DNA from 48 patients who represent 48 different families was sequenced 

to screen for germline point mutations in the APC gene. The analyzed DNA sequence of 

the APC gene included the entire coding region, all splice sites and part of the 5' and 3' 

non-coding regions of the gene. Thirty-eight PCR amplicons were designed to cover the 

entire analyzed sequence, and the sizes of these PCR segments vary from 200 to 500 bp. 

Among the total 15 exons of the APC gene, 13 were covered by an individual PCR 

amplicon; exon 9 was divided by two overlapping PCR segments; and exon 15, the 

largest exon (6571bp), was covered by 23 overlapping PCR segments. In total, four 

truncating mutations (c.3067dupA, c.3183_3187delACAAA, c.4348C>T and c.867delC) 

and two missense variants, p.V1882D (c.5465T>A) and p.G2502S (c.7504G>A) were 

identified. In addition, a large number of silent single base pair substitutions were also 

found. The four truncating mutations were all identified from the F AP patients group ( 4 

of 9, 44 %). Three of these truncating mutations have been previously reported in other 

studies (Groden et al. 1993; Wallis et al.1999; Pang et al. 2001), and the c.867delC 

mutation is a novel finding which is specific to the Newfoundland population. The two 

missense variants were also reported in previous studies (Gregory et al. 2005; Okkels et 

al. 2006). The details of these mutations and polymorphisms from the 48 families are 

shown in Table 4. 
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Table 4. Identified sequence variants of APC gene in the Newfoundland families with 

APC - associated polyposis conditions 

Patient Clinical Mutations Polymorphisms 

75 FAP c.3165A>T (p.l10551) 
195* FAP c.5465T>A (p.V1822D) 
222 FAP c. 4348C>T (p. R1450X) c.5034A>G (p.G1678G); c.5880G>A (p.P1960P) 
884 FAP c.1635G>A (p.A545A); c.5880G>A (p.P1960P) 
1168 FAP 
1213 FAP c.1458T>C (p.Y486Y); c.1635G>A (p.A545A) 

c.5034A>G (p.G1678G); c.4479G>A (p.T1493T) 
c.5880G>A (p.Pl960P) 

10912 FAP c. 3067dupA 
11572 FAP c.3183 3187delACAAA 

at codon I 061 
12426 FAP c. 867delC c.5465T>A (p.V1822D); c.5880G>A (p.Pl960P) 
18 AFAP Exon14 del c.5034A>G (p.G1678G); c.5880G>A (p.Pl960P) 

648* AFAP 
954 AFAP 
1101 AFAP 
1167 AFAP c.4479G>A (p.T1493T); c.5034A>G (p.G1678G) 

c.5880G>A (p.P1960P) 

1212 AFAP c.l458T>C (p.Y486Y); c.l635G>A (p.A545A) 
c.5034A>G (p.Gl678G); c.5465T>A (p.V1822D) 
c.5880G>A (p.P1960P) 

1215 AFAP c.l458T>C (p.Y486Y); c.1635G>A (p.A545A) 
c.5880G>A (p.Pl960P) 

1320 AFAP c.l458T>C (p.Y486Y); c.1635G>A (p.A545A) 
c.5465T>A (p.V1822D); c.5880G>A (p.Pl960P) 

1606 AFAP c.5465T>A (p.V1822D) 
2052 AFAP 
10620 AFAP c.1458T>C (p.Y486Y) 
11160 AFAP c.1458T>C (p.Y486Y); c.1635G>A (p.A545A) 

c.5034A>G (p.Gl678G); c.5880G>A (p.P1960P) 

11417 AFAP c.5034A>G (p.G1678G); c.5880G>A (p.P1960P) 
11468 AFAP c.1458T>C (p.Y486Y); c.5465T>A (p.V1822D) 

c.7201C>T (Q.L2401L} 
11988 AFAP 
12071* AFAP c.1635G>A (p.A545A); c.5034A>G (p.G1678G) 

c.5465T>A (~V1822D}; c.5880G>A (p.P1960P} 
12082 AFAP 
12127 AFAP 
12204 AFAP 
12597 AFAP 
63 MA 
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213 MA c.1458T>C (p.Y486Y); c.5880G>A (p.P1960P) 
415 MA 
464 MA c.l458T>C (p.Y486Y); c.5034A>G (p.G 1678G) 

c.5465T>A (p.V1822D); c.5880G>A (p.P1960P) 

931 MA c.1458T>C (p.Y486Y); c.2946G>A (p.S982S) 
1096 MA c.5034A>G (p.G1678G); c.5880G>A (p.P1960P) 

1307 MA c.1458T>C (p.Y486Y); c.l635G>A (p.A545A) 
1349 MA c.5034A>G (p.G1678G) 

1685 MA c.l635G>A (p.A545A); c.5034A>G (p.G1678G) 
c.5880G>A (p.Pl960P); c.7201C>T (p.L2401L) 

1744 MA c.l4581->C (p.Y486Y); c.4479G>A (p.Tl493T) 
11069 MA c.5034A>G (p.G 1678G) 
11102 MA c.1458T>C (p. Y 486Y) ; c. 5880G>A (p.P1960P) 

11308* MA c.1458T>C (p.Y486Y); c.5465T>A (p.V1822D) 
11431* MA 
11867 MA c.5880G>A (p.Pl960P) 
12174 MA c.5465T>A (p.V1822D) 
12566 MA 
12603 MA c.5465T>A (p.V1822D); c.5880G>A (p.P1960P) 

12905 MA c.7504G>A (p.G2502S); c.7201C>T (p.L2401L) 

F AP indicates familial adenomatous polyposis 

AF AP indicates attenuated familial adenomatous polyposis 

MA indicates multiple adenomas 

Asterisk (*) indicates that DNA samples were not available for MLP A test 

In the patient 10912, a single bp (A) duplication was identified from exon 15 at 

nucleotide position 3067 (c. 3067dupA) (Figure lla), which causes an mRNA reading 

frameshift after the duplicated nucleotide (A), and generates a novel stop codon at codon 

1028. Patient 10912 was diagnosed as classical FAP at age 11 based on the clinical 
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finding of 1 00-1000 adenomas and congenital hypertrophy of retinal pigment epithelium 

(CHRPE), as well as family history of polyposis and I or CRC. 

Patient 11572 was shown to carry a five bp deletion in the exon 15 

(c.3183_3187delACAAA) which leads to a mRNA reading frameshift starting from 

codon 1061 and generating a stop codon at codon 1062 (Figure llb). Patient 11572 was 

an F AP patient. He had over 1000 polyps in his colon and duodenum at age 31. He had 

no family history of polyposis and /or CRC, and therefore, the identified 

c.3183 _3187delACAAA mutation may be due to a "de novo" event. 

A single base pair (C) deletion in exon 8 (c.867delC) was detected in FAP patient 12426. 

This single base pair deletion caused a mRNA reading frameshift starting from codon 

289, and a stop codon was generated at codon 292 (Figure 11 C). This patient had a 

medulloblastoma and colorectal adenomas at age 25. She also suffered from desmoid 

disease and had a family history of polyps and CRC. 

Patient 222 was found to carry a C>T transition at nucleotide position 4348 (c. 

4348C>T), which changes codon 1450 from CGA for arginine to a stop codon, TGA, in 

exon 15 (p.R1450X). This patient was diagnosed as classical FAP at age of36 because of 

the clinical findings of over 1000 colorectal polyps, and a number of extracolonic 

manifestations including desmoids, osteomas and epidermoid cysts. He developed colon 

cancer at age 49. 
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Two known missense variants, c. 5465 A>T (p. V1882D), and c. 7504G>A (p. G2502S) 

were detected in our studied patients. The missense variant, c. 7504G>A (p. G2502S) 

was identified only in patient 12905 with multiple adenomas. The missense variant, c. 

5465 A>T (p. V1882D) is a common APC variant, which was found in 13 of our 48 

patients (27%). The frequency of this missense change in subgroups of patients with 

FAP, AFAP and multiple adenomas was 22% (2/9), 25% (5/20) and 36% (7/19) 

respectively. These two missense changes have been previously reported but the effect of 

these variants remains unclear. 

In addition to the truncating and missense changes, we also detected eight silent variants 

in our study patients. These silent variants were all caused by single base substitutions in 

the coding region. These silent variants include c.1458 T>C (p.Y486Y), c.l635 G>A 

(p.A545A), c.2946G>A (p.S982S), c.3165A>T (p.Il0551), c.4479G>A (p.T1493T), 

c.5034 A>G (p.G1678G), c.5880 G>A (p.P1960P) and c.7201C>T (p.L2401L). Among 

these variants, c.2946G>A (p.S982S), c.3165A>T (p.110551), c.4479G>A (p.T1493T) 

and c.7201C>T (p.L2401L) are novel, and the others are previously known. 
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Table 5. Frequencies of the identified sequence variants of APC gene in the 

Newfoundland patients with APC- associated polyposis conditions 

Silent variants Missense variants Frequencies (%) 

c.l458 T>C (p.Y486Y) 31.3 
c.1635 G>A (p.A545A) 18.8 

c.2946G>A (p.S982S)* 2.1 

c.3165A>T (p.110551)* 2.1 

c.4479G>A (p.T1493T)* 6.2 

c.5034 A>G (p.Gl678G) 33.3 

c.5880 G>A (p.P1960P) 43.8 

c.7201C>T (p.L2401L)* 8.3 

c.5465T>A (p.Vl822D) 29.2 

c.7504G>A (p.G2502S) 2.1 

Asterisks (*) indicate that the silent variants are novel 
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Figure 11 a. Sequence result of mutation c. 3067 dupA (patient 1 0912) 

c. 3183-3187delACAAA 

g;; 100 IE 

G r G A I'< ~. T A A A '' C T .~ G T Jl. I< G G ' ,,, F C A A G tl 11 G.~ 1 \'. 

Figure llb. Sequence result of mutation c. 3183-3187delACAAA (patient 11572) 
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c. 867deiC 

Figure llc. Sequence result of mutation c. 867deiC (patient 12426) 

231] 
lCTCAA.A.C 

' 

c. 4348C>T 

Figure lld. Sequence result of mutation c.4348C>T (R1450X) (patient 222) 
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c. 5465T>A 

Figure lle. Sequence result of missense mutation c.5465T>A (p.Vl822D) 

c. 7504G>A 

Figure llf Sequence result of missense mutation c.7504G>A (p.G2502S) 
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3.2 Searching for genomic rearrangements in APC- MLP A analysis 

To search for APC germline mutations caused by exon deletion and duplication, MLP A 

analysis was carried out for 35 patients in whom no point mutation had been found by 

sequence analysis. Patient 11572 who was known to have a 5 bp deletion in exon 15 

( c.3183 _3187delACAAA) was also included as a positive control for MLP A analysis. 

Using the commercial kit for analysis of APC gene, MLPA analysis was performed to 

examine the entire APC gene including the promoter region. For exons 1-14, there was 

one PCR segment for each individual exon. Promoter region was divided into two PCR 

segments, and exon 15 was divided into three PCR segments, 15-1, 15-2, 15-3. Two 

additional PCR fragments were designed specifically to identify the two mutational 

hotspots [the 5 bp deletion at codon 1061(c.3183_3187delACAAA) and the 5 bp deletion 

at codon 1309 (c. 3927_3931delAAAGA)] in exon 15 of the APC gene. Based on the 

data from previous studies (Bunyan et al. 2004), an exonic deletion is suggested if the 

tested peak area is reduced greater than 40% compared with the controls. Our results 

showed that the peak area representing exon 14 in patient 18 was reduced more than 60% 

compared with the normal controls (Figure 12a), which was evident by both visual 

examination and calculation of peak areas. Therefore, a heterozygous exon 14 deletion 

was determined in patient 18. This patient was diagnosed as AF AP at age of 54 based on 

the findings of colorectal adenomas (at range of 10-100), CRC, gastric adenomas and 

family history of polyps. 



Our MLPA analysis also detected a heterozygous 5 bp deletion at codon 1061 in patient 

11572 (Figure 12b ), which was consistent with the result obtained from our sequencing 

analysis. The peak area representing the 5 bp deletion (c.3183_3187delACAAA) at 

codon 1 061 was reduced 52% compared with the corresponding control. This result for a 

known mutation provided good quality control for our MLP A analysis. The MLP A 

analysis was repeated to confirm these results. 
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Figure12 a. MLPA result from wild type control (above) and patient 18 (below) with 

heterozygous APC exon 14 deletion. An arrow denotes the APC ex on 14-specific peak. 
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Figure12b. MLPA result from wild type control (above) and patient 11572 with 

heterozygous 5 bp deletion at codon 1061 of the APC gene 

(c.3183_3187delACAAA). An arrow denotes the codon 1061-specific peak. 
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Chapter 4 

Discussion and Conclusion 
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4.1 Sequence variants found in the present study 

To date, over 1,000 different germline mutations have been reported in patients with 

APC-associated polyposis conditions (http://perso.curie.fr/tsoussi, and 

http://www.cancer-genetics.org). The majority of the mutations cause a premature 

truncation of the APC protein, usually through single amino-acid substitutions (nonsense 

mutations) or frameshifts (small deletions or insertions). The reported mutations are 

spread throughout the gene, but are predominantly located in the 5' half of the gene. The 

most common germline APC mutations are the two 5-bp deletions, which result in 

frameshiftmutations at codon 1061 (c.3183_3187delACAAA) and 1309 

(c.3927_3931delAAAGA) (Beroud et al. 1996). In the present study, we identified 15 

different sequence variants of the APC gene by screening 48 Newfoundland patients with 

FAP/AFAP/multiple adenoma representing 48 unrelated families. The sequence variants 

we identified include three small deletions/duplication (c.3067dupA, c867delC, 

c3183_3187delACAAA), one nonsense change (p. R1450X), one exonic deletion (del 

exon 14), two missense changes (p. V1822D and p. G2502S) and eight silent variants. 

Protein truncating mutations 

Sequence variants caused by small deletion/duplication ( c.3183 _3187delACAAA, 

c.867delC, del exon 14 and c.3067dupA) and nonsense change (p. Rl450X) are predicted 

to cause protein truncation of APC. To date, the c.3067dupA, c.3183_3187delACAAA, 

del exon 14 and p.R1450X have been previously reported as causative mutations for 

FAP. However, the c.867delC is a novel finding. Because the single base pair deletion 
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would result in a frameshift, we think that the c.867delC should be a causative mutation 

for F AP in this patient. The majority of reported germline mutations found in patients 

with F AP cause protein truncation (Mandl et al. 1994; Paffenholz et al. 1994; van der 

luijt et al.1997; Wallis et al. 1999; Gebert et al. 1999; Friedl et al. 2001). Miyoshi et al 

(1992) examined 79 unrelated patients with F AP and detected germline mutations of the 

APC gene in 53 patients (67%), and 92% of these mutations were predicted to cause 

truncation of the APC protein. Through investigating 123 unrelated families with PAP, 

Gebert et al (1999) identified 85 different germline mutations from these families. All of 

these mutations were distributed in the 5' half of the APC gene between codons 213 and 

1581, and were predicated to cause protein truncation of APC. Our results suggest that 

the genetic predisposition for PAP in Newfoundland population is similar to other 

populations, which are mainly due to loss of function mutations of APC gene. The exon 

14 deletion identified in one AF AP patient is also predicted to cause protein truncation, 

but we do not know, at this moment, if this deletion causes a reading frameshift or not. 

We assume this deletion may at least cause partial loss of the APC function. 

These five truncating mutations are all located in the 5' half of APC gene between codon 

289 and 1450. Three of them are clustered at the 5' end ofexon 15 between codon 1023 

and 1450. 

Missense variants 
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Disease-causing mtssense changes of APC gene are rarely reported because the 

functional implications of missense changes are often unclear. Generally speaking, 

missense alteration may be functionally important if it alters the polarity of an amino acid 

in highly conserved regions or in the functional domains of the encoded protein. In the 

APC protein, there are two amino acid repeat regions responsible for B-catenin binding 

and down-regulation (Bright-Thomas and Hargest. 2003). The B-catenin down-regulation 

domain is located in the region between codon 1324 and codon 2075 that contains seven 

20 amino acid binding repeats. At least the first three binding repeats located between 

codons 1286 and 1513 are required for efficient B-catenin down-regulation. 

So far, only a few APC missense variants have been associated with F AP (Nishisho et al. 

1991; Dobbie et al.l994; Laken et al. 1997; van der Luijt et al. 1997; Frayling et al.l998; 

Ficari et al. 2000). The missense variant, p.I1307K, for example, has been associated 

with increased risk of CRC but not necessarily polyposis (Laken et al. 1997). This 

missense variant is caused by a T>A transversion at nucleotide 3920 that converts the 

sequence AAATAAAA to an (A)8 tract in the APC coding region. This change is 

presumed to cause failure of the cellular transcriptional or translational machinery, thus 

resulting in somatic mutations by slippage when DNA replicates. In another example, the 

missense variant, E1317Q was reported to be associated with colon adenomas and /or 

colon cancer in a number of studies (Frayling et al. 1998; Lamlum et al. 2000; Popat et al. 

2000; Hahnloser et al. 2003), but an opposite result was also reported. Fidder's (2005) 

study on Jewish patients showed that the carrier frequencies of El317Q among CRC 

62 



patients and controls were approximately identical, which indicated that the E1317Q 

variant played little if any role in colorectal cancer susceptibility. 

Two missense variants, V1822D and G2502S, which were identified in the present study 

have been previously reported and both of them are located at the 3' half of the APC 

gene. The V1822D variant is situated between the third and fourth binding repeats within 

the B-catenin down-regulation domain, and therefore, is unlikely to crucially effect B

catenin degradation (Bright-Thomas and Hargest. 2003; Rubinfeld et al. 1997). The 

V1822D variant was suggested to be a low-penetrance allele that increased risk of 

developing colorectal cancer based on an early study (Wallis et al 1999). However, such 

an association was not confirmed in several later association studies (Slattery et al. 2001; 

Tranah et al 2005). The G2502S variant is located outside the region for coordination of 

~-catenin down-regulation, and therefore it may not have an appreciable affect on· ~

catenin degradation (Bright-Thomas and Hargest. 2003; Rubinfeld et al. 1997). The 

G2502S might be associated with more subtle abnormalities in processing of RNA 

transcripts which in turn could result in the expression of differentially spliced forms of 

the APC gene, which might interfere with the functional activity of the APC protein 

(Rodney et al. 2004). However, a recent large cohort study failed to associate the G2502S 

variant with either colorectal cancer or adenoma {Tranah et al. 2005). 

The V1822D variant was reported to have a 22% to 25% allele frequency in the general 

population (Slattery et al. 2001; Tranah et al. 2005), which suggested that it was a 



common APC variant. The G2502S variant showed an allele frequency of 10% in 

Caucasians (SNP 500; http://snp500cancer.nci.nih.gov). In the present study, the V1822D 

variant was detected in 14 out of 48 patients, and the G2502S variant was only found in 

one patient, which gave allele frequencies of 29.2 % for V 1822D and 2.1 % for G2502S 

respectively. The allele frequency of G2502S in Newfoundland patients is lower than in 

other publications (SNP 500; http://snp500cancer.nci.nih.gov). This could either be a 

result of a statistical bias due to the small sample size used in our study or it is possible 

that there is a true lower allele frequency of this variant in Newfoundland population. Our 

continuing study for genotyping these two variants in more patients and a large number 

of controls from the local population is underway, which will help to determine the allele 

frequencies of V1822D and G2502S in both Newfoundland patients and the normal 

population. 

Silent variants 

Single nucleotide substitution in the coding region of a gene may or may not lead to the 

change of an amino acid. Those that do not change the amino acid are known as silent 

variants. In general, the majority of the. silent variants are polymorphisms, and do not 

play a role in disease. However, recent evidence suggests that some silent variants could 

be pathogenic because of skipping of an exon. In this situation, a silent variant usually 

occurs in the region containing a transcriptional regulatory element necessary for proper 

splicing known as an exonic splicing enhancer (ESE) (Aretz et al. 2004). Alteration of an 
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ESE even without changing an amino acid can cause exon skipping. Therefore, to 

determine the consequence of a missense or a silent variant, it is necessary to consider the 

possible amino acid change, and also whether there is a change in size of the transcript. 

The ESEs have been reported in a number of genes, such as the fibrillin-1 gene, the 

MLHJ gene, and the human phenylalanine hydroxylase gene (Liu et al. 1997; Nystrom

Lahti et al. 1999; Chao et al. 2001), and mutations in these ESEs are linked to the 

corresponding diseases. Montera et al (2001) described a distinct severe FAP phenotype 

within a family that was attributed to a silent mutation, c.1869G>T (p.R623R), in the 

middle of APC exon 14. This silent nucleotide substitution was related to the disruption 

of putative ESE motifs, inducing complete skipping of exon 14 and leading to a stable 

truncated APC protein. Aretz et al (2004) examined five rare novel missense or silent 

variants in the APC gene located close to splice sites by transcript analysis, and found 

that four of these variants resulted in ex on skipping. These findings show a possible new 

model of APC causative mutations and demonstrate the existence of exonic sequence 

elements modulating the splicing of the APC gene. This emphasizes the importance of 

investigating missense and silent mutations. In the present study, we identified eight 

silent variants in the APC gene. Four of them were previously known and four were 

novel. The variants, 5880G>A (p.P1960P) and 5034A>G (p.G1678G) have prevalences 

of 43.8 % and 33.3%, respectively in our studied patients. In the near future, the 

prevalences of these two silent variants in the general Newfoundland population will be 

investigated and compared. 



To determine if these silent variants predispose to polyposis conditions, we will further 

characterize these variants in the second phase of this study, which will include family 

study and transcript analysis of these variants. A family study will investigate if these 

silent variants cosegregate with the clinical conditions in the families. The transcript 

study will help us to investigate a possible ESE. 

Genomic deletions 

In our study, an exonic deletion was detected in one patient with AF AP. This sequence 

alteration was the only convincing pathogenic mutation found in AF AP patients. The 

ex on 14 deletion has been reported in patients with F AP but not in patients with AF AP 

(Su et al.2000; Sieber et al, 2002; Michils et al. 2005). It may indicate that exon 14 

deletion in this case is an inframe deletion rather than a frameshift change. Therefore, 

mutation study of the APC gene in AF AP patients should pay more attention to genetic 

defects that may mildly affect the gene function, such as inframe deletions, missense 

changes and some of the silent variants. Direct sequencing should not be the only 

method for mutation study of the APC gene in patients with AF AP and multiple 

adenomas. 
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4.2 Mutation detection rate 

Typical F AP patients have been reported to have a 30-85 % detectable mutation rate in 

the APC gene depending on the patients examined and the methods used for mutation 

analysis (van der luijt et al. 1997; Wallis et al. 1999; Friedl et al. 2001; Heinimann et al. 

1998; Giarola et al. 1999). The mutation detection rate in patients with F AP is usually 

much higher than that in patients with AF AP (Sieber et al. 2002; Aretz et al. 2005; 

Michils et al. 2005). In the present study, the five truncating sequence alterations 

(nonsense mutation and frameshift mutation) can easily be recognized as causative 

mutations, which give a mutation detection rate of 10.4% in the total of 48 studied 

patients. Among the five truncating mutations, four were detected in the patients with 

F AP, and one in a patient with AF AP, which gives a mutation detection rate of 44% ( 4/9) 

in patients with FAP, and 5%(1120) in patients with AFAP. Obviously, the detection rate 

of APC mutation in our study is lower than those in previous studies. We consider several 

following possibilities that may have contributed to the low mutation detection rate in our 

study. 

a) 81% (39/48) of our patients were diagnosed as either AF AP or multiple adenomas. 

Based on the results from previous studies, approximately 10-30% of patients with 

FAP and up to 90% of those with AFAP/multiple adenomas remain without a 

detectable APC germline mutation. These families are APC mutation-negative despite 

applying different screening methods (Nagase and Nakamura. 1993; Miyoshi et al. 

1992; Groden et al. 1993; Armstrong et al. 1997; Giardiello et al. 1997; van der Luijt 
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et al. 1997; Scott et al. 2001; Spirio et al. 1993; van der Luijt et al. 1996; Lamlum et 

al. 2000; Heinimann et al. 2001; Friedl et al. 2001; Moisio et al. 2002; Sieber et al. 

2002). Similar to other studies, detection rates of the APC mutation in patients with 

AFAP and multiple adenomas in our present study are 5% (1/20) and 0% (0/19), 

respectively. This suggests that the major genetic predisposition to AF AP and 

multiple adenomas in our group of families may be different from that for F AP. Such 

a difference may result from either a different way to cause APC function change that 

cannot be detected by the currently used method, or different unknown mutant 

gene(s) in the same or a different pathway. 

b) Our sequencing analysis was restricted to the coding sequences and intron/exon 

junction areas of the APC gene. Therefore, we cannot exclude the possibility that 

some undetectable sequence alterations in the intronic regions and promoter region 

may play a role in the clinical conditions of the patients. Powell et al (1993) reported 

that the expression of the APC alleles was significantly reduced in three out of eleven 

APC mutation-negative F AP patients. This suggests that some sequence alterations in 

the nonexamined sequences may have a significant influence on gene expression. 

c) Germline defects in gene(s) other than APC gene may be involved in the etiology of 

the clinical conditions in some of our patients. Mutations in the gene(s) that interact 

with the APC protein, or regulate the expression of APC may also predispose to F AP. 
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Some evidence supports the presence of at least one additional gene apart from APC 

causing F AP. This hypothesis is suggested based on the observations that 

approximately 20% of clinically typical FAP kindreds fail to show any APC 

mutations even with the best available techniques (Powell et al. 1993; Laken et al. 

1999). Genes involved in the Wnt-signaling transduction pathway, such as a-catenin 

gene (Mcpherson et al.1994 ), ~-catenin gene (Kraus et al. 1994 ), as well as axin 1 and 

axin 2 gene, have been suggested as the potential candidates (Peifer. 1996). There is 

also evidence that the base-excision-repair gene, Mut Y homolog (MYH), encoding a 

DNA glycosidase can be associated with the susceptibility to FAP (AI-Tassan et al. 

2002). 

d) Patients with fewer (10-100) colorectal adenomas obviously represent a 

heterogeneous and yet poorly characterized group between FAP and HNPCC. The 

phenotype in some AF AP patients sometimes can mimic HNPCC (McGarrity et al. 

2000; Scott et al. 1996), and at some point AF AP was thought to be a variant of 

HNPCC (Lynch et al. 1996). Some HNPCC cases could be easily misdiagnosed as 

AF AP patients if family and medical history is incomplete (Cao et al. 2002; Lynch et 

al. 1996; Lynch et al. 1992). 
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4.3 Summary 

Using direct DNA sequencing and MLPA, we perfonned mutation scanning of the APC 

gene in 48 selected Newfoundland patients with FAP/AFAP/multiple adenomas. These 

selected patients represent 48 unrelated families. In total, five truncating mutations (four 

frameshift mutations and one exonic mutation) were identified in five families and two 

missense variants were detected in 15 families. In addition, eight silent variants were 

also found and four of them are novel. All the frameshift changes were identified in the 

FAP patients (44 %). A truncating mutation caused by deletion of exon 14 was found in 

one patient with AF AP, this being the only convincing mutation found in our patients 

with AFAP (5%). Four of these mutations have been previously reported (Groden et al. 

1993; Wallis et al.1999; Pang et al. 2001), and the mutation, c.867delC, is a novel 

finding. The two identified missense variants were also previously reported (Gregory et 

al. 2005; Okkels et al. 2006). Among the eight silent variants found in our patients, four 

are novel. 

Our results suggest: 1) the genetic predisposition to FAP in Newfoundland population is 

similar to that identified in other populations, which is mainly due to loss of function 

changes of the APC gene; 2) gennline APC mutation may not be the major cause for the 

conditions AF AP/multiple adenomas; and 3) the search for exonic deletion of the APC 

gene is necessary for mutation study of patients with AFAP. Identification of the 

causative gennline mutations of the APC gene in Newfoundland patients with F AP or 

AF AP or multiple adenomas will lead to establishment of a direct testing method for each 
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of the identified mutations, which will be transferred into clinical service. The established 

predictive genetic testing will then be used to determine the risk status for consenting at

risk family members to provide proper prevention and/or treatment options. 
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