SYNTHESIS OF THE KEMPANE DITERPENE RING SYSTEM, AND REGIO-AND STEREOSELECTIVITY IN THE REDUCTIONS OF CYCLIC ENEDIONES

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

CHUNIAN LIU

SYNTHESIS OF THE KEMPANE DITERPENE RING SYSTEM, AND REGIO- AND STEREOSELECTIVITY IN THE REDUCTIONS OF CYCLIC ENEDIONES

CHUNJIAN LIU

B. Sc. (1984) and M. Sc. (1987), Hunan Normal University Changsha, Hunan, The People's Republic of China

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy

> Department of Chemistry Memorial University of Newfoundland St. John's, Newfoundland, Canada January 1998

> > C

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre référence

Our file Notre référence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L'auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-34717-6

Abstract

Kempane diterpenes such as 1 and 2, which are a class of compact tetracyclic compounds isolated from the defense secretions of nasute soldier termites, have been challenging synthetic targets. We have achieved a highly stereoselective synthesis of the kempane diterpene ring system that possesses all the required stereogenic centers and sufficient functionality to allow elaboration to 1 and 2. A key step of our synthesis of the ring system is the highly regio- and facially-selective Diels-Alder cycloaddition of *cis*-5-(1-((*tert*-butyldimethylsilyl)oxy)vinyl)-3,3a,6,6a-tetrahydro-2*H*-cyclopenta[*b*]furan-2-one (78) and 2,6-dimethyl-1,4-benzoquinone (13) to establish the benzoindane ring system 79. The diene 78 was prepared through a sequence that contained a regiospecific [2 + 2] cycloaddition of 1-methyl-1,3-cyclohexadiene (38) with dichloroketene, generated *in situ* from dichloroacetyl chloride and triethylamine. Though attempts to cyclize the sevenmembered ring in hemi-acetal 72 by aldol reaction were unsuccessful due to the difficulty in opening the five-membered hemi-acetal ring, the seven-membered ring was constructed by a regiospecific Dieckmann condensation in ethyl

 $(1\alpha, 2\beta, 4\alpha, 4a\beta, 6\beta, 6a\alpha, 7a\beta, 10a\beta, 10b\alpha, 10c\alpha)$ -2,3,4,4a,5,6,6a,7,7a,10,10a,10b,10ctridecahydro-4-hydroxy-6-(2-methoxyethoxy)methoxy-2,10c-dimethyl-9-oxo-1*H*benz[6,7]indeno-[2,1-*b*]furan-1-methylcarboxylate (131). The transformation of the benzoindane ring system **79** to carboxylate **131** involved a remarkably regio- and stereoselective addition of an acetylide to the apparently more hindered carbonyl in **79**, a reductive cleavage of a γ -hydroxy group in an α,β -enone system, and a one-pot acid-

-ii-

promoted epimerization and double-bond isomerization.

To explore the possibility of modifying our synthesis of the kempane diterpene ring system to an asymmetric approach, we investigated the asymmetric [2 + 2]cycloadditions of enantiopure, *L*-menthoxy- and 1,2:5,6-di-*O*-isopropyllidene-a-*D*glucofuranoxy-substituted ketenes 174 and 185 with cyclopentadiene (175).

In the course of the synthetic study towards kempane diterpenes, an extremely regio- and stereoselective reduction of the seemingly more hindered carbonyl in enedione 56 with lithium tri-*tert*-butoxyaluminohydride or sodium borohydride was observed. Systematic study proved this observation to be general with non-bridged cyclic enediones. Both the regio- and stereoselectivities are due to a preference for axial attack by the reducing reagents. Among possible axial additions to the two carbonyls, only one approach is sterically allowed. It was also found that the combination of sodium borohydride and cerium trichloride, the Luche reagent, was a useful alternative reducing reagent. It either improved or completely reversed the regioselectivity.

Acknowledgments

I would like to extend my heartfelt thanks to my supervisor, Professor D. Jean Burnell for giving me not only the opportunity to study under his supervision but also a wonderful synthetic project, great guidance and much encouragement.

I am very grateful to my fellow graduate students: Mr. Guangling Bao, Mr. Tracy Bostick, Dr. Ron Buckle, Dr. Lori Burry, Mr. Sheldon Crane, Dr. Tracy J. Jenkins, Mr. John Letourneau, Mr. Christopher Morrison, Mr. Dean Strickland, Mr. Brian Watson, and Mr. Mark Wellman, for making the years at MUN enjoyable and unforgettable. In particular, I would like to thank Mr. Bostick, Mr. Crane, and Mr. Letourneau for helping me to improve my computer skills.

I would like to thank Professor C. R. Jablonski, Ms. N. Brunet and Mr. D. Miller for 300 MHz NMR spectra, Professor B. Gregory and Ms. M. Baggs for mass spectra, and Professor J. Bridson for x-ray crystal structures.

I am thankful to Professor J. Bridson and Professor P. Georghiou for proofreading this manuscript and for their valuable suggestions.

I am indebted to my wife, Zulan Pi, and my daughter, Han Liu for their love, understanding, and support.

The financial support from both Professor Jean Burnell and Memorial University of Newfoundland is greatly acknowledged. Every courtesy provided by the Chemistry Department and Memorial University has also been greatly appreciated.

-iv-

Table of Contents

Title	i
Abstract	ii
Acknowledgments	iv
Table of Contents	v
Glossary of Abbreviations	viii

Part I. STEREOSELECTIVE SYNTHESIS OF THE KEMPANE DITERPENE

RING SYSTEM	1
1.1. Introduction	1
1.2. Strategy One	14
1.2.1. Retrosynthetic Analysis	14
1.2.2. Syntheses of Dienes and Examination of Their	
Diels-Alder Reactions	19
1. 2. 3. Attempts to Methylate the Diels-Alder Adducts 56 and 57	34
1.2.4. Epimerization of the cis-Decalin Ring System to the trans	38
1. 2. 5. Attempts to Cyclize the Seven-membered Ring in 72	47
1. 3. Strategy Two	49
1. 3. 1. Retrosynthetic Analysis	49
1.3.2. Synthesis of the Kempane Diterpene Ring System	53
1.4. Preliminary Study of Asymmetric [2 + 2] Ketene Cycloadditions	80

1.4.1. Introduction	80
1.4.2. Preliminary Model Study of [2 + 2] Cycloadditions	
with Optically Pure Ketenes	
1.5. Experimental	101
References	156
Appendix: Selected ¹ H NMR Spectra	

Part II. REGIO- AND STEREOSELECTIVITY IN THE REDUCTIONS

OF CYCLIC ENEDIONES 191
2. 1. Introduction
2.2. Preparation of Cyclic Enediones 198
2.3. Regio- and Stereoselectivity in the Reductions of Cyclic Enediones 202
2.3.1. Regio- and Stereoselectivity in the Reductions
of cis, non-Bridged Enediones 202
2. 3. 2. Regio- and Stereoselectivity in the Reductions
of trans-Fused Enediones
2.3.3. Regio- and Stereoselectivity in the Reductions
of Bridged Enediones 208
2.3.4. Influences of Reducing Reagents in the Regio- and
Stereoselectivity in the Reductions of Cyclic Enediones
2.3.5. Rationalization of the Selectivities in the Reductions
of Cyclic Enediones

2.4.	Regioselectivity in the Reductions of Cyclic Enediones	
	with NaBH ₄ /CeCl ₃	220
2. 5.	Experimental	225
References		252
Appendix: Se	lected ¹ H NMR Spectra	254

Glossary of abbreviations

Ac	Acetyl
acac	Acetylacetonate
APT	Attached proton test
bp	Boiling point
Bn	Benzyl
t-Bu	tert-Butyl
conc.	Concentrated
COSY	¹ H- ¹ H Correlation (spectroscopy)
m-CPBA	meta-Chloroperoxybenzoic acid
CSA	Camphorsulfonic acid
de	Diastereomeric excess
DME	Dimethoxyethane
DMF	N,N-Dimethylformamide
ee	Enantiomeric excess
eq.	Equivalent
ERG	Electron releasing group
Et	Ethyl
EWG	Electron withdrawing group
GC-MS	Gas chromatography-mass spectrometry
h	Hours

HET-COR	Heteronuclear correlation (spectrum)
HMPA	Hexamethylphosphoramide
НОМО	Highest occupied molecular orbital
HPLC	High performance liquid chromatography
HRMS	High resolution mass spectrum
hv	Ultraviolet irradiation
IR	Infrared spectroscopy
LDA	Lithium diisopropylamide
LUMO	Lowest unoccupied molecular orbital
Ме	Methyl
MEM	(2-Methoxyethoxy)methyl
min	Minutes
mp	Melting point
Ms	Methanesulphonyl
MS	Mass spectrometry
NMO	N-Methyl morpholine-N-oxide
NMR	Nuclear magnetic resonance spectroscopy
NOE	Nuclear Overhauser effect enhancement
PCC	Pyridinium chlorochromate
PLC	Preparative layer chromatography
rt	Room temperature
TBAF	Tetra-n-butylammonium fluoride

TBS	tert-Butyldimethylsilyl
TBSOTf	tert-Butyldimethylsilyl triflate
Tf ₂ O	Triflic anhydride
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TMS	Tetramethylsilane
TPAP	Tetra-n-propylammonium perruthenate
Ts	para-Toluenesulphonyl
UV	Ultraviolet

STEREOSELECTIVE SYNTHESIS OF THE KEMPANE DITERPENE RING SYSTEM

1.1. Introduction

Termite soldiers adopt both physical and chemical defense mechanisms either separately or in combination.¹ The soldiers of primitive termite species usually employ physical defense involving the use of their mandibles, which are big and powerful, to cut and bite their opponents. Chemical defense is a more evolved form of defense. Instead of physical contact, it involves the ejection of viscous and sticky secretions upon the opponents. The secretions can cover a distance of several centimeters and are able to immobilize the opponents. When physical defense and chemical defense are used in combination, the opponents are captured physically and then treated with chemical defense secretions.

The most highly evolved chemical defense system belongs to non-mandibulate nasute soldiers. After a long evolution process, these soldiers have degenerated mandibles, but instead, they have developed an elongated rostrum called a nasus for their defense secretion. More impressively, they have developed a great ability to biosynthesize a large number of complex organic compounds, many of which have now been identified, to constitute their defense secretions. Kempene is one class of novel diterpenoids isolated from the defense secretions of nasute soldiers. 14α -Hydroxykempa-

Figure 1. Representative members of the kempane diterpenes

6,8-dien-3-one 14-acetate (1) and 3β -hydroxy- 7β -kemp-8(9)-en-6-one (2) are two representative members of the kempane diterpenoids (Figure 1). They were first isolated from the defense secretions of *Nasutitermes kempae* and *Nasutitermes octopilis* in 1977² and 1979,³ respectively, by G. D. Prestwich and coworkers. Their relative stereochemistry was solved by single-crystal x-ray diffraction analysis. Crystal structures also showed that these molecules had dome-like shapes, as shown for kempane diterpene 1 in Figure 2, and that the diene system in 1 was not planar but twisted by about 20°. The absolute configuration of 1 was obtained from the helicity of both the diene and carbonyl chromophores.⁴

Figure 2. The shape of kempane diterpene 1

Figure 3. Diterpenoids from the defense secretions of nasute termite soldiers

Besides kempenes, a variety of other structurely related diterpenoids have been isolated from the defense secretions of soldier termites. These are bicyclic secotrinervitenes,^{5,6} tricyclic trinervitenes,⁷ and tetracyclic rippertenes.⁸ Representatives of these diterpenoids, along with those of the kempanes, are arranged in Figure 3.

It was proposed⁹ that all four classes of diterpenes are derived biogenetically from the cyclizations of farnesyl pyrophosphate, as shown in Scheme 1. (Scheme 1 has been slightly modified from the original.) This proposal has been supported by isotopic labeling experiments.¹⁰ It is also supported by the demonstration of the coexistence of

Scheme 1. Biogenesis of secotrinervitene, trinervitene, kempene,

and rippertene from farnesyl pyrophosphate

famesyl pyrophosphate

or

trinervitene

kempane

trinervitene and secotrinervitene in *Nasutitermes princepts*.⁶ The formation of rippertene appears to involve the migration of a methyl group, a commonly occurring process in the course of biosynthesis. Some literature^{4, 11} suggested that cembrene A (3) be a common precursor to all of the four classes of diterpenes. However, **3** has never been found in the defense secretions of nasute termite soldiers, though it is a well known trail pheromone of termite workers.¹² It is also unlikely that the tetracyclic diterpenoids are derived from the tricyclic ones, since the configurations of C-12 in trinervitenes are always found to be opposite to that in kempenes and rippertene.

Due to their biological activity and particularly their unique structures, the termite defensive diterpenoids have attracted interest as targets for total synthesis. So far, five synthetic endeavors have been reported. Two members of the secotrinervitene class and kempane 1 have been synthesized. One approach resulted in the formation of an isomer of kempene 2, and the other prepared the ring system of rippertene.

The first total synthesis in this area was the synthesis of (\pm) -3 α -acetoxy-15 β -hydroxy-7,16-secotrinervita-7,11-diene (4), reported by T. Kato's group in 1987.¹³ The strategy is outlined in Scheme 2. Macrocyclic allyl acetate 8, which was previously

Scheme 2. Kato's strategy in the synthesis of secotrinervitene 4

prepared in their laboratory from *trans* geranyl geranoyl chloride (9),¹⁴ was used as the starting material. A two-carbon side-chain was introduced by an Ireland-type Claisen rearrangement to give an ester 7, and 7 was converted to an enone 6, from which a second side-chain was introduced by Michael addition. Dieckmann condensation of diester 5

then constructed the cyclohexane ring in 4. The strategy did yield 4, but since a macrocyclic compound was chosen as a starting material and the six-membered ring was constructed in the last stage, there was no controlling element for the stereochemistry. As a result, the synthesis turned out to be very inefficient.

At almost the same time, the same group reported an elegant biomimetic route to (\pm) -secotrinervitene-2 β ,3 α -diol (12) (Scheme 3).¹⁵ Treatment of epoxide 11, which had been previously made in the their laboratory from *trans*-dehydromukulol (10),¹⁶ with BF₃·Et₂O afforded an 82% yield of the desired cyclization product, which was smoothly converted to the natural product 12 by LiAlH₄ reduction.

In 1991, Dauben's group achieved the total synthesis of kempene 1 (Scheme 4).¹⁷ They started with a Lewis acid-catalyzed Diels-Alder reaction of 2,6-dimethylbenzoquinone (13) with isoprene, followed by a reduction of the Diels-Alder adduct with zinc in glacial acetic acid and a simultaneous epimerization of the product, to construct the

14

17

1

trans-decalin skeleton 14. The five-membered ring was stereoselectively constructed with a second Lewis acid-catalyzed Diels-Alder reaction of 15 with isoprene and the subsequent operations on the resulting cyclohexene ring. The seven-membered ring was formed with 17 by a Ti⁰-induced McMurry coupling. A weakness in this strategy is the use of isoprene twice as a Diels-Alder diene. Diels-Alder reactions with isoprene have very poor regioselectivity. This significantly affected the synthetic efficiency. For example, the overall yield of the first two steps was extremely low (13%). One reason must be the poor regioselectivity in the Diels-Alder reaction, though it was not pointed out in their paper. In our hands a Diels-Alder reaction of 13 with isoprene in a sealed tube resulted in nearly no regioselectivity. Again, the regioselectivity in Dauben's second Diels-Alder reaction with isoprene was only 2.6:1 in favor of the desired regioisomer, and the two regioisomers had to be separated by preparative HPLC.

The next year Paquette's group reported an approach towards kempene 2.¹⁸ The strategy is summarized in Scheme 5. A key feature in this strategy is an extremely efficient palladium-promoted [3 +2] cycloaddition of the activated enone 19, which was derived from 2-methyl-1,3-cyclohexanedione (18), with (2-

(acetoxymethyl)allyl)trimethylsilane (20) to construct the five-membered ring. The final cyclization was realized by a base-catalyzed aldol condensation of dione 22. Unfortunately, the conjugated double bond in 23 could not be deconjugated to make the naturally occurring kempane diterpene 2. Otherwise, this approach would be a concise synthesis. Semi-empirical calculations have been carried out with 23 and 2.¹⁹ The results suggested that 23 is more stable than 2 by 1.6 kcal/mol.

-9-

Scheme 5. Paquette's approach to kempane diterpene 2

A common feature in Dauben's synthesis of kempene 1 and Paquette's approach towards kempene 2 is that both began with the construction of a *trans*-decalin ring system. As a result, the two syntheses passed through the very similar intermediates 15

and **19** (Figure 4). Both approaches then utilized cycloaddition reactions to install a third ring. The angular methyl group in the *trans*-decalins ensured that the cycloadditions occurred from the opposite side to provide the desired stereochemistry.

Figure 4. Similar intermediates in Dauben's and Paquette's syntheses

The only enantioselective approach to a termite defensive compound is the preparation of the ring system of 3α -hydroxy-15-rippertene (29), reported by Metz *et al.* in 1993 (Scheme 6).²⁰ This approach took advantage of the commercial availability of a relatively complex and enantiopure eudesmanolide, (-)- α -santonin (24). After consecutive epimerizations at C-6 and C-11, effected with 9% HCl and *t*-BuOK respectively, 24 was transformed into a hydrazulene 25 by photoisomerization.²¹ A key step in this approach to construct the tetracyclic ring system of rippertene was the intramolecular Diels-Alder reaction which was effected by treatment of propargyl ether 26 with *t*-BuOK to generate the corresponding allenyl ether as a dienophilic moiety.²² Though Metz's approach led to the rippertene ring system, it seems that the ring system will not easily be modified into the natural product 29.

Scheme 6. Metz's synthesis of the rippertene ring system

Intrigued by the very compact carbon skeleton and the large number of stereogenic centers of kempane diterpenoids, we have developed a stereoselective approach to the

kempane diterpene ring system 30.²³ Compound 30 possesses all the required stereogenic centers for 1 and 2. It also contains sufficient functionality to allow elaboration to the natural products. Our approach features a highly regio-, facial selective Diels-Alder cycloaddition and a highly regio-, stereoselective acetylide monoaddition to a cyclic enedione.

30

1.2. Strategy One

1.2.1. Retrosynthetic Analysis

Our original retrosynthetic analysis of the kempane diterpenoids is displayed in Scheme 7. We assumed that tetracyclic enedione **31**, in which X could be an acetyl or a silyl group and Y could be a hydrogen or an alkyl group, would be an excellent common precursor to both kempene **1** and **2**. This enedione possesses a benzoindane ring system, three key stereogenic centers (indicated by asterisks), and all the annular carbons required for **1** and **2**. The correct stereochemistry of C-4a could be obtained by epimerization of the *cis*-decalin ring conjunction to the *trans*. The enol ether structural unit was expected to provide an opportunity to introduce the last methyl group. Opening the five-membered hemi-acetal ring would produce a methyl ketone, which would undergo the final cyclization to construct the seven-membered ring. The oxygen at C-7a could be eliminated to generate the double bond in **1** or be oxidized to the carbonyl in **2**.

The enedione **31** could be prepared by the Diels-Alder cycloaddition of diene **32** with 2,6-dimethyl-1,4-benzoquinone (**13**). Although theoretically this reaction might produce eight isomeric adducts, it is reasonable to expect that it would proceed in an *endo*-, regio-, and facially selective manner, as illustrated in Figure 5, to produce the desired adduct as the major product. *Endo* selectivity, which is sometimes called the "Alder Rule", is a well known phenomenon in Diels-Alder reactions. This rule states that in the preferred transition state an unsaturated substituent on a dienophile (two carbonyls on **13** in the currently discussed case) should be oriented towards the newly developing double bond. The origin of this selectivity, according to the molecular orbital theory, is

-14-

Figure 5. An endo-, regio-, and facially selective Diek-Alder reaction

the favorable secondary orbital interaction in the transition state between the π orbitals on the carbonyls and the developing double bond.²⁴

The regioselectivity of our Diels-Alder reaction is expected on the basis of another generalization of Diels-Alder reaction, which is sometimes called the "*ortho-para*" rule. This rule addresses that when both the diene and the dienophile bear substituents, the preferred transition state, and subsequently the preferred product, is the one in which the substituents have an *ortho* or a *para* relationship. The two simplest cases in the normal Diels-Alder reaction are depicted in Scheme 8, where ERG and EWG represent an electron-releasing group and an electron-withdrawing group, respectively. The "orthopara" rule can be interpreted by the frontier molecular orbital theory.²⁵ Normal Diels-Alder reactions occur by orbital interactions between the HOMO of dienes and the LUMO of dienophiles. The strongest interaction is between the centers having the largest orbital coefficients in the frontier orbitals. For the first case in Scheme 8, an ERG on C-1 of the diene will cause the HOMO of the diene to have the largest coefficient at C-4. An

EWG on C-1 of the dienophile will result in the LUMO of the dienophile having the largest coefficient at C-2. As a result, C-4 of the diene will interact most strongly with C-2 of the dienophile, which will regioselectively produce an "*ortho*" product. A similar analysis of the second case in Scheme 8 will account for the "*para*" regioselectivity. When a diene has more than one ERG at different positions, an ERG at the 1-position will dominate over an ERG at the 2-position if the two ERG's have similar electron-releasing capabilities. On the other hand, when a dienophile has EWG's at both ends of the reacting double bond, the regioselectivity will be dominated by the one having the greater ability to withdraw electrons. In our case, diene **32** bears three substituents, at the 1-, 2-, and 3-positions. The effects of the 1-substituent and 3-substituent are consistent and should be dominant over that of the 2-substituent. In the dienophile **13**, the two electron-

donating methyl groups at C-2 and C-6 will repress the electron-demand of the carbonyl at C-4 through a conjugative effect. Therefore, the carbonyl at C-1 will have more electron-withdrawing ability and should control the regioselectivity in the Diels-Alder reaction. In other words, in the major product this carbonyl should have the "*ortho-para*" relationship with the dominant substituents in the diene. This is exactly the situation shown in Figure 5. This analysis of regioselectivity was supported by a literature example. Valenta *et al.* showed that heating diene **33** with quinone **13** afforded adduct **34** as the exclusive product in 82% yield (Scheme 9).²⁶

Scheme 9. A literature example of a regioseletive Diels-Alder rection with 1326

The expectation of facial selectivity in our Diels-Alder reaction was based on steric interactions. We believed that the (hemi-)acetal ring in diene **32** would block one of the two faces of the diene and make the dienophile approach the the diene from the other face. We also anticipated that the methyl groups in the (hemi-)acetal ring were far enough away from the reacting site to have little influence on the reactivity and selectivity of the diene.

1.2.2. Syntheses of Dienes and Examination of Their Diels-Alder Reactions

To execute the strategy discussed above, it was first desirable to examine the Diels-Alder cycloaddition to see if it would occur and, if so, to assess the extent of the *endo-*, regio-, and facial selectivities. For this purpose, we initially chose to use diene 35 instead of 32, since the former is easier to handle.

Our synthesis of diene **35** started with the Shapiro reaction of commercially available 3-methyl-2-cyclohexen-1-one (**36**) (Scheme 10). Stirring a 1:1 mixture of **36** and *p*-toluenesulfonylhydrazide in the presence of a catalytic amount of concentrated hydrochloric acid at room temperature overnight produced a mixture of *syn* and *anti* hydrazones **37** in a ratio of 2:1. This crude hydrazone was then treated with 2.2 equivalents of methyllithium at room temperature overnight, to provide 1-methyl-1,3cyclohexadiene (**38**). The conversion of **36** to **38** by the Shapiro reaction is a known transformation. However, the literature yields are only moderate or poor: 62% and 22% were reported by Gregson *et al.*²⁷ and Eilbracht *et al.*,²⁸ respectively. Following their procedures, we obtained even lower yields (< 10%). When we attempted to isolate diene **38** by distillation, we noticed that the residue in the distillation flask turned more and

more viscous and non-volatile upon heating. Consequently, very little product was distilled. Therefore, we speculated that diene **38** was not stable under heating and it might have dimerized or polymerized during the attempts at distillation. Eventually, this problem was solved by avoiding the isolation of **38**. After workup of the Shapiro reaction, a solution of the crude **38** in diethyl ether and pentane was first dried over anhydrous Na₂SO₄ and then over solid KOH. To this solution was directly introduced triethylamine and then dichloroacetyl chloride at room temperature. Dichloroketene was generated *in situ* from the reaction of dichloroacetyl chloride and triethylamine, and the

ketene underwent a highly regioselective [2 + 2] addition to the less substituted double bond of diene 38 to give the bicyclic adduct 39. Dechlorination of 39 with zinc dust in a slightly acidic medium, supplied by ammonium chloride in methanol,²⁹ at room temperature over fifteen hours afforded cyclobutanone 40. The dechlorination could also be effected by zinc in refluxing glacial acetic acid. It was noticed that the zinc dust used for the latter procedure had to be of analytical grade (>98%). Less pure zinc dust (96%) resulted in incomplete reduction, producing a considerable amount of monodechlorinated product, as detected by GC-MS. Cyclobutanone 40 was converted to lactone 41 by a regio- and stereoselective Baeyer-Villiger oxidation with 30% aqueous hydrogen peroxide in glacial acetic acid at 0 °C. From 36 to 41 no chromatography was necessary except to obtain analytical samples, and the overall yield was 27%, amounting to an average yield of 77% for each step.

The transformation sequence from 38 to 41 was reminiscent of the preparation of Corey's lactone 42 from 1,3-cyclohexadiene.³⁰ A distinct difference in our case was that our diene 38 was unsymmetrical. We showed that the ketene addition could proceed regiospecifically to the less substituted double bond. A similar example of this
regiospecificity was recently seen in K. E. Harding's synthesis of sirenin (Scheme 11).³¹ Reaction of diene **43** with 2-chloropropanoyl chloride and triethylamine regiospecifically gave a 63% yield of adduct **44** as a mixture of *endo*-methyl and *exo*-methyl isomers in a ratio of 3.6:1 favoring the *endo*-methyl isomer. Harding *et al.* mentioned that when the benzyl group was replaced by 2-methoxyethylmethyl (MEM) group in **43**, the yield of the cycloaddition dropped to less than 10%.

Scheme 11. A literature example of regiospecific ketene cycloaddition³¹

Regiospecificity in the ketene addition can be rationalized by steric and electronic interactions between ketene and diene. If we assume that the mechanism is that of a $[2\pi + 2\pi]$ cycloaddition, according to the orbital symmetry principle, the reaction must be antarafacial for one of the π orbitals. That is, in the transition state, the two reacting double bonds must be orthogonal, as shown as Figure 6.³² Figure 6 also represents the frontier orbital interaction between the HOMO of the alkene and the LUMO of the ethylenic portion of the ketene. When the "orthogonal" requirement is applied to our case, two modes of regiochemistry are possible (Figure 7). Sterically, mode **46** should be less favored because of a significant interaction between the methyl group on the diene

Figure 6. Frontier orbital interaction in ketene addition

component and a chlorine on the ketene. With regard to electronic factors, the electron donating methyl group at C-1 of the diene will make C-4 have the largest coefficient in the HOMO of the diene. On the other hand, in the LUMO of the ethylenic portion of the ketene, the carbonyl will make C-1' have the largest coefficient. Frontier molecular orbital theory holds that the strongest orbital interaction should be between the centers having the largest coefficients on the frontier orbitals. That is, mode **45** is electronically more favorable for the orbital development in the formation of addition product. In

46

conclusion, both steric and electronic factors can account for the observed regiospecificity in the [2 + 2] ketene cycloaddition.

Scheme 12 summarizes the preparation of our first Diels-Alder diene **50** from lactone **41**. Treatment of **41** with lithium diisopropylamide (LDA), followed by iodomethane, at -78 °C ³³ for three hours stereoselectively afforded **47** in 89% yield. The relative stereochemistry in **47** was confirmed by a nuclear Overhauser effect (NOE) experiment. Enhancements of 3% and 2% on H-3a were observed, respectively, when the signals for the 3-methyl and H-7a were irradiated. The high stereoselectivity (> 20:1) in this methylation was predicted by the geometry of the *cis*-fused ring system. The six-

membered ring obstructed iodomethane from approaching the concave face. Ozonolysis³⁴ of the double bond in 47 at -78 °C and subsequent reductive workup with dimethylsulfide gave ketoaldehyde 48. Without isolation, 48 underwent acid catalyzed intramolecular aldol condensation, when heated in the presence of (\pm)-camphorsulfonic acid with a Dean-Stark apparatus, to provide enone 49 in 48% yield from 47. When the aldol cyclization was attempted in basic media (KOH/methanol or Et₃N/MsCl³⁵), very complex mixtures were produced, as shown by TLC. With 49 I first prepared diene 50 in a

Scheme 13. Diels-Alder reaction of diene 50 with 13

13

51

52

moderate yield (58%) simply by refluxing it with isopropenyl acetate in the presence of (±)-camphorsulfonic acid.³⁶

As soon as diene **50** was obtained, its Diels-Alder cyclization with 2,6dimethyl-1,4-benzoquinone (**13**) was examined. It was found that no reaction occurred between **50** and **13** in refluxing benzene, the conditions employed by Valenta *et al.*²⁶ However, a sluggish reaction was observed in refluxing toluene (Scheme 13). After 12 days at reflux, a mixture of two products in a **4**:1 ratio was obtained in 50% yield. The two products proved to be inseparable by flash chromatography, but their structures were tentatively assigned as **51** and **52**, with **51** being the major. The reasoning for these assignments will appear later.

The results of the Diels-Alder reaction of diene 50 and quinone 13 indicated that diene 50 was not sufficiently reactive and regioselective, though the *endo*- and facial selectivities of the reaction were good. In order to increase the reactivity and regioselectivity of the diene 50, we decided to replace the acetoxy group in 50 with a silyloxy group. To do so, we needed a base to generate an enolate. Initially we thought a commonly used base like LDA might show poor selectivity between a proton α to an enone carbonyl and a proton α to a lactone carbonyl. Furthermore, even though the methyl group α to the lactone carbonyl in enone 49 might engender steric hindrance and make LDA or other bulky base selective to the proton α to the enone carbonyl, an aldol side reaction between the generated enolate and the lactone carbonyl might be a problem. Therefore, we thought it would be a good idea to use two equivalents of LDA and two equivalents of tri-*tert*-butyldimethylsilyl chloride (TBSCI) to make ketene acetal diene 53.

-26-

The use of trimethylsilyl chloride (TMSCl) was excluded since trimethylsilyl enol ethers are known to be too labile to isolate by chromatography. Nevertheless, diene 53 was never obtained. Instead, diene 54 and its epimer 55 were produced (Scheme 14). Obviously, a carbanion next to the lactone carbonyl had been generated, but the ketene

Scheme 14. Preparation of diene 54 and diene 55

acetal diene 53 could not form, probably due to an interaction between the coplanar methyl and TBSO group in the transition state to 53. Epimers 54 and 55 could be completely separated by preparative layer chromatography (PLC) or by short flash column chromatography. An interesting observation was that when the reaction was quenched with technical grade pentane, which is referred to as "wet" pentane in Scheme 14, the ratio of 54 to 55 was 1:6, while when quenched with water, the ratio was 1:1. This suggests that when the reaction was quenched with water, both the convex and concave sides of the molecule were surrounded with a large number of water molecules. Rapid quenching of the carbanion with water from both sides would give the 1:1 mixture of diene 54 and 55. In contrast, when the reaction was treated with technical grade pentane, only a small amount of proton source could be present. The proton source selectively approached and reacted with the carbanion from the less hindered convex side to give diene 55 as a major product. The process in the latter case can be referred to as kinetic protonation, which was used to convert a thermodynamically more stable stereoisomer to its less stable epimer in the synthesis of podophyllotoxin.³⁷ Theoretically, both diene 54 and diene 55 could be utilized in our synthesis, because the stereogenic center at C-3 will not be present in the final product. However, the combined yields of 54 and 55 in both cases were not satisfactory. Eventually, it was found that diene 54 and 55 could be obtained in 85% yield and in a ratio of 6:1 favoring diene 54 by using one equivalent of LDA and tert-butyldimethylsilyl triflate (TBSOTf) as the silylating reagent. The problem of aldol side reactions was solved by introducing LDA to enone 49 in the presence of TBSOTf, so that as soon as a carbanion was generated it was trapped by TBSOTf.

-28-

0 Н

1

57

Figure 8. NOE results for 57

As expected, the silyloxy-substituted dienes were much better than the acetoxy analogue for the Diels-Alder reaction. Both diene **54** and diene **55** gave the desired adducts **56** and **57**, respectively, in over 80% yields by heating with 2,6-dimethyl-1,4benzoquinone (13) in toluene for three days (Scheme 15). The relative stereochemistry of the methyl group in the lactone ring had no effect on the reactivity and selectivities of the dienes. The structures of both **56** and **57** were assigned by 1D and 2D NMR, and they were also confirmed by high resolution MS. NOE results for adduct **57**, which completely verified the stereochemistry of the assigned structure, are shown in Figure **8**. In both cases, a small amount of an isomeric by-product was detected by TLC and NMR, but these by-products could not be isolated in pure form. Hence, their structures were not be determined. The ¹H NMR spectrum of the crude product from the reaction of **54** with **13** revealed that the ratio of the desired adduct to the isomeric byproduct was about 10:1.

After the model Diels-Alder cycloadditions succeeded in high yield and good

Scheme 16. Reaction of 54 with Tebbe reagent

-30-

selectivity (Scheme 15), we proceeded to prepare the more complex diene 59. An initial idea was to convert diene 54 to 58 with the Tebbe reagent, Cp_2TiCH_2 ·AlClMe₂,³⁸ as shown in Scheme 16. However, 58 was too unstable to isolate. As a result, a 2:1 epimeric mixture 59 was obtained even after non-aqueous workup and preparative TLC. Diene 59 could play the same role as 58 in our synthesis, but the yield of 59 was only 38%. The low yield of the reaction was probably due to the incompatibility of the Tebbe reagent and silyl enol ether structure in 59. Tebbe's reagent is a Lewis acid, and it could therefore induce cleavage of the TBSO group.

Our second attempt was to prepare diene 63 from lactone 47 (Scheme 17). This began with an investigation of the addition of methyllithium to 47. We wondered if it would be possible to add only one equivalent of methyllithium to 47 to provide a cyclic hemi-acetal without ring opening. This proved to be practicable. Treatment of 47 with methyllithium at -30 °C, followed by iodomethane with hexamethylphosphoramide (HIMPA) at room temperature for ten hours, afforded acetal 60 and its epimer 61 in 81% combined yield and in a ratio of 4.8:1 in favor of 60. The relative stereochemistry of 61 was determined by NOE experiments, and that of 60 was assigned by deduction. It was noticed that the addition of methyllithium to 47 was very sluggish below -30 °C. Epimers 60 and 61 could be easily separated by flash column chromatography. It was then intended to convert acetal 60 to diene 63 by the same sequence that was used to prepare 54 and 55 from 47 (Scheme 12 and 14). Unfortunately, this was not successful. Ozonolysis of the double bond in 60 and treatment of the resulting keto-aldehyde with (±)-camphorsulfonic acid did not afford any enone 62. Base-catalyzed aldol condensation

-31-

with KOH/MeOH following the ozonolysis of 60 provided 62 in only 24% yield. Hence, this idea was abandoned without attempting to change 62 into 63.

Eventually, it was found that a 2.2:1 epimeric mixture of diene 59 could be prepared in 83% yield from diene 54 by simple addition of methyllithium (Scheme 18). This was somewhat surprising. Methyllithium is commonly employed to generate carbanions from silyl enol ethers,³⁹ but in our case even though two equivalents of methyllithium were used, the silyl enol ether structure in 55 was not disturbed. The epimers of 59 were chromatographically inseparable, and the stereochemistry at C-2 was

Scheme 18. Preparation of diene 59 and its Diels-Alder reaction with 13

not determined in either epimer. Attempts to trap the resulting oxygen anion from the addition of methyllithium to 54, with iodomethane in the presence of HMPA, as was done very successfully with 47 (Scheme 17), were disappointing. The major methylated

product 64 was obtained in only 26% yield.

Both of the epimers of **59** were expected to be utilized in our synthesis. Their Diels-Alder cycloaddition with 2,6-dimethyl-1,4-benzoquinone (13) was shown to proceed in the same selective manner as dienes **54** and **55**, though two products **65** and **66** were isolated in a ratio of approximately 1:1. Compound **66** might have been produced from **65** by elimination of water by heat. It was also possible that the elimination of water from **59** occurred first and then the resulting diene reacted with **13** to give **66**.

1. 2. 3. Attempts to Methylate Diels-Alder Adducts 56 and 57

Diels-Alder adducts **65** and **66** possess all the annular carbons for the kempane diterpenoids. What was needed to elaborate **65** and **66** into the natural products was to epimerize the stereogenic center at C-4a, to install a methyl group at C-6a, and to cyclize the seven-membered ring. Since **65** and **66** contain a silyl enol ether structural unit, we hoped that it would provide a chance to introduce the 6a-methyl group for the synthesis of kempane **1**. For the synthesis of kempane **2**, the introduction of the 6a-methyl group at this stage would make it difficult to achieve the correct stereochemistry at C-6.¹⁸ For the same reason that we initially used diene **35** instead of **32** to examine the desired Diels-Alder cycloaddition, we now used **56** and **57** to investigate direct or indirect methylation of the silyl enol ether. We attempted a number of methods, but, unfortunately, none of them worked. The results are summarized in Table 1.

Direct methylation of 56 with iodomethane and silver trifluoroacetate⁴⁰ gave starting material 56 back after overnight reflux in dichloromethane. The use of the

-34-

Substrate	Reagents and Conditions	Products
56	Mel, CF ₃ CO ₂ Ag, CH ₂ Cl ₂ , reflux, 12 h	starting material
56	CH ₂ I ₂ , Et ₂ Zn, THF, 50°C, 10 h, or CH ₂ CI ₂ , reflux, 10 h	mainly starting material
56	MeOCH₂Cl, TiCl₄, rt, 12 h	very complex mixture
56	PhSCH₂Ci, TiCl₄, -15°C, 2 h, rt, 1.5 h	H = H = 0 $H = H = 0$ $H = H = 0$ $H = 10c$ $H = 10c$ $H = 3$ $G = 3$
56	S + S 68 H · BF ₄ CH ₂ Cl ₂ , MeNO ₂ , -78°C, 20 min	67 one major initial product, but too unstable to characterize
57	68 S + S 68 H BF ₄ CH ₂ Cl ₂ , MeNO ₂ , -78 °C, 20 min	0 8 H H H 10 0 14 H 0 14 H 0 H 0 H 0 H 0 H 0 H 0 H 0 H 0 16 0 H 0 16 H 0 H 0 16 H 0 H 0 16 H 0 H

Table 1. Attempts to methylate the silyl enol ether in 56 and 57

Simons-Smith reaction, followed by a cyclopropane ring opening, as an indirect method to methylate enol ethers has been well documented.⁴¹ However, 56 was found to be inert to CH₃I₂, Et₃Zn either in THF at 50 °C or in dichloromethane at reflux. Another indirect methylation of silvl enol ethers involves the use of an activated methylating reagent in combination with a Lewis acid. Thus, 56 was treated with methoxymethyl chloride in the presence of titanium tetrachloride⁴² at room temperature for twelve hours. None of the desired product was obtained, but a very complex mixture was produced. After 56 was exposed to phenylthiomethylchloride with titanium tetrachloride⁴³ at -15 °C for two hours and then at room temperature for one and half hours, a yellow crystalline product 67 was isolated in 51% yield. The structure of 67 was assigned by the analysis of NMR spectra. Its ¹H NMR spectrum (CH₂Cl₂) presented two alkenic protons at δ 7.10 and 6.40. In its COSY spectrum a long range coupling from 2-methyl indicated the proton resonating at δ 6.40 was H-3. The ¹³C NMR spectrum (CD₃COCD₃) showed 67 contained three conjugated carbonyls, at δ 199.6, 198.9, and 186.3, along with the lactone carbonyl at δ 180.3. It was also apparent that 67 contained four alkenic carbons. The stereochemistry of the newly generated stereogenic center C-6a was revealed by NOE experiments. A NOE of 10% on H-6a was observed when the 'H signal of the 10c-methyl was irradiated. The formation of 67 was probably a consequence of the cleavage of the silvl enol ether structure in 57 with titanium tetrachloride, followed by an aerial oxidation of the resulting 1,4-dione.

1, 3-Dithienium tetrafluoroborate (68) is an excellent electrophile, first prepared in Corey's group.⁴⁴ It usually reacts with silyl enol ethers at low temperature to give very

high yields of products.⁴⁵ For instance, as a test of the quality of the 68 that we prepared, it was reacted with silvl enol ether 69 at -78 °C for 20 minutes and it provided 70 in 88% yield (Scheme 19). However, when 68 was applied to 57 under the same conditions, none of the desired product was detected. Instead, an unexpected pentacyclic compound 71 was isolated in 48% yield. The structure of 71 was revealed by an x-ray crystallographic study (Figure 9). The formation of 71 could be regarded as a consequence of an intramolecular Mukaiyama reaction of 57. This reaction was probably promoted by the 1,3-dithienium by activation of the carbonyl at C-4. In contrast, when 68 was reacted with 56, TLC indicated that one major product was formed, but this initial major product was too unstable to isolate and characterize. During workup and PLC it decomposed into many components. The difference in behavior to 1,3-dithienium fluoroborate (68) between 56 and 57 is probably due to a difference in their conformations. In order to avoid a steric interaction between the 10-methyl and the 10c-methyl groups, 57 may have to assume a more "folded" conformation, in which the silvl enol structure is close to the carbonyl at C-4. On the other hand, the 10-methyl in 56 would impede the approach of C-6a to C-4.

-37-

Figure 9. X-ray crystal structure of compound 71

1.2.4. Epimerization of the cis-Decalin Ring System to the trans

Though the attempts to introduce a methyl group at C-6a in the Diels-Alder adducts 56 and 57 by taking advantage of the presence of silyl enol ether structures failed, the methyl group might still be installed at a later stage. Therefore, Strategy One proceeded with an investigation of the possibility of converting the *cis* ring junction of the Diels-Alder adducts to the *trans* by epimerization at C-4a.

Since the Diels-Alder adducts bear silyl enol ether structures, which are not stable in either acidic or basic media, it was decided that the TBS group should be removed first. It was also envisaged that after the silyl enol ether was hydrolyzed, the energy difference between the *cis* and *trans* ring systems would be more favorable for the desired epimerization to occur. However, this hydrolysis turned to be unexpectedly difficult. With **56** and **57**, we first tried tetrabutylammonium fluoride (TBAF) in THF,⁴⁶ 49% aqueous hydrofluoric acid in 1:1 THF and methanol,⁴⁷ and BF₃·Et₂O in dichloromethane,⁴⁸ but none of them gave a clean reaction. The products that were isolated and characterized were the pentacyclic compound **71** and the oxidation product **67**, again. Compound **71** was isolated in 30% yield from the reaction of **57** with aqueous hydrofluoric acid. The reaction of **56** with BF₃·Et₂O provided **67** in 46% yield. Nevertheless, it was found that treatment of **56** with 5% aqueous hydrochloric acid could afford **67** in moderate yield (61%).

Similarly, when the crude mixture of 65 and 66, produced from the Diels-Alder reaction of diene 59 and 2,6-dimethyl-1,4-benzoquinone (13) (Scheme 18), was treated with 5% aqueous hydrochloric acid, compound 72 was isolated as a mixture of stereoisomers at C-9 and C-10 in 52% yield based on diene 59. The stereoisomers at C-10 have resulted from facially indiscriminate hydration of the double bond between C-9

and C-10 in 66. Though the mixture was inseparable by flash chromatography, the NMR spectroscopic analysis clearly indicated that a double bond had formed between C-4a and C-5 in the components of the mixture. For example, in the ¹³C NMR spectrum (CDCl₃) the major isomer displayed three conjugated carbonyls at δ 200.3, 197.6, and 185. 5, which were consistent with δ 199.6, 198.9, and 186.3 in the ¹³C NMR spectrum of 67. The ¹³C NMR spectrum also showed all the isomers having four alkenic carbons, and their chemical shifts were similar to those in 67.

Since the anticipated product 73 was never obtained from 56 or 57, we decided to

Scheme 20. Reaction of 65 and 66 with 5% aqueous HCl

65

employ 72 to carry out our synthesis and to utilize 67 to examine the epimerization. It was believed that the two C=C double bonds could be reduced in one pot and the resulting saturated trione might be epimerized. After this process an imagined thermodynamically stable product 74, in which the *trans*-decalin ring system assumed a chair-chair conformation and the methyl group at C-2 was in the equatorial position, was expected. In other words, after this process two new desired stereogenic centers at C-2 and C-4a could be obtained. It was also hoped that the reduction of the C=C double bonds in 67 might directly produce 74 and a separate epimerization step might be unnecessary.

73

Thus, compound 67 was treated with 20% aqueous TiCl₃ solution.⁴⁹ The reaction took place smoothly. After 20 minutes of stirring at room temperture, 67 was completely consumed to give two products, as shown by TLC. Neither was UV active. The more polar, major product was isolated in 50% yield, and its structure was established as 75, in which the decalin ring system was still *cis*-fused while the stereochemistry at the other newly generated stereogenic center at C-2 was correct. The stereochemistry of the structure was assigned on the basis of NOE measurements, as follows. When the ¹H NMR signal for the 10c-methyl group was irradiated, the signals for H-2 and H-4a were enhanced by 3% and 8%, respectively. The structure of the minor product was not determined at this point because of its small amount and a lack of purity. (However, it was later confirmed to be 76.)

Scheme 21. Reduction of 67 with TiCh

Reduction of 67 with zinc in refluxing glacial acetic acid⁵⁰ led to a similar result. However, after the reaction mixture was refluxed for seven hours, the initial major product was changed into the initial minor product. This product was isolated by chromatography in 76% yield based on 67, but it was revealed by ¹H and ¹³C NMR spectroscopy to contain two isomers in a ratio of 6:1. An analytical sample of the major isomer was obtained by recrystallization from 4:1 dichloromethane and ethyl acetate. A homogenous sample of the minor product was not obtained. Careful analysis of the NMR spectra of the major isomer indicated that it was 76. The *trans*-decalin ring system was obvious by NOE measurements between H-4a and H-10a. Each of them received an enhancement of 9% when the other proton was irradiated. ¹H NMR spectroscopy was also very indicative. In the case of *cis*-isomer 75, the ¹H NMR signal for the 10c-methyl

Scheme 22. Reduction of 67 with Zn/AcOH and subsequent epimerization

76

appears at unusually low field: δ 1.68. This is probably because the *cis*-junction is flexible and the 10c-methyls can assume the equatorial position. When the 10c-methyl is in the equatorial position, it is approximately coplanar with the carbonyl group at C-1. Consequently, the anisotropic effect of the carbonyl, albeit not very strong due to the distance, caused the 10c-methyl group to move downfield. However, after the cis ring junction was epimerized to the trans, the trans-junction is rigid so that the 10c-methyl group can only take the axial position and will experience less or no anisotropic effect of the carbonyl at C-1. In addition, when it is in the axial position, the 10c-methyl group is right beneath the *trans*-decalin ring system and it is shielded. Both the absence of the anisotropic effect and the shielding will shift the 10c-methyl in the trans-isomer upfield. In fact, the 10c-methyl in 76 appears at δ 1.30. The structure of 76 was verified by x-ray crystallography (Figure 10). Obviously, during reflux in acetic acid an epimerization process occurred. However, contrary to our expectation, the methyl group at C-2 is syn to the axial methyl at C-10c, even though the decalin ring junction is *trans*. X-ray crystallography showed that the cyclohexanedione ring in 76 does not adopt a chair but a boat conformation, in which the methyl group at C-2 is placed in the *pseudo*-equatorial position that is, nevertheless, syn to the C-10c methyl. The cyclohexanedione ring in 76 adopts the boat conformation presumably because in a chair conformer, the carbonyl at C-1 is situated in the same plane as the cyclopentane ring, and this will engender a serious steric interaction. The boat conformation of the cyclohexanedione ring allows 76 to assume a spiral shape, in which the steric interaction between the carbonyl at C-1 and the cyclopentane ring is much reduced, as seen in Figure 10.

-44-

Figure 10. X-ray crystal structure of compound 76

When the same sequence, zinc reduction in refluxing glacial acetic acid and the subsequent epimerization, was applied to the stereoisomeric mixture 72, it gave three products, as shown by TLC. The major product was isolated in 33% yield and was assigned structure 77, in which the decalin ring system has a *trans*-junction and the methyl group at C-2 is *syn* to the C-10c methyl, just as in 76. During the transformation of 72 to 77, the 9-hydroxy group in 72 was reductively cleaved. It could also be deduced from 77 that the major component in mixture 72 had its 10-methyl group *syn* to H-10a. The structures of the two minor products were not determined because pure samples were not obtained.

The results presented in schemes 22 and 23 successfully demonstrated that the *trans* decalin ring system in kempane diterpenes could be obtained from a *cis*-ring junction by epimerization. However, two unexpected concerns were revealed. One was that during the reduction of **72** with zinc in refluxing acetic acid, the 9-hydroxy group was cleaved to give a tetrahydrofuran ring, which would be difficult to open in order to provide a chain for the final cyclization of the seven-membered ring. This problem might be solved by reduction of **72** with aqueous TiCl₃, which could be conducted at room temperature. The other concern was the stereochemistry at C-2 in **76** and **77**, which was opposite to what was desired. It was considered that if the final cyclization were accomplished with a molecule like **77**, the stereogenic center at C-2 might be very difficult to correct later. One possible solution to this problem was to open the hemiacetal ring and cyclize the final seven-membered ring before any reduction and epimerization. It was hoped that after this final cyclization a tetracyclic product might be easier to modify to the natural skeleton of the kempane diterpenes. Accordingly, Strategy

-46-

One moved to another stage: the cyclization of 72 to form the seven-membered ring.

1. 2. 5. Attempts to Cyclize the Seven-membered Ring in 72

In order to cyclize the seven-membered ring in 72, we first needed to open the five-membered hemi-acetal ring. It was realized that a five- or six-membered hemi-acetal is sometimes very stable. To open such rings, one generally is required to trap irreversibly the resulting carbonyl from the ring opening in a protected form. It was hoped that when 72 was treated with dilute aqueous acid, the five-membered hemi-acetal ring would be opened at least reversibly, and the resulting methyl ketone would undergo the final cyclization by an aldol condensation under the same conditions. If the aldol condensation would also be accompanied by the elimination of water, the whole process would be irreversible. However, hemi-acetal 72 proved to be very stable. No change was detected after heating it in either 5% aqueous hydrochloric acid or 10% aqueous sulfuric acid at 80-90 °C for twelve hours.

Scheme 24. Attempts to open the five-membered hemi-acetal ring in 72

72

no reaction

Corey's group employed 1,3-propanedithiol and concentrated hydrochloric acid to open a six-membered hemi-acetal in the synthesis of (-)-*N*-methylmaysenine.⁵¹ Paquette's group found that five-membered hemi-acetals were even more difficult to open than six-membered hemi-acetals, and they developed a procedure in which 1,2ethanedithiol and titanium tetrachloride were used to surmount this difficulty.⁵² Unfortunately, neither of these procedures worked in our case, and only starting material **72** was recovered (Scheme 24).

Strategy One was composed of four main ideas: the Diels-Alder reaction to establish the benzoindane ring system, the methylation of the resulting enol ether to introduce an angular methyl group, the epimerization to change the *cis*-decalin ring junction to the *trans*, and the aldol cyclization to construct the seven-membered ring. The following conclusions can be drawn from our efforts with Strategy One: The Diels-Alder reaction proceeded in high yield with high *endo*-, regio-, and facial selectivities under the conditions of refluxing in toluene for three days when the enol portion of the diene was trapped as a silyl enol ether (Scheme 15 and 18). The epimerization of the *cis*-decalin system could be achieved with acid (Scheme 22 and 23). However, the methylation was not feasible (Table 1), and the aldol cyclization could not be carried out because of the difficulty in opening the five-membered hemi-acetal ring in **72**.

1.3. Strategy Two

1. 3. 1. Retrosynthetic Analysis

Our modified strategy, which will be referred to as Strategy Two, was based on our experience with Strategy One, and it is outlined in Scheme 25. The Diels-Alder reaction of diene 78 with 2,6-dimethyl-1,4-benzoquinone (13) would be employed as an early key step to construct the benzoindane ring system 79. We believed that this Diels-Alder reaction would occur in the same manner as did the Diels-Alder reaction of diene 54 or 55 with 13 (Scheme 15). The only difference between diene 78 and 54 or 55 was that dienes 54 and 55 each had a methyl group α to the lactone carbonyl. However, we had already shown that the methyl group α to the lactone carbonyl had no significant effect on the reactivity and selectivity of the dienes (Scheme 15). Instead of an aldol cyclization for the formation of the seven-membered ring, a regiospecific Dieckmann condensation between the C-10 and the ester carbonyl was planned with molecule 81. The regiospecificity of this Dieckmann condensation was expected based on the fact that the lactone carbonyl could not be reached by the carbon α to the ester carbonyl due to the rigidity of the molecule. After reductive opening of the lactone, the resulting hydroxy group at C-7a would be oxidized to a carbonyl, and the latter would be utilized to generate an enone system in molecule 82. Then, the last methyl group was expected to be installed by 1.4-addition. The dome-like shape of the molecule should ensure that the addition would take place from the convex side. It was realized that the Michael acceptor 82 may be a little congested, but it was noticed that Flemming et al. had developed a procedure that allowed 1.4-addition of a methyl group to very sterically hindered α , β -

-49-

Scheme 25. Retrosynthetic analysis leading to Strategy Two

unsaturated ketones.⁵³ This procedure used trimethylaluminum as a Michael donor and nickel(II) acetylacetonate [Ni(acac)₂] as a catalyst. For example, when α , β -unsaturated ketones **83**, **84**, and **85** were treated with trimethylaluminum in the presence of Ni(acac)₂ at 0 °C, Michael adducts **86**, **87**, and **88** were produced in 91%, 84%, and 76% yields, respectively (Scheme 26).

A very daring aspect of Strategy Two was that we wanted to add a two-carbon unit

Scheme 26. Ni(acac)2-catalyzed Michael additions of AIMe3 to hindered enones53

regio- and stereoselectively to the carbonyl at C-1 of enedione **79**. This carbonyl certainly looked much more hindered than the carbonyl at C-4. A high level of stereoselectivity in this addition was not imperative for our synthesis, but it was desired. Precedence for this step was based on both our own reductive experiments⁵⁴ during the work with Strategy One and the observations of Liotta and coworkers.⁵⁵

In Strategy One, methylation or hydrolysis of the silyl enol ether 56 or 57 was extremely troublesome. The undesired reactions that occurred were the intramolecular Mukaiyama reaction and the aerial oxidation (Section 1. 2. 3 and 1. 2. 4). We once thought that if the carbonyl at C-4 in 56 or 57 was modified, those undesired reactions should not take place. We attempted to protect the carbonyl at C-4 in 56 with 1,2bis[(trimethylsilyl)oxy]ethane in the presence of trimethylsilylmethanesulfonate at -78 °C,⁵⁶ but no reaction occurred, and the starting material 56 was recovered. The other way we considered to change the carbonyl was by reduction. We anticipated that the carbonyl at C-4 could be reduced selectively because it seemed much less congested. However, when enedione 56 was treated with sodium borohydride or lithium tri-*tert*butoxyaluminohydride, the carbonyl at C-1 was reduced with 100% regio- and stereoselectivity, giving 89 as the single product (Scheme 27). The regiochemistry in the reduction was obvious by the chemical shift of H-3, which was at δ 5.83, in the ¹H NMR spectrum of the product. If the carbonyl at C-4 were reduced, the signal of H-3 should have appeared around δ 6.5. The stereochemistry in the reduction was determined by NOE measurements. An enhancement of 2% on the 10c-methyl group was detected when the signal for H-1 was saturated. This regio- and stereoselectivity in the reductions of cyclic enediones proved to be general (Part Two).

While we wondered if the observed regio- and stereoselective reduction could be extended to nucleophilic addition of acetylide, we found Liotta and coworkers' report⁵⁵ that additions of lithium acetylides to bicyclic enediones displayed the same regio- and stereoselectivities as we had observed in our reductions. As shown in Scheme 28, a number of different lithium acetylides reacted with enedione 90 to give carbinols 91 as the sole isolated products in 70-99% yields. Accordingly, the transformation of 79 to 80 in Scheme 25 was designed. Ethoxyacetylide was chosen as the two-carbon nucleophile because the product could be solvolyzed to the ester that would be required for the Dieckmann condensation to form the seven-membered ring.

1. 3. 2. Synthesis of the Kempane Diterpene Ring System

The synthetic route to the benzoindane derivative 79 was the same as was used to synthesize 56 and 57 (Schemes 10, 12, 14 and 15), except that the methylation of lactone 41 was omitted. However, this small adjustment proved to be an unforeseen problem in

the application of the previous procedures to transform lactone 41 to diene 78 (Scheme 29). Firstly, when the crude keto-aldehyde 92, obtained from the ozonolysis of lactone 41 and the subsequent reductive workup, was heated in benzene with a catalytic amount of (\pm) -camphorsulfonic acid for 24 hours, enone 93 was isolated in only 4% yield based on lactone 41. It was noticed that even under heating, keto-aldehyde 92 did not dissolve in benzene. Therefore, the reaction was repeated by heating 92 and (\pm) -camphorsulfonic acid in a 1:2 mixture of 1,2-dimethoxyethane (DME) and benzene. The solubility of 92 was much better in the mixed solvent, but the yield of enone 93 was only slightly improved (7%). This was probably because DME is a Brönsted base, and its presence in

93

-54-

large quantity prevented the camphorsulfonic acid from protonating reactant 92 efficiently. This speculation was confirmed by the replacement of DME with glacial acetic acid in the solvent system for the aldol cyclization. The yield of enone 93 was 21% after 92 was heated with (\pm)-camphorsulfonic acid in 1:2 glacial acetic acid and benzene for eight hours. A slightly better result (23% yield) was obtained when 92 was heated with 5% HCl in THF for 3.5 hours.^{26b}

The second problem encountered was that when enone 93 was treated with LDA in the presence of TBSOTf at -78 °C, the conditions that were successfully used to convert enone 49 to dienes 54 and 55 in 82% combined yield, diene 78 was obtained in only 60% yield. The yield of 78 was even lower (43%) when the reaction was run in a more concentrated solution. It was found that in the absence of a methyl group α to the lactone carbonyl, undesired intermolecular aldol condensations between the carbon α to the lactone carbonyl and the enone carbonyl occurred to a significant extent. One of the byproducts was isolated, and its spectra allowed its identification as

94. Compound **94** was a single stereoisomer, but the relative stereochemistry at both the newly produced stereogenic centers, at C-3 and the carbinol center, was not determined.

94

-55-

It was likely that when the enolate of lactone 78 reacted with enone 93, the enolate would approach the enone carbonyl by the convex face, and therefore leave the H-3 *anti* to H-3a in 94. The problem of the undesired aldol reactions was somewhat diminished by employing a weaker base. A 74% yield of diene 78 was obtained when triethylamine was used at 0 °C for 15 minutes.⁵⁷

As expected, the Diels-Alder cycloaddition of diene 78 with 2,6-dimethyl-1,4benzoquinone (13) proceeded in exactly the same manner as did dienes 54 or 55. After a mixture of 78 and 13 in toluene was refluxed for three days, the benzoindane system 79

13

+

Scheme 30. Diels-Alder reaction of diene 78 and quinone 13

78

95 (6%)

was isolated in 80% yield (Scheme 30). In this case, however, a homogenous byproduct was obtained in 6% yield, and it was assigned as the regioisomeric adduct 95 as follows. In the COSY spectrum of 95 the proton-proton correlation between the H-10b and H-10c was clear, and the H-10c appeared at δ 3.03 as a doublet (J = 5.3 Hz). The stereochemistry of structure 95 was consistent with NOE experiments. The structure was also supported by its high resolution mass analysis. As mentioned in Section 1. 2. 2, a small amount of by-product was also detected in the Diels-Alder reaction of diene 54 or 55 with 13, but the structures of the by-products were not determined because pure samples were not obtained. By analogy we could now presume that the by-products in the reactions of 54 and 55 with 13 might be 96 and 97, respectively.

By analogy with the results obtained from the Diels-Alder reaction of diene 78 with 13, the structures of adducts 51 and 52, produced in the Diels-Alder reaction of diene 50 with 13 (Scheme 13), could also be tentatively assigned. The difference between diene 50 and 78, other than the presence of a methyl group α to the lactone carbonyl in 50, was that the former was an acetoxy-substituted diene whereas the latter was a *tert*-
butyldimethylsilyloxy- (TBSO) substituted one. An acetoxy group should be smaller than a TBSO group, and therefore, a change of TBSO group to acetoxy in the diene should not change the *endo*- and facial selectivities of the Diels-Alder reaction. However, because an acetoxy group had less electron-donating ability, diene 50 could be less reactive and less regioselective to 13. It was reasonable that the Diels-Alder reaction of diene 78 with 13 afforded 13:1 (80%:6%) regioselectivity in favor of adduct 78, whereas diene 50 gave only 4:1 regioselectivity in favor of adduct 51.

Just as for the reduction of enedione **56** with NaBH₄ or LiAl(O-*t*-Bu)₃H (Scheme 27) and similar to Liotta and coworkers' observation,⁵⁵ the addition of lithium ethoxyacetylide, prepared from ethyl ethynyl ether and *n*-butyllithium, to the benzoindane ring system **79** occurred at the seemingly more hindered carbonyl at C-1 in a highly regioand stereoselective manner. The desired adduct **80** was isolated as the only product in 82% yield (Scheme 31). Double addition was not a problem under the conditions employed, but a small amount of starting material **79** was detected after workup of the reaction, even though ethoxyacetylide was used in excess. This was probably because lithium ethoxyacetylide could also act as a base, and it might deprotonate **79** at C-4a to generate an enolate. The carbonyl at C-1 in the resulting enolate would much less reactive than that in **79** towards a nucleophile and it might not react with the acetylide. During workup the enolate would be converted back to the starting material **79**.

The next step was to hydrolyze the enol silyl ether function of 80. Thus, compound 80 was treated with potassium fluoride in methanol at room temperature for seven hours. Two unexpected, but understandable, products 98 and 99, in a ratio of 7:1 in

-58-

Scheme 31. Acetylide addition to 79 and hydrolysis of the enol silyl ether in 80 with KF

favor of **98**, were obtained in a 93% combined yield (Scheme 31). Tetrabutylammonium fluoride (TBAF) in THF could also be used, but the combined yield was lower (80%). Obviously, the major product **98** resulted by intramolecular hemi-acetalization of the

immediate TBS cleavage product, and the minor product 99 was produced from the epimerization at C-4a of the immediate product. Both the hemi-acetalization and the epimerization might be promoted by fluoride ion, which is a weak base in methanol. The formation of the bridged hemi-acetal 98 confirmed the stereochemistry of the acetylide addition to 79 in the previous step. The *trans*-decalin ring system in 99 was revealed by NOE measurements between H-4a and H-10a. When the signal due to H-4a was saturated, the signal for H-10a was enhanced by 15%. The relative stereochemistry at C-10 in 98 and at C-6a in 99 was also confirmed by NOE experiments. The two products could be completely separated by flash chromatography, but, as seen later, both products were used in our synthesis without separation.

At first, it was thought that the bridged hemi-acetal **98** would be problematic for our synthesis, because we were concerned that the hemi-acetal bridge might be difficult to break, just as we had encountered in Strategy One. To avoid the formation of the bridged hemi-acetal **98**, a logical idea was the protection of the hydroxy group in carbinol **80** before the hydrolysis of the silyl enol ether. The easiest way to do this seemed to be to trap alkoxide **100**, resulting from the addition of ethoxyacetylide to **82** (Scheme 32). Thus, after the completion of the acetylide addition, the reaction mixture was treated with iodomethane in the presence of HMPA at room temperature for twelve hours. Two products were isolated, in 42% and 10% yield. The major one was the expected product **101**. However, the IR spectrum of the minor product showed no absorption for the triple bond, and its ¹³C NMR spectrum indicated that besides a lactone carbonyl (δ 178.2) it contained an ester carbonyl (δ 170.7). Also, in the ¹H NMR spectrum two three-proton

-60-

singlets appeared at δ 3.70 and 3.65, indicating that two methoxy groups were present. Accordingly, the minor product was assigned structure **102**, and this was supported by its high resolution MS spectrum. Obviously, the unexpected minor product could be used in our synthesis.

Scheme 33 is our proposed mechanism for the formation of the minor product 102. When alkoxide 100 reacted with iodomethane to produce the major product 101, an

Scheme 33. Proposed mechanism for the formation of 102

iodide anion was generated. Iodide is an excellent nucleophile, and its attack on the ethyl group in 101 would release ynolate 103. The latter could tautomerize to carbanion 104. This type of tautomerization has been demonstrated by Shindo very recently.⁵⁸ Carbanion 104 could obtain a proton from carbons α to the carbonyls in molecule 104 itself or from another molecule like 101 to provide the ketene intermediate 105. On the other hand, ynolate 103 could transform to 107 by losing methoxide. The methoxide could react with the ketene intermediate 105 to produce enolate 106, which was protonated to lead to the

isolated minor product 102 during workup. It was also possible that the HMPA that was used, which was from an old bottle, contained some water. Water could protonate carbanion 104 to provide ketene 105 and hydroxide. The hydroxide could react with 105 to produce a carboxylate, which might react with iodomethane to give 102. A piece of evidence for the proposed mechanism was that addition of sodium iodide to the reaction medium increased the yield of the ester product 102 from 10% to 18%, while the yield of 101 decreased from 42% to 27%. This result implied that the minor product 102 was derived from the expected product 101 with the participation of iodide anion.

When carbinol 80 was protected as the methyl ether, hydrolysis of the enol silyl ether with TBAF in THF at 0 °C for ten minutes afforded 108 as an epimeric mixture in a ratio of 5:1 favoring the *cis*-isomer (Scheme 34). This mixture was then treated with 10% H_2SO_4 in THF at room temperature, conditions commonly used for the hydrolysis of an ethyl ethynyl ether.⁵⁹ However, the reaction turned out to be very sluggish and messy. After a period of three days, the starting material 108 was essentially consumed, but a complex mixture of products was produced. One isolated product was shown to be ester 109. Again, a *trans*-decalin ring system was clearly evident as a result of the NOE measurements observed between H-4a and H-10a. An 8% enhancement of the signal for H-10a was observed when H-4a was saturated. This NOE experiment could also be used to assign the stereochemistry of C-6a. Compound 109 was almost ready for the final cyclization for the seven-membered ring, but the yield of 109 was unacceptably low. The difficulty in hydrolyzing 108 was probably a consequence of steric hindrance. The reactive site was next to a quaternary carbon, and it was also congested by the 10c-methyl

-63-

group and the cyclopenta[b]furanone ring system in the molecule. On the other hand, a protonated methoxy group might eliminate and generate a carbocation, which could then undergo eliminations and/or rearrangements to lead to a complex mixture of products.

Given this poor yield, we reconsidered how to exploit the bridged hemi-acetal 98 and carbinol 99, the products in the hydrolysis of enol silyl ether 80 with KF in methanol (Scheme 31). It is known that a hydroxy group or other oxygen substituents α to a carbonyl can be reductively cleaved with zinc dust in glacial acetic acid.⁶⁰ The

Scheme 34. Conversion of compound 101 to 109

mechanism of this reduction could be described as in Scheme 35. By obtaining an electron from zinc, the α -oxygen-substituted ketone 110 becomes a radical anion 111, which captures a proton from acetic acid to lead to radical alcohol 112. Obtaining a second electron from zinc, the α -oxygen-substituent is cleaved by a single-electron-transfer process to produce enol 113, which tautomerizes to ketone 114, the reduced product.

Scheme 35. Proposed mechanism of the reduction of α oxygen-substituted ketones with Zn

We wondered if we could apply the same sort of reduction to the bridged hemacetal 98 and carbinol 99, both of which were γ -oxygen-substituted α , β -unsaturated ketones. Extrapolation of the mechanism in Scheme 35 to a γ -oxygen-substituted α , β unsaturated ketone system allowed us to predict that a reduction should occur, and the product would be a β , γ -unsaturated ketone (Scheme 36). It was also anticipated that after the γ -oxygen substituent was cleaved, the hydrolysis of the ethyl ethynyl ether could be

easier and cleaner.

As shown in Scheme 37, our predictions were entirely correct. Both 98 and 99, when treated with zinc dust in refluxing glacial acetic acid, underwent the expected reduction and gave products 115 and 116 in 84% yield. The β , γ -unsaturated ketone structural unit in the products was confirmed by the following facts: (a) Neither 115 nor 116 was UV active. (b) The ¹H NMR spectra revealed that neither of the products had an alkenic proton. (c) The ¹³C NMR spectra showed that the chemical shifts for the two alkenic carbons in 115 and in 116 were very similar, but distinct from those of a C=C double bond conjugated with a carbonyl. (d) ¹³C resonances due to the carbonyls at C-4 in both 115 and 116 were consistent with unconjugated ketones.

In addition, during the reduction the ethyl ethynyl ether moieties were very cleanly solvolyzed to ester groups. This was indicated by the lack of a triple bond absorption in the IR spectra and the presence of an additional ester carbonyl at δ 171.3 for 115 and at δ 171.0 for 116 in the ¹³C NMR spectra (CD₂Cl₂). This was also confirmed by high

Scheme 37. Reduction of hemi-acetal 98 and carbinol 99 with Zn

resolution MS analysis. Though intermediates were not detected, we speculated that the solvolysis was preceded by the reduction, because, as shown earlier (Scheme 34), prior to reduction the ethyl ethynyl ether had been very difficult to hydrolyze cleanly.

What we needed to do with 115 and 116 was to shift the isolated C=C double bond to conjugate it with the carbonyl at C-4 and to change the *cis*-decalin ring system to the *trans* by epimerization at C-4a. The C=C double bonds in 115 and 116 might be reduced by catalytic hydrogenation at this point, but the stereochemistry of the reduction would not be controlled. It was expected that the desired isomerization of the double bond and epimerization of the stereogenic center at C-4 could be completed in the same pot with acid. We had earlier shown that with glacial acetic acid and 10% sulphuric acid, respectively, the epimerization of the *cis*-decalin ring junction to the *trans* in **75** and **108** could be achieved. Acid-catalyzed isomerization of a β , γ -enone to an α , β -enone is well documented in the preparation of α , β -enones from anisole derivatives by Birch reduction, followed by acid hydrolysis.⁶¹ For instance, when 1,4-diene **118**, the Birch reduction product of anisole **117**, was treated with dilute hydrochloric acid, the isolated product was α , β -enone **120**,⁶² which must have resulted from acid-promoted isomerization of α , β enone **119**, the initial hydrolysis product (Scheme **38**).

Thus, a mixture of **115** and **116**, in an initial ratio of 6:1, was heated with glacial acetic acid for five hours. However, a complex mixture of products, along with remaining starting materials, was produced. One isolated product, in 20% yield, was tentatively assigned as **121** (Scheme 39), an oxidation product, by comparing its ¹H and

¹³C NMR spectra with those of compound 67. The stereochemistry at C-1 in 121 was not determined because the sample was not sufficient for NOE experiments.

Eventually, the desired isomerization and epimerization was succeeded with 6 N aqueous HCl in methanol. After three and half hours of reflux, the 6:1 mixture of 115 and 116 was converted, in 64% yield, to the desired product 122, in which the C=C double bond was brought into conjugation with the carbonyl at C-4, the ester side chain was at the equatorial position, *syn* to the 10c-methyl group as required, and the decalin

Scheme 39. Acid-catalyzed isomerization and epimerization of 115 and 116

122

ring system was completely *trans*. The position of the double bond was very clear from the H-3 signal at δ 5.90 in the ¹H NMR spectrum (CD₃COCD₃) and the C-4 (carbonyl) signal at δ 197.9 in the ¹³C NMR spectrum (CD₃COCD₃). The relative stereochemistry between C-1 and C-4a in **122** was revealed by NOE measurements. A 3% enhancement of the signal for H-1 was observed when the signal for H-4a was saturated. Since signals in the ¹H NMR spectrum of **122** were heavily overlapped, and consequently useful NOE information was not available to determine the relative stereochemistry between C-1 and C-10c or between C-4a and C-10c, the *trans*-decalin ring junction was assigned on the basis of the NOE measurements between H-4a and H-10a in the product of next step.

With compound 122 in hand, we could attempt to cyclize the seven-membered ring, but the cyclization might occur between the ester carbonyl and the methyl group at C-2.⁶³ We could also attempt to reduce the C=C double bond, but the product would have two unconjugated carbonyls, and it could be difficult to conduct a selective reaction with them. Therefore, it was decided that the saturated carbonyl at C-6 should be chemo- and stereoselectively reduced at this point. Thus, 122 was first treated with sodium borohydride in 1:1 mixture of methanol and dichloromethane at -78 °C, a published procedure for chemoselective reductions of unconjugated carbonyls in the presence of conjugated carbonyls.⁶⁴ This reaction did display 100% chemoselectivity, though a significant amount (28%) of starting material remained after the reaction had proceeded for one hour. However, the stereoselectivity was poor (Scheme 40). The ratio of the two stereoisomeric products 123 and 124 was 2:3 in favor of the undesired isomer 124, as determined by the ¹H NMR analysis of the crude product. Nevertheless, this result

-70-

Scheme 40. Reduction of 122 with NaBH₄ and LiAk(O-t-Bu)₃H

provided very useful information. The two stereoisomeric products resulted from two different modes of attack by sodium borohydride. The equatorial addition of hydride to the carbonyl at C-6 led to **123**, and the axial addition led to **124**. It is well known that the reductions of cyclohexanones with small reducing reagents, like sodium borohydride, display significant axial selectivity, and that an axial substituent at the 3-position to the carbonyl or/and a bulky reducing reagent would inhibit the axial addition and improve the equatorial selectivity.⁶⁵ For example, the reduction of 4-*tert*-butylcyclohexanone (**125**) with sodium borohydride in isopropyl alcohol at 25 °C presented a selectivity of 86:14

favoring the axial addition over the equatorial. However, the selectivity in the reduction of 3,3,4-trimethylcyclohexanone (126), where a 3-axial methyl group was present, was dramatically changed to 48:52, slightly in favor of the equatorial addition. When 126 was reduced with lithium tri-*tert*-butoxyaluminohydride, which is bulkier than sodium borohydride, the equatorial selectivity over axial improved to 96:4.

cyclohexanone	reducing reagent and conditions	ratio of axial addition to equatorial addition
t-Bu	NaBH₄, 2-propanol, 25°C	86:14
125		
	NaBH ₄ , 2-propanol, 25°C	48:52
126		
	LiAl(O- <i>t-</i> Bu)₃H THF, 0°C	4:96
126		

Table 2. Literature examples of stereoselectivity in the reductions of cyclohexanones65

In our more elaborate case with 122, sodium borohydride only displayed a small preference for axial attack. This suggested that fairly good equatorial selectivity might be obtained by employing a bulkier reducing reagent. Thus, 122 was then treated with LiAl(O-t-Bu)₃H at -20 °C to room temperature for two hours. The same two products 123 and 124 were obtained in 78% and 10% yield, respectively. The reduction of the conjugated carbonyl was not detected. In other words, LiAl(O-t-Bu)₃H also had complete chemoselectivity for the unconjugated carbonyl over the conjugated carbonyl, and the equatorial selectivity was 8:1 favoring the desired product 123. The epimer 124 could be oxidized back to 122 to be recycled, although we did not do this.

At this point, we were anxious to know if we could reduce the C=C double bond in enone 123 and correctly establish the stereogenic center at C-2. A large number of methods were available for the reduction of a C=C double bond in an α . β -unsaturated ketone,⁶⁶ but the desired reduction must leave the methyl group at C-2 anti to the ester side chain at C-1 in the product. Though x-ray diffraction analysis had revealed that the cyclohexanedione ring in 76 adopted a boat conformation in the solid state, presumably due to the steric interaction between the carbonyl at C-1 and the cyclopentane ring in the molecule, we assumed that the cyclohexanone ring in the desired product 127 would adopt a chair conformation in which both the methyl group at C-2 and the ester side chain at C-1 would be in equatorial positions, i.e. we assumed that 127 would be the thermodynamically most stable product of the reduction. Therefore, lithium in liquid ammonia was chosen to be the reducing reagent.⁶⁷ However, a preliminary examination of the reduction of enone 123 with lithium in liquid ammonia at -50 °C for five minutes showed that the product was a mixture of several over-reduced products, with a 4:1 epimeric mixture of hemi-acetals 128 being the major component. The formation of 128 was revealed by the examination of its ¹H and ¹³C NMR spectra. In the ¹H spectrum

-73-

(CD₃OD), epimeric mixture **128** exhibited a doublet (J = 4.6 Hz) at δ 5.50 and a doublet of doublets (J = 7.9, 4.6 Hz) at δ 5.36, corresponding to the anomeric protons H-9 in the major and minor epimers, respectively. In the ¹³C NMR spectrum (CD₃OD), the signals at δ 102.9 and 102.5 were attributed to C-9 in the two epimers of **128**. The presence of the carbonyls at C-4 in the epimers was indicated by signals at δ 215.8 and 215.7 ppm. The reason why the carbonyl at C-4 survived while the lactone carbonyl was reduced in the formation of **128** was that the carbonyl at C-4 existed as an enolate before the reaction was quenched.

The hemi-acetal **128** might be converted to a lactone by oxidation, but the hydroxy group at C-6 could also be oxidized. This meant that the hydroxy group should be protected before the reduction step. Regarding the protection of the hydroxy group in alcohol **123**, three concerns were considered. First, the protecting group should be fairly stable, because it might be needed until the last stage of the synthesis. Second, the conditions employed to introduce the protecting group should not be strongly basic, otherwise the undesired condensation between the ester carbonyl and the methyl group at

C-2 might occur.⁶³ Third, the protecting group should not be too large, otherwise it might impede the 1,4-addition of enone 82 during the introduction of the last angular methyl group. Therefore, the first attempt was to protect the hydroxy group as a methoxy group with iodomethane and silver(I) oxide,⁶⁸ a nearly neutral procedure. However, alcohol 123 was found to be inert to this procedure. After a mixture of 123, iodomethane, and silver(I) oxide was refluxed in acetonitrile overnight, no reaction was detectable, and 123 was quantitatively recovered. Eventually, protection of the hydroxy group was

Scheme 41. Transformation of compound 123 to 131

accomplished with a (2-methoxyethoxy)methyl (MEM) group by a method developed by Corey and coworkers.⁶⁹ After twelve hours of heating with (2-methoxyethoxy)methyl chloride (MEM chloride) in dichloromethane in the presence of Hünig's base (diisopropylethylamine), alcohol **123** was converted to **129** in 92% yield (Scheme 41).

Just as with the reduction of 123 with lithium in liquid ammonia, when 129 was treated with lithium in ammonia at -50 °C for five minutes, several over-reduced products, together with the desired product 130, were produced. However, when this crude mixture was stirred with pyridinium chlorochromate (PCC) at room temperature for one and a half hours, ketone 130 was obtained in 74% yield based on 129. The stereochemistry at C-2 in 130 was confirmed by NOE measurements between signals between the H-2 and the 10c-methyl group. When the signal for the 10c-methyl was saturated, the signal for the H-2 was enhanced by 6%. Then, 130 was stereospecifically reduced by the equatoral attack of L-Selectride in THF at -78 °C, the axial alcohol 131 was obtained in 91% yield. It is well documented that L-Selectride is an excellent selective reducing reagent for equatorial reductions of cyclohexanones, even in the absence of an axial substituent β to the carbonyl to be reduced.^{17, 70}

The Dieckmann cyclization of the seven-membered ring in 131 was attempted with potassium *tert*-butoxide in refluxing benzene.⁷¹ (Scheme 42). After four hours of heating, ¹H NMR analysis of the crude product indicated that two products had been produced and some starting material 131 still remained. The ratio of the two products and the remaining starting material was approximately 5:1:1. The major product was isolated in 61% yield, and its characterization showed it to be the desired product 30. The relative

-76-

Scheme 42. The Dickmann condensation of 131

30 (61% isolated yield)

Ratio of 30 to 132 by ¹H NMR: 5:1

stereochemistry at the newly generated stereogenic center at C-2a was determined by NOE experiments. When the signal for H-10a was saturated, the signal for H-2a was enhanced by 4%. The minor product was assigned as 132 based on the fact that 132 had the same molecular mass as 30, and that it had two lactone carbonyls appearing at δ 181.4 and 178.0 but had no ketone signal in its ¹³C NMR spectrum (CD₃OD). The formation of 132 undoubtedly confirmed the stereochemistry of the previous reduction step. The final cyclization was not optimized. The formation of the minor product 132 suggests that in

future work the 4-hydroxy group in 131 should be protected or removed before the Dieckmann cyclization.

Scheme 43 is used to summarize the synthesis of the kempane diterpene ring system 30. This synthesis featured the highly regio- and stereoselective Diels-Alder reaction of diene 78 with 2,6-dimethyl-1,4-benzoquinone (13) to construct the benzoindane ring system 79 and three key stereogenic centers. Diene 78 was derived from commercially available 3-methyl-2-cyclohexen-1-one (36) through a sequence

Scheme 43. Outline of the synthesis of the kempane diterpene ring system 30

78

30

including a regiospecific [2 + 2] ketene cycloaddition. The remaining annular carbons for the kempane diterpene ring system in **79** were introduced by the extremely regio- and stereoselective nucleophilic addition of an acetylide to the seemingly more hindered carbonyl in the enedione system to provide carbinol **80**. Carbinol **80** was then efficiently converted to **122** by reductive expulsion of γ -oxygen-sustituent in the α , β -unsaturated ketone and a one-pot, acid-promoted epimerization and double-bond isomerization. The remaining stereogenic centers were produced by stereoselective reductions of **122**. The final cyclization of the seven-membered ring was achieved by a Dieckmann condensation. The ring system **30** possesses all the stereogenic centers required by kempane diterpenes, and it also contains sufficient functionality to allow modification to kempanes **1** and **2**.

1. 4. Preliminary Study of Asymmetric [2 + 2] Ketene Cycloadditions

1.4.1. Introduction

The first step in which stereochemistry was involved in our approach to the kempane diterpenes was the cycloaddition of dichloroketene with 1-methyl-1,3cyclohexadiene (38) to provide cyclobutanone 39. Therefore, for an asymmetric synthesis of the kempane diterpenes by a very similar route, an asymmetric [2 + 2] ketene cycloaddition would be a potential key step. In spite of the versatility of [2 + 2] ketene cycloadditions in organic synthesis⁷² and rapid advances in asymmetric synthetic methodology,⁷³ the asymmetric ketene addition has not been extensively investigated. Only a few of examples were found in the literature. These included the use of chiral catalysts and the use of chiral auxiliaries.

In 1982, Wynberg and Staring⁷⁴ found that by using 1-2 mol % of optically pure quinidine (135) as a catalyst, addition of ketene 134 to chloral 133 could occur in an asymmetric manner to afford β -lactone 136 in 98% enantiomeric excess (ee) and in 89% chemical yield (Scheme 44). Other Cinchona alkaloids could also be used, though their chiral inductions were somewhat lower. Either enantiomer of 136 could be obtained when diastereomers of catalysts were used. The absolute configuration of the β -carbon in 136 was found to be predictable on the basis of a knowledge of the absolute stereochemistry of the catalyst. When the carbon adjacent to the tertiary nitrogen in the catalyst was *R*, the absolute configuration of the β -carbon in 136 would be *S*, as exemplified in Scheme 44. Wynberg and Staring's work would appear to provide an ideal method for asymmetric ketene addition, but to date the reported examples are

-80-

Scheme 44. Catalytic asymmetric addition of ketene (134) to chloral (133)

135

restricted to the reactions of ketene 134 with chloral 133, α , α -dichloroaldehydes, and a couple of trichloromethyl ketones.^{74, 75}

The use of chiral auxiliaries in the cycloadditions of ketenes to alkenes can be classified into two groups, based on whether the alkene or the ketene bears the chiral auxiliary. The use of a chiral auxiliary in the alkene component was investigated by Greene's group with chiral enol ethers and dichloroketene, prepared *in situ* from trichloroacetyl chloride and zinc-copper couple (Scheme 45).⁷⁶ A number of chiral auxiliaries were examined, and the best results were obtained when R^* were camphorderived auxiliaries. When the enol ether carried auxiliaries 139 and 140, respectively, diastereoisomers 137 and 138 were both produced in 80% diastereoisomeric excess (de).

-81-

Scheme 45. Cycloaddition of dichloroketene with chiral enol ethers

Application of this chiral enol ether-ketene diastereofacial differentiation approach allowed the same group to complete enantioselective syntheses of α - and β -cuparenones (Scheme 46).⁷⁷ In the synthesis, however, optically pure (1*S*,2*R*)-(+)-2phenylcyclohexanol (142) was used as a chiral auxiliary, and a better chiral induction (greater than 90% de) was achieved in the cycloaddition of dichloroketene with chiral enol ether (-)-143. The high diastereofacial selectivity was explained as follows. Enol ether (-)-143 adopted an s-trans or nearly s-trans conformation, as depicted in Scheme 46. This would bare the C_a-re face of the enol ether for dichloroketene to attack, while

the C_{α} -si face would be sterically shielded by the phenyl group of the chiral auxiliary. Ring expansion of cyclobutanone (-)-144 with diazomethane and reductive release of the chiral auxiliary with chromous perchlorate furnished optically pure α -chloroenone (+)-

145, which was transformed into $(-)-\alpha$ - and $(+)-\beta$ -cuparenone.

Fráter and coworkers studied the asymmetric [2 + 2] ketene cycloaddition by attaching the chiral auxiliary onto the ketene component.⁷⁸ They reported that optically pure menthyloxymethylketene (147), prepared *in situ* from 2-menthyloxypropanoyl chloride and triethylamine, could diastereoselectively react with *cis*-enol ether 146 to give cyclobutanone 148 in approximately 65% de. The absolute stereochemistry of the product was determined by converting 148 to (-)-blastmycinone (Scheme 47).

Scheme 47. Cycloaddition of chiral ketene with enol ether

Another way to attach a chiral auxiliary to the enophile component for a [2 + 2] cycloaddition is by the the use of a keteniminium salt. Keteniminium salts are the equivalents of ketenes with regard to [2 + 2] cycloadditions for the formation of cyclobutanones, but they are more electrophilic than ketenes and they do not dimerize.⁷⁹

Scheme 48. Generation of a ketenimium salt and its cycloaddition with an alkene

A keteniminium salt like 149 is usually generated *in situ* by the treatment of an amide with triflic anhydride in the presence of a base (usually an amine). Cycloaddition of the keteniminium salt with an alkene initially gives cyclobutanimium salt 150, which is then hydrolyzed to cyclobutanone 151 without isolation (Scheme 48). It was shown that keteniminium salts are more general for intramolecular cycloadditions, and they could afford very successful results where the corresponding ketenes failed to undergo cycloadditions.⁷⁹ Another potential advantage of keteniminium salts over ketenes is that they may provide a convenient scaffold for asymmetric [2 + 2] cycloaddition due to the fact that an optically pure amine can be easily introduced and it is also easy to remove. Also, since the chiral auxiliary would be attached by a double bond, it is closer to the reacting site and higher chiral inductions might be anticipated. This potential was investigated by Ghosez's group. In 1982, they reported the first examples of asymmetric

-85-

[2 + 2] cycloadditions of keteniminium salts bearing optically pure 2-(methoxymethyl)pyrrolidine as a chiral auxiliary (Scheme 49).⁵⁰ Though the unsubstituted keteniminium salt 152, when reacted with cyclopentene followed by the hydrolysis of the resulting cyclobutanimium salt, gave cyclobutanone 153 in only 55% enantiomeric excess (ee) and in 30% yield, the β -disubstituted ketenimium salt 154 afforded 155 in 97% ee and in 70% yield. The chiralities of the two products 153 and 155

Scheme 49. Asymmetric [2 + 2] cycloadditions with enantiopure ketenimium salts

were found to be opposite, though the same chiral auxiliary was used in the reactions to produce them. The difference in chiral induction between 152 and 154 was explained by steric consideration in the two possible orthogonal transition states in the reactions. When R was hydrogen, transition state 156 might be favored, and therefore 153 was the major product in the reaction of 152 with cyclopentene. When R was methyl, the steric interaction between the methyl group and the methylenes in cyclopentene might make 156 relatively unfavored, and therefore 157 might become the favored transition state that led to the product 155.

The asymmetric [2 + 2] cycloaddition of an optically pure keteniminium salt to an alkene has also been extended to an intramolecular version.⁸¹ However, the chiral auxiliary has to have C₂ symmetry in order to avoid the formation of two possible

Scheme 50. Intramolecular asymmetric cycloadditions with enantiopure ketenimium salts

160 (n = 1)/161 (n = 2)

diastereoisomeric keteniminium salts, which would have opposite diastereofacial selectivities, when the parent amide was treated with triflic anhydride and a base. Excellent chiral induction was observed when 2,5-dimethylpyrrolidine was used as a chiral auxiliary. As shown in Scheme 50, when enantiopure keteniminium salt **158** or **159** was treated with triflic anhydride and 2,6-di-*t*-butyl-4-methylpyridine under ultrasonic activation, followed by hydrolysis, bicyclo[3.2.0]heptan-6-one (**160**) and bicyclo[4.2.0]optan-7-one (**161**) were obtained in 98% and 92% ee, respectively. Without ultrasonic activation, the cycloadditions had to be run at a higher temperature, and the

diastereoselectivities were lower.

By employing the intramolecular asymmetric [2 + 2] cycloaddition as a key step, Ghosez's group achieved a short formal synthesis of enantiopure prostaglandins (Scheme 51).⁸² Optically pure amide 163 was derived from γ -butyrolactone (162) and (2S,5S)dimethylpyrrolidine. Treatment of 163 with triflic anhydride in the presence of 2,6-di-*t*butyl-4-methylpyridine generated a keteniminium salt that underwent cycloaddition to provide, after hydrolysis, a 95% yield of cyclobutanone 164 as a mixture of four diastereoisomers, differing by the stereochemistry at C-2 and C-3. From 164, lactone 165, an advanced intermediate towards prostaglandins,⁸³ was then synthesized with greater than 99% enantiomeric purity.

Scheme 52. Asymmetric bis-acylation of alkenes through an enantiopure ketenimium salt

More recently, with the goal of developing chiral reagents for the "bis-acylation" of prochiral alkenes with high enantiofacial selectivities, Ghosez's group studied the asymmetric [2 + 2] cycloaddition of optically pure ketenimium salt 167, generated from optically pure amide 166, with a number of alkenes.⁸⁴ The results showed that the diastereofacial selectivities were generally good to excellent (86% to 96% de) in cycloadditions with cyclic and *cis*-1,2-disubstituted alkenes. However, with *trans-* and terminal alkenes, chiral induction was much lower. Baeyer-Villiger oxidation of the α nitrogen-substituted cyclobutanone 169 with *meta*-chloroperoxybenzoic acid (*m*-CPBA) regiospecifically afforded γ -lactone 170, which was thought to be the equivalent of a bis-acylated product of an alkene.⁸⁵

1. 4. 2. Preliminary Model Study of [2 + 2] Cycloaddition with Optically pure ketene

To explore the possibility of modifying our synthesis of the kempane diterpene ring system to an asymmetric approach, we first examined the asymmetric [2 + 2] cycloaddition of optically pure menthylketene **174** with cyclopentadiene (**175**) (Scheme 53). *l*-Menthoxyacetyl chloride (**173**) was prepared according to known procedures.⁸⁶ Treatment of *l*-menthol with excess sodium hydride in *N*,*N*-dimethylformamide (DMF) at room temperature for three hours, followed by chloroacetic acid, provided, after acidification, *l*-menthoxyacetic acid (**172**) in 48% yield. Then, **172** was converted to **173** in 72% yield with thionyl chloride at 95 °C for five hours. The reaction of **173** with triethylamine at room temperature generated *l*-menthoxyketene (**174**), which underwent cycloaddition to cyclopentadiene (**175**) to afford a 2:1 mixture of diastereoisomers **176**

-90-

and 177 in 67% yield. The menthoxy chiral auxiliary in ketene 174 did display chiral induction in the cycloaddition, but the diastereofacial selectivity was not good, as only a 33% de was obtained. The two diastereoisomers 176 and 177 were inseparable by flash chromatography, but their structures were suggested by the following rationale.

There were four likely combinations of the two products in the cycloaddition of

Н

Ĥ

(b)

177

0

H

178

Ĥ

176

178

174 with 175, as shown in Scheme 54. Composition (a), 176 and 177, represented the diastereoisomers resulting from the menthoxy-endo addition of 174 to cyclopentadiene

(175) from both faces. Composition (b), 178 and 179, would represent the diastereoisomers resulting from epimerization of the menthoxy-endo addition products 176 and 177, or from the menthoxy-exo addition of 174 to 175 from both faces.
Compositions (c), and (d) represented the possibilities that the menthoxy-endo addition of 174 to cyclopentadiene (175) proceeded with diastereofacial specificity to give 176 or 177, but during the reaction, partial epimerization occurred leading to the formation of 178 and 180.

For each isomer, the NMR signals for H-1, H-5, and H-7 were well separated and easily assigned using COSY spectra. However, the corresponding signals for these protons in the two isomers were almost identical. The signals that were well separated for the two products (and used to measure the ratio of the two products) were the signals corresponding to H-1', appearing at δ 3.17 as a doublet of triplets (J = 10.6, 4.2 Hz) for the major product and at δ 3.31 as a doublet of triplets (J = 10.6, 4.3 Hz) for the minor product. The fact that the pairs of the H-1, H-5, and H-7 signals for the two products appeared at the same chemical shift suggested that the two products had the same relative stereochemistry at C-1, C-5 and C-7. This was consistent with compositions (a) and (b). In addition, if one of the two products was the menthoxy-endo adduct, but the other was a menthoxy-exo adduct, as in the case of compositions (c) and (d), the pairs of H-1 and H-7 signals would be expected to have very different chemical shifts due to their distinct chemical environments. This could be corroborated by a large number of literature examples, ⁸⁷ some of which are listed in Table 3. Finally, compositions (a) and (b) were distinguished by NOE experiments. When the signals for H-7 were saturated, the signals
Table 3. Chemical shifts of H-7 and H-1 in endo and exo

7-substituted- bicyclo[3.2.0]hept-2-en-6-one	H-7 endo-isomer exo-isomer		H-1 endo-isomer exo-isome	
H H H F	5.52	4.86	3.86	3.58
H H C	5.08	3.88	3.84	3.02
	3.28	2.69	3.52	3.07
H H Pri	3.02	2.53	3.50	3.14
H O H But	3.26	2.58	3.53	3.24

7-substituted bicyclo[3.2.0]hept-2-en-6-ones87

for H-1 were enhanced by 4%. Therefore, composition (a) was determined to be the products of the cycloaddition of 174 and 175.

The absolute configurations of C-1, C-5, and C-7 in products 176 and 177 were

181

not determined, but they could be solved by reductive removal of the chiral auxiliary and measurement of the specifically optical rotation of the resulting bicyclo[3.2.0]hept-2-en-6-one (181). The specific rotations of both enantiomers of 181 are known.⁸⁸

We also examined the cycloaddition of optically pure, (-)-diacetone-D-glucose derived ketene 185 with cyclopentadiene (175) (Scheme 55). (-)-Diacetone-D-glucose is readily available and has successfully been used as a chiral auxiliary to prepare enantiopure dimethylsulfoxide.⁸⁹ Treatment of (-)-diacetone-D-glucose (182) with excess sodium hydride in DMF at room temperature for one hour, and then with sodium chloroacetate, produced in situ from chloroacetic acid and the sodium hydride, afforded, after acidification, the carboxylic acid 183 in 59% yield. The conversion of 183 to 184 was initially attempted with neat thionyl chloride at reflux for five hours, the conditions that had successfully been used to convert menthoxyacetic acid (172) to 173. However, it was found that the acetal functions were not sufficiently stable, and a complex mixture of products was produced. However, the acid chloride 184 was obtained in 87% yield, by reacting 183 with only a slight excess thionyl chloride in benzene at 65 °C for 30 minutes. Subjection of 184 to triethylamine in the presence of cyclopentadiene (175) at room temperature for twelve hours gave a mixture of two adducts 186 and 187 in only 8% yield. The structures of the products were assigned on the basis of their NMR spectra.

-95-

184

185

The COSY spectrum showed that the corresponding signals for H-1 and H-5 of the two adducts were completely overlapped, but the H-7 signals appeared separately, at δ 5.03 as a doublet of doublets (J = 8.4, 3.0 Hz) for the minor adduct and at δ 4.90 as doublet of doublets (J = 8.7, 2.8 Hz) for the major adduct. However, NOE experiments confirmed

that in both adducts H-7 was *cis* to H-1 and H-5. The ratio of the two adducts was 1:1.8, as determined by the integration of the signals for the H-7. Therefore, the diastereomeric excess of the two products was only 28%.

The low chiral induction in the [2 + 2] cycloaddition of ketene 174 and 185 with cyclopentadiene (175) could be understood by consideration of the orthogonal transition state, which is required by the conservation of orbital symmetry (Section 1. 2. 2). The formation of oxygen-endo adducts in the cycloadditions revealed that the reactions were initiated by the approach of cyclopentadiene to the less hindered, unsubstituted side of the ketenes, as shown in Scheme 56. Since the chiral auxiliaries were behind the reacting side of the ketenes, it was reasonable that the two transition states **188** and **189** were close in energy and therefore the diastereofacial selectivities in the cycloadditions were low.

For further exploration of an efficient approach to asymmetric synthesis of kempane diterpenoids, a proposal of the preparation of enantiopure enone **93**, the racemic form of which was a key intermediate in our synthesis of the kempane diterpene ring system (Section 1. 2), is given in Scheme 57. The key step would be the conversion of enantiopure amide **195** to 3-bromobicyclo[3.2.0]hept-2-en-6-one (**196**) by the intramolecular asymmetric [2 + 2] cycloaddition of a keteniminium salt. An excellent degree of chiral induction in the reaction is expected according to Ghosez's reports.⁸¹ Compared to Ghosez's amide **158**, the major difference in **195** is the extra double bond between C-4 and C-5. However, the *cis-geometry* of this extra double bond should make the keteniminium salt more favorable for the intramolecular cycloaddition. Baeyer-Villiger oxidation of **196** would provide lactone **197**, which could be converted to enyne **198** by a Heck reaction with trimethylsilylacetylene.⁹⁰ Removal of the trimethylsilyl group with fluoride and hydrolysis of the triple bond in **198** should furnish the optically pure intermediate **93**.

The enantiopure amide 195 would be prepared from commercially available tetronic acid (190). G. Jas has shown that reacting 190 with oxalyl bromide could afford 4-bromo-2(5*H*)-furanone (191) in 83% yield.⁹¹ Reduction of 191 with diisobutylaluminum hydride (Dibal) should give hemi-acetal 192, which would then be converted to diene 193 by Wittig reaction of triphenylphosphonium methylid.⁹² Reaction of 193 with triphenylphosphine and bromine⁹³ should provide dibromide 194. Enantiopure amide 195 would be obtained by treatment of enantiopure acetamide 200 with LDA, followed by dibromide 194. Finally, acetamide 200 could be prepared from

Scheme 57. A proposal of the asymmetric approach to kempane diterpenoids

optically active 2,5-dimethylpyrrolidine and acetyl chloride. According to Ghosez's results,⁸¹ it is most likely that we would need (2*S*,5*S*)-2,5-dimethylpyrrolidine as the chiral auxiliary to give the absolute stereochemistry of the kempane diterpenoids. Since there is only one step between the introduction and removal of the chiral auxiliary, the chiral auxiliary would be most efficiently utilized. This proposal also avoids the low yield transformation of lactone **41** to **93** in the racemic synthesis (Scheme 29).

1.5. Experimental

General Methods.

All reactions involving moisture- or/and air-sensitive reactants were conducted with pre-heated and nitrogen-flushed glassware and using dry solvents under nitrogen. Tetrahydrofuran (THF) and 1,4-dioxane were dried over sodium with benzophenone as an indicator, i.e., THF and 1,4-dioxane were gently refluxed with sodium in the presence of benzophenone until a dark blue color persisted, then they were distilled. Dimethylformamide (DMF) was dried over anhydrous MgSO₄. Nitromethane was dried over 4Å Molecular Sieves. Dry hexane, pentane, benzene, toluene, dichloromethane, and triethylamine were obtained by distillation over calcium hydride. Reactions were monitored by thin layer chromatography (TLC) when possible. TLC was performed on Polygram Sil G/UV₂₅₄ plates, visualized under ultraviolet (UV) light and/or with a spray of phosphomolybdic acid in ethanol. All flash column chromatography was conducted on 230-400 mesh silica gel. Preparative layer chromatography (PLC) was carried out on E. Merck silica gel 60 F₂₅₄ precoated plates.

Melting points (mp) were determined on a Fisher-Johns apparatus and are uncorrected. Infrared (IR) spectra were obtained on a Mattson Polaris FT-IR spectrometer. Nuclear magnetic resonance (NMR) spectra were obtained on a General Electric GE-300-NB (300 MHz) instrument. ¹H NMR and ¹³C NMR spectra were recorded at 300 MHz and 75 MHz, respectively, in deuterated solvents. Low and high resolution mass spectra (MS, HRMS) were obtained on a V. G. Micromass 7070HS instrument. GC-MS analyses were performed on Hewlett Packard 5890 with a 12.5 m

-101-

fused silica capillary column using crosslinked dimethylsilicone as the liquid phase. Xray crystallographic data were collected by Dr. J. N. Bridson on a Rigaku AFC6S diffractometer.

Spectroscopic data are reported in the order of IR, ¹H NMR, NOE (nuclear Overhauser effect enhancements), ¹³C NMR, MS, and HRMS or combustion analysis. Media used for the acquisition of spectra are indicated in parentheses, where applicable. For example, IR (Nujol) denotes that the sample for the IR spectrum was prepared in Nujol. IR data are followed in parentheses by the following descriptors s: strong, m: medium, w: weak, br: broad. ¹H NMR data are reported in the following form: chemical shift (number of protons, multiplicity, coupling constant, assignment). Chemical shifts are in ppm units relative to an internal standard, tetramethylsilane (TMS). Multiplicity is represented by the following designations s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, dd: doublet of doublets, dt: doublet of triplets, dq: doublet of quartets, ddd: doublet of doublets of doublets, br: broad. Assignments are based on COSY, HET-CORR, APT, and NOE difference spectra. NOE data are reported as: saturated signal (enhanced signal, enhancement as determined by the difference method). ¹³C NMR data are reported as: chemical shift (number of protons attached to the carbon, assignment). MS data are reported as m/z (intensity relative to the largest peak in %).

syn and anti 3-Methyl-2-cyclohexen-1-one, p-toluenesulfonylhydrazone (37)

A mixture of 3-methyl-2-cyclohexen-1-one (36) (22.5 g, 200 mmol) and *p*toluenesulfonylhydrazine (38.4 g, 200 mmol) in THF (280 mL) with a catalytic amount of

-102-

concentrated hydrochloric acid (1.5 mL) was stirred at rt for 15 h. To the resulting red solution was added benzene (200 mL), and the mixture was concentrated under vacuum. This operation was repeated twice with 200 mL of benzene. The residue was solidified by trituration with Et_2O and dried in a desiccator over $CaCl_2$ under vacuum for 24 h to afford the crude hydrazone 37 (57.8 g) as a beige solid. The crude 37 was a 2:1 mixture of stereoisomers, otherwise, it was fairly pure, as shown by ¹H NMR. This mixture was used in the next step without purification.

¹H NMR (CDCl₃) data for the major isomer of **37** from the mixture: δ 7.85 (2H, d, J = 8.2 Hz), 7.31 (2H, d, J = 8.2 Hz), 5.94 (1H, q, J = 1.4 Hz, H2), 2.42 (3H, s, C₆H₄-CH₃), 2.24 (2H, t, J = 6.5 Hz), 2.05 (2H, t, J = 6.0 Hz), 1.81 (3H, d, J = 1.4 Hz, 3-methyl), 1.75 (2H, m, H5).

¹H NMR (CDCl₃) data for the minor isomer of **37** from the mixture: δ 7.86 (2H, d, J = 8.5 Hz), 7.31 (2H, d, J = 8.2 Hz), 6.13 (1H, q, J = 1.4 Hz, H2), 2.42 (3H, s, C₆H₄-CH₃), 2.32 (2H, t, J = 6.4 Hz), 2.15 (2H, t, J = 6.1 Hz), 1.87 (3H, d, J = 1.4 Hz, 3methyl), 1.75 (2H, m, H5).

cis-8,8-Dichloro-3-methylbicyclo[4.2.0]oct-2-en-7-one (39)

To a mechanically stirred suspension of the crude hydrazone 37 (28.9 g, approximately 100 mmol) in anhydrous Et_2O (150 mL) was introduced MeLi (1.4 M in Et_2O , 157 mL, 220 mmol) at 0 °C over 3 h. The mixture was stirred at rt for 15 h before it was carefully quenched with water (200 mL). The organic layer was separated, and the aqueous layer was extracted with pentane (3 x 60 mL). The combined organic solution were washed with 5% HCl (2 x 60 mL), saturated NaHCO₃ solution (60 mL) and brine (60 mL). This solution of 1-methyl-1,3-cyclohexadiene (38) was first dried over anhydrous Na_2SO_4 and then over solid KOH.

To the above solution was added dry triethylamine (26.8 mL, 193 mmol) and then dichloroacetyl chloride (26.0 g, 175 mmol) in dry pentane at rt with stirring over 3 h. The resulting mixture was stirred for a further 3.5 h. A precipitate was removed by suction filtration. The filtration cake was extracted with pentane twice. The combined filtrates were washed with water (200 mL), saturated NaHCO₃ solution (3 x 130 mL) and brine (2 x 130 mL). The organic solution was dried over anhydrous MgSO₄ and concentrated under vacuum. Vacuum distillation of the residue provided crude 39 (11.4 g) at 75-91 °C/3 mm Hg. The bulk of the distilled product was used in the next step without further purification. An analytical sample was obtained by column chromatography (2% Et_2O /hexane) as a colorless oil: IR (neat) 1804 (s), 1444 (m), 1109 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 5.60 (1H, m, H2), 4.05 (1H, m, H6), 3.43 (1H, m, H1), 2.15 (1H, m, H5 anti to H6), 1.99-1.92 (2H, m, H4), 1.77 (3H, s, 3-methyl), 1.65 (1H, m, H5 syn to H6). NOE data 1.65 (4.05, 2%). ¹³C NMR (CDCl₃) δ 197.0 (0, C7), 140.4 (0, C3), 117.1 (1, C2), 87.1 (0, C8), 52.4 (1, C6), 44.8 (1, C1), 25.9 (2, C4), 24.6 (3, 3-methyl), 19.4 (2, C5). MS m/z 206 (M⁺+2, 4), 204 (M⁺, 5), 169 (6), 141 (6), 94 (22), 91 (10), 79 (29), 77 (22), 55 (100), 51 (12). HRMS calcd. for $C_9H_{10}^{35}Cl_2O$ 204.0109, found 204.0103.

cis-3-Methylbicyclo[4.2.0]oct-2-en-7-one (40)

To a mixture of 39 (11.4 g, approximately 55.4 mmol) and NH₄Cl (23.5 g, 44.7

-104-

mmol) in MeOH (300 mL) was added Zn dust (analytical grade, 47.9 g, 730 mmol) in portions with stirring at 0 °C over 1 h. The mixture was then stirred at rt for 10 h. Et₂O (150 mL) was added. The solid was removed by filtration, and the filtrate was concentrated under vacuum. The residue was dissolved in water (200 mL) and extracted with Et₂O (4 x 50 mL). The combined extracts were washed with water (40 mL) and brine (40 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. Vacuum distillation of the residue provided 40 (4.34 g) at 70-80 °C/5 mmHg as a colorless oil. This distilled product was fairly pure and was used in the next step without further purification. An analytical sample was obtained by column chromatography (15% Et₂O/hexane) as a colorless oil: IR (neat) 1778 (s), 1446 (m), 1071 (m) cm⁻¹. ¹H NMR $(CDCl_3)$ δ 5.63 (1H, q, J = 1.3 Hz, H2), 3.49 (1H, m, H6), 3.24 (1H, ddd, J = 16.8, 9.2, 2.8Hz, H8 syn to H1), 2.91 (1H, m, H1), 2.54 (1H, ddd, J = 16.8, 3.7, 2.6 Hz, H8 anti to H1), 2.05-1.94 (2H, m, H5 and H4), 1.80 (1H, m, H4), 1.57 (1H, m, H5 syn to H6). NOE data 3.49 (2.91, 2%; 1.57, 2%), 3.24 (2.91, 2%), 2.91 (5.63, 2%; 3.49, 2%). ¹³C NMR (CDCl₃) δ 212.1 (0, C7), 135.8 (0, C3), 122.6 (1, C2), 56.3 (1, C6), 52.3 (2, C8), 26.2 (2, C4), 24.4 (3, 3-methyl), 23.4 (1, C1), 19.9 (2, C5). MS m/z 136 (M⁺, 0.3), 94 (84), 93 (16), 91 (14), 79 (100), 77 (22), 55 (22). HRMS calcd. for C_oH₁₂O 136.0888, found 136.0892.

cis-3a,6,7,7a-Tetrahydro-5-methyl-2(3H)-benzofuranone (41)

To a solution of 40 (4.34 g, approximately 31.9 mmol) in glacial AcOH (30 mL) was added 30% H_2O_2 (9.00 g, 79.4 mmol) at 0 °C over 10 min. The solution was stirred at 0 °C for 15 h before it was poured into a mixture of CH₂Cl₂ (100 mL) and water (100

mL). This mixture was neutralized by adding solid Na₂CO₃ until CO₂ evolution ceased. After separation of the organic layer, the aqueous layer was re-extracted with CH_2Cl_2 (3 x 40 mL). The combined organic phases were washed with saturated NaHCO3 solution (50 mL) and brine (50 mL), dried over anhydrous MgSO4, and concentrated under vacuum. The residue was subjected to column chromatography (55% Et₂O/hexane) to afford 41 (4.05 g, 27% overall yield from 36) as a colorless oil: IR (neat) 1779 (s), 1158 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 5.16 (1H, br s, H4), 4.73 (1H, m, H7a), 2.97 (1H, m, H3a), 2.75 (1H, dd, J = 17.1, 8.5 Hz, H3 syn to H3a), 2.27 (1H, dd, J = 17.1, 2.9 Hz, H3 anti to H3a), 2.18-2.07 (2H, m, H6 and H7), 1.90-1.71 (2H, m, H6 and H7), 1.67 (3H, s, 5-methyl). NOE data 4.73 (2.97, 2%), 2.75 (2.97, 2%). ¹³C NMR (CDCl₃) δ 177.1 (0, C2), 136.1 (0, C5), 119.7 (1, C4), 77.6 (1, C7a), 36.3 (2, C3), 34.8 (1, C3a), 24.9 (2), 23.9 (2), 23.7 (3, 5-methyl). MS m/z 152 (M⁺, 24), 110 (27), 109 (14), 102 (14), 95 (29), 93 (100), 92 (22), 91 (21), 88 (14), 86 (51), 85 (19), 82 (17), 81 (26), 79 (22), 77 (21), 68 (31), 67 (29), 63 (18), 62 (17), 60 (34), 56 (18), 53 (19), 51 (15). HRMS calcd. for C₉H₁₂O₂ 152.0837, found 152.0845.

(3α,3aα,7aα)-3a,6,7,7a-Tetrahydro-3,5-dimethyl-2(3H)-benzofuranone (47)

To diisopropylamine (2.81 mL, 21.2 mmol) in dry THF (26 mL) was introduced *n*-BuLi (2.5 M in hexane, 7.72 mL, 19.3 mmol) at 0 °C over 20 min. The solution was stirred for 10 min and then cooled to -78 °C when lactone **41** (2.94 g, 19.3 mmol) in dry THF (26 mL) was introduced over 30 min. This solution was stirred for 30 min before MeI (3.04 g, 21.3 mmol) in hexamethylphosphoramide (HMPA) (4.16 g, 23.2 mmol) was

added over 20 min. After 3 h, the reaction mixture was allowed to warm to 0 °C. The reaction was quenched with dilute NH₄Cl solution (100 mL) and diluted with Et₂O (300 mL). The aqueous phase was removed. The organic layer was washed with water (3 x 80 mL) and brine (80 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was subjected to column chromatography (25% EtOAc/hexane) to afford **47** (2.87 g, 89% yield) as a colorless oil: IR (neat) 1773 (s), 1154 (m), 1012 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 5.32 (1H, m, H4), 4.67 (1H, ddd, *J* = 10.8, 6.8, 4.1 Hz, H7a), 2.58 (1H, m, H3a), 2.37 (1H, m, H3), 2.08-1.70 (4H, m, H6 and H7), 1.71 (3H, s, 5-methyl), 1.31 (3H, d, *J* = 7.5 Hz, 3-methyl). NOE data 4.67 (2.58, 2%), 1.31 (2.58, 3%). ¹³C NMR (CDCl₃) δ 179.7 (0, C2), 136.0 (0, C5), 119.4 (1, C4), 75.9 (1, C7a), 42.7 (1, C3a), 41.6 (1, C3), 26.1 (2), 25.6 (2), 23.5 (3, 5-methyl), 1.4.4 (3, 3-methyl). MS *m*/z 166 (M⁺, 23), 121 (9), 110 (17), 107 (28), 96 (14), 95 (17), 93 (81), 91 (20), 86 (17), 81 (17), 79 (100), 77 (18), 74 (100), 69 (24), 68 (22), 67 (18), 55 (12), 53 (13). HRMS calcd. for C₁₀H₁₄O₂ 166.0994, found 166.0996.

(3α,3aα,6aα)-5-Acetyl-3,3a,6,6a-tetrahydro-3-methyl-2*H*-cyclopenta[*b*]furan-2-one (49)

To a solution of 47 (3.05 g, 18.4 mmol) in CH_2Cl_2 (200 mL) was introduced ozone at -78 °C until a blue color persisted. The excess ozone was removed by bubbling nitrogen through the solution until the blue color disappeared. Then, dimethyl sulfide (15 mL, 205 mmol) was added, and the mixture was allowed to warm to rt while stirring overnight. The solvent and excess Me₂S were evaporated under vacuum to give the crude

-107-

ozonolysis product 48 as a yellow oil.

The crude product **48** was dissolved in benzene (350 mL) and a catalytic amount of (±)-camphorsulfonic acid (0.430 g, 1.85 mmol) was added. The solution was refluxed in a Dean-Stark apparatus for 25 h. After cooling to rt, this solution was washed with 5% NaHCO₃ (2 x 100 mL) and brine (2 x 100 mL), dried over anhydrous Na₂SO₄ and concentrated under vacuum. The residue was subjected to column chromatography (70% EtOAc/hexane) to provide **49** (1.59 g, 48% yield from **47**) as a pale yellow oil: IR (neat) 1769 (s), 1670 (s), 1179 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 6.51 (1H, d, *J* = 1.7 Hz, H4), 5.20 (1H, apparent dt, *J* = 5.5, 1.6 Hz, H6a), 3.41 (1H, m, H3a), 2.98-2.82 (2H, m, H6), 2.65 (1H, dq, *J* = 7.6, 1.9 Hz, H3), 2.35 (3H, s, COCH₃), 1.42 (3H, d, *J* = 7.6 Hz, 3-methyl). NOE data 5.20 (3.41, 2%), 3.41 (5.20, 2%), 1.42 (5.20, 2%; 3.41, 4%). ¹³C NMR (CDCl₃) δ 195.9 (0, COCH₃), 178.8 (0, C2), 143.6 (0, C5), 140.7 (1, C4), 80.6 (1, C6a), 54.6 (1, C3a), 39.3 (1, C3), 37.6 (2, C6), 26.7 (3, COCH₃), 17.4 (3, 3-methyl). MS *m*/*z* 180 (M⁺, 18), 165 (20), 136 (14), 121 (16), 109 (14), 93 (13), 91 (11), 81 (14), 77 (16), 65 (11), 56 (18), 53 (10), 43 (100). HRMS calcd. for C₁₀H₁₂O₃ 180.0786, found 180.0781.

(3a,3aa,6aa)-5-(1-Acetoxyvinyl)-3,3a,6,6a-tetrahydro-3-methyl-2H-

cyclopenta[b]furan-2-one (50)

A solution of enone 49 (180 mg, 1.00 mmol) and isopropenyl acetate (5.0 mL, 45 mmol) with a catalytic amount of (\pm) -camphorsulfonic acid (20 mg, 0.086 mmol) was heated at reflux for 4 days. The excess isopropenyl acetate was removed under vacuum.

The residue was subjected to PLC (60% EtOAc/hexane) to afford **50** (130 mg, 58% yield) as a pale yellow oil: IR (neat) 1765 (s), 1372 (m), 1196 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 5.64 (1H, d, J = 1.1 Hz, H4), 5.20 (1H, dt, J = 6.0, 1.2 Hz, H6a), 5.00 (1H, d, J = 2.0 Hz, CH₂=), 4.98 (1H, d, J = 2.0 Hz, CH₂=), 3.27 (1H, m, H3a), 2.88 (2H, m, H6), 2.57 (1H, dq, J = 7.6, 2.1 Hz, H3), 2.22 (3H, s, CH₃CO), 1.37 (3H, d, J = 7.6 Hz, 3-methyl). ¹³C NMR (CDCl₃) δ 179.4 (0, C2), 168.7 (0, COCH₃), 149.0 (0), 136.3 (0), 127.7 (1, C4), 105.5 (2, CH₂=), 81.1 (1, C6a), 54.0 (1, C3a), 39.9 (1, C3), 38.8 (2, C6), 20.8 (3, CH₃CO), 17.3 (3, 3-methyl).

(4aα,7aβ,10β,10aβ,10bα,10cα)-6-Acetoxy-4a,5,7,7a,10,10a,10b,10c-octahydro-2,10,10c-trimethylbenz[6,7]indeno[2,1-b]furan-1,4,9-trione (51) and (4aα,7aβ,10β,10aβ,10bα,10cα)-6-acetoxy-4a,5,7,7a,10,10a,10b,10c-octahydro-3,4a,10-trimethylbenz[6,7]indeno[2,1-b]furan-1,4,9-trione (52)

A solution of diene **50** (107 mg, 0.481 mmol) and 2,6-dimethyl-1,4-benzoquinone (13) (73 mg, 0.53 mmol) in dry toluene (5.0 mL) was heated at reflux. The product happened to have exactly the same R_f value by TLC as the starting diene **50**, so that the reaction could not be monitored in this way. After 4 days, the solvent was removed under vacuum. The residue was subjected to PLC (60% EtOAc) to afford material (120 mg) that was found by ¹H NMR to be a 2:1 mixture of products and starting diene **50**. Thus, this material was again heated at reflux with another portion of **13** (110 mg, 0.808 mmol) in dry toluene (5.0 mL) for **8** days. The solvent was removed under vacuum. PLC (60% EtOAc/hexane) gave a 4:1 mixture of 51 and 52 (83 mg, 50% yield) as a pale yellow foam.

NMR data for **51** from the mixture: ¹H NMR (CDCl₃) δ 6.45 (1H, t, J = 1.4 Hz, H3), 5.19 (1H, m, H7a), 3.18 (1H, dd, J = 13.2, 5.8 Hz, H10a), 3.02 (1H, m, H4a), 2.90 (1H, m, H7 β), 2.62 (1H, m), 2.51-2.39 (3H, m), 2.19 (1H, m), 2.10 (3H, s, CH₃CO), 1.99 (3H, d, J = 1.4 Hz, 2-methyl), 1.44 (3H, s, 10c-methyl), 1.32 (3H, d, J = 7.4 Hz, 10methyl). NOE data 5.19 (3.18, 5%; 2.90, 3%), 3.18 (5.19, 6%), 1.44 (3.02, 8%), 1.32 (3.18, 7%). ¹³C NMR (CDCl₃) δ 201.4 (0), 198.8 (0), 179.1 (0, C9), 168.4 (0, COCH₃), 148.1 (0, C2), 137.4 (0, C6), 133.8 (1, C3), 127.0 (0, C6a), 81.8 (1, C7a), 55.9, 52.8, 51.1, 48.9, 43.2, 34.4, 28.7, 24.4, 20.6, 16.5, 15.2.

Discernible ¹H NMR (CDCl₃) data for **52** from the mixture: δ 6.63 (1H, q, J = 1.4 Hz, H2), 4.94 (1H, m, H7a), 2.17 (3H, s, CH₃CO), 2.02 (3H, d, J = 1.4 Hz, 3-methyl), 1.40 (3H, d, J = 7.7 Hz, 10-methyl), 1.25 (3H, s, 10c-methyl).

(3α,3aα, 6aα)-5-((1-(*tert*-Butyldimethylsilyl)oxy)vinyl)-3,3a,6,6a-tetrahydro-3methyl-2*H*-cyclopenta[*b*]furan-2-one (54) and (3α,3aβ, 6aβ)-5-((1-(*tert*butyldimethylsilyl)oxy)vinyl)-3,3a,6,6a-tetrahydro-3-methyl-2*H*-cyclopenta[*b*]furan-2-one (55)

Method A: To a solution of diisopropylamine (0.14 mL, 1.00 mmol) in dry THF (4.0 mL) was introduced *n*-BuLi (2.5 M in hexane, 0.40 mL, 1.00 mmol) at 0 °C over 5 min. The solution was stirred for 20 min and then transferred by syringe to a solution of

enone 49 (0.180 g, 1.00 mmol) and *tert*-butyldimethylsilyl triflate (TBSOTf) (0.28 mL, 1.22 mmol) in dry THF (5.0 mL) at - 78 °C over 15 min. This mixture was stirred at -78 °C for 1 h before it was allowed to warm to rt. This was diluted with hexane (100 mL), washed with water (3 x 30 mL) and brine (30 mL), and dried over anhydrous Na_2SO_4 . The solvent was evaporated under vacuum, and the residue was subjected to PLC (25% EtOAc/hexane) to afford 54 (214 mg, 73% yield) and 55 (37 mg, 12% yield).

Method B: To a solution of diisopropylamine (0.23 mL, 1.75 mmol) in dry THF (5.0 mL) was introduced *n*-BuLi (2.5 M in hexane, 0.63 mL, 1.57 mmol) at 0 °C over 5 min. This solution was stirred for 10 min and then cooled to -78 °C when enone **49** (128 mg, 0.710 mmol) in dry THF (1.0 mL) was added over 10 min. After 30 min, HMPA (1.0 mL) was added, followed by *tert*-butyldimethylsilyl chloride (243 mg, 1.56 mmol) in dry THF (1.0 mL). The mixture was allowed to warm to rt, and it was stirred for 2 h before it was diluted with pentane (100 mL) then washed with water (2 x 30 mL) and brine (30 mL). The resulting solution was dried over anhydrous Na₂SO₄ and concentrated under vacuum. The residue was subjected to PLC (25% EtOAc/hexane) to afford **54** (16 mg, 8% yield) and **55** (100 mg, 48% yield).

Diene **54**: Colorless crystals: mp 75.0-76.5 °C. IR (CH₂Cl₂) 1772 (s), 1590 (m), 1472 (m), 1314 (m), 1253 (m), 1177 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 5.80 (1H, d, J = 1.4Hz, H4), 5.19 (1H, apparent dt, J = 5.5, 1.7 Hz, H6a), 4.36 (1H, s, CH₂=), 4.33 (1H, s, CH₂=), 3.25 (1H, m, H3a), 2.88-2.73 (2H, m, H6), 2.58 (1H, dt, J = 7.6, 1.9 Hz, H3), 1.37 (3H, d, J = 7.6 Hz, 3-methyl), 0.96 (9H, s, SiC(CH₃)₃), 0.17 (6H, s, SiMe₂). NOE data 5.19 (3.25, 3%), 3.25 (5.19, 3%), 1.37 (3.25, 4%). ¹³C NMR (CDCl₃) δ 179.8 (0, C2), 152.4 (0), 140.0 (0), 127.1 (1, C4), 94.8 (2, CH₂=), 81.7 (1, C6a), 53.8 (1, C3a), 40.2 (1, C3), 38.9 (2, C6), 25.7 (3, C(CH₃)₃), 18.2 (0, C(CH₃)₃), 17.4 (3, 3-methyl), -4.7 (3, 2 Si(CH₃)₂). MS *m*/*z* 294 (M⁺, 0.9), 279 (1), 238 (8), 209 (18), 181 (14), 130 (18), 117 (18), 75 (100), 73 (18). HRMS calcad. for C₁₆H₂₆O₃Si 294.1650, found 294.1646.

Diene 55: Colorless oil: IR (neat) 1772 (s), 1590 (m), 1472 (m), 1306 (m), 1169 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 5.86 (1H, s, H4), 5.06 (1H, m, H6a), 4.37 (1H, s, CH₂=), 4.34 (1H, s, CH₂=), 3.64 (1H, apparent t, *J* = 6.8 Hz, H3a), 2.89-2.75 (3H, m, H3 and 2H6), 1.27 (3H, d, *J* = 7.4 Hz, 3-methyl), 0.96 (9H, s, SiC(CH₃)₃), 0.18 (3H, s, SiCH₃), 0.16 (3H, s, SiCH₃). NOE data 5.06 (3.64, 4%), 3.64 (5.06, 4%), 1.27 (5.86, 6%). ¹³C NMR (CDCl₃) δ 178.6 (0, C2), 152.5 (0), 141.0 (0), 123.7 (1, C4), 94.8 (2, CH₂=), 81.1 (1, C6a), 50.6 (1, C3a), 39.2 (2, C6), 37.7 (1, C3), 25.7 (3, SiC(CH₃)₃), 18.2 (0, C(CH₃)₃), 12.0 (3, 3-methyl), -4.6 (3, SiCH₃), -4.8 (3, SiCH₃). MS *m/z* 294 (M⁺, 0.4), 238 (5), 237 (5), 209 (10), 181 (12), 130 (17), 117 (15), 75 (100), 73 (15). HRMS calcd. for C₁₆H₂₆O₃Si 294.1650, found 294.1651.

(4aα,7aβ,10β,10aβ,10bα,10cα)-6-((tert-Butyldimethylsilyl)ory)-

4a,5,7,7a,10,10a,10b,10c-octahydro-2,10,10c-trimethylbenz[6,7]indeno[2,1-b]furan-1,4,9-trione (56)

A solution of diene 54 (295 mg, 1.00 mmol) and 2,6-dimethyl-1,4-benzoquinone (13) (206 mg, 1.50 mmol) in dry toluene (10 mL) was heated at reflux for 3 days. The

solvent was removed under vacuum, and the residue was subjected to PLC (30% EtOAc/hexane) to afford 57 (347 mg, 81% yield) as a pale yellow foam, which was crystallized from Et₂O: mp 134.0-135.0 °C. IR (CCl₄) 1774 (s), 1682 (s), 1251 (m), 1178 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.44 (1H, q, J = 1.4 Hz, H3), 5.14 (1H, m, H7a), 3.14-3.00 (2H, m, H10a and H7ß), 2.94 (1H, m, H4a), 2.45-2.34 (3H, m, H5ß, H7a and H10), 2.32 (1H, m, H10b), 2.07 $(1H, m, H5\alpha)$, 1.97 (3H, d, J = 1.4 Hz, 2-methyl), 1.41 (3H, s, 10c)methyl), 1.31 (3H, d, J = 7.3 Hz, 10-methyl), 0.89 (9H, s, SiC(CH₂)₂), 0.06 (3H, s, SiCH₃), 0.05 (3H, s, SiCH₃). NOE data 5.14 (3.14-3.00, 9%), 2.94 (2.32, 15%), 2.32 (2.94, 9%; 2.07, 5%), 1.41 (2.94, 9%; 2.32, 16%), 1.31 (3.14-3.00, 4%). ¹³C NMR (CDCl₃) 8 201.8 (0), 199.6 (0), 179.5 (0, C9), 148.1 (0, C2), 139.6 (0, C6), 133.8 (1, C3), 116.8 (0, C6a), 82.0 (1, C7a), 56.5 (1, C4a), 52.8 (1, C10b), 51.0 (2, C5), 25.5 (3, SiC(CH₃)₃), 24.8 (3, 10c-methyl), 18.0 (0, SiC(CH₃)₃), 16.5 (3, 2-methyl), 15.2 (3, 10methyl), -3.9 (3, SiCH₃), -4.1 (3, SiCH₃). MS m/z 430 (M⁻, 10), 374 (15), 373 (45), 238 (21), 237 (22), 209 (32), 181 (18), 131 (20), 130 (32), 117 (28), 75 (100), 73 (81). HRMS calcd. for $C_{24}H_{34}O_5Si$ 430.2176, found 430.2157.

(4aα,7aβ,10β,10aβ,10bα,10cα)-6-((*tert*-Butyldimethylsilyl)oxy)-4a,5,7,7a,10,10a,10b,10c-octahydro-2,10,10c-trimethylbenz[6,7]indeno[2,1-b]furan-1,4,9-trione (57)

A solution of diene 55 (123 mg, 0.418 mmol) and 2,6-dimethyl-1,4-benzoquinone (13) (85 mg, 0.63 mmol) in dry toluene (5.0 mL) were heated at reflux for 3 days. The

-113-

solvent was removed under vacuum, and the residue was subjected to PLC (30% EtOAc/hexane) to afford 57 (147 mg, 82% yield) as a pale yellow foam, which was crystallized from Et₂O: mp 131.0-133.0 °C. IR (CCl₄) 1770 (s), 1681 (s), 1250 (m), 1179 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.45 (1H, t, J = 1.4 Hz, H3), 5.08 (1H, m, H7a), 3.70 (1H, m, H10a), 2.98-2.83 (3H, m, H4a, H7β, and H10), 2.57-2.47 (2H, m, H5 and H7α), 2.41 (1H, m, H10b), 2.03 (1H, m, H5), 1.95 (3H, d, J = 1.4 Hz, 2-methyl), 1.37 (3H, s, 10cmethyl), 1.25 (3H, d, J = 7.6 Hz, 10-methyl), 0.88 (9H, s, SiC(CH₃)₃), 0.05 (3H, SiCH₃), 0.04 (3H, SiCH₃). NOE data 5.08 (3.70, 5%), 2.41 (2.98-2.83, 8%), 1.37 (2.98-2.83, 8%), 1.25 (2.41, 7%). ¹³C NMR (CDCl₃) δ 202.2 (0), 199.6 (0), 179.4 (0, C9), 147.9 (0, C2), 140.0 (0, C6), 133.9 (1, C3), 119.4 (0, C6a), 83.9 (1, C7a), 57.1 (1, C4a), 51.9 (0, C10c), 46.6 (1, C10b), 45.2 (1, C10a), 38.6 (1, C10), 35.5 (2, C7), 31.7 (2, C5), 25.5 (3, SiC(CH₃)₃), 25.5 (3, 10c-methyl), 18.0 (0, SiC(CH₃)₃), 16.5 (3, 2-methyl), 13.5 (3, 10methyl), -4.0 (3, Si(CH₃)₂). MS m/z 430 (M⁺, 10), 373 (17), 372 (48), 238 (25), 237 (22), 209 (29), 181 (17), 131 (26), 130 (28), 117 (34), 91 (21), 79 (21), 75 (96), 73 (100). HRMS calcd. for $C_{24}H_{34}O_5Si 430.2176$, found 430.2177.

 $(2\alpha, 3\alpha, 3a\alpha, 6a\alpha)$ - and $(2\alpha, 3\beta, 3a\beta, 6a\beta)$ -5-((1-(tert-Butyldimethylsilyl)oxy)vinyl)-

3,3a,6,6a-tetrahydro-2-hydroxy-2,3-dimethyl-2H-cyclopenta[b]furan (59)

To a solution of diene 54 (458 mg, 1.56 mmol) in anhydrous Et_2O (20 mL) was introduced MeLi (1.4 M in Et_2O , 1.28 mL, 1.79 mmol) at -30 °C over 6 min. The mixture was allowed to warm to 0 °C over 2.5 h, and then it was quenched with water (50 mL). The aqueous layer was extracted with Et_2O (3 x 25 mL). The combined organic layers were washed with brine (2 x 30 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was subjected to chromatography on a short column (50% Et_2O /hexane) to afford a 2.2:1 epimeric mixture **59** (403 mg, 83% yield) as a white solid. Discernible ¹H NMR (CDCl₃) signals for the major epimer of **59**: δ 5.94 (1H, d, J = 2.0Hz, H4), 4.87 (1H, m, H6a), 4.29 (1H, s, CH₂=), 4.28 (1H, s, CH₂=), 3.06 (1H, H3a), 2.76-2.67 (2H, m), 2.51 (1H, m), 1.44 (3H, s, 2-methyl), 1.13 (3H, d, J = 7.0 Hz, 3methyl), 0.97 (9H, s, Si(CH₃)₃), 0.18 (3H, s, SiCH₃), 0.17 (3H, s, SiCH₃).

Discernible ¹H NMR (CDCl₃) signals for the minor epimer of **59**: δ 6.04 (1H, d, J = 1.3 Hz, H4), 1.36 (3H, s, 2-methyl), 1.04 (3H, d, J = 7.2 Hz, 3-methyl), 0.96 (9H, s, Si(CH₃)₃), 0.17 (3H, s, SiCH₃), 0.16 (3H, s, SiCH₃).

 $(2\alpha,3\alpha,3a\alpha,7a\alpha)$ -2,3,3a,6,7,7a-Hexahydro-2-methoxy-2,3,5-trimethylbenzofuran (60) and $(2\alpha,3\beta,3a\beta,7a\beta)$ -2,3,3a,6,7,7a-hexahydro-2-methoxy-2,3,5-trimethylbenzofuran (61)

To a solution of lactone 47 (1.54 g, 9.25 mmol) in anhydrous Et_2O (75 mL) was introduced MeLi (1.4 M in ether, 7.60 mL, 10.6 mmol) at -30 °C over 15 min. The solution was allowed to warm to 0 °C over a period of 2 h before MeI (1.15 mL, 18.5 mmol) was added, followed by HMPA (15 mL). This mixture was stirred at rt for 11 h, and then it was quenched with 3% NaHCO₃ solution (50 mL). The aqueous layer was extracted with Et_2O (3 x 20 mL). The combined organic phases were washed with 3% NaHCO₃ solution (2 x 40 mL) and brine (40 mL), dried over anhydrous Na₂SO₄, and

-115-

concentrated under vacuum. The residue was subjected to chromatography on a short column (15% Et_2O /petroleum ether) to afford 60 (1.23 g, 67% yield) and 61 (0.251 g, 14% yield).

Hemi-acetal **60**: pale yellow oil. IR (neat) 3039 (w), 1453 (m), 1376 (m), 1070 (s), 1010 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 5.41 (1H, m, H4), 4.12 (1H, m, H7a), 3.23 (3H, s, OCH₃), 2.48 (1H, m, H3a), 1.94-1.87 (2H, m, H6), 1.83 (1H, m, H7α), 1.70 (3H, s, 5-methyl), 1.67-1.44 (2H, m, H3 and H7β), 1.33 (3H, s, 2-methyl), 1.03 (3H, d, J = 6.8 Hz, 3-methyl). NOE data 4.12 (2.48, 4%; 1.83, 3%), 1.03 (2.48, 3%). ¹³C NMR (CDCl₃) δ 135.1 (0, C5), 121.3 (1, C4), 106.6 (0, C1), 74.7 (1, C7a), 50.1 (1, C3), 48.1 (3, OCH₃), 44.0 (1, C3a), 28.4 (2, C7), 27.5 (2, C6), 23.7 (3, 5-methyl), 19.8 (3, 2-methyl), 11.6 (3, 3-methyl). MS *m*/z 196 (M⁺, 11), 165 (17), 164 (22), 122 (77), 121 (16), 107 (100), 93 (79), 91 (16), 79 (26), 77 (14). HRMS calcd. for C₁₂H₂₀O₂ 196.1463, found 196.1480.

Hemi-acetal **61**: colorless oil. IR (neat) 3038 (w), 1462 (m), 1378 (m), 1106 (s), 1029 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 5.37 (1H, m, H4), 4.12 (1H, m, H7a), 3.27 (3H, s, OCH₃), 2.28 (1H, m, H3a), 2.06 (1H, m, H3), 1.96-1.92 (2H, m, H6), 1.85-1.73 (2H, m, H7), 1.69 (3H, s, 5-methyl), 1.25 (3H, s, 2-methyl), 1.03 (3H, d, *J* = 7.0 Hz, 3-methyl). NOE data 3.27 (2.06, 5%), 2.28 (4.12, 3%), 1.25 (2.28, 3%), 1.03 (2.28, 3%). ¹³C NMR (CDCl₃) δ 134.9 (0, C5), 120.9 (1, C4), 110.2 (0, C2), 75.2 (1, C7a), 48.9 (3, OCH₃), 46.1 (1, C3), 45.7 (1, C3a), 28.0 (2, C6), 27.6 (2, C7), 23.6 (3, 5-methyl), 20.6 (3, 2-methyl), 13.8 (3, 3-methyl). MS *m*/z 196 (M⁺, 19), 165 (22), 164 (34), 123 (14), 122 (53), 121 (23), 107 (100), 93 (98), 91 (20), 79 (30), 77 (17). HRMS calcd. for C₁₂H₂₀O₂ 196.1463, found 196.1479.

(2α,3α,3aα,6aα)-5-((1-(*tert*-Butyldimethylsilyl)oxy)vinyl)-3,3a,6,6a-tetrahydro-2methoxy-2,3-dimethyl-2H-cyclopenta[b]furan (62)

To a solution of 60 (361 mg, 1.84 mmol) in CH_2Cl_2 (40 mL) was introduced ozone at -78 °C until a blue color persisted. The excess ozone was removed by bubbling nitrogen through the solution until the blue color disappeared. Then, dimethyl sulfide (1.0 mL, 13.6 mmol) was added. The mixture was allowed to warm to rt, and it was stirred overnight. Evaporation of the solvent under vacuum gave the crude ozonolysis product (410 mg) as a yellow oil.

A portion of the crude ozonolysis product (180 mg) was dissolved in 0.5 M KOH/MeOH (20 mL). The solution was stirred 0 °C for 0.5 h and then at rt for 2 h. The mixture was diluted with Et₂O (150 mL) and washed with water (3 x 30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was subjected to column chromatography (2% MeOH/CH₂Cl₂) to provide **62** (40 mg, 24% yield) as a pale yellow oil: ¹H NMR (CDCl₃) δ 6.66 (1H, t, *J* = 2.0 Hz, H4), 4.61 (1H, m, H6a), 3.23 (3H, s, OCH₃), 3.14 (1H, m, H3a), 2.79 (1H, m, H6\alpha), 2.64 (1H, ddd, *J* = 18.0, 3.9, 2.0 Hz, H6\beta), 23.2 (3H, s, COCH₃), 1.73 (1H, m, H3), 1.33 (3H, s, 2-methyl), 1.13 (3H, d, *J* = 7.0 Hz, 3-methyl). ¹³C NMR (CDCl₃) δ 196.8 (0, COCH₃), 144.0 (1, C4), 142.6 (0, C5), 107.6 (0, C2), 78.9 (1, C6a), 58.6, 50.3, 47.9, 37.0, 26.6, 18.6, 13.3.

(4aα,7aβ,9ξ,10β,10aβ,10bα,10cα)-6-((*tert*-Butyldimethylsilyl)oxy)-4a,5,7,7a,9,10,10a,10b,10c-nonabydro-2,9,10,10c-tetramethylbenz[6,7]indeno[2,1b]furan-1,4-dione (65) and (4aα,7aβ,10aβ,10bα,10cα)-6-((*tert*- butyldimethylsilyl)oxy)-4a,5,7,7a,10a,10b,10c-heptahydro-2,9,10,10c-

tetramethylbenz[6,7]indeno[2,1-b]furan-1,4-dione (66)

A solution of diene **59** (2.2:1 epimeric mixture) (111 mg, 0.357 mmol) and 2,6dimethyl-1,4-benzoquinone (13) (97.2 mg, 0.714 mmol) in dry toluene (5.0 mL) was heated at reflux for 48 h. After the solvent was removed under vacuum, the residue was subjected to PLC (30% EtOAc/hexane) to afford **65** (50 mg, 31% yield), as an 8:1 epimeric mixture, and **66** (57 mg, 37% yield).

The major epimer of **65**: ¹H NMR (CDCl₃) δ 6.38 (1H, q, J = 1.3 Hz, H3), 4.89 (1H, dd, J = 15.1, 7.7 Hz, H7a), 3.05-2.83 (3H, m), 2.33 (1H, m), 2.18-2.01 (2H, m), 1.94 (3H, d, J = 1.3 Hz, 2-methyl), 1.67 (1H, m), 1.46 (3H, s), 1.38 (3H, s), 1.22 (1H, m), 1.03 (3H, d, J = 6.8 Hz, 10-methyl), 0.87 (9H, s, SiC(CH₃)₃), 0.035 (3H, s, SiCH₃), 0.018 (3H, s, SiCH₃). ¹³C NMR (CDCl₃) δ 201.5 (0), 200.4 (0), 148.4 (0, C2), 138.0 (0, C6), 133.3 (1, C3), 119.7 (0, C6a), 108.0 (0, C9), 81.3 (1, C7a), 56.9, 51.4, 49.8, 36.3, 31.7, 26.0, 25.6 (3, SiC(CH₃)₃), 25.2, 18.0 (0, SiC(CH₃)₃), 16.5, 12.4, -4.0 (3, SiCH₃), -4.2 (3, SiCH₃).

Discernible ¹H NMR (CDCl₃) signals for the minor epimer of **65**: 6.49 (1H, s, H3), 5.07 (1H, m, H7a), 0.97 (3H, d, *J* = 7.5 Hz, H10), 0.93 (9H, s, SiC(CH₃)₃), 0.19 (3H, s, SiCH₃), 0.14 (3H, s, SiCH₃).

Compound **66**: pale yellow solid: mp 128.0-129.5 °C. IR (CCl₄) 1681 (s), 1260 (m), 1178 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 6.38 (1H, s, H3), 5.06 (1H, dd, J = 16.7, 7.5 Hz, H7a), 3.68 (1H, d, J = 8.3 Hz, H10a), 3.12 (1H, dd, J = 15.3, 7.6 Hz, H7 β), 2.94 (1H, apparent t, J = 8.9 Hz, H4a), 2.41-2.32 (2H, m, H5 and H10b), 2.19-2.00 (2H, m, H7 α

and H5), 1.95 (3H, d, J = 1.3 Hz, 2-methyl), 1.72 (3H, s, 9-methyl), 1.56 (3H, s, 10methyl), 1.43 (3H, s, 10c-methyl), 0.88 (9H, s, SiC(CH₃)₃), 0.05 (3H, s, SiCH₃), 0.03 (3H, s, SiCH₃). NOE data 5.06 (3.68, 7%; 2.12, 3%), 1.43 (2.94, 6%; 2.41-2.32, 4%). ¹³C NMR (CDCl₃) δ 201.9 (0), 200.5 (0), 148.4 (0), 145.7 (0), 137.8 (0), 133.3 (1, C3), 118.1 (0), 104.6 (0, C6a), 82.5 (1, C7a), 57.2 (1, C4a), 53.5 (1, C10a), 51.5 (0, C10c), 50.5 (1, C10b), 36.9 (2, C7), 31.9 (2, C5), 25.6 (3, C(CH₃)₃), 11.8 (3, 9-methyl), 10.6 (3, 10methyl), -3.9 (3, SiCH₃), -4.2 (3, SiCH₃). MS *m*/*z* 428 (M⁺, 2), 332 (5), 291 (10), 275 (6), 247 (5), 179 (7), 109 (14), 75 (32), 73 (100), 59 (11). HRMS calcd. for C₂₅H₃₆O₄Si 428.2383, found 428.2374.

(6aα,7aβ,10β,10aβ,10bα,10cα)-6a,7,7a,10,10a,10b,10c-Heptahydro-2,10,10ctrimethylbenz[6,7]indeno[2,1-b]furan-1,4,6,9-tetraone (67)

A solution of the Diels-Alder adduct **56** (0.335 g, 0.778 mmol) and 10% HCl (8.0 mL) in THF (16 mL) was stirred at rt for 24 h. This was diluted with EtOAc (80 mL), washed with water (3 x 25 mL) and brine (25 mL), and dried over anhydrous Na₂SO₄. After concentration under vacuum, the residue was subjected to column chromatography (50% EtOAC/hexane) to afford **67** (0.150 g, 61% yield) as yellow crystals: mp 180.0-182.0 °C. IR (CH₂Cl₂) 1767 (s), 1667 (s), 1624 (m), 1380 (m), 1265 (m) cm⁻¹. ¹H NMR (CD₃COCD₃) δ 7.10 (1H, q, *J* = 1.4 Hz, H3), 6.40 (1H, s, H5), 4.72 (1H, dd, *J* = 17.0, 7.8 Hz, H7a), 3.34 (1H, apparent t, *J* = 6.7 Hz, H6a), 3.23 (1H, dd, *J* = 8.8, 6.1 Hz, H10b), 2.84 (1H, m, H7\beta), 2.75 (1H, dq, *J* = 7.5, 4.8 Hz, H10), 2.33 (1H, apparent dt, *J* = 9.1, 4.7 Hz, H10a), 2.15 (3H, d, *J* = 1.4 Hz, 2-methyl), 1.91 (1H, m, H7\alpha), 1.70 (3H, s, 10c-

methyl), 1.07 (3H, d, J = 7.5 Hz, 10-methyl). NOE data 4.72 (2.33, 6%), 3.23 (2.75, 12%), 1.91 (3.34, 4%), 1.70 (3.34, 10%; 3.23, 9%), 1.07 (2.33, 6%). ¹³C NMR (CD₃COCD₃) δ 199.6 (0), 198.9 (0), 186.3 (0), 180.3 (0, C9), 152.1 (0), 150.5 (0), 139.9 (1, C3), 127.6 (1, C5), 81.8 (1, C7a), 53.6 (1, C10b), 51.5 (0, C10c), 48.84 (1, C6a), 48.80 (1, C10a), 42.5 (1, C10), 36.9 (2, C7), 30.5 (3, 10c-methyl), 17.9 (3, 10-methyl), 17.0 (3, 2-methyl). MS *m*/z 314 (M⁺, 45), 296 (16), 286 (22), 268 (22), 253 (15), 241 (28), 217 (21), 213 (24), 188 (22), 176 (100), 48 (42), 120 (23), 96 (18), 94 (45), 91 (53), 81 (26), 79 (42), 77 (34). HRMS calcd. for C₁₈H₁₈O₅ 314.1154, found 314.1162.

1,3-Dithienium tetrafluoroborate (68)

This reagent was prepared by the procedure of Corey and Walinsky.⁴⁴ 1,3-Dithiane (496 mg, 4.00 mmol) and triphenylcarbenium tetrafluoroborate (1.32 g, 4.00 mmol) in dry CH_2Cl_2 (12 mL) was heated at reflux for 2 h, during which period a yellow precipitate was produced. After the solvent was decanted, the precipitate was washed with cold dry CH_2Cl_2 (3 x 2 mL) and Et_2O (2 x 2 mL), and dried on a vacuum line to give 70 (655 mg, 79% yield) as a pale yellow solid.

(1*R**,5*R**,6*S**,7*S**,8*R**,11*S**,13*R**,15*S**)-1-Hydroxy-3,5,8-trimethyl-10oxapentacyclo[11.3.0.0^{5,16}.0^{6,13}.0^{7,11}]hexadec-2-ene-4,9,14-trione (71)

To the Diels-Alder adduct 57 (50.0 mg, 0.116 mmol) in dry CH₂Cl₂ (3.0 mL) added 1,3-dithienium tetrafluoroborate (68) (24.0 mg, 0.116 mmol) in nitromethane (1.0 mL) at -78 °C over 2 min. The mixture was stirred for 20 min and then warmed to rt. This was diluted with Et₂O (25 mL), washed with saturated NaHCO₃ solution (2 x 10 mL) and brine (2 x 10 mL), dried over anhydrous NaSO₄, and concentrated under vacuum. The residue was applied to PLC (85% EtOAc/hexane) to afford 71 (18 mg, 48% yield) as colorless crystals: mp > 220 °C (dec.). IR (Nujol) 3405 (s), 1748 (s), 1669 (s) cm⁻¹. ¹H NMR (CD₃COCD₃) δ 7.00 (1H, s, H2), 5.20 (1H, s, 1-OH), 4.90 (1H, t, *J* = 5.7 Hz), 2.80 (1H, m), 2.66-2.44 (3H, m), 2.35 (1H, d, *J* = 16.2 Hz), 2.08-2.01 (3H, m), 1.83 (3H, d, *J* = 1.4 Hz, 3-methyl), 1.35 (3H, s, 5-methyl), 0.98 (3H, d, *J* = 7.2 Hz, 8-methyl). ¹³C NMR (CDCl₃) δ 209.0 (0, C14), 200.8 (0, C4), 178.0 (0, C9), 149.4 (1, C2), 138.3 (0, C3), 88.6 (1, C11), 83.5 (0, C1), 76.1 (0, C13), 59.6, 55.9, 54.7 (0, C5), 48.1, 39.3, 37.2, 26.6, 18.0, 15.1, 12.1. MS *m*/z 316 (M⁺, 62), 288 (10), 205 (18), 178 (17), 165 (36), 151 (100), 137 (14), 123 (12), 91 (13), 79 (15). HRMS calcd. for C₁₈H₂₀O₅ 318.1310, found 318.1306. The structure of 71 was revealed by X-ray diffraction.

(2α,4aβ,6aβ,7aα,10α,10aα,10bβ,10cβ)-1,3,4a,5,6a,7,7a,10,10a,10b,10c-Undecahydro-2,10,10c-trimethylbenz[6,7]indeno[2,1-b]furan-1,4,6,9-tetraone (75)

To a solution of 67 (28 mg, 0.089 mmol) in acetone (2.0 mL) was added dropwise TiCl₃ (20% aqueous solution, 0.24 mL, 0.38 mmol) at rt. The solution was stirred for 20 min before it was poured into brine (25 mL). This was extracted with EtOAc (3 x 15 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatography (80% EtOAc/hexane) to afford 75 (14 mg, 50% yield) as a white solid: mp 178.0-180.0 °C. IR (Nujol) 1770 (s), 1710 (s) cm⁻¹. ¹H NMR

(CDCl₃) δ 4.78 (1H, apparent q, J = 7.2 Hz, H7a), 3.49 (1H, m, H4a), 3.27 (1H, m, H2), 3.05-2.92 (4H, m), 2.74 (1H, dd, J = 9.6, 7.7 Hz, H10b), 2.53 (1H, m, H5β), 2.49 (1H, dq, J = 9.5, 5.0 Hz, H10), 2.26 (1H, dd, J = 19.6, 13.4 Hz, H3α), 1.71-1.53 (2H, m, H10a and H7β), 1.68 (3H, s, 10c-methyl), 1.20 (3H, d, J = 6.4 Hz, 2-methyl), 1.13 (3H, d, J = 7.5Hz, 10-methyl). NOE data 3.49 (3.27, 6%), 1.68 (3.49, 8%; 3.27, 3%; 2.74, 10%), 1.20 (2.26, 2%). ¹³C NMR (CDCl₃) δ 211.9 (0), 207.0 (0), 206 (0), 179.3 (0, C9), 81.6 (1, C7a), 55.4 (1, C10b), 54.1 (1, C4a), 49.6 (1, C6a), 47.9 (0, C10c), 47.9 (1, C10a), 42.3 (2, C3), 41.9 (1, C10), 39.0 (1, C2), 34.6 (2, C5), 31.9 (2, C7), 28.0 (3, 10c-methyl), 17.6 (3, 10-methyl), 13.6 (3, 2-methyl). MS *m*/z 318 (M⁺, 44), 276 (17), 231 (22), 221 (18), 207 (100), 161 (22), 152 (46), 147 (20), 139 (22), 135 (29), 125 (21), 124 (22), 119 (22), 109 (36) 99 (32), 93 (37), 91 (32), 84 (22), 82 (23), 81 (21), 79 (42), 77 (32), 69 (51). HRMS calcd. for C₁₄H₂O₅ 318.1466, found 318.1447.

(2α,4aβ,6aα,7aβ,10β,10aβ,10bα,10cα)-2,3,4a,5,6a,7,7a,10,10a,10b,10c-Undecahydro-2,10,10c-trimethylbenz[6,7]indeno[2,1-b]furan-1,4,6,9-tetraone (76)

To a refluxing solution of 67 (80 mg, 0.25 mmol) in glacial AcOH (10 mL) was added analytical grade Zn dust (0.98 g, 15 mmol) in portions until the reaction solution turned colorless and TLC indicated that 67 was completely consumed. The mixture was then heated at reflux for 7 h. TLC showed that the initial major product had changed largely to what had initially been the minor product. The solid was removed by filtration, and the filtrate was poured into a mixture of EtOAc (100 mL) and water (40 mL). This was neutralized by adding solid Na₂CO₃ until CO₂ evolution ceased. The aqueous layer

was extracted with EtOAc (2 x 15 mL). The combined organic layers were washed with water (2 x 30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was subjected to column chromatography (70% EtOAc/hexane) to give material (62 mg, 76% yield) which contained 76 and the other isomer in a ratio of 6:1 in favor of 76, as shown by 'H NMR. An analytical sample of 76 was obtained by crystallization from CH₂Cl₂/EtOAc (4 : 1): mp > 220 °C (dec.). IR (Nujol) 1754 (s), 1705 (s) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 4.80 (1H, dd, J = 16.2, 7.5 Hz, H7a), 3.42 (1H, dd, J = 9.9, 7.1 Hz, H4a), 3.02-2.89 (3H, m, H6a, H2 and H7 β), 2.85-2.80 (2H, m, H3 β and H10b), 2.61-2.58 (2H, m, H5 α and H5 β), 2.26 (1H, dd, J = 19.0, 12.6 Hz, H3 α), 1.98 (1H, apparent dt, J = 9.5, 3.6 Hz, H10a), 1.51 (1H, m, H7 α), 1.30 (3H, s, 10c-methyl), 1.17 (3H, d, J = 6.2 Hz, 2-methyl), 1.11 (3H, d, J = 7.5 Hz, 10methyl). NOE data 3.43 (1.98, 9%), 1.98 (4.80, 5%; 3.43, 9%), 1.30 (H6a, 5%; H10b, 8%; 2.26, 2%), 1.11 (1.98, 4%). ¹³C NMR (CD₂Cl₂) δ 212.7 (0), 208.6 (0), 206.7 (0), 179.9 (0, C9), 81.7 (1, C7a), 56.3 (1, C10b), 50.5 (1, C6a), 49.5 (1, C4a), 48.0 (0, C10c), 57.2 (1, C10a), 42.4 (2, C3), 42.3 (1, C2), 42.2 (1, C10), 36.7 (2, C5), 32.5 (2, C7), 21.8 (3, 10c-methyl), 18.2 (3, 10-methyl), 13.8 (3, 2-methyl). MS m/z 318 (M⁺, 22), 221 (7), 207 (100), 179 (12), 161 (27), 152 (19), 121 (14), 112 (15), 109 (17), 93 (16), 91 (16), 82 (13), 81 (11), 79 (20), 77 (17), 69 (20), 67 (11). HRMS calcd for C₁₈H₂₂O₅ 318.1466, found 318.1446. The stereochemistry of 76 was confirmed by X-ray analysis.

Selected NMR data for the other isomer: ¹H NMR (CD_2Cl_2) δ 3.16 (1H, dd, $J \approx$ 12.5, 4.7 Hz, H4a), 1.30 (3H, s, 10c-methyl), 1.17 (3H, d, J = 7.4 Hz). ¹³C NMR (CD_2Cl_2) δ 82.0 (1, C7a), 56.0 (1, C10b), 22.6 (3, 10c-methyl), 18.8 (3, 10-methyl), 16.1

(3, 2-methyl).

(2α,4β,6aα,7aβ,9α,10β,10aβ,10bα,10cα)-2,3,4a,5,6a,7,7a,9,10,10a,10b,10c-Dodecahydro-2,9,10,10c-tetramethylbenz[6,7]indeno[2,1-b]furan-1,4,6-trione (77)

A solution of diene **59** (a 2.2:1 epimeric mixture) (845 mg, 2.72 mmol) and 2,6dimethyl-1,4-benzoquinone (**13**) in dry toluene (40 mL) was heated at reflux for 70 h. The solvent was removed under vacuum. The residue was dissolved in THF (40 mL) and combined with 5% aqueous HCl (20 mL). The resulting mixture was stirred at rt for 24 h and then diluted with EtOAc (160 mL). The organic layer was washed with water (3 x 50 mL) and brine (50 mL), dried over MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatography (50% EtOAc/hexane) to provide **72** (472 mg, 52% yield) as an isomeric mixture.

Selected NMR data for a major isomer of 72 from the mixture: ¹H NMR (CDCl₃) δ 6.99 (1H, br s, H3), 6.58 (1H, s, H5), 2.15 (3H, br s, 2-methyl), 1.57 (3H, s), 1.44 (3H, s), 0.78 (3H, d, J = 6.7 Hz, 10-methyl). ¹³C NMR (CDCl₃) δ 200.3 (0), 197.6 (0), 185.5 (0, C4), 109.5 (0, C9), 81.8 (1, C7a).

Selected NMR data for the second isomer of **72** from the mixture: ¹H NMR (CDCl₃) δ 6.98 (1H, br s, H3), 6.55 (1H, s, H5), 2.15 (3H, br s, 2-methyl), 1.60 (3H, s), 1.36 (3H, s), 0.72 (3H, d, *J* = 7.2 Hz, 10-methyl). ¹³C NMR (CDCl₃) δ 201.4 (0), 197.3 (0), 195.5 (0), 186.0 (0, C4), 109.9 (0, C9), 83.0 (1, C7a).

To a refluxing solution of 72 (0.258 g, 0.781 mmol) in glacial AcOH was added Zn dust (1.45 g, 21.7 mmol) in portions until the solution turned to colorless and TLC

indicated that 72 was completely consumed. The mixture was heated at reflux overnight. After cooling to rt, the solid was removed by filtration. The filtrate was poured into a mixture of EtOAc (80 mL) and water (80 mL), and neutralized by adding solid Na₂CO₃ until CO_2 -evolution ceased. The aqueous layer was extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was subjected to column chromatography (50% EtOAc/hexane) to provide 77 (50 mg, 10% yield from diene 59) as a white solid: mp 179.0-181.0 °C. IR (Nujol) 1708 (s), 1152 (m), 1107 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 4.36 (1H, m, H7a), 3.52 (1H, dd, J = 10.4, 6.5 Hz, H4a), 3.42 (1H, dq, J = 8.8, 6.3 Hz, H9), 3.10-2.99 (2H, m, H2 and H6a), 2.86 (1H, dd, J = 9.6, 7.0)Hz, H3 β), 2.81 (1H, dd, J = 12.6, 6.9 Hz, H10b), 2.74 (1H, dd, J = 13.6, 7.7 Hz, H7 β), 2.59 (2H, m, H5 α and H5 β), 2.26 (1H, dd, J = 19.6, 13.4 Hz, H3 α), 1.70 (1H, m, H10a), 1.57-1.49 (2H, m, H7 α and H10), 1.30 (3H, s, 10c-methyl), 1.23 (3H, d, J = 6.0 Hz, 9methyl), 1.20 (3H, d, J = 6.4 Hz, 2-methyl), 1.80 (3H, d, J = 6.7 Hz, 10-methyl). NOE data 4.36 (3.42, 4%; 2.74, 4%; 1.70, 3%), 3.52 (3.10-2.99, 3%; 1.70, 6%), 1.70 (4.36, 5%; 3.52, 10%), 1.30 (3.10-2.99, 4%; 2.81, 6%); 0.80 (3.42, 4%; 1.70, 3%). ¹³C NMR (CDCl₃) δ 212.0 (0), 209.1 (0), 207.0 (0), 85.8 (1, C9), 83.1 (1, C7a), 55.7 (1, C10b), 53.2 (1, C10a), 53.1 (1, C6a), 48.9 (1, C4a), 47.5 (0, C10c), 47.4 (1, C10), 42.0 (2, C3), 41.4 (1, C2), 36.2 (2, C5), 30.2 (2, C7), 21.8 (3, 10c-methyl), 18.7 (3, 9-methyl), 17.0 (3, 10methyl), 13.4 (3, 2-methyl). MS m/z 318 (M⁺, 12), 207 (9), 178 (10), 161 (22), 152 (11), 136 (10), 121 (14), 112 (100), 109 (10), 97 (68), 97 (17), 77 (12), 69 (11), 67 (10). HRMS calcd. for $C_{19}H_{26}O_4$ 318.1831, found 318.1839.

(1α,4aβ,7aα,10α,10aα,10bβ,10cβ)-6-((tert-Butyldimethylsilyl)oxy)-

4a,5,7,7a,10,10a,10b,10c-octahydro-1-hydroxy-2,10,10c-trimethyl-1H-

benz[6,7]indeno[2,1-b]furan-4,9-dione (89)

Method A: To a solution of enedione 56 (100 mg, 0.232 mmol) in dry THF (5.0 mL) was introduced LiAl(O-t-Bu)₃H (1.0 M in THF, 0.30 mL, 0.30 mmol) at 0 °C over 5 min. The mixture was stirred at 0 °C for 15 min before it was quenched with water (30 mL) and extracted with EtOAc (4 x 20 mL). The combined extracts were washed with brine (2 x 30 mL), dried over anhydrous Na_2SO_4 , and concentrated under vacuum. The residue was subjected to column chromatography (50% EtOAc/hexane) to afford 89 (90 mg, 90% yield) as a white solid.

Method B: Enedione 56 (50.0 mg, 0.116 mmol) was dissolved in MeOH (2.0 mL) by warming. After the solution had cooled to rt, NaBH₄ (5.0 mg, 0.13 mmol) was added over 2 min. The mixture was stirred for 10 min before it was quenched with dilute NH₄Cl solution (20 mL) and extracted with EtOAc (3 x 10 mL). The combined extracts were washed with water (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was subjected to PLC (50% EtOAc/hexane) to provide 89 (41.3 mg, 82% yield) as a white solid.

Compound 89: mp 171.0-172.0 °C. IR (Nujol) 3448 (s), 1740 (s), 1666 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 5.83 (1H, s, H3), 5.02 (1H, m, H7a), 3.91 (1H, s after D₂O shake, H1), 3.08 (1H, ddd, J = 17.4, 7.2, 1.6 Hz, H7), 2.77 (1H, m), 2.64 (1H, m), 2.60-2.17 (6H, m), 2.08 (3H, s, 2-methyl), 1.40 (3H, d, J = 7.5 Hz, 10-methyl), 1.10 (3H, s, 10c-methyl), 0.91(9H, s, SiC(CH₃)₃), 0.11(3H, s, SiCH₃), 0.089 (3H, s, SiCH₃). NOE data 3.91 (2.08,

-126-

2%; 1.10, 2%). ¹³C NMR (CDCl₃) δ 200.3 (0, C4), 179.7 (0, C9), 155.9 (0, C2), 140.3 (0, C6), 123.3 (1, C3), 118.3 (0, C6a), 82.2 (1, C7a), 74.2 (1, C1), 53.3, 51.5, 47.7, 43.0, 38.7 (0, C10c), 33.7, 32.0, 27.0, 25.6 (3, SiC(CH₃)₃), 18.0 (0, SiC(CH₃)₃), 16.2 (3, 2-methyl), -3.8 (3, SiCH₃), -3.9 (3, SiCH₃); MS *m/z* 432 (M⁺, 20), 376 (17), 375 (60), 238 (14), 237 (18), 209 (26), 195 (56), 193 (19), 181 (16), 135 (35), 131 (16), 130 (23), 117 (19), 91 (10), 75 (84), 73 (100). HRMS calcd. for C₂₄H₃₆O₅Si 432.2330, found 432.2351.

cis-5-Acetyl-3,3a,6,6a-tetrahydro-2H-cyclopenta[b]furan-2-one (93)

To a solution of 41 (4.50 g, 29.6 mmol) in CH_2Cl_2 (300 mL) was introduced ozone at -78 °C until a blue color persisted. The excess ozone was removed by bubbling nitrogen through the solution until the blue color disappeared. Me₂S (21.7 mL, 0.296 mol) was added, and the mixture was allowed to warm to rt as it was stirred overnight. The solvent and excess Me₂S were removed under vacuum. The residue was dissolved in THF (150 mL) and combined with a 5% aqueous HCl solution (150 mL). The mixture was heated at reflux for 3 h. Most of THF was removed under vacuum, and the remaining aqueous solution was extracted with EtOAc (4 x 50 mL). The combined organic extracts were washed with brine (2 x 50 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatography (3% MeOH/CHCl₃) to provide **93** (1.15 g, 23% yield) as a white solid: mp 109.0-111.0 °C. IR (CH₂Cl₂) 1751 (s), 1662 (s), 1426 (m), 1173 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.46 (1H, d, *J* = 1.3 Hz, H4), 5.18 (1H, apparent t, *J* = 5.5 Hz, H6a), 3.77 (1H, m, H3a), 3.02-2.91 (2H, m, H6), 2.88 (1H, dd, *J* = 18.0, 10.2 Hz, H3 *sym* to H3a), 2.56 (1H, dd, *J* = 18.0, 2.0 Hz, H3 anti to H3a), 2.35 (3H, s, COCH₃). ¹³C NMR (CDCl₃) δ 195.8 (0, COCH₃), 175.5 (0, C2), 143.9 (0, C5), 141.0 (1, C4), 82.3 (1, C6a), 46.6 (1, C3a), 37.8 (2, C6), 32.4 (2, C3), 26.8 (3, COCH₃). MS *m/z* 166 (M⁺, 8), 151 (25), 122 (11), 95 (20), 67 (29), 65 (10), 51 (11), 43 (100). HRMS calcd. for C₉H₁₀O₃ 166.0629, found 166.0628.

cis-5-(1-((*tert*-Butyldimethylsilyl)oxy)vinyl)-3,3a,6,6a-tetrahydro-2*H*cyclopenta[*b*]furan-2-one (78) and *cis*-5-(1-((*tert*-Butyldimethylsilyl)oxy)vinyl)-3-(1hydroxy-1-(*cis*-3,3a,6,6a-tetrahydro-2*H*-cyclopenta[*b*]furan-2-on-5-yl)ethyl)-3,3a,6,6a-tetrahydro-2*H*-cyclopenta[*b*]furan-2-one (94)

Method A: To a mixture of enone 93 (0.548 g, 3.30 mmol) and *tert*butyldimethylsilyl triflate (0.83 mL, 3.61 mmol) in dry CH_2Cl_2 was added dry triethylamine (0.60 mL, 4.30 mmol) at 0 °C over 5 min. The mixture was stirred at 0 °C for 10 min. The solvent was removed under vacuum, and the residue was subjected to column chromatography (silica gel, 30% dry EtOAc/hexane) to afford 78 (0.682 g, 74% yield).

Method B: To a solution of diisopropylamine (2.32 mL, 16.6 mmol) in dry THF (30 mL) was introduced *n*-BuLi (2.5 M in hexane, 5.75 mL, 14.4 mmol) at 0 °C over 10 min. The solution was stirred for 20 min and then transferred by a syringe to a solution of enone 93 (2.28 g, 13.7 mmol) and *tert*-butyldimethylsilyl triflate (3.62 mL, 15.8 mmol) in dry THF (80 mL) at -78 °C over 40 min. The solution was stirred at -78 °C for 1 h before it was allowed to warm to rt, quenched with water (100 mL), and extracted with Et_2O (4 x 50 mL). The combined organic extracts were washed with brine (2 x 50 mL), dried over

anhydrous MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatography (60% EtOAc/hexane) to afford 78 (1.65 g, 43% yield) and 94 (229 mg, 7% yield).

Diene 78: a colorless oil: IR (neat) 1778 (s), 1590 (m), 1319 (m), 1259 (m), 1172 (m), 1014 (m), 831 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 5.77 (1H, apparent s, H4), 5.16 (1H, m, H6a), 4.36 (1H, s, CH₂=), 4.33 (1H, s, CH₂=), 3.61 (1H, m, H3a), 2.83-2.80 (2H, m, H6), 2.76 (1H, dd, *J* = 18.0, 9.6 Hz, H3 *syn* to H3a), 2.46 (1H, dd, *J* = 18.0, 1.5 Hz, H3 *anti* to H3a), 0.95 (9H, s, SiC(CH₃)₃), 0.17 (6H, s, SiMe₂). NOE data 5.16 (3.61, 3%), 2.76 (3.61, 2%). ¹³C NMR (CDCl₃) δ 176.4 (0, C2), 152.4 (0), 140.2 (0), 127.3 (1, C4), 94.8 (2), 83.4 (1, C6a), 45.6 (1, C3a), 39.0 (2, C6), 33.5 (2, C3), 25.7 (3, SiC(CH₃)₃), 18.2 (0, SiC(CH₃)₃), -4.7 (3, SiMe₂). MS *m/z* 280 (M⁺, 0.6), 223 (11), 181 (10), 117 (12), 103 (9), 75 (100), 73 (14), 59 (7). HRMS calcd. for C₁₅H₂₄O₃Si 280.1495, found 280.1496.

Compound 94: white solid: mp 170.5-171.5. IR (Nujol) 3477 (s), 1766 (s), 1744 (s), 1579 (m), 1176 (s), 1013 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 5.73 (1H, br. s), 5.53 (1H, br. s), 5.14 (1H, t, *J* = 5.6 Hz), 5.09 (1H, t, *J* = 6.3 Hz), 4.36 (1H, s, CH₂=), 4.32 (1H, s, CH₂=), 3.58 (1H, m), 3.40 (1H, d, *J* = 6.1 Hz), 2.99 (1H, m), 2.82-2.63 (5H, m), 2.44 (1H, d, *J* = 17.6 Hz), 1.48 (3H, s), 0.97 (9H, s), 0.18 (6H, s). ¹³C NMR (CDCl₃) δ 177.3 (0), 176.0 (0), 152.4 (0), 147.1 (0), 140.1 (0), 126.8 (1), 126.6 (1), 94.9 (2), 83.3 (1), 83.0 (1), 73.5 (0), 53.6 (1), 49.1 (1), 45.4 (1), 39.1 (2), 39.0 (2), 33.5 (2), 25.8 (3), 24.7 (1), 18.2 (0), -4.6 (3), -4.8 (0). MS *m/z* 389 (M⁺- C₄H₉, 18), 224 (14), 223 (35), 195 (9), 181 (16), 151 (21), 117 (12), 103 (9), 77 (11), 75 (100), 73 (24). HRMS calcd. for C₂₄H₃₄O₆Si -C₄H₉, 389.1419, found 389.1439.
(4aα,7aβ,10aβ,10bα,10cα)-6-(1-*tert*-Butyldimethylsilyl)oxy-4a,5,7,7a,10,10a,10b,10coctahydro-2,10c-dimethylbenz[6,7]indeno[2,1-b]furan-1,4,9-trione (79) and (4aα,7aβ,10aβ,10bα,10cα)-6-(1-*tert*-butyldimethylsilyl)oxy-4a,5,7,7a,10,10a,10b,10coctahydro-3,4a-dimethylbenz[6,7]indeno[2,1-b]furan-1,4,9-trione (95)

A solution of diene 78 (1.65 g, 5.89 mmol) and 2,6-dimethyl-1,4-benzoquinone (13) (1.60 g, 11.8 mmol) in dry toluene (70 mL) was heated at reflux for 3 days. The solvent was removed under vacuum, and the residue was purified by column chromatography (75% anhydrous ether/hexane) to afford 79 (1.96 g, 80% yield) and 95 (0.141g, 6% yield). Both 79 and 95 were pale yellow foams. Attempts to obtain crystals by crystallization were unsuccessful.

Adduct **79**: IR (CCl₄) 1776 (s), 1681 (s), 1252 (m), 1163 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 6.44 (1H, t, J = 1.5 Hz, H3), 5.06 (1H, apparent dt, J = 6.5, 2.5 Hz, H7a), 3.61 (1H, ddd, J = 15.0, 8.2, 2.5 Hz, H10a), 2.98-2.89 (2H, m, H7 β + H10b), 2.79 (1H, dd, J =17.7, 8.4 Hz, H10 β), 2.60 (1H, br d, J = 18.1 Hz, H7 α), 2.45-2.32 (2H, m, H5 α and H10 α), 2.28 (1H, m, H4a), 2.13 (1H, m, H5 β), 1.97 (3H, d, J = 1.4 Hz, 2-methyl), 1.42 (3H, s, 10c-methyl), 0.89 (9H, s, SiC(CH₃)₃), 0.07 (3H, s, SiCH₃), 0.05 (3H, s, SiCH₃). NOE data 3.61 (5.06, 6%; 2.79, 4%), 2.98-2.89 (5.06, 3%; 2.45-2.32, 5%; 2.28, 6%), 1.42 (2.98-2.89, 8%; 2.28, 10%). ¹³C NMR (CDCl₃) δ 202.0 (0), 199.4 (0), 176.6 (0, C9), 148.2 (0, C2), 139.5 (0, C6), 133.8 (1, C3), 117.4 (0, C6a), 85.2 (1, C7a), 56.7 (1, C10b), 53.3 (1, C4a), 50.8 (0, C10c), 41.2 (1, C10a), 36.9 (2, C10), 34.4 (2, C7), 31.5 (2, C5), 25.5 (3, SiC(CH₃)₃), 24.4 (3, 10c-methyl), 18.0 (0, SiC(CH₃)₃), 16.5 (3, 2-methyl), -3.9 (3, SiCH₃), -4.0 (3, SiCH₃). MS *m*/z 416 (M^{*}, 2), 360 (11), 359 (35), 224 (21), 223 (37), 195 (12), 181 (21), 117 (20), 103 (16), 75 (100), 73 (85), 59 (15). HRMS calcd. for C₇₃H₃₂O₅Si 416.2019, found 416.1990.

Adduct **95**: IR (CCl₄) 1775 (s), 1684 (s), 1249 (s), 1162 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.49 (1H, d, J = 1.3 Hz, H2), 5.05 (1H, dt, J = 6.5, 1.9 Hz, H7a), 3.77 (1H, m, H10a), 3.03 (1H, d, J = 5.3 Hz, H10c), 2.98 (1H, m, H7 β), 2.72 (1H, dd, J = 17.7, 8.2 Hz, H10 β), 2.59 (1H, m, H7 α), 2.52 (1H, m, H10b), 2.36 (1H, dd, J = 17.7, 2.1 Hz, H10 α), 2.26 (1H, ddd, J = 17.2, 4.6, 2.8 Hz, H5 β), 1.99 (3H, d, J = 1.3 Hz, 3-methyl), 1.78 (1H, ddd, J = 17.2, 4.4, 2.5 Hz, H5 α), 1.37 (3H, s, 4a-methyl), 0.90 (9H, s, SiC(CH₃)₃), 0.08 (3H, s, SiCH₃), 0.06 (3H, s, SiCH₃). NOE data 5.05 (3.77, 11%; 2.98, 6%), 3.77 (5.05, 9%; 2.72, 5%), 2.52 (3.03, 11%), 1.37 (3.03, 14%; 2.52, 14%; 1.78, 7%). ¹³C NMR (CDCl₃) δ 202.9 (0), 198.5 (0), 176.9 (0, C9), 146.6 (0, C3), 139.3 (0, C6), 136.9 (1, C2), 116.1 (0, C6a), 85.2 (1, C7a), 51.8 (1, C10c), 50.6 (0, C4a), 43.7 (1, C10b), 40.9 (1, C10a), 37.7 (2, C5), 35.4 (2, C10), 33.6 (2, C7), 25.5 (3, SiC(CH₃)₃), 21.2 (3, 4a-methyl), 17.9 (0, SiC(CH₃)₃), 16.4 (3, 3-methyl), -3.8 (3, SiCH₃), -4.0 (3, SiCH₃). MS *m/z* 416 (M^{*}, 6), 360 (30), 359 (96), 331 (8), 251 (70), 223 (21), 195 (15), 194 (20), 181 (17), 117 (11), 77 (12), 75 (98), 73 (100). HRMS caled. for C₂₃H₃₂O₃Si 416.2019, found 416.2036.

(1α,4aβ,7aα,10aα,10bβ,10cβ)-6-((*tert*-Butyldimethylsilyl)oxy)-1-ethoxyethynyl-4a,5,7,7a,10,10a,10b,10c-octahydro-1-hydroxy-2,10c-dimethyl-1*H*-

benz[6,7]indeno[2,1-b]furan-4,9-dione (80)

To a solution of ethyl ethynyl ether (50% wt % solution in hexane, 0.38 mL, 1.95 mmol) in dry THF (35 mL) was introduced *n*-BuLi (2.5 M in hexane, 0.58 mL, 1.45

mmol) at -78 °C over 5 min. The solution was stirred for 30 min and then transferred with a double-headed needle to a solution of enedione 79 (0.506 g, 1.21 mmol) in dry THF (35 mL) at -78 °C over 30 min. This mixture was stirred for 2 h before it was allowed to warm to 0 °C. This was quenched with water (20 mL), diluted with Et₂O (200 mL), and washed with water (3 x 40 mL) and brine. The resulting solution was dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was purified by column chromatography (40% anhydrous EtOAc/hexane) to provide 80 (0.481 g, 82% yield) as a pale yellow solid: mp 156.5-158.0 °C. IR (CCl₄), 3418 (br, m), 2258 (s), 1770 (s), 1672 (s), 1355 (m), 1246 (s) cm⁻¹. ¹H NMR (CD₂Cl₂, -85 °C, major conformer, signals were very broad at rt) δ 5.70 (1H, s, H3), 4.69 (1H, m, H7a), 4.06 (2H, q, J = 7.3 Hz, OCH_2CH_3 , 3.49 (1H, br d, J = 18.6 Hz), 2.96-2.81 (2H, m), 2.62 (1H, br d, J = 16.6 Hz), 2.48-2.28 (2H, m), 2.15-1.92 (3H, m), 2.00 (3, s, 2-methyl), 1.34 (3H, s, 10c-methyl), 1.26 (3H, t, J = 7.3 Hz, OCH₂CH₃), 0.86 (9H, s, SiC(CH₃)₃), 0.050 (3H, s, SiCH₃), 0.043 (3H, s, SiCH₃). ¹³C NMR (CD₂Cl₂, -85 °C, discernible signals for the major conformer) δ 197.9 (0, C4), 180.4 (0, C9), 163.0 (0, C2), 140.4 (0, C6), 125.0, 117.5, 94.0, 83.9, 75.0, 73.6, 49.5, 47.6, 46.3, 42.3, 41.1, 37.2, 32.7, 30.9, 25.0 (3, SiC(CH₂)₂), 19.1, 17.6, 14.1, -4.8 (3, SiCH₃), -5.0 (3, SiCH₃). MS m/z 486 (M⁺, 0.6), 359 (14), 224 (21), 223 (33), 195 (12), 181 (19), 117 (18), 103 (13), 75 (97), 73 (100), 59 (16). HRMS calcd. for $C_{27}H_{38}O_6Si$ 486.2438, found 486.2412.

(1R*,2R*,3R*,4R*,8S*,10S*,11S*,13S*)-1-Ethoxyethynyl-11-hydroxy-2,16-dimethyl-7,17-dioxapentacyclo[9.5.1.0^{2,13}.0^{3,10}.0^{4,8}]hexadec-15-ene-6,14-dione (98) and (1α,4aα,6aβ,7aα 10aα,10bβ,10cβ)-1-ethoxyethynyl-4a,5,6a,7,7a,10,10a,10b,10cnonahydro-1-hydroxy-2,10c-dimethyl-1*H*-benz[6,7]indeno[2,1-b]furan-4,6,9-trione (99)

A solution of 80 (1.31 g, 2.67 mmol) in methanol (50 mL) and a solution of $KF\cdot 2H_2O$ (1.26 g, 13.4 mmol) in methanol (40 mL) were combined and stirred at rt for 7 h. After most of the solvent was removed under vacuum, the remaining solution was diluted with water (60 mL) and extracted with EtOAc (4 x 40 mL). The combined extracts were washed with water (40 mL) and brine (2 x 40 mL), dried over anhydrous MgSO₄ and concentrated. The residue was subjected to column chromatography (70% EtOAc/hexane) to provide 98 and 99 (0.924 g, 93% yield) in a ratio of 7:1 favoring the less mobile component 98. Compounds 98 and 99 could be completely separated by column chromatography, but this was not necessary for our synthesis.

Compound 98: White foam: attempts to obtain crystals by crystallization were unsuccessful. IR (Nujol) 3404 (br, s), 2260 (s), 1772 (s), 1674 (s), 1160 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 5.77 (1H, d, J = 1.3 Hz, H15), 5.04 (1H, apparent t, J = 4.5 Hz, H8), 4.19 (2H, q, J = 7.1 Hz, OCH₂CH₃), 3.93 (1H, dd, J = 5.8, 2.5 Hz, H4), 2.96 (1H, s, OH), 2.89 (1H, dd, J = 17.6, 8.2 Hz, H5 *syn* to H4), 2.68 (1H, m, H10), 2.51 (1H, m, H9 *syn* to H8), 2.41-2.33 (2H, m, H13 and H5 *anti* to H4), 2.18 (1H, dd, J = 13.9, 1.8 Hz, H12), 2.13 (3H, d, J = 1.3 Hz, 16-methyl), 1.95 (1H, dd, J = 11.9, 5.8 Hz, H3), 1.67 (1H, dd, J = 13.9, 4.2 Hz, H12), 1.42 (3H, t, J = 7.1 Hz, OCH₂CH₃), 1.08 (3H, s, 2-methyl). NOE data 5.04 (3.93, 6%; 2.51, 4%), 3.93 (5.04, 7%; 2.89, 3%), 2.68 (1.95, 5%), 1.08 (3.93, 7%; 2.41-2.33, 4%; 1.95, 3%). ¹³C NMR (CDCl₃) δ 199.8 (0, C14), 176.7 (0, C6), 158.8 (0, C16), 121.6 (1, C15), 98.2 (0), 97.1 (0, 2 C), 87.7 (1, C8), 75.0 (2, OCH₂CH₃), 56.9 (1, C3), 51.9 (1, C13), 45.7 (1, C10), 41.8 (1, C4), 38.6 (2, C5), 37.9 (0), 37.2 (0), 34.8 (2, C12), 32.6 (2, C9), 20.7 (3, 16-methyl), 18.9 (3, 2-methyl), 14.7 (3, OCH₂CH₃). MS m/z 343 (M⁺-29, 13), 302 (16), 203 (18), 178 (19), 175 (42), 161 (27), 151 (34), 150 (39), 148 (23), 147 (24), 138 (34), 137 (72), 135 (20), 122 (20), 121 (19), 119 (18), 117 (19), 115 (16), 110 (44), 105 (32), 103 (21), 96 (20), 91 (71), 82 (22), 81 (21), 79 (64), 78 (20), 77 (72), 69 (64), 68 (46), 67 (34), 66 (18), 65 (34), 55 (95), 53 (57), 41 (100). HRMS calcd. for C₂₁H₂₄O₆-C₂H₅ 343.1182, found 343.1182.

Compound 99: white solid: mp > 180.0 °C (dec.). IR (Nujol) 3381 (s), 2266 (s), 1759 (s), 1702 (s), 1660 (s), 1173 (m), 1048 (m) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 5.83 (1H, d, *J* = 1.4 Hz, H3), 4.89 (1H, dd, *J* = 14.3, 8.6 Hz, H7a), 4.20 (2H, q, *J* = 7.1 Hz, OCH₂CH₃), 3.34 (1H, dd, *J* = 13.0, 4.8 Hz, H4a), 3.15-3.05 (2H, m, H6a and H10 α), 2.94 (1H, dd, *J* = 13.5, 8.0 Hz, H7 α), 2.92-2.77 (2H, m, H10 β and H10a), 2.71 (1H, dd, *J* = 14.9, 5.1 Hz, H5 α), 2.63 (1H, dd, *J* = 10.1, 6.2 Hz, H10b), 2.42 (1H, dd, *J* = 14.9, 3.1 Hz, H5 β), 2.15 (3H, d, *J* = 1.4 Hz, 2-methyl), 1.47 (1H, m, H7 β), 1.42 (3H, t, *J* = 7.1 Hz, OCH₂CH₃), 1.37 (3H, s, 10c-methyl). NOE data 4.89 (2.94, 4%), 3.34 (2.92-2.77, 15%; 2.71, 5%), 1.37 (2.63, 8%; 2.42, 5%). ¹³C NMR (CD₂Cl₂) δ 210.0 (0, C6), 198.0 (0, C4), 178.3 (0, C9), 159.2 (0, C2), 124.7 (1, C3), 98.4 (0), 84.6 (1, C7a), 76.1 (2, OCH₂CH₃), 75.0 (0), 58.2 (1, C10b), 52.4 (1, C6a), 46.8 (0, C10c), 45.0 (1, C4a), 39.6 (1, C10a), 37.5 (2, C5), 37.4 (2, C10), 31.6 (2, C7), 22.1 (3, 10c-methyl), 21.3 (3, 2-methyl), 15.0 (3, OCH₂CH₃). MS *m*/z 344 (M^{*}-28, 2), 203 (14), 175 (22), 166 (32), 148 (13), 147 (14), 137 (100), 110 (35), 105 (14), 91 (24), 79 (21), 77 (21), 69 (19), 67 (12), 65 (12), 55 (25), 53 (17). Anal. calcd. for C₂₃H₂₈O₆: C, 67.73; H, 6.50. Found: C, 67.61; H, 6.89.

 $(1\alpha,4a\beta,7a\alpha,10a\alpha,10b\beta,10c\beta)-6-(tert-Butyldimethylsilyl)oxy-1-ethoxyethynyl-$ 4a,5,7,7a,10,10a,10b,10c-octahydro-1-methoxy-2,10c-dimethyl-1Hbenz[6,7]indeno[2,1-b]furan-4,9-dione (101) and methyl $<math>(1\alpha,4a\beta,7a\alpha,10a\alpha,10b\beta,10c\beta)-6-(tert-butyldimethylsilyl)oxy-$ 4a,5,7,7a,10,10a,10b,10c-octahydro-1-methoxy-2,10c-dimethyl-4,9-dioxo-1Hbenz[6,7]indeno[2,1-b]furan-1-methylcarboxylate (102)

To a solution of ethyl ethynyl ether (50% wt % solution in hexane, 0.20 mL, 1.02 mmol) in dry THF (18 mL) was introduced *n*-BuLi (2.5 M in hexane, 0.30 mL, 0.75 mmol) at -78 °C over 3 min. The solution was stirred for 30 min and then transferred with a double-headed needle to a solution of **79** (0.258 g, 0.619 mmol) in dry THF (18 mL) at -78 °C over 30 min. The resulting solution was stirred for 2 h before iodomethane (0.19 mL, 3.05 mmol) in HMPA (7.0 mL) was added. The mixture was warmed to rt and then stirred for 12 h before it was quenched with water (60 mL) and extracted with EtOAc (4 x 25 mL). The combined extracts were washed with brine (3 x 40 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatography (40% EtOAc/hexane) to afford **101** (0.130 g, 40% yield) and **102** (30 mg, 10% yield).

Compound 101: Pale yellow foam: attempts to obtain crystals by crystallization were unsuccessful. IR (CCl₄) 2257 (s), 1772 (s), 1672 (s), 1472 (m), 1244 (m), 1093 (m) cm⁻¹. ¹H NMR (CD₂Cl₂, -80 °C, signals are very broad at rt) δ 5.60 (1H, s, H3), 4.59 (1H, m, H7a), 4.12 (2H, q, J = 7.2 Hz, OCH₂CH₃), 3.54 (3H, s, OCH₃), 3.25 (1H, m), 2.13-1.86 (3H, m), 1.98 (3H, s, 2-methyl), 1.31 (3H, t, J = 7.1 Hz, OCH₂CH₃), 1.23 (3H, s, 10c-methyl), 0.86 (9H, s, SiC(CH₃)₃), 0.04 (3H, s, SiCH₃), 0.03 (3H, s, SiCH₃). ¹³C NMR (CD₂Cl₂, -80 °C) δ 197.6 (0, C4), 178.7 (0, C9), 163.2 (0, C2), 140.2, 125.0, 117.6 (0, C6a), 97.4, 82.8, 80.6, 75.2, 56.7, 49.7, 48.3, 47.7, 42.2, 32.94, 32.89, 31.2, 25.3, 25.1, 24.9, 18.8, 17.7, 14.3, -4.8, -4.9. MS *m*/*z* 472 (M⁺-C₂H₄, 4), 415 (10), 224 (21), 223 (31), 181 (16), 151 (13), 117 (18), 103 (12), 75 (79), 73 (100). HRMS calcd. for C₂₈H₄₀O₆Si -C₂H₄ 472.2281, found 472.2297.

Compound 102: pale yellow solid: mp 145.0-147.0 °C. IR (Nujol) 1777 (s), 1727 (s), 1660 (s), 1213 (s), 1193 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 5.88 (1H, d, J = 1.2 Hz, H3), 4.62 (1H, m, H7a), 3.70 (3H, s, CO₂CH₃), 3.65 (1H, s, 1-methoxy), 3.08 (1H, d, J = 13.3 Hz, CHHCO₂CH₃), 3.02 (1H, d, J = 13.3 Hz, CHHCO₂CH₃), 3.09-2.86 (2H, m, H7 α and H10 α), 2.83 (1H, d, J = 17.6 Hz, H5), 2.61-2.53 (3H, m, H4a, H10 β and H10a), 2.20-2.10 (2H, m, H5 and H10b), 2.00 (3H, d, J = 1.2 Hz, 2-methyl), 1.94 (1H, m, H7 β), 1.38 (3H, s, 10c-methyl), 0.95 (9H, s, SiC(CH₃)₃), 0.18 (3H, s, SiCH₃), 0.13 (3H, s, SiCH₃). NOE data 4.62 (3.09-2.86, 3%; 2.61-2.53, 5%), 2.20-2.10 (2.61-2.53, 10%), 1.38 (3.70, 2%; 2.61-2.53, 13%; 2.20-2.10, 18%). ¹³C NMR (CDCl₃) δ 196.0 (0, C4), 178.2 (0, C9), 170.7 (0, CO₂CH₃), 162.6 (0, C2), 141.4 (0, C6), 128.3 (1, C3), 115.6 (0, C6a), 82.5 (1, C7a), 82.3 (0, C1), 54.6 (3, CO₂CH₃), 52.6 (1, C10b), 52.3 (3, 1-methoxy), 49.1 (1, C10a), 48.8 (0, C10c), 42.0 (1, C4a), 37.0 (2, CH₂CO₂CH₃), 35.4 (2, C10), 32.2 (2, C7), 25.7 (3, SiC(CH₃)₃), 25.6 (2, C5), 24.9 (3, 10c-methyl), 20.4 (3, 2-methyl), 18.1 (0, SiC(CH₃)₃), - 3.8 (3, SiCH₃), 4.3 (3, SiCH₃). MS *m/z* 504 (M⁺, 3), 447 (10), 281 (8), 224 (26), 224

(39), 181 (19), 117 (26), 103 (13), 75 (80), 73 (100), 59 (15). HRMS calcd. for C₂₇H₄₀O₇Si 504.2543, found 504.2536.

Ethyl (1α,4aα,6aβ,7aα,10aα,10bβ,10cβ)-4a,5, 6a,7,7a,10,10a,10b,10c-nonahydro-1methoxy-2,10c-dimethyl-4,6,9-trioxo-1*H*-benz[6,7]indeno[2,1-b]furan-1methylcarboxylate (109)

To a solution of 101 (0.155 g, 0.130 mmol) in dry THF (8.0 mL) was added tetrabutylammonium fluoride (TBAF) (1.0 M in THF, 0.50 mL, 0.50 mmol) at 0 °C. The mixture was stirred at 0 °C for 10 min before it was diluted with EtOAc (60 mL), washed with water (2 x 30 mL) and brine (30 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was dissolved in THF (10 mL) and 5% aqueous H_2SO_4 (4.0 mL) was then added. The resulting solution was stirred at rt for 3 days before it was diluted with EtOAc (60 mL), washed with water (3 x 20 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue (108) was subjected to column chromatography (50% EtOAc/hexane) to afford 109 (13 mg, 10% yield from 101) as a pale yellow solid: mp 181.0-183.0 °C. IR (Nujol) 1758 (s), 1738 (s), 1709 (s), 1662 (s), 1191 (s), 1089 (m), 1046 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 6.18 (1H, d, J = 1.6 Hz, H3), 4.88 (1H, m, H7a), 4.19 (2H, m, OCH₂CH₃), 3.37 (1H, dd, <math>J = 12.4, 5.1 Hz, H4a), 3.32 (3H, s, OCH₃), 3.12 (1H, d, J = 15.7 Hz, CHHCO₂Et), 3.02-2.95 (2H, m, H6a and H7 α), 2.82-2.75 (5H, m, H5a, H10a, H10β, H10a and CHHCO₂Et), 2.57 (1H, m, H10b), 2.48 (1H, dd, J = 16.2, 12.4 Hz, H5 β), 2.31 (3H, t, J = 7.2 Hz, OCH₂CH₃), 1.24 (3H, s, 10c-methyl). NOE data 4.88 (3.02-2.95, 4%; 2.82-2.75, 4%), 3.37 (2.82-2.75, 8%), 1.24 (3.02-2.95,

10%; 2.57, 6%; 2.48, 9%). ¹³C NMR (CDCl₃) δ 209.0 (0, C6), 197.4 (0, C4), 177.2 (0, C9), 169.7 (0, CO₂Et), 156.0 (0, C2), 130.0 (1, C3), 83.3 (1, C7a), 81.8 (0, C1), 61.3 (2, OCH₂CH₃), 57.1 (1, C10b), 53.4 (3, OCH₃), 51.5 (1, C6a), 49.9 (0, C10c), 45.2 (1, C4a), 39.0 (1, C10a), 37.1 (2, CH₂CO₂Et), 36.5 (2, C10), 36.2 (2, C5), 31.6 (2, C7), 23.7 (3, 2-methyl), 20.1 (3, 10c-methyl), 19.0 (3, OCH₂CH₃). MS *m/z* 372 (M⁺-32, 29), 317 (11), 299 (19), 198 (100), 175 (12), 141 (25), 125 (59), 111 (35), 105 (12), 91 (14), 79 (13), 77 (10). HRMS calcd. for C₂₂H₂₈O₇ - CH₃OH 372.1573, found 372.1551.

Ethyl (4aα,6aα,7aβ,10aβ,10bα,10cα)-4a,5, 6a,7,7a,10,10a,10b,10c-nonahydro-2,10cdimethyl-4,6,9-trioxo-3*H*-benz[6,7]indeno[2,1-*b*]furan-1-acetate (115) and ethyl (4aα,6aβ,7aα,10aα,10bβ,10cβ)-4a,5, 6a,7,7a,10,10a,10b,10c-nonahydro-2,10cdimethyl-4,6,9-trioxo-3*H*-benz[6,7]indeno[2,1-*b*]furan-1-acetate (116)

A mixture of 98 and 99 (7:1 ratio favoring 98) (0.920 g, 2.47 mmol,) was dissolved in glacial AcOH (35 mL). The solution was heated to boil, and then analytical grade Zn dust (6.4 g, 0.10 mol) was added in portions until 98 and 99 was converted into products, monitored by TLC. The solid was removed by filtration after the reaction mixture had cooled to room temperature. The filtrate was poured into a mixture of EtOAc (100 mL) and water (100 mL), and then neutralized by the adding solid Na₂CO₃ until CO₂-evolution ceased. The aqueous layer was extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water (50 mL) and brine (50 mL), dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was subjected to column chromatography (65% EtOAc/hexane) to afford 115 and 116 (0.779 g, 84% yield combined) in a ratio of 1:6 in favor of the less mobile component 115. Compounds 115 and 116 could completely be separated by column chromatography, but the separation was not necessary for our synthesis.

Compound 115: White solid: mp 188.0-190.0 °C. IR (Nujol) 1775 (s), 1740 (s), 1715 (s), 1179 (m), 1023 (m) cm⁻¹. ¹H NMR (CD,Cl₂) δ 4.66 (1H, m, H7a), 4.17 (2H, m, OCH_2CH_1 , 3.31 (1H, d, J = 16.9 Hz, H3 β), 3.20 (1H, d, J = 22.0 Hz, CH_2CO_2Et), 3.10 $(1H, d, J = 6.8 \text{ Hz}, H4a), 3.04-2.90 (4H, m), 2.81 (1H, d, J = 22.0 \text{ Hz}, CH_2CO_2Et), 2.55$ $(1H, dd, J = 14.9, 6.7 Hz, H5\alpha)$, 2.45 $(1H, dd, J = 17.8, 9.6 Hz, H10\beta)$, 2.30 (1H, dd, J = 17.8, 9.6 Hz)11.1, 6.8 Hz, H10b), 2.05-1.91 (2H, m, H10a and H10a), 1.75 (3H, s, 2-methyl), 1.60 (3H, s, 10c-methyl), 1.53 (1H, m, H7 α), 1.27 (3H, t, J = 7.1 Hz, OCH₂CH₃). NOE data 2.55 (3.10, 3%), 2.05-1.91 (4.66, 6%; 3.31, 2%), 1.60 (3.10, 12%; 2.55, 2%; 2.30, 8%). ¹³C NMR (CDCl₃) δ 208.8 (0), 207.3 (0), 176.5 (0, C9), 171.3 (0, CO₂Et), 131.6 (0), 128.7 (0), 83.7 (1, C7a), 61.6 (2, OCH₂CH₃), 56.9 (1, C10b), 55.1 (1, C4a), 50.4 (1, C6a), 46.2 (2, CH₂CO₂Et), 44.8 (0, C10c), 40.4 (1, C10a), 35.8 (2, C5), 35.2 (2, C3), 34.9 (2, C10), 32.2 (2, C7), 27.1 (3, 10c-methyl), 20.1 (3, 2-methyl), 14.5 (3, OCH₂CH₃). MS m/z 374 (M⁺, 25), 301 (14), 249 (17), 222 (24), 221 (90), 208 (54), 180 (19), 175 (59), 149 (29), 148 (35), 135 (93), 134 (16), 121 (26), 119 (23), 107 (47), 106 (42), 105 (40), 93 (17), 91 (56), 79 (40), 77 (26), 67 (25), 65 (13), 55 (47), 53 (20), 43 (29), 41 (49), 29 (100). HRMS calcd. for $C_{21}H_{26}O_6$ 374.1729, found 374.1705.

Compound 116: pale yellow solid, mp 184.5-187.0 °C. IR (Nujol) 1768 (s), 1736 (s), 1708 (s), 1179 (m), 1056 (m) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 4.76 (1H, dd, J = 14.3, 7.0 Hz, H7a), 4.13 (2H, m, OCH₂CH₃), 3.29 (1H, d, J = 17.0 Hz), 3.15 (1H, d, J = 20.4 Hz),

3.04-2.92 (3H, m), 2.85-2.59 (6H, m), 2.44 (1H, dd, J = 4.4, 1.2 Hz), 2.39 (1H, d, J = 4.8Hz), 1.72 (1H, m, H7 β), 1.67 (3H, s, 2-methyl), 1.24 (3H, t, J = 7.1 Hz, OCH₂CH₃), 1.11 (3H, s, 10c-methyl). ¹³C NMR (CD₂Cl₂) δ 209.9 (0), 206.7 (0), 176.5 (0, C9), 171.0 (0, CO₂Et), 133.0 (0), 129.8 (0), 84.2 (1, C7a), 61.6 (2, OCH₂CH₃), 57.8 (1), 50.4 (1), 49.7 (1), 47.5 (0, C10c), 46.8 (2), 39.8 (1), 36.5 (2), 36.0 (2), 35.3 (2), 34.4 (2), 21.5 (3, 10cmethyl), 20.4 (3, 2-methyl), 14.5 (3, OCH₂CH₃). MS *m*/*z* 374 (M⁺, 38), 328 (14), 301 (17), 285 (12), 222 (23), 221 (74), 208 (30), 203 (16), 175 (58), 149 (28), 148 (29), 147 (14), 135 (59), 121 (16), 119 (30), 107 (36), 106 (32), 105 (44), 93 (18), 91 (52), 79 (40), 77 (27), 67 (25), 55 (44), 53 (19), 43 (35), 41 (45), 29 (100). HRMS calcd. for C₂₁H₂₆O₆ 374.1729, found 374.1717.

Ethyl (1ξ,6aα,7aβ,10aβ,10bα,10cα)-6a,7,7a,10,10a,10b,10c-heptahydro-2,10cdimethyl-4,6,9-trioxo-1*H*-benz[6,7]indeno[2,1-b]furan-1-methylcarboxylate (121)

A mixture of **115** and **116** (6:1 ratio favoring **115**, 30 mg, 0.080 mmol) in glacial AcOH (8.0 mL) was heated at reflux for 5 h. After cooling to rt, this solution was poured into a mixture of EtOAc (30 mL) and water (30 mL), and neutralized by adding solid Na₂CO₃ until CO₂-evolution ceased. The organic layer was separated, and the aqueous layer was extracted with EtOAc (2 x 15 mL). The combined organic layers were washed with saturated NaHCO₃ solution (20 mL) and brine (20 mL), dried over MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatography (60% EtOAc/hexane) to afford **121** (6.0 mg, 20% yield) as yellow crystals: mp 142.0-142.5 °C. ¹H NMR (CD₂Cl₂) δ 6.65 (1H, s, H5), 6.21 (1H, s, H3), 4.77 (1H, m, H7a), 4.25 (2H, m,

OCH₂CH₃), 3.34 (1H, d, J = 9.4 Hz), 3.12-3.03 (2H, m), 2.95-2.77 (2H, m), 2.61-2.52 (3H, m), 2.38 (1H, dd, J = 18.1, 4.1 Hz), 2.00 (3H, s, 2-methyl), 1.82 (1H, m), 1.34 (3H, s, 10c-methyl), 1.31 (3H, t, J = 7.1 Hz, OCH₂CH₃). ¹³C NMR (CD₂Cl₂) δ 199.3 (0, C6), 184.4 (0, C4), 176.7 (0, C9), 172.8 (0, CO₂Et), 163.3, 154.0, 128.0, 126.8, 83.3, 62.2, 55.8, 48.3, 43.2, 41.5, 39.4, 36.9, 35.4, 32.7, 25.2, 23.2, 14.4.

Ethyl (1α,4aβ,6aα,7aβ,10aβ,10bα,10cα)-4a,5, 6a,7,7a,10,10a,10b,10c-nonahydro-2,10c-dimethyl-4,6,9-trioxo-1*H*-benz[6,7]indeno-[2,1-b]furan-1-methylcarboxylate (122)

A mixture of 115 and 116 (6:1 ratio favoring 115, 0.245 g, 0.654 mmol) was dissolved in methanol (30 mL) by warming. The solution was combined with 6M aqueous HCl (10 mL) and heated at reflux for 3.5 h. After cooling to rt, the reaction mixture was diluted with EtOAc (150 mL), washed with water (2 x 40 mL) and brine (40 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatograghy (60% EtOAc/hexane) to provide 122 (0.156 g, 64%) as a pale yellow solid: mp 209.0-210.0 °C. IR (Nujol) 1764 (s), 1720 (s), 1702 (s), 1669 (s), 1172 (s), 1058 (m) cm⁻¹. ¹H NMR (CD₃COCD₃) δ 5.90 (1H, s, H3), 4.79 (1H, dd, *J* = 15.8, 7.7 Hz, H7a), 4.23 (2H, m, OCH₂CH₃), 3.29 (1H, d, *J* = 10.8 Hz, H1), 3.17-3.10 (2H, m, H4a and H6a), 2.96-2.81 (5H, m), 2.63-2.43 (4H, m), 1.91 (3H, s, 2-methyl), 1.48 (1H, m, H7\alpha), 1.28 (3H, t, *J* = 7.0 Hz, OCH₂CH₃), 1.20 (3H, s, 10c-methyl). NOE data 3.29 (3.17-3.10, 2%), 3.17-3.10 (3.29, 3%), 1.48 (3.17-3.10, 3%), 1.20 (3.17-3.10, 9%).

-141-

160.3 (0, C2), 126.9 (1, C3), 83.4 (1, C7a), 61.7 (2, OCH₂CH₃), 58.1 (1), 50.8 (1), 49.9 (1), 44.8 (1), 43.0 (0, C10c), 37.9 (1), 37.2 (2), 35.2 (2), 33.4 (2), 33.2 (2), 22.2 (3, 2-methyl), 16.2 (3, 10c-methyl), 14.5 (3, OCH₂CH₃). MS m/z 374 (M⁻, 39), 329 (11), 277 (10), 241 (10), 221 (24), 203 (14), 175 (100), 149 (13), 135 (28), 123 (14), 119 (14), 105 (19), 95 (51), 91 (30), 79 (26), 77 (17). HRMS calcd. for C₂₁H₂₆O₆ 374.1729, found 374.1717.

Ethyl ($1\alpha,4a\beta,6\beta,6a\alpha,7a\beta,10a\beta,10b\alpha,10c\alpha$)-4a,5,6,6a,7,7a,10,10a,10b,10c-decahydro-6-hydroxy-2,10c-dimethyl-4,9-dioxo-1*H*-benz[6,7]indeno[2,1-*b*]furan-1methylcarboxylate (123) and ethyl ($1\alpha, 4a\beta,6\alpha,6a\alpha,7a\beta,10a\beta,10b\alpha,10c\alpha$)-4a,5,6,6a,7,7a,10,10a,10b,10c-decahydro-6-hydroxy-2,10c-dimethyl-4,9-dioxo-1*H*benz[6,7]indeno[2,1-*b*]furan-1-methylcarboxylate (124)

To a solution of 122 (0.520 g, 1.39 mmol) in dry THF (55 mL) was introduced $LiAl(O-t-Bu)_{3}H$ (1.0 M in THF, 2.10 mL, 2.10 mmol) at -20 °C over 5 min. The solution was slowly warmed to 0 °C over 1 h and then maintained at 0 °C with stirring for another 1 h before it was quenched with dilute $NH_{4}Cl$ solution (100 mL) and extracted with EtOAc (4 x 50 mL). The combined extracts were washed with brine (2 x 50 mL), dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was subjected to column chromatography (70% EtOAc/hexane) to provide 123 (0.410 g, 78% yield) and 124 (51 mg, 10% yield).

Compound **123**: white solid: mp 221.5-223.0 °C. IR (Nujol) 3418 (m), 1764 (s), 1730 (s), 1665 (s), 1173 (m), 1044 (m) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 5.87 (1H, d, J = 1.3

-142-

Hz, H3), 5.19 (1H, m, H7a), 4.23 (2H, m, OCH, CH₃), 3.95 (1H, m, H6), 3.17 (1H, d, J =9.7 Hz, H1), 3.06 (1H, m, H10a), 2.86 (1H, dd, J = 18.6, 10.3 Hz, H10 β), 2.80 (1H, dd, J= 12.2, 3.6 Hz, H4a), 2.56-2.33 (3H, m, CH, CO, Et and H7β), 2.30 (1H, m, H6a), 2.25 $(1H, dd, J = 18.9, 3.8 Hz, H10\alpha), 2.07 (1H, m, H5\beta), 1.91 (1H, dd, J = 10.8, 5.80 Hz)$ H10b), 1.86 (3H, apparent t, J = 1.1 Hz, 2-methyl), 1.83-1.74 (2H, m, H7 α and 6hydroxy), 1.65 (1H, m, H5 α), 1.30 (3H, t, J = 7.1 Hz, OCH₂CH₃), 0.86 (3H, s, 10cmethyl). NOE data 3.95 (2.30, 6%), 3.17 (2.80, 2%), 3.06 (5.19, 7%; 2.80, 5%), 0.86 (2.30, 4%; 1.91, 4%; 1.65, 6%). ¹³C NMR (CD₂Cl₂) δ 200.4 (0, C4), 178.1 (0, C9), 173.4 (0, CO₂Et), 159.5 (0, C2), 127.2 (1, C3), 86.7 (1, C7a), 68.3 (1, C6), 61.8 (2, OCH₂CH₃), 54.1 (1, C10b), 44.0 (1, C1), 42.4 (0, C10c), 42.2 (1, C4), 42.0 (1, C6a), 39.8 (1, C10a), 37.9 (2, C7), 36.0 (2, C10), 33.6 (2, CH₂CO₂Et), 29.4 (2, C5), 22.6 (3, 2-methyl), 16.4 (3, 10c-methyl), 14.4 (3, OCH, CH₃). MS m/z 376 (M⁺, 6), 358 (32), 340 (17), 271 (21), 269 (18), 234 (39), 221 (67), 211 (17), 196 (18), 177 (24), 161 (26), 149 (22), 147 (17), 135 (53), 123 (41), 122 (43), 121 (17), 119 (21), 107 (16), 105 (29), 95 (100), 93 (18), 91 (40), 79 (32), 77 (22). HRMS calcd. $C_{21}H_{28}O_6$ 376.1886, found 376.1878.

Compound 124: white solid: mp 195.0-196.0 °C. IR (Nujol) 3512 (m), 1758 (s), 1732 (s), 1666 (s), 1173 (m), 1051 (m) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 5.87 (1H, d, J = 1.3 Hz, H3), 5.19 (1H, m, H7a), 4.23 (2H, m, OCH₂CH₃), 3.95 (1H, m, H6), 3.17 (1H, d, J = 9.7 Hz, H1), 3.06 (1H, m, H10a), 2.86 (1H, dd, J = 18.6, 10.3 Hz, H10 β), 2.80 (1H, dd, J = 12.2, 3.6 Hz, H4a), 2.56-2.33 (3H, m, CH₂CO₂Et and H7 β), 2.30 (1H, m, H6a), 2.25 (1H, dd, J = 18.9, 3.8 Hz, H10 α), 2.07 (1H, m, H5 β), 1.91 (1H, dd, J = 10.8, 5.8 Hz, H10b), 1.86 (3H, br s, 2-methyl), 1.83-1.74 (2H, m, H7α and 6-hydroxy), 1.65 (1H, m, H5α), 1.30 (3H, t, J = 7.1 Hz, OCH₂CH₃), 0.86 (3H, s, 10c-methyl). NOE data 3.95 (2.30, 6%), 3.17 (2.80, 2%), 3.06 (5.19, 7%; 2.80, 5%), 0.86 (2.30, 4%; 1.91, 4%; 1.65, 6%). ¹³C NMR (CD₂Cl₂) δ 200.4 (0, C4), 178.1 (0, C9), 173.4 (0, CO₂Et), 159.5 (0, C2), 127.2 (1, C3), 86.7 (1, C7a), 68.3 (1, C6), 61.8 (2, OCH₂CH₃), 54.1 (1, C10b), 44.0 (1, C1), 42.4 (0, C10c), 42.2 (1, C4), 42.0 (1, C6a), 39.8 (1, C10a), 37.9 (2, C7), 36.2 (2, C10), 33.6 (2, CH₂CO₂Et), 29.4 (2, C5), 22.6 (3, 2-methyl), 16.4 (3, 10c-methyl), 14.4 (3, OCH₂CH₃). MS *m*/z 376 (M⁺, 6), 358 (32), 340 (17), 270 (21), 269 (18), 234 (39), 221 (67), 211 (17), 196 (18), 177 (24), 161 (26), 149 (22), 147 (17), 135 (53), 123 (41), 122 (43), 119 (21), 105 (29), 95 (100), 91 (40), 79 (32), 77 (22). HRMS calcd. C₂₁H₂₈O₆ 376.1886, found 376.1889.

Ethyl (1α,4aβ,6β,6aα,7aβ,10aβ,10bα,10cα)-4a,5,6,6a,7,7a,10,10a,10b,10c-decahydro-6-(2-methoxyethoxy)methoxy-2,10c-dimethyl-4,9-dioxo-1*H*-benz[6,7]indeno[2,1b]furan-1-methylcarboxylate (129)

To a solution of 123 (0.160 g, 0.425 mmol) in dry CH_2Cl_2 (10 mL) was successively added (2-methoxyethoxy)methyl chloride (MEM chloride) (0.48 mL, 4.20 mmol) and *N*,*N*-diisopropylethylamine (0.95 mL, 5.45 mmol). The solution was heated at reflux for 12 h before it was diluted with CH_2Cl_2 (80 mL), and then washed with 1% HCl aqueous solution (2 x 30 mL) and brine (30 mL). The resulting organic solution was dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was subjected to column chromatography (70% EtOAc/hexane) to afford 129 (0.182 g, 92% yield) as a

-144-

white solid: mp 155.0-157.0 °C. IR (Nujol) 1769 (s), 1738 (s), 1661 (s), 1159 (m), 1041 (m) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 5.86 (1H, s, H3), 5.12 (1H, m, H7a), 4.72 (1H, d, J = 6.9 Hz, OCH₂O), 4.60 (1H, d, J = 6.9 Hz, OCH₂O), 4.22 (2H, m, OCH₂CH₃), 3.76 (1H, m, H6), 3.72-3.56 (2H, m, CH₃OCH₂CH₂), 3.49 (2H, t, J = 4.5 Hz, CH₃OCH₂CH₂), 3.32 $(3H, s, CH_3O), 3.15 (1H, d, J = 10.4 Hz, H1), 2.98 (1H, m, H10a), 2.84 (1H, dd, J = 18.6, J = 18.6)$ 10.9 Hz, H10 β), 2.67 (1H, dd, J = 12.3, 3.1 Hz, H4a), 2.51 (1H, dd, J = 17.7, 1.8 Hz, CH₂CO₂Et), 2.44-2.23 (5H, m), 1.91 (1H, dd, J = 11.0, 5.8 Hz, H10b), 1.85 (3H, s, 2methyl), 1.76 (1H, m, H7 α), 1.44 (1H, m, H5 α), 1.29 (3H, t, J = 7.2 Hz, OCH₂CH₃), 0.86 (3H, s, 10c-methyl). ¹³C NMR (CD₂Cl₂) δ 200.0 (0, C4), 177.8 (0, C9), 173.4 (0, CO₂Et), 159.2 (0, C2), 127.2 (1, C3), 94.6 (2, OCH₂O), 86.5 (1, C7a), 74.1 (1, C6), 72.3 (2, CH₃OCH₂CH₃), 68.3 (2, CH₃OCH₂CH₃), 61.8 (2, OCH₂CH₃), 59.2 (3, CH₃O), 54.1 (1, C10b), 44.0 (1, C1), 42.7 (1, C4), 42.3 (0, C10c), 42.1 (1, C6a), 39.8 (1, C10b), 37.7 (2, C7), 35.8 (2, C10), 33.7 (2, CH₂CO₂Et), 24.7 (2, C5), 22.5 (3, 2-methyl), 16.6 (3, 10cmethyl), 14.4 (3, OCH₂CH₃). MS m/z 464 (M⁺, 2), 388 (3), 359 (7), 358 (5), 285 (4), 221 (7), 159 (3), 95 (6), 89 (100), 59 (86). HRMS calcd. for C₂₅H₃₆O₈ 464.2408, found 464.2419.

Ethyl (1α,2β,4aβ,6β,6aα,7aβ,10aβ,10bα,10cα)-2,3,4a,5,6,6a,7,7a,10,10a,10b,10cdodecahydro-6-(2-methoxyethoxy)methoxy-2,10c-dimethyl-4,9-dioxo-1*H*benz[6,7]indeno[2,1-b]furan-1-methylcarboxylate (130)

Liquid ammonia (about 150 mL) was collected in a 250 mL three-necked roundbottomed flask using a dry ice-acetone cold trap. To this liquid ammonia was added Na shavings (about 1.0 g). The ammonia solution turned blue immediately. After 5 min, this ammonia solution was allowed to warm, and about 60 mL of dry ammonia was distilled into a dry 100 mL three-necked rounded-bottomed flask. To this dry liquid ammonia was added Li shavings (20 mg, 2.9 mmol) in one portion. The ammonia solution turned blue immediately. This blue solution was allowed to warm to -50 °C when enone **129** (0.177 g, 0.381 mmol) in 1:1 dry 1,4-dioxane/Et₂O (16 mL) was introduced over 1.5 min. The mixture was stirred for 4 min before sufficient anhydrous NH₄Cl was added to discharge the blue color. This was allowed to warm up to evaporate ammonia. The remainder was diluted with water (100 mL) and extracted with EtOAc (4 x 20 mL). The combined extracts were washed with brine (2 x 35 mL), dried over anhydrous MgSO₄, and concentrated under vacuum.

The residue was dissolved in CH₂Cl₂ (2.0 mL) and then added dropwise to a suspension of pyridinium chlorochromate (PCC) (0.210 g, 0.955 mmol) in CH₂Cl₂ (10 mL). The mixture was stirred at rt for 1.5 h and then filtered through Celite. The filtrate was concentrated, and the residue was subjected to column chromatography (70% EtOAc/hexane) to afford **130** (0.131 g, 74% yield) as a white solid: mp 154.0-155.0 °C. IR (Nujol) 1762 (s), 1720 (s), 1699 (s), 1188 (m), 1107 (m), 1039 (s) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 5.14 (1H, dd, J = 14.7, 7.7 Hz, H7a), 4.67 (1H, d, J = 7.2 Hz, OCH₂O), 4.57 (1H, d, J = 7.2 Hz, OCH₂O), 4.16 (2H, m, OCH₂CH₃), 3.72 (1H, m, H6), 3.69-3.56 (2H, m, CH₃OCH₂CH₂), 3.48 (2H, t, J = 4.7 Hz, CH₃OCH₂CH₂), 3.31 (3H, s, CH₃O), 3.00-2.81 (2H, m, H10 β and H10a), 2.68 (1H, dd, J = 12.6, 2.5 Hz, H4a), 2.51 (1H, d, J = 16.4 Hz, CH₂CO₂Et), 2.38 (1H, m, H6a), 2.33-2.05 (6H, m), 1.96-1.88 (2H, m, H5 β and

H10b), 1.85 (1H, m, H2), 1.72 (1H, m, H7α), 1.56 (1H, m, H5α), 1.27 (3H, t, J = 7.2 Hz, OCH₂CH₃), 0.94 (3H, d, J = 6.4 Hz, 2-methyl), 0.79 (3H, s, 10c-methyl). NOE data 3.72 (2.38, 6%; 1.56, 2%), 2.68 (3.00-2.81, 7%), 0.79 (2.38, 6%; 1.85, 6%; 1.56, 8%). ¹³C NMR (CD₂Cl₂) δ 211.7 (0, C4), 178.1 (0, C9), 173.6 (0, CO₂Et), 94.6 (2, OCH₂O), 86.8 (1, C7a), 74.2 (1, C6), 72.3 (2, CH₃OCH₂CH₂), 68.3 (2, CH₃OCH₂CH₂), 61.4 (2, OCH₂CH₃), 59.2 (3, CH₃O), 54.5 (1, C10b), 50.1 (2, C3), 45.5 (1, C4a), 45.1 (1, C1), 44.6 (0, C10c), 42.3 (1, C6a), 39.0 (1, C10a), 38.0 (1, C2), 37.5 (2, C7), 36.0 (2, C10), 35.4 (2, CH₂CO₂Et), 24.8 (2, C5), 20.8 (3, 2-methyl), 16.8 (3, 10c-methyl), 14.5 (3, OCH₂CH₃). MS *m*/z 466 (M⁺, 0.5), 390 (5), 377 (15), 359 (11), 331 (5), 313 (5), 273 (5), 89 (100), 59 (81).

Ethyl (10,26,40,4a6,66,6a0,7a6,10a6,10b0,10c0)-

2,3,4,4a,5,6,6a,7,7a,10,10a,10b,10c-tridecahydro-4-hydroxy-6-(2methoxyethoxy)methoxy-2,10c-dimethyl-9-oxo-1*H*-benz[6,7]indeno[2,1-b]furan-1methylcarboxylate (131)

To a solution of 130 (0.108 g, 0.231 mmol) in dry THF (20 mL) was introduced L-Selectride (0.28 mL, 0.28 mmol) at -78 °C over 2 min. The solution was stirred for 1 h before it was quenched with 5% aqueous NaOH (1.0 mL), followed by addition of 30% $H_2O_2(1.0 \text{ mL})$. After warming to rt, this mixture was diluted with EtOAc (100 mL), washed with 5% aqueous HCl (25 mL) and brine (2 x 25 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatography (95% EtOAc/hexane) to provide 131 (98.5 mg, 91% yield) as a white

-147-

solid: mp 112.5-113.5 °C. IR (Nujol) 3515 (m), 1761 (s), 1731 (s), 1194 (m), 1094 (m), 1042 (s) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 5.08 (1H, dd, J = 14.3, 7.6 Hz, H7a), 4.71 (1H, d, J = 14.3) 7.1 Hz, OCH₂O), 4.61 (1H, d, J = 7.1 Hz, OCH₂O), 4.12 (2H, m, OCH₂CH₃), 3.80 (1H, br s, H4), 3.71 (1H, m, H6), 3.66 (1H, d, J = 4.2 Hz, CH₃OCH₂CH₂), 3.64 (1H, d, J = 4.2Hz, CH₃OCH₂CH₂), 3.50 (2H, t, J = 4.4 Hz, CH₃OCH₂CH₂), 3.33 (3H, s, CH₃O), 2.83-2.71 (2H, m, H10 β and H10a), 2.45-2.36 (2H, m, H6a and CH₂CO₂Et), 2.30 (1H, d, J =15.7 Hz, H10 α), 2.23 (1H, dd, J = 13.3, 7.4 Hz, H7 β), 2.09 (1H, dd, J = 16.9, 9.8 Hz, CH₂CO₂Et), 1.93-1.82 (2H, m, H2 and H5a), 1.77-1.61(5H, m), 1.58 (1H, m, H5ß), 1.46-1.36 (2H, m, H3ß and 4-hydroxy). NOE data 3.80 (1.58, 3%; 1.46-1.36, 8%), 2.83-2.71 (5.08, 9%), 2.45-2.36 (3.71, 7%), 1.93-1.82 (3.71, 3%), 1.46-1.36 (3.80, 11%), ¹³C NMR (CD₂Cl₂) δ 178.5 (0, C9), 174.3 (0, CO₂Et), 94.9 (2, OCH₂O), 87.0 (1, C7a), 75.9 (1, C6), 72.4 (2, CH₃OCH₂CH₂), 72.3 (1, C4), 68.1 (2, CH₃OCH₂CH₂), 61.0 (2, OCH₂CH₃), 59.2 (3, CH₃O), 55.8 (1), 45.8 (1), 43.5 (2, C3), 42.7 (1, C6a), 39.3 (0, C10c), 38.9 (1, C10a), 37.6 (2, C7), 36.0 (2, C10), 35.4 (2, CH₂CO₂Et), 35.3 (1), 30.3 (2, C5), 29.9 (1, C2), 20.4 (3, 2-methyl), 18.8 (3, 10c-methyl), 14.5 (3, OCH₂CH₃). MS m/z 392 (M⁻-CH₃OCH₅CH₅OH, 1), 361 (8), 255 (6), 195 (5), 167 (6), 119 (6), 105 (6), 93 (6), 89 (77), 59 (100).

 $(2a\alpha, 4a\alpha, 5\alpha, 7\beta, 7a\alpha, 9\alpha, 9a\beta, 10a\alpha, 10b\alpha, 10c\beta, 10d\beta)$ -

2a,4,4a,5,6,7,7a,8,9,9a,10,10a,10b,10c,10d-Tetradecahydro-7-hydroxy-9-(2methoxyethoxy)methoxy-5,10d-dimethylnaphth[2,1,8-*cde*]-2*H*-azuleno[1,8-*bc*]furan-2,3-dione (30) and (1*R**,2*S**,3*S**,4*R**,8*S**,10*S**,13*R**,14*S**,18*S**)-11-(2-

methoxyethoxy)methoxy-2,18-dimethyl-7,15-

dioxapentacyclo[12.3.2.0^{2,13}.0^{3,10}.0^{4,8}]nonadecane-6,16-dione (132)

To a solution of 131 (31 mg, 0.066 mmol) in dry benzene (15 mL) was added potassium *t*-butoxide (29 mg, 0.24 mmol) in one portion. The mixture was heated at reflux for 4 h before it was cooled to rt and washed with ice-cold 1% aqueous HCl (30 mL). The aqueous layer was extracted with EtOAc (4 x 20 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous MgSO₄, and concentrated under vacuum to give the crude product, which consisted of 30, 132 and the starting material 131 in a ratio of 5:1:1. The crude product was purified by column chromatography (40% acetone /hexane) to provide 30 (17 mg, 61% yield). By-product 132 was isolated in 8% yield in a separate 100 mg-scale reaction.

Compound **30**: white solid: mp 165-167.0 °C. IR (Nujol) 3534 (m), 1782 (s), 1693 (s), 1169 (s), 1036 (s) cm⁻¹. ¹H NMR (CD₂Cl₂) δ 4.86 (1H, m, H10a), 4.69 (1H, d, *J* = 7.0 Hz, OCH₂O), 4.61 (1H, d, *J* = 7.0 Hz, OCH₂O), 3.91 (1H, br s, H7), 3.76 (1H, br s, H9), 3.70 (1H, d, *J* = 10.6 Hz, H2a), 3.65 (1H, *J* = 4.4 Hz, CH₃OCH₂CH₂), 3.63 (H, d, *J* = 4.4 Hz, CH₃OCH₂CH₂), 3.50 (2H, t, *J* = 4.6 Hz, CH₃OCH₂CH₂), 3.33 (3H, s, CH₃O), 3.24 (1H, m, H10b), 2.58 (1H, dd, *J* = 16.9, 3.9 Hz, H3\alpha), 2.43-2.33 (2H, m, H3 β and H9a), 2.27 (1H, dd, *J* = 14.4, 7.8 Hz, H10 α), 1.91-1.66 (5H, m), 1.64-1.53 (3H, m), 1.49-1.38 (2H, m, 7-hydroxy and H6 α), 1.14 (3H, s, H10d), 0.90 (3H, d, *J* = 6.2 Hz, 5-methyl). NOE data 3.76 (2.43-2.33, 6%), 3.24 (4.86, 5%; 3.70, 4%), 1.49-1.38 (3.91, 13%), 1.14 (2.43-2.33, 8%), 0.90 (2.58, 6%). ¹³C NMR (CD₂Cl₂) δ 204.0 (0, C3), 172.9 (0, C2), 95.0 (2, OCH₂O), 83.9 (1, C10a), 75.9 (1, C9), 72.4 (2, CH₃OCH₂CH₂), 72.2 (1), 68.1 (2,

-149-

CH₃OCH₂CH₂), 59.3 (3, CH₃O), 55.8 (1, C2a), 54.7 (1), 50.2 (1), 44.7 (2, C6), 43.5 (2, C4), 42.4 (1, C9a), 40.6 (1, C10b), 37.5 (2, C10), 37.1 (1), 29.0 (2, C8), 27.0 (1), 20.2 (3, 5-methyl), 18.2 (3, 10d-methyl). MS m/z 422 (M⁺, 1), 346 (4), 331 (13), 315 (6), 299 (8), 105 (4), 89 (65), 59 (100). HRMS calcd. for C₂₃H₃₄O₇ 422.2302, found 422.2270.

Compound 132: white solid: mp 191.0-192.0 °C. IR (Nujol) 1759 (s), 1718 (s) cm⁻¹. ¹H NMR (CD₃OD) δ 5.16 (1H, dd, J = 14.3, 7.2 Hz, H8), 4.76 (1H, d, J = 7.0 Hz, OCH₂O), 4.66 (1H, d, J = 7.0 Hz, OCH₂O), 3.76 (1H, d, J = 2.7 Hz), 3.72 (1H, m), 3.71-3.68 (2H, m, CH₃OCH₂CH₂O), 3.57-3.54 (2H, m, CH₃OCH₂CH₂O), 3.36 (3H, s, CH₃O), 2.87-2.77 (2H, m), 2.55 (1H, d, J = 17.7 Hz), 2.48-2.35 (2H, m), 2.25 (1H, dd, J = 13.3, 7.7 Hz), 2.06 (1H, dd, J = 17.7, 9.9 Hz), 1.99-1.85 (3H, m), 1.75-1.57 (5H, m), 1.39 (1H, m), 1.08 (3H, s, 2-methyl), 0.88 (3H, d, J = 7.0 Hz, 18-methyl). ¹³C NMR (CD₃OD) δ 181.4 (0, C6), 178.0 (0, C16), 95.8, 88.9, 77.4, 73.1, 72.8, 68.8, 59.4, 56.5, 46.6, 44.1, 43.7, 40.2, 39.9, 38.2, 36.9, 36.5, 35.8, 31.2, 31.1, 20.8, 19.0. MS *m/z* 333 (M⁺ - C₄H₉O₂, 11), 257 (6), 183 (5), 167 (7), 149 (13), 131 (7), 119 (10), 105 (12), 93 (10), 91 (12), 89 (68), 59 (100). HRMS calcd. for C₂₃H₃₄O₇ - C₄H₉O₂ 333.1203, found 333.1721.

(-)-Menthoxyacetic acid (172)

This compound was prepared by the procedure of Newton and Whitham.^{86a} A solution of (-)-menthol (171) (7.90 g, 50.0 mmol) in dry DMF (140 mL) was added in one portion to NaH (60% oil dispersion, 5.45 g, 136 mmol, washed twice with petroleum ether). The mixture was mechanically stirred at rt for 3.5 h before chloroacetic acid (5.07 g, 534 mmol) in dry DMF (90 mL) was added over 50 min. The resulting mixture was

stirred at rt for 7 h and then at 100 °C for 14 h. After cooling to rt, the reaction was quenched with water (40 mL), and the solvent was removed by distillation at reduced pressure. The residue was dissolved in water (100 mL) and extracted with benzene (3 x x20 mL). The aqueous layer was acidified with concentrated HCl, and then extracted with benzene (4 x 40 mL). The combined extracts were washed with brine (40 mL) and dried over anhydrous MgSO₄. Removal of the solvent under vacuum gave reasonably pure 172 (5.13 g), which was used in the next step without further purification. An analytical sample was obtained by column chromatography (30% Et₂O/hexane) as a slightly yellow oil: IR (neat) 3150 (s, br), 1733 (s), 1128 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 10.7 (1H, br s, $CO_{2}H$, 4.20 (1H, d, J = 16.8 Hz, OCH₂CO), 2.10 (1H, d, J = 16.8 Hz, OCH₂CO), 3.20 (1H, dt, J = 10.6, 4.1 Hz, H1'), 2.24 (1H, m), 2.21 (1H, m), 1.68-1.61 (2H, m), 1.36-1.26(2H, m), 0.96-0.87 (3H, m), 0.93 (3H, d, J = 5.9 Hz), 0.90 (3H, d, J = 6.8 Hz), 0.78 (3H, d, Jd, J = 6.9 Hz). ¹³C NMR (CDCl₃) δ 175.4 (0, C1), 80.3, 65.3, 47.8, 39.7, 34.2, 31.3, 25.4, 23.0, 22.1, 20.8, 16.0. MS m/z 155 (M* - CH₂CO₂H, 14), 139 (17), 138 (57), 129 (79). 123 (46), 109 (14), 96 (28), 95 (81), 83 (37), 82 (47), 81 (100), 71 (37).

(-)-Menthoxyacetyl chloride (173)

This compound was prepared by the procedure of Leffler and Calkins.^{86b} To thionyl chloride (redistilled, 16.0 mL, 219 mmol) was added (-)-menthoxyacetic acid (172) (10.3 g, approximately 48.1 mmol) over 1 h. The solution was stirred at rt for 1h and then at reflux for 5 h. The excess thionyl chloride was removed under vacuum, and vacuum distillation of the residue gave 173 (8.02 g, 34% yield from 171) as a colorless

-151-

oil: [α]_D -96.4° (benzene) (lit.^{86b} -92.4°). IR (neat) 1808 (s), 1131 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 4.48 (1H, d, *J* = 18.5 Hz, OCH₂CO), 4.44 (1H, d, *J* = 18.5 Hz, OCH₂CO), 3.23 (1H, dt, *J* = 10.6, 6.4 Hz, H1'), 2.26 (1H, m), 2.04 (1H, m), 1.68-1.62 (2H, m), 1.41-1.22 (2H, m), 1.00-0.85 (3H, m), 0.93 (3H, d, *J* = 6.6 Hz), 0.91 (3H, d, *J* = 7.1 Hz), 0.79 (3H, d, *J* = 6.9 Hz). ¹³C NMR (CDCl₃) δ 172.1 (0, C1), 80.8, 73.8, 48.1, 39.8, 34.2, 31.4, 25.3, 23.0, 22.2, 21.0, 16.1. MS *m*/*z* 155 (M⁺ - CH₂COCl, 35), 139 (72), 138 (54), 137 (36), 123 (14), 97 (19), 95 (35), 83 (100), 81 (54), 69 (27).

(1R,5S,7R)-7-((1'R,2'S,5'R)-menthoxy)bicyclo[3.2.0]hept-2-en-6-one (176) and (1S,5R,7S)-7-((1'R,2'S,5'R)-menthoxy)bicyclo[3.2.0]hept-2-en-6-one (177)

To a solution of cyclopentadiene (175) (freshly cracked from dicyclopentadiene, 1.65 g, 25.0 mmol) and triethylamine (0.84 mL, 6.03 mmol) in anhydrous Et_2O (150 mL) was added (-)-menthoxyacetyl chloride (173) (1.16 g, 49.9 mmol) in anhydrous Et_2O (50 mL) at rt over 4 h. The resulting mixture was stirred for another 18 h. A solid was removed by filtration. The filtrate was washed with water (3 x 50 mL) and brine (50 mL), dried over anhydrous MgSO₄, and concentrated under vacuum. The residue was subjected to column chromatography (15% Et_2O /hexane) to provide a 2:1 mixture of 176 and 177 (880 mg, 67% yield) as a pale yellow oil.

NMR data for the major diastereoisomer: ¹H NMR (CDCl₃) δ 5.89 (1H, m, H3), 5.78 (1H, m, H2), 4.82 (1H, dd, J = 8.8, 2.8 Hz, H7), 3.78 (1H, m, H1), 3.42 (1H, m, H5), 3.17 (1H, dt, J = 10.6, 4.2 Hz, H1'), 2.72 (1H, m, H4 *anti to* H5), 2.46 (1H, m, H4, *syn to* H5), 2.07 (1H, m), 1.66-1.59 (2H, m), 1.40-1.20 (2H, m), 1.01-0.86 (3H, m), 0.92 (3H, d,

-152-

J = 8.4 Hz), 0.90 (3H, d, J = 9.0 Hz), 0.81 (3H, d, J = 7.0 Hz). NOE data 4.82 (3.78, 4%; 3.42, 2%; 3.17, 3%), 2.46 (3.42, 2%). ¹³C NMR (CDCl₃) δ 211.4 (0, C6), 135.1 (1), 128.5 (1), 89.8 (1), 80.5 (1), 53.1, 47.5, 46.4, 41.0, 34.7, 34.4, 31.6, 25.4, 23.2, 22.3, 20.8, 16.2.

Discernible NMR data for the minor diastereoisomer: ¹H NMR (CDCl₃) δ 3.31 (1H, dt, J = 10.6, 4.3 Hz, H1'), 0.93 (3H, d, J = 6.4 Hz), 0.87 (3H, d, J = 6.5 Hz), 0.77 (3H, d, J = 7.0 Hz). ¹³C NMR (CDCl₃) δ 210.7 (0, C6), 134.9 (1), 129.0 (1), 89.6 (1), 80.7 (1), 53.9, 47.9, 47.6, 41.4, 34.8, 22.3.

1,2:5,6-Di-O-isopropylidene-α-D-glucofuranoxyacetic acid (183)

A solution of (-)-diacetone-D-glucose (182) (5.31 g, 20.0 mmol) in dry DMF (120 mL) was added in one portion to NaH (60% oil dispersion, 2.80 g, 70.0 mmol, washed twice with petroleum ether before use). This was stirred at rt for 1 h before chloroacetic acid (2.08 g, 22.0 mmol) in dry DMF (30 mL) was added over 50 min. The mixture was stirred at rt for 30 min and then at 110 °C for 15 h. After cooling to rt, the reaction was quenched with water (40 mL), and the solvent was removed by distillation at reduced pressure. The residue was dissolved in water (100 mL) and extracted with CH_2Cl_2 (3 x 40 mL). The aqueous layer was neutralized with concentrated HCl, and then extracted with EtOAc (4 x 40 mL). The combined organic extracts were washed with brine (2 x 40 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was subjected to column chromatography (5% MeOH/CHCl₃) to afford 183 (3.75 g, 59%) as a pale yellow oil: ¹H NMR (CDCl₃) δ 10.58 (1H, br s, CO₂H), 5.95 (1H, d, *J* = 3.3 Hz, H1'), 4.60 (1H, d, *J* = 3.6 Hz), 4.38-4.32 (2H, m), 4.22-4.14 (3H, m), 4.04 (1H, m), 3.97 (1H, d,

J = 3.6 Hz), 1.50 (3H, s), 1.47 (3H, s), 1.39 (3H, s), 1.33 (3H, s). ¹³C NMR (CDCl₃) δ 171.8 (0, C1), 112.2 (0), 109.8 (0), 105.6 (1, C1'), 83.9, 82.3, 80.8, 73.0, 67.7, 67.1, 26.7 (3), 26.6 (3), 26.1 (3), 24.9 (3).

1,2:5,6-Di-O-isopropylidene-α-D-glucofuranoxyacetyl chloride (184)

To a solution of **183** (980 mg, 3.08 mmol) in dry benzene (4.0 mL) was added thionyl chloride (430 mg, 3.61 mmol) in dry benzene (1.0 mL) at 60 °C over 10 min. The resulting solution was stirred at 65 °C for 30 min. Evaporation of the solvent and excess thionyl chloride gave crude **184** (1.00 g), which was a 9:1 mixture of **184** and starting material **183**, as shown by ¹H NMR. This product was used in the next step without further purification. : IR (neat) 1806 (s), 1381 (s), 1217 (s) cm⁻¹. For **184** (from the mixture): ¹H NMR (CDCl₃) δ 5.89 (1H, d, *J* = 3.6 Hz, H1'), 4.69 (1H, d, *J* = 3.6 Hz), 4.61 (2H, s, CH₂COCl), 4.23 (1H, m), 4.15-3.97 (4H, m), 1.49 (3H, s), 1.43 (3H, s), 1.36 (3H, s), 1.32 (3H, s). ¹³C NMR (CDCl₃) δ 171.9 (0, C1), 112.1 (0), 109.3 (0), 105.1 (1, C1'), 84.1, 83.2, 81.0, 76.1, 72.3, 67.4, 26.8 (3), 26.7 (3), 26.2 (3), 25.3 (3).

(1R,5S,7R)-7-(1,2:5,6-Di-O-isopropylidene-α-D-glucofuranoxy)bicyclo[3.2.0]hept-2en-6-one (186) and (1S,5R,7S)-7-(1,2:5,6-di-O-isopropylidene-α-D-glucofuranoxy) bicyclo[3.2.0]hept-2-en-6-one (187)

To a solution of cyclopentadiene (175) (freshly cracked from dicyclopentadiene, 900 mg, 13.6 mmol) and triethylamine (0.70 mL, 5.0 mmol) in dry Et₂O (100 mL) was added a 9:1 mixture of **184** and **183** (900 mg, 2.40 mmol of **184**) in dry Et₂O (25 mL) at rt over 1.5 h. The mixture was stirred at rt for 12 h. A precipitate was removed by filtration. The filtrate was washed with a saturated NaHCO₃ solution (40 mL) and brine (40 mL), dried over anhydrous Na₂SO₄, and concentrated under vacuum. The residue was subjected to column chromatography (40% EtOAc/hexane) to give a 1.8:1 mixture of 186 to 187 (70 mg, 8% yield) as a pale yellow oil.

Discernible NMR data for the major diastereoisomer from the mixture: ¹H NMR (CDCl₃) δ 5.87 (1H, d, *J* = 3.6 Hz, H1'), 4.90 (1H, dd, *J* = 8.7, 2.8 Hz, H7), 4.69 (1H, d, *J* = 3.6 Hz), 3.84 (1H, m, H1), 3.49 (1H, m, H5), 2.72 (1H, m, H4 *anti* to H5), 2.69 (1H, m, H4 *syn* to H5), 1.49 (3H, s), 1.48 (3H, s), 1.37 (3H, s), 1.31 (3H, s). NOE data 4.90 (3.84, 3%; 3.49, 3%), 3.84 (4.90, 3%; 3.49, 3%), 2.69 (3.49, 3%). ¹³C NMR (CDCl₃) δ 209.0 (0, C6), 135.0 (1), 128.1 (1), 111.8 (0), 109.0 (0), 105.2 (1, C1'), 90.5, 82.7, 80.8, 72.2, 67.3, 53.4, 45.8, 34.8, 26.8, 26.2, 25.4.

Discernible NMR data for the minor diastereoisomer from the mixture: ¹H NMR (CDCl₃) δ 5.03 (1H, dd, J = 8.4, 3.0 Hz, H7), 4.55 (1H, d, J = 3.9 Hz), 3.84 (1H, m, H1), 3.49 (1H, m, H5), 1.49 (3H, s), 1.42 (3H, s), 1.33 (3H, s), 1.32 (3H, s). NOE data 3.84 (5.03, 2%). ¹³C NMR (CDCl₃) δ 210.3 (0, C6), 135.6 (1), 127.8 (1), 112.4, 108.8, 105.1, 89.9, 83.1, 72.5, 66.7, 53.8, 46.2, 26.6, 25.3.

References

- (a) Baker, R.; Walmsley, S. Tetrahedron 1982, 38, 1899-1910. (b) Prestwich, G. D. Biochem. Sys. Ecol. 1979, 7, 211-221. (c) Eisner, T.; Kriston, I.; Aneshansley, D. J. Behav. Ecol. Sociobiol. 1976, 1, 83-125. (d) Baker, R.; Coles, H. R.; Edwards, M.; Evans, D. A.; Howse, P. E.; Walmsley, S. J. Chem. Ecol. 1981, 7, 135-145.
- (a) Prestwich, G. D.; Solheim, B. A.; Clardy, J.; Pilkiewicz, F. G.; Miura, I.; Tanis, S. P.; Nakanishi, K. J. Am. Chem. Soc. 1977, 99, 8082-8083. (b) Prestwich, G. D.; Goh, S. H.; Tho, Y. P. Experientia 1981, 37, 11-13.
- 3. Prestwich, G. D.; Lauher, J. W.; Collins, M. S. Tetrahedron Lett. 1979, 3827-3830.
- Nakanishi, K.; Goto, T.; Itô, S.; Natori, S.; Nozoe, S. Natural Products Chemistry, Vol. 3, Oxford University Press, Oxford, 1983. pp. 136-138.
- (a) Prestwich, G. D.; Tempesta, M. S.; Turner, C. Tetrahedron Lett. 1984, 25, 1531-1532. (b) Baker, R.; Organ, A. J.; Prout K.; Jones, R. Tetrahedron Lett. 1984, 25, 579-580.
- Braeckman, J. C.; Daloze, D.; Dupont, A.; Pasteels, J.; Tursch, B.; Declercz, J. P.; Germain, G.; van Meerssche, M. Tetrahedron Lett. 1980, 21, 2761-2762.
- (a) Prestwich, G. D.; Tanis, S. P.; Pilkiewicz, F. G.; Miura, I.; Nakanishi, K. J. Am. Chem. Soc. 1976, 98, 6062-6064. (b) Prestwich, G. D.; Tanis, S. P.; Springer, J. P.; Clardy, J. J. Am. Chem. Soc. 1976, 98, 6061-6062. (c) Vrkoč, J.; Buděšínský, M.; Sedmera, P. Coll. Czech. Chem. Comm. 1978, 43, 1125-1133, and 2478-2485.
- Prestwich, G. D.; Spanton, S. G.; Lauher, J. W.; Vrkoč, J. J. Am. Chem. Soc. 1980, 102, 6825-6828.

- 9. Prestwich, G. D. J. Chem. Ecol. 1978, 5, 459-480.
- 10. Prestwich, G. D.; Jones, R. W.; Collins, M. S. Insect. Biochem. 1981, 11, 331-336.
- 11. Prestwich, G. D. Tetrahedron 1982, 38, 1911-1919
- (a) Dauben, W. G.; Thiessen, W. E.; Resnick, P. R. J. Org. Chem. 1965, 30, 1693-1698. (b) Birch, A. J.; Brown, W. V.; Corrie, J. E. T.; Moore, B. P. J. Chem. Soc., Perkin Trans. 1, 1972, 2653-2658.
- 13. (a) Kato, T.; Hirukawa, T.; Uyehara, T.; Yamamoto, Y. Tetrahedron Lett. 1987, 28, 1439-1442. (b) Hirukawa, T.; Shudo, T.; Kato, T. J. Chem. Soc., Perkin Trans. 1, 1993, 217-225.
- 14. (a) Aoki, M.; Uyehara, T.; Kato, T. Chem. Lett. 1984, 695-698. (b) Kato, T.;
 Kobayashi, T.; Kitahara, Y. Tetrahedron Lett. 1975, 3299-3302.
- 15. (a) Kato, T.; Hirukawa, T.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1987,
 977-978. (b) Hirukawa, T.; Koarai, A.; Kato, T. J. Org. Chem. 1991, 56, 4520-4525.
- Aoki, M.; Tooyama, Y.; Uyehara, T.; Kato, T. Tetrahedron Lett. 1983, 24, 2267-2270.
- Dauben, W. G.; Farkas, I.; Bridon, D. P.; Chuang, C.-P.; Henegar, K. E. J. Am. Chem. Soc. 1991, 113, 5883-5884.
- Paquette, L. A.; Sauer, D. R.; Cleary, D. G.; Kinsella, M. A.; Blackwell, C. M.;
 Anderson, L. G. J. Am. Chem. Soc. 1992, 114, 7375-7387.
- 19. Taber, D. F. Tetrahedron Lett. 1993, 34, 1883-1884.
- 20. Metz, P.; Bertels, S.; Fröhlich, R. J. Am. Chem. Soc. 1993, 115, 12595-12596.
- 21. (a) Barton, D. H. R.; Levisalles, J. E. D.; Pinhey, J. T. J. Chem. Soc. 1962, 3472-

3482. (b) Greene, A. E.; Edgar, M. T. J. Org. Chem. 1989, 54, 1468-1470.

- 22. (a) Hayakawa, K.; Aso, K.; Shiro, M.; Kanematsu, K. J. Am. Chem. Soc. 1989, 111, 5312-5320. (b) Nagashima, S.; Kanematsu, K. Tetrahedron: Asymmetry 1990, 1, 743-749.
- 23. Liu, C.; Burnell, D. J. J. Am. Chem. Soc. 1997, 119, 9584-9585.
- 24. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A, 3rd Ed., Plenum Press: New York, 1990. pp. 626-627.
- Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A, 3rd Ed., Plenum Press: New York, 1990. pp. 631-633.
- 26. (a) Dickinson, R. A.; Kubela, R.; MacAlpine, G. A.; Stojanac, Z.; Valenta, Z. Can. J. Chem. 1972, 50, 2377-2380. (b) Das, J.; Kubela, R.; MacAlpine, G. A.; Stojanac, Z.; Valenta, Z. Can. J. Chem. 1979, 57, 3308-3319.
- 27. Gregson, R. P.; Mirrington, R. N. Aust. J. Chem. 1976, 29, 2037-2048.
- 28. Eilbracht, P.; Jelitte, R.; Trabold, P. Chem, Ber. 1986, 119, 169-181.
- Jeffs, P. W.; Molina, G.; Cass, M. W.; Cortese, N. A. J. Org. Chem. 1982, 47, 3871-3875.
- 30. Corey, E. J.; Ravindranathan, T. Tetrahedron Lett. 1971, 4753-4755.
- Harding, K. E.; Strickland, J. B.; Pommerville, J. J. Org, Chem. 1988, 53, 4877-4883.
- Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A, 3rd Ed., Plenum Press: New York, 1990. pp. 637-638.
- 33. Herrmann, J. L.; Schlessinger, R. H. J. Chem. Soc., Chem. Commun. 1973, 711-712.

- McMurry, J. E.; Silvestri, M. G.; Fleming, M. P.; Hoz, T.; Grayston, M. W. J. Org. Chem. 1978, 43, 3249-3255.
- Liu, P.-Y. Ph. D. Dissertation, Memorial University of Newfoundland, 1992, pp. 157-158.
- 36. Cimarusti, C. M.; Wolinsky, J. J. Am. Chem. Soc. 1968, 90, 113-120.
- 37. (a) Gensler, W. J.; Gatsonis, C. D. J. Org. Chem. 1966, 31, 4004-4008. (b) Kende,
 A. S.; King, M. L.; Curran, D. P. J. Org. Chem. 1981, 46, 2826-2828.
- 38. (a) Pine, S. H.; Pettit, R. J.; Geib, G. D.; Cruz, S. G.; Gallego, C.H.; Tijerina, T.;
 Pine, R. D. J. Org. Chem. 1985, 50, 1212-1216. (b) Pine, S. H.; Zahler, R.; Evans,
 D. A.; Grubbs, R. H. J. Am. Chem. Soc. 1980, 102, 3270-3272.
- 39. (a) Stork, G.; Hudrlik, P. F.; J. Am. Chem. Soc. 1968, 90, 4464-4465. (b) Denmark,
 S. E.; Hammer, R. P.; Weber, E. J.; Habermas, K. L. J. Org. Chem. 1987, 52, 165168. (c) House, H. O.; Nomura, G. S.; VanDerveer, D.; Wissinger, J. E. J. Org.
 Chem. 1986, 51, 2408-2416. (d) Coates, R. M.; Sandefur, L. O.; Smillie, R. D. J.
 Am. Chem. Soc. 1975, 97, 1619-1621.
- 40. (a) Jefford, C. W.; Sledeski, A. W.; Lelandais, P.; Boukouvalas, J. Tetrahedron Lett.
 1992, 33, 1855-1858. (b) Angers, P.; Canonne, P. Tetrahedron Lett. 1994, 35, 367-370.
- 41. Weber, W. P. Silicon Reagents for Organic Synthesis, Springer-Verlag: New York, 1983. pp. 235-238.
- 42. Kaneko, T.; Wong, H. Tetrahedron Lett. 1987, 28, 517-520.
- 43. Paterson, I.; Fleming, I. Tetrahedron Lett. 1979, 995-998.

- 44. Corey, E. J.; Walinsky, S. W. J. Am. Chem. Soc. 1972, 94, 8932-8933.
- 45. Paterson, I.; Price, L. G. Tetrahedron Lett. 1981, 22, 2829-2832.
- 46. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190-6191.
- Newton, R. F.; Reynolds, D. P.; Finch, M. A. W.; Kelly, D. R.; Roberts, S. M. Tetrahedron Lett. 1979, 3981-3982.
- 48. Kelly, D. R.; Roberts, S. M.; Newton, R. F. Synth. Commun. 1979, 9, 295-299.
- 49. Blaszczak, L. C.; McMurry, J. E. J. Org. Chem. 1974, 39, 258-259.
- 50. (a) Elks, J.; Evans, R. M.; Long, A. G.; Thomas, G. H. J. Chem. Soc. 1954, 451-462.
 (b) Mantlo, N. B.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 2781-2783.
- 51. Corey, E. J.; Weigel, L. O.; Chamberlin, A. R.; Lipshutz, B. J. Am. Chem. Soc. 1980, 102, 1439-1441.
- 52. (a) Bulman-Page, P. C.; Roberts, R. A.; Paquette, L. A. Tetrahedron Lett. 1983, 24, 3555-3558. (b) Wright, J.; Drtina, G. J.; Roberts, R. A.; Paquette, L. A. J. Am. Chem. Soc. 1988, 110, 5806-5817.
- 53. Flemming, S.; Kabbara, J.; Nickisch, K.; Neh, H.; Westermann, J. Synthesis, 1995, 317-320.
- 54. Liu, C.; Burnell, D. J. J. Org. Chem. 1997, 62, 3683-3687.
- Liotta, D.; Saindane, M.; Sunay, U.; Jamison, W. C. L.; Grossman, J.; Phillips, P. J. Org. Chem. 1985, 50, 3241-3243.
- 56. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357-1358.
- 57. (a) Ihara, M.; Ishada, Y.; Fukumoto, K.; Kametani, T. Chem. Pharm. Bull. 1985, 33, 4102-4105. (b) Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1984, 25, 5953-5956.

- 58. Shindo, M. Tetrahedron Lett. 1997, 38, 4433-4436.
- (a) Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis, John Wiley & Sons, Inc: New York, 1967. pp. 357-359. (b) Sharma, V. K.; Shahriari-Zavareh, H.; Garratt, P. J.; Sondheimer, F. J. Org. Chem. 1983, 48, 2379-2383. (c) Anastasia, M.; Allevi, P.; Ciuffreda, P.; Fiecchi, A.; Gariboldi, P. J. Chem. Soc., Perkin Trans. 1, 1985, 595-599.
- 60. (a) Barton, D. H. R.; Robinson, C. H. J. Chem. Soc. 1954, 3045-3051. (b) Prelog,
 V.; Schenker, K.; Günthard, H. H. Helv. Chim. Acta 1952, 35, 1598-1516.
- 61. Rabideau, P. W.; Marcinow, Z. Organic React. 1992, 42, 1-334.
- Wiesner, K.; Ho, P.-T.; Liu, W.-C.; Shanbhag, M. N. Can. J. Chem. 1975, 53, 2140-2149.
- 63. (a) Kodpinid, M.; Thebtaranonth, Y. Tetrahedron Lett. 1984, 25, 2509-2512. (b)
 Danieli, R.; Martelli, G.; Spunta, G.; Rossini, S.; Caineli, G.; Panunzio, M. J. Org. Chem. 1983, 48, 123-125.
- 64. Ward, D. E.; Rhee, C. K.; Zoghaib, W. M. Tetrahedron Lett. 1988, 29, 517-520.
- 65. Wigfield, D. C. Tetrahedron, 1979, 35, 449-462, and references therein.
- 66. Larock, R. C. Comprehensive Organic Transformations, VCH Publishers, Inc: New York, 1989. pp. 8-12.
- 67. Caine, D. Organic React. 1976, 23, 1-258.
- 68. Greene, A. E.; Drian, C. L.; Crabbe, P. J. Am. Chem. Soc. 1980, 102, 7583-7584.
- 69. Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett. 1976, 809-812.
- 70. Brown, H. C.; Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159-7161.

- 71. (a) Georges, M.; Tam, T.-F.; Fraser-Reid, B. J. Org, Chem. 1985, 50, 5747-5753. (b)
 Narang, S. A.; Dutta, P. C. J. Chem. Soc. 1964, 119-1127.
- 72. Hyatt, J.; Raynolds, P. W. Organic React. 1994, 45, 159-646.
- 73. (a) Procter, G. Asymmetric Synthesis, Oxford University Press: Oxford, 1996. (b)
 Ager, D. J.; East, M. B. Asymmetric Synthetic Methodology, CRC Press: Boca Raton,
 Florida, 1996. (c) Aitken, R. A.; Alan, R. Asymmetric Synthesis, Blackie Adacemie
 & Professional: London, 1992.
- 74. Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. 1982, 104, 166-168.
- 75. (a) Wynberg, H.; Staring, E. G. J. J. Org. Chem. 1985, 50, 1977-1979. (b) Ketelaar,
 P. E. F.; Staring, E. G. J.; Wynberg, H. Tetrahedron Lett. 1985, 26, 4665-4668.
- 76. Greene, A. E.; Charbonnier, F. Tetrahedron Lett. 1985, 26, 5525-5528.
- Greene, A. E.; Charbonnier, F.; Luche, M.-J.; Moyano, A. J. Am. Chem. Soc. 1987, 109, 4752-4753.
- 78. Fráter, G.; Müller, U.; Günther, W. Helv. Chim. Acta 1986, 69, 1858-1861.
- Markó, I.; Ronsmans, B.; Hesbain-Frisque, A.-M.; Dumas, S.; Ghosez, L. J. Am. Chem. Soc. 1985, 107, 2192-2194.
- Houge, C.; Frisque-Hesbain, M.; Mockel, A.; Ghosez, L.; Declercq, J. P.; Germain,
 G.; Meerssche, M. V. J. Am. Chem. Soc. 1982, 104, 2920-2921.
- 81. Chen, L.-Y.; Ghosez, L. Tetrahedron Lett. 1990, 31, 4467-4470.
- 82. Chen, L.-Y.; Ghosez, L. Tetrahedron: Asymmetry, 1991, 2, 1181-1184.
- Corey, E. J.; Shirahama, H.; Yamamoto, H.; Venkateswarlu, S. T. A.; Schaaf, T. K.
 J. Am. Chem. Soc. 1971, 93, 1490-1491.

- 84. Genicot, C.; Ghosez, L. Tetrahedron Lett. 1992, 33, 7357-7360.
- 85. Ghosez, L.; Genicot, C.; Gouverneur, V. Pure & Appl. Chem. 1992, 64, 1849-1856.
- 86. (a) Newton, P. F.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1, 1979, 3072-3076.
 (b) Leffler, M. T.; Calkins, A. E. Org. Syn., Coll. Vol. 3, John Wiley & Sons, Inc: New York, 1955. pp. 544-548.
- Rey, M.; Roberts, S. M.; Dreiding, A. S. Helv. Chim. Acta 1982, 65, 703-720, and references therein.
- 88. (a) Johnson, C. R.; Zeller, J. R. J. Am. Chem. Soc. 1982, 104, 4021-4023. (b)
 Johnson, C. R.; Zeller, J. R. Tetrahedron 1984, 40, 1225-1233.
- 89. (a) Llera, J. M.; Fernández, I.; Alcudia, F. *Tetrahedron Lett.* 1991, 32, 7299-7302.
 (b) Fernández, I.; Llera, J. M.; Alcudia, F. J. Org. Chem. 1992, 57, 6789-6796.
- 90. (a) Ashe III, A. J.; Drone, F. J. J. Am. Chem. Soc. 1987, 109, 1879-1880. (b)
 Pattenden, G.; Robson, D. C. Tetrahedron Lett. 1987, 28, 5751-5754. (c)
 Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467-4470.
- 91. Jas, G. Synthesis 1991, 965-966.
- 92. Mitra, A. The Synthesis of Prostaglandins, John Wiley & Sons, Inc: New York, 1977.
- 93. Wijnberg, J. B. P. A.; Wiering, P. G.; Steinberg, H. Synthesis 1981, 901-903.

Appendix: Selected ¹H NMR Spectra

The 'H NMR Spectra of the synthetic samples are arranged in the same order as they appear in the text.

-166-

-168-

-172-

-173-

-174-

-175-

-181-

-183-

-184-

-186-

-187-

-189-

-190-

REGIO- AND STEREOSELECTIVITY IN THE REDUCTIONS OF CYCLIC ENEDIONES

2.1. Introduction

Our study of regio- and stereoselective reductions of cyclic enediones arose from our observation that, as mentioned in Part I, the reduction of enedione **56** with sodium borohydride or lithium tri-*tert*-butoxyaluminohydride unexpectedly gave carbinol **89** as the single isolated product in 82% and 90% yield, respectively. The implausible, extreme regio- and stereoselectivity in this reduction was so intriguing to us that we decided to carry out a systematic investigation to see if the selectivity is general and to explore the origin of the selectivity. We believed that this study would be of theoretical and synthetic importance.

-191-

A perusal of literature revealed a couple of sporadic synthetic examples where reductions of cyclohex-2-ene-1,4-diones occurred regio- and stereoselectively at the

Scheme 58. Literature examples of regio- and stereoselective reductions of enediones

seemingly more hindered carbonyls, but the reason for the selectivity was not unearthed. These examples are presented Scheme 58. In the synthesis of gibberellic acid, Corey's group reduced enedione 201 with sodium borohydride in absolute ethanol at 0 °C to provide carbinol 202 in 100% yield.¹ Ishihara et al. reported that the reduction of 4oxoisophorone (203) with 0.25 equivalents of sodium borohydride in methanol at -10 °C afforded alcohols 204 and 205 in 82% yield and in a 49:1 ratio in favor of 204, whereas 203 was reduced with sodium borohydride in the presence of cerium trichloride to give 204 and 205 in 84% yield but in a 1:11.5 ratio favoring 205.² However, no rationalization about the regio- and stereoselectivity in these reductions was mentioned, either by Corey or by Ishihara. An example of regio- and stereoselective monoreduction of the apparently more hindered carbonyl in a trans-fused cyclic enedione was noticed in a synthetic study of steroid compounds by Valenta's group.³ When enedione 206 was treated with lithium tri-tert-butoxyaluminohydride at room temperature, alcohol 207 was obtained as the exclusive product in 94% yield. In this case, however, the hydride added to the carbonyl from the side opposite to the angular methyl group. Valenta speculated that the high regio- and stereoselectivity was due to the electronic difference between the two

Figure 11. The nonperpendicular nucleophilic attack to a carbonyl

Rtran

-193-

carbonyls and /or the nonperpendicular, rearside attack of the reducing reagent. This angle for carbonyl reduction was initially proposed by Bürgi and coworkers,⁴ who suggested that the preferred path for a nucleophile to attack a carbonyl was as shown in Figure 11.

Our observation was also reminiscent of the regioselective reduction of unsymmetrically substituted cyclic anhydrides to provide lactones, which was extensively studied by Kayser and coworkers.⁵ Scheme 59 contains some of the examples, which can be classified into three groups. The first group, represented by examples (a) and (b),^{5a} includes the reductions of flexible α , α -disubstituted succinic anhydrides. Reduction preferentially occurred at the seemingly more hindered carbonyl, the one adjacent to the substituents, with very high regioselectivity. The second group, represented by examples (c)^{5b} and (d),^{5f} consists of the reductions of α -substituted maleic anhydrides. In this group, reductions also displayed a preference for the carbonyls next to the substituent, but the extent of regioselectivity was dependent upon the nature of the substituent. When the substituent was an alkyl group, as in example (c), the regioselectivity (9:1) was much lower than that encountered in the first group. However, when the substituent was a methoxy group, as in example (d), the regioselectivity was 100%. The third group, represented by example (e),^{5a} is composed of the reductions of bridged succinic anhydrides. Contrary to the first and second groups, these reductions very preferentially occurred to the carbonyls that were next to the less substituted sp³ carbons.

To explain their observations, Kayser *et al.* put forward different rationalizations. For the first group, their main argument was the "antiperiplanar effect", after the theory of

-194-

Scheme 59. Regioselective hydride reductions of cyclic anhydrides³

Figure 12. The antiperiplanar effect in the hydride addition to a carbonyl

-196-

223 antiperiplanarity is between the incipient C-H bond and a neighboring C-H bond. Anh's *ab initio* calculations suggested that an antiperiplanar C-C bond should be more efficient than an antiperiplanar C-H bond in stablizing the transition state. Therefore, transition state 222 should be more favorable than transition state 223. Kayser and coworkers' calculations showed that transition 222 was more stable than transition state 223 by 3.3 kcal/mol.^{5d} Both Anh's and Kayser's calculations were carried out with the STO-3G basis set. However, more recent, higher level *ab initio* calculations performed by Wu and Houk⁷ indicated that an *anti* C-CH₃ bond should be disfavored compared to an *anti* C-H bond, because the former is a better electron donor and destablizes the electronrich transition structure.

In the reductions of rigid bridged cyclic anhydrides, the quasi-chair conformation and subsquently the antiperiplanarity is not achievable. Kayser argued that the regioselectivity in these reductions is determined to a great extent by steric factors,^{5e} which direct the reducing reagents to the less hindered carbonyl. For the second group, the reductions of α -substituted maleic anhydrides, the interpretation was that the intrinsic reactivities of the two carbonyls, expressed by the size of the LUMO coefficients, and chelating effects dominated the regioselectivity.^{5c}

In short, according to Kayser and coworkers, in the reductions of flexible unsymmetrically substituted cyclic anhydrides, the regioselectivity in favor of the seemingly more hindered carbonyls being reduced is due to electronic factors, whereas the regioselectivity which leads to the less hindered carbonyls being reduced in rigid bridged anhydrides is the consequence of steric factors.

-197-

2.2. Preparation of Cyclic Enediones

In order to carry out our study of the regio- and stereoselectivity in the reduction of cyclic enediones, we first needed to prepare a series of substrates. *cis*-Fused cyclohex-2-ene-1,4-diones were prepared by straightforward Diels-Alder reactions of commercially available dienes and dienophiles (Table 4). Most of the Diels-Alder reactions were conducted in toluene in sealed tubes at 120-130 °C. In the preparation of enedione 227, a mixture of *cis*- and *trans*-piperylene (226) was used, but only the *trans*-isomer reacted with 2,6-dimethyl-1,4-benzoquinone (13) under the conditions employed. Therefore, a single adduct was provided. The reaction of isoprene (230) with 13 was noticed to have nearly no regioselectivity, giving almost a 1:1 isomeric mixture 231. The two regioisomers were inseparable by flash chromatography. The preparation of enediones 237 and 238 was according to the procedure of Alder *et al.*⁸

The *trans*-fused cyclohex-2-ene-1,4-diones **241-243** were obtained by epimerization of the corresponding *cis*-isomers **225**, **233**, and **235** (Scheme 60). Heating **225**, **233**, and **235** with glacial acetic acid, separately, for fifteen or sixteen hours produced the mixtures of the *cis*- and *trans*-isomers in a ratio of approximately 1:1, as revealed by GC-MS. The formation of the *trans*-isomers was also indicated by the ¹H NMR signals of the angular methyl groups of the products. As discussed in Section 1. 2. 4, the angular methyls in the *trans*-isomers appeared at a significantly higher field than those in the *cis*-isomers. The chemical shifts of the methyl groups in both the *cis*- and *trans*-isomers are shown in Scheme 60. Prolonging the heating period did not change the ratio of the isomers. Heating a solution of enedione **225** in methanol at reflux with sodium bicarbonate for ten hours also gave a 1:1 mixture of the *cis*- and *trans*-isomers, but the reaction was less clean. The *cis*- and *trans*-enediones were inseparable by flash

Table 4. Preparation of cyclic enediones by Diels-Alder reactions

Table 4. Preparation of cyclic enediones by Diels-Alder reactions (continued)

-200-

chromatography, but the mixtures could be used for our study of the regio- and stereoselectivity in the reductions of the trans-enediones.

Scheme 60. Preparation of 241-243 by the epimerization of 225, 233, and 235

233

233:242 = 55:45

243

235:243 = 57:43
2. 3. Regio- and Stereoselectivity in the Reductions of Cyclic Enediones

2. 3. 1. Regio- and Stereoselectivity in the Reductions of cis, non-Bridged Enediones

Our systematic examination of the reductions of the cyclic enediones, prepared in the previous section, with sodium borohydride and lithium tri-*tert*-butoxyaluminohydride revealed different regio- and stereoselectivities.⁹ With *cis*, non-bridged enediones, the hydride consistently added to the seemingly more hindered carbonyl from the same side

Scheme 61. Regio- and stereoselectivity in the reduction of cis, non-bridged enediones

246

235

248

249

^a isolated yields. ^b yields by GC-MS analysis. ^c isolated yield of **248**. ^dratio by ¹H NMR analysis of crude product.

as the angular methyl group, as we had originally observed in the reduction of enedione 56 (Scheme 27). The reduction products were α or β substituted α , β -enones, except in

the case of enedione **235**. Therefore, the regiochemistry of the reductions could readily be diagnosed by the chemical shift of the vinyl proton in the α - or β - substituted α , β -enone product, since the α -proton and the β -proton in an α , β -enone system resonate at distinct fields, i.e., the signal for the α -proton appears at a significantly higher field. For example, in the reduction of enedione **225** the product had its vinyl proton appearing at δ 5.87, which implied that the proton was in the α -position of an α , β -enone, whereas in the reduction of **233** the vinyl proton of the major product appeared at δ 6.46, which indicated a proton in the β position of an α , β -enone. Therefore, the two products were assigned as **244** and **250**, respectively, both of them being produced by the reduction of the carbonyl next to the angular methyl group (Figure 14). In the reduction of **235**, the product **246** was not an α - or β - substituted α , β -enone but an aromatic ketone. The regiochemistry was assigned by analogy, and the assignment was supported by the fact that no coupling between H-9a and H-10 was observed in the COSY spectrum.

The stereochemistry of the reductions was clear by NOE measurements between

250

-204-

the carbinol hydrogens and the angular methyl groups, as illustrated in Figure 14. The NOE experiments could also be used to corroborate the regiochemical assignments. For instance, a 4% of enhancement of the signal for the vinyl proton by irradiation of the carbinol hydrogen in 250 indicated that the carbonyl next to the alkenic hydrogen must have been reduced.

As seen in Scheme 61, the reductions were generally fast, clean, and highly efficient. In the reductions of enediones 225, 227, 231, and 235, only one monoreduction product was detected by ¹H NMR spectroscopy. With the more critical enedione 229 in which four methyl groups were around the carbonyl at C-1, the reduction with LiAl(O-t-Bu), H still preferentially occurred to the C-1 carbonyl, though more slowly, to give 248 as the major product, but the ¹H NMR spectrum of the crude product revealed a minor isomer that had discernible signals at δ 6.31, 5.25, and 4.80. By comparison with the ¹H NMR spectrum of an authentic sample, the minor product was confirmed to be 249. The ratio of the major product to the minor was 10:1. In the reduction of enedione 233, which differed from enedione 225 in that the vinyl methyl and the angular methyl group were not adjacent to the same carbonyl, a minor product was also detected both by GC-MS and by 'H NMR spectroscopy. The minor product had a vinyl signal at δ 5.78 in its 'H NMR spectrum, and therefore it was tentatively assigned as 251. However, the stereochemistry at C-4 in 251 could not be determined. The ratios of the major product to the minor were 25:1 and 20:1, when enedione 233 was reduced with LiAl(O-t-Bu), H and NaBH. respectively.

The reductions with lithium tri-tert-butoxyaluminohydride were typically

conducted at 0 °C for twenty minutues or so in THF, using 20 to 30% excess of the reducing reagent, whereas the typical conditions in the reductions with sodium borohydride were 0.8 equivalents of the reducing reagent, methanol as the solvent, 0 °C and six to ten minutes (including the time of addition of sodium borohydride). Usually, the reductions afforded slightly higher yields with $LiAl(O-t-Bu)_3H$ than with NaBH₄. This was because over-reductions occurred with NaBH₄, a very small amount of doubly and/or triply reduced products being detected by GC-MS. To prevent the over-reduction, it was important not to use excess NaBH₄ and to complete the reactions within minutes, except in the case of **229**.

2. 3. 2. Regio- and Stereoselectivity in the Reductions of trans-Fused Enediones

The *trans*-fused cyclohex-2-ene-1,4-diones **241-243** were obtained only as inseparable mixtures of approximately 1:1 of the *cis* and the *trans* isomers, by epimerization of the *cis* isomers, as mentioned earlier. Nevertheless, when the mixtures of the *cis* and the *trans* cyclic enediones were reduced with lithium tri-*tert*butoxyaluminohydride, the regio- and stereoselectivity in the reactions of *trans*-fused isomers could be obtained by ¹H NMR spectroscopy and GC-MS without difficulty. These reductions gave the same regiochemistry as those of the *cis*-isomers (Scheme 62). However, the stereochemistry was opposite, namely, the hydride was delivered to the carbonyls from the side opposite the angular methyl groups. This was revealed by NOE experiments. When the signals for the H-4's in products **252** and **254** were irradiated, the signals for the H-8a's were enhanced by 5% and 7%, respectively. In product **253** an 8% Scheme 62. Regio- and stereoseletivity in the reductions of trans-fused cyclic enediones

0

243

Ĥ ∥ O

253

enhancement of the signal for the H-9a was observed by the irradiation of the H-10.

The reductions of enediones 241 and 243 each provided only one product. However, in the reduction of enedione 242 a minor product was indicated both by ¹H NMR spectroscopy and by GC-MS. The ¹H NMR spectrum of the crude product showed that the minor component had an vinyl signal at δ 5.84. Accordingly, the minor product was tentatively assigned to be 255, without any attempt to determine its stereochemistry at C-4. The ratio of the major product to the minor was 8:1, by both ¹H NMR spectroscopy and by GC-MS.

Since the reductions of enediones 241 to 243 were conducted by using a roughly 1:1 mixture of *cis*- and *trans*-isomers, the yields presented in Scheme 62 were, in fact, the yields of the mixture products. However, the numbers were very close to those obtained from the reductions of the homogeneous *cis*-isomers with $LiAl(O-t-Bu)_{3}H$ (Scheme 61). Therefore, the yields with the *cis-trans* mixtures should be similar to the yields in the reductions of *trans*-isomers.

2. 3. 3. Regio- and Stereoselectivity in the Reductions of Bridged Enediones

Scheme 63 presents the reductions of bridged enediones, which had different regioselectivities from the reductions of non-bridged enediones. The reduction of enedione 238 with lithium tri-*tert*-butoxyaluminohydride gave three isolated products. The major one, in 67% yield, was characterized as monoalcohol 256, which was produced by the reduction from the convex side of the less hindered carbonyl. The two minor products, isolated as a 2.5:1 chromatographically inseparable epimeric mixture 257, in 10% yield, were produced by 1,4-reduction. The major epimer of 257 was shown by NOE experiments to have the 2-methyl group *anti* to the 8a-methyl. Enedione 240 was similar to but slightly more flexible than 238. Its reduction with lithium tri-*tert*-butoxyaluminohydride also occurred at the less hindered carbonyl to afford, in 75% yield, two stereoisomeric products 258 and 259 in a ratio of 10:1 favoring 258. It was noticed that the reductions of 238 and 240 necessarily took three hours (one hour at 0 °C, and then two hours at room temperature) to complete. In other words, it seemed strange that

reductions of the seemingly sterically more hindered carbonyls in non-bridged enediones with LiAl(O-t-Bu)₃H only needed less than thirty minutes at 0 °C, but reductions of the less hindered carbonyls in bridged enediones 238 and 240 with the same reducing reagent required three hours at 0 °C to room temperature. Nevertheless, when bridged enedione 237, where the angular methyl group was absent, was reduced with LiAl(O-t-Bu)₃H, the reduction occurred rapidly to give two regioisomers. The major product, in 63% yield,

Scheme 63. Regio- and stereoselectivity in the reductions of bridged enediones

proved to be 260, which was produced by the reduction of the carbonyl adjacent to the vinyl methyl group. The minor product, in 10% yield, was 261.

2. 3. 4. Influences of Reducing Reagents in the Regio- and Stereoselectivity in the Reductions of Cyclic Enediones

With substrate 225, which we considered to be typical of many of our substrates, we also examined the influence of reducing reagents on the regio- and stereoselectivity in the reductions of cyclic enediones (Table 5). As shown earlier, the reduction of enedione 225 with lithium tri-tert-butoxyaluminohydride and sodium borohydride gave monoalcohol 244 in 97% and 94% yield, respectively. The reduction of 225 with lithium borohydride also occurred regio- and stereoselectively at the apparently more hindered carbonyl at C-1, but in this case, over-reduction was significant, as shown by GC-MS analysis. The yield of 244 was only 80%. However, when L-Selectride, which is highly bulky, was used as the reducing reagent, the reduction of 225 gave three products. One was the 1,4-reduction product 264, which was a single stereoisomer but the stereochemistry at C-2 could not be determined by NOE experiments. Another product was 244, again. The major product was monoalcohol 262, which was produced by the addition of hydride syn to the angular methyl group, but to the carbonyl at C-4 instead of the carbonyl at C-1. The ratio of the three products 244, 262, and 264 was 1:2.5:1, respectively. Lastly, enedione 225 was subjected to reduction by the Luche reagent.^{10a} a combination of sodium borohydride and cerium trichloride. The major reduction also occurred at the carbonyl at C-4, though 244 was still a product. However, in this case the

Table 5. Reduction of enedione 225 with different reducing reagents

^a isolated yields. ^b yields by GC-MS. ^c calculated yield based on 23% isolated yield of 264 and NMR ratio. ^d ratio by ¹H NMR.

delivery of hydride to the carbonyl at C-4 took place from both sides of the carbonyl, giving two stereoisomers 262 and 263. The ratio of products 247, 265, and 276 in this reduction was 1:1.8:1.

2. 3. 5. Rationalization of the Selectivities in the Reductions of Cyclic Enediones

It was mentioned in Section 1. 3. 2 that reductions of cyclohexanones with small reducing reagents give predominantly equatorial alcohols through axial attack. This axial preference is significantly higher in the reductions and nucleophilic additions to 2cyclohexenone. For example, Houk and Trost summarized^{11a} that the addition of alkynyllithium to cyclohexanone typically shows about 6-8:1 axial addition over equatorial, but with 2-cyclohexenone the number is greater than 20:1. The origin of the axial selectivity and the difference in the extent of this selectivity between cyclohexanone and 2-cyclohexenone were quantitatively interpreted, using ab initio transition structures. to be due to torsional strain and poor orbital overlap in the equatorial transition state.¹¹ The torsional explanation for the axial selectivity in the nucleophilic additions to cyclohexanone was originally proposed by Felkin et al.¹² A pivotal difference between axial and equatorial addition resides in the fact that the transition structure for axial addition is staggered, whereas for equatorial addition it is eclipsed or nearly eclipsed (Figure 15). In the eclipsed transition state, significant torsional strain between the forming C-H bond and the axial C-H bond(s) α to the carbonyl exists, and therefore axial addition becomes the favorable process. Houk et al. calculated that transition structure 266 is 1.2 kcal/mol higher in energy than structure 265. This implies that the axial

-212-

Figure 15. Newman projections of the transition structures for the axial and equatorial additions of hydride to cyclohexanone and 2-cyclohexenone

selectivity over equatorial for hydride reduction of simple cyclohexanones should be 7.3:1 at 25 °C.^{11a} 2-Cyclohexenone is flatter than cyclohexanone because of the presence of the conjugated double bond. As a result, transition structure **268** for the equatorial addition is more eclipsed, and therefore the torsional strain in **268** is more serious though now only one α axial C-H bond is present. The axial transition structure **267** was found to be 2.0 kcal/mol more stable than **268**. At 25 °C, this corresponds to a 32:1 ratio of axial attack to equatorial.^{11a}

The significance of orbital overlap was put forward originally by Toromanoff.¹³ This assumption proposed that axial addition to the carbonyl in 2-cyclohexenone is favored because in the course of axial addition the orbital overlap between the forming bond and the π bond in C₂=C₃ double bond can maximally, continuously be maintained. Houk and coworkers' calculations suggested that orbital overlap was possible in either axial transition structure 267 or equatorial transition structure 268, but it was better in 267.^{11b}

We believe that both the regio- and stereoselectivities in the reductions of nonbridged enediones with lithium tri-*tert*-butoxyaluminohydride and sodium borohydride are due to the axial preference of the reductions, which has been proposed by Liotta *et al.* in their rationalization for the same selectivities in the addition of acetylide to bicyclic enediones.¹⁴ AM-1¹⁵ calculations with enedione **225**, using the Spartan, Version 4.1, indicated that there are two low-energy conformers for the *cis*-fused enediones. For enedione **225** the two conformers are within 0.5 kcal/mol of each other in energy, which implies that the two conformers are almost equally populated at 25 °C. This may not be

quite true for the other *cis*-fused enediones, but it should not be very important with respect to our interpretation, because the Curtin-Hammett principle suggests that the ratio of products formed from conformational isomers is not dependent on conformer ratio as long as the barrier to their interconversion is not very high.¹⁶ For the sake of simplicity and generality, these two conformers for all the *cis*-fused enediones are represented as **269-a** and **269-b** (Figure 16). Either of the two conformers provides two alternative approaches for axial addition, but among the four alternatives of the two conformers, only one is not sterically encumbered. This is the attack on carbonyl at C-4 in conformer **269-a**, in which the "angular" methyl group is in an equatorial position. It was this axial attack that led to the observed (exclusive or predominant) products in the reduction of *cis* bicyclic enediones. The other three alternatives are impeded either by a β -axial methyl group in the other ring of the molecule, as shown in Figure 16.

It was also mentioned in Section 1. 3. 2 that axial selectivity would be suppressed in the reduction of cyclohexanones when the reducing reagents are sterically bulky, probably due to the steric interaction between the bulky reducing reagent and the axial hydrogens at C-3 and C-5 of cyclohexanone, and the equatorial addition could become dominant. This provides an explanation for the observation that when enedione **225** was reduced with L-Selectride, the regioselectivity was different from that in the reduction with lithium tri-*tert*-butoxyaluminohydride or sodium borohydride (Table 5). The major product in the reduction with L-Selectride was produced by equatorial addition. The alternative approaches for equatorial addition on enedione **225** are shown in Figure 17.

-215-

Figure 17. Regiochemical alternatives for equatorial addition on enediones 225

equatorial: least hindered

equatorial: impeded by the α axial methyl

Similar to the situation of axial addition, conformers 225-a and 225-b provided four possibilities for equatorial addition. However, three of them are impeded either by an α -axial methylene group or by the α -axial methyl group. Only the attack to the carbonyl at C-4 in conformer 225-a is relatively unencumbered. It was this equatorial attack that gave the major product 262 in the reduction of 225 with L-Selectride. L-Selectride usually effects exclusively equatorial reduction with a saturated cyclic ketone,¹⁷ but it was not surprising that in our case the ratio of the equatorial attack at C-1 to the axial attack at C-4 in 225-a, i.e., the ratio of product 262 to 263 was only 2.5:1. Cyclic enedione 225 has only one axial hydrogen at the 5-position to the carbonyl at C-1, and it is also flatter than a saturated cyclic ketone. Therefore, the steric interaction between the 5-axial hydrogen and the reducing reagent, L-Selectride, for the axial addition at the carbonyl at C-1 in 225-a is less significant. On the other hand, the equatorial addition at C-4 in 225-a

must be more difficult than in a saturated cyclic ketone, because the cyclic enedione system is closer to coplanar and the torsional strain between the forming C-H bond and the α -axial C-H bond should be enhanced.

With cerium trichloride and sodium borohydride, the major pathway for reduction of enedione 226 was also at the carbonyl at C-4, but the reason for this is probably not the issue of equatorial selectivity but selective complexation. It is well known that the Luche reagent is usually used to enhance 1,2-reduction over 1,4-reduction with an α , β unsaturated ketone by virtue of the complexation of cerium(III) with the carbonyl oxygen.¹⁰ Enedione 225 possesses two carbonyls, but the oxygen of the carbonyl at C-4 is less hindered. This carbonyl oxygen is also more basic, due to the presence of the electron-donating methyl group at C-2. After cerium(III) selectively complexes with this oxygen, the carbonyl at C-4 is activated and should be reduced preferentially. However, sterically, neither the axial approach nor the equatorial approach to reduce the carbonyl at C-4 was favored. Therefore, two stereoisomers 262 and 263 in a ratio of only 1.8:1 were produced.

The rigid *trans*-fused bicyclic enediones (241-243) have one distinct conformational preference, as represented by the simplified model 270 in Figure 18. Model 270 provides two axial addition alternatives. However, the approach to attack the carbonyl at C-1 would be impeded by the β axial methyl group, whereas the approach to attack the carbonyl at C-4 is encumbered by only a β hydrogen. The major products from the reductions of 241-243 with lithium tri-*tert*-butoxyaluminohydride were all consistent with the latter approach (Scheme 62).

-217-

Figure 18. Regiochemical alternatives for axial addition on trans bicyclic enediones

axial: impeded by the β axial methyl

In the bridged tricyclic enediones (237, 238, and 240), the cyclohex-2-ene-1,4dione ring cannot achieve a chair-like conformation but has to be planar. The facial selectivity in the reduction of the enediones would be determined by the pattern of substitution on the two sp³ carbons next to the two carbonyls. That is, the less substituted face, or the convex face, would be attacked. With 238 and 240, the regiochemistry would be governed by the angular methyl groups. The carbonyls which are not proximate to these methyls would be less shielded and therefore be reduced. This agrees with the experimental results. The fact that the reductions of 238 and 240 with lithium tri-*tert*butoxyaluminohydride were significantly slower than the reductions of the non-bridged enediones also confirmed that the reduction of a carbonyl could indeed be impeded by a β axial methyl group, a factor that we have proposed to rationalize the regio- and stereoselectivity in the reductions of non-bridged enediones. With 237, in which the angular methyl group is absent, the steric hindrance towards reducing reagents in

-218-

attacking the two carbonyls in the enedione system from the convex face should be almost same. However, the reduction of 237 with lithium tri-*tert*-butoxyaluminohydride furnished a 6:1 regioselectivity in favor of the carbonyl next to the allylic methyl group being reduced. This must be because of the electronic effect of the allylic methyl. The methyl group is an electron donor, and it would make the carbonyl at the other end intrinsically less reactive to nucleophiles. This electronic effect of an allylic methyl group also provides the interpretation to the fact that reductions of *cis* bicyclic enedione 233 and its *trans* isomer 242, where the allylic methyl groups were "mismatched" to the angular methyls, gave small amounts of minor products resulting from the reductions of the carbonyls that were next to the allylic methyls, but not to the angular methyls, whereas the reductions of the other bicyclic enediones exclusively occurred to the carbonyls that were adjacent to the angular methyl groups.

2. 4. Regioselectivity in the Reductions of Cyclic Enediones with NaBH₄/CeCl₃¹⁸

So far, we have provided an excellent procedure for the regio- and stereoselective monoreduction of the seemingly more hindered carbonyl in a non-bridged enedione. However, as mentioned in Section 1. 3. 2, our original intent was to reduce the other carbonyl, the carbonyl at C-4, selectively in tetracyclic enedione **56**. In an attempt to find a general, alternative method to monoreduce cyclic enediones with the opposite regioselectivity, we examined the reductions of cyclic enediones with with NaBH₄/CeCl₃. Typically, these reductions were conducted in methanol at 0 °C for five or six minutes (including the period of addition of sodium borohydride), with 0.7 equivalents of sodium borohydride. The results are arranged in Scheme 64.

The reduction of enedione 225 with NaBH₄/CeCl₃ was discussed in Sections 2. 3. 4 and 2. 3. 5. Through the selective complexation of cerium trichloride with the less hindered carbonyl oxygen, the reduction occurred mainly to the carbonyl at C-4 with a regioselectivity of 74%, though with little stereoselectivity. With NaBH₄ alone or LiAl(O-*t*-Bu)₃H the reduction took place exclusively at the carbonyl at C-1. In a similar manner, a 1:1 isomeric mixture 231 was reduced with NaBH₄/CeCl₃ to produce 271, 272, and 245 with 69% regioselectivity in favor of the carbonyl at C-4 being reduced. The selective complexation of cerium trichloride in 225 and 231 might be due to the difference in steric hindrance and/or in basicity between the two carbonyl oxygens, but the results from enediones 229 and 56 showed that the difference in steric hindrance must be the predominant factor. In 229 and 56, the oxygens of the C-1 carbonyls are much

Scheme 64. Regioselectivity in the reductions of cyclic enediones with NaBH4/CeCh

more shielded than those of the C-4 carbonyls, but the basicity of the oxygens of the C-4 carbonyls cannot be significantly different from those in 225 and 231. However, the monoreductions of 229 and 56 with NaBH₄/CeCl₃ occurred regiospecifically at the carbonyls at C-4. Enedione 229 gave epimeric alcohols 249 and 273 in a ratio of 2.8:1 and in a 76% combined yield. A minor amount (16%) of double-reduction product 274 was also detected by ¹H NMR spectroscopy, though its stereochemistry at C-1 and C-4

was not determined. Tetracyclic enedione 56 yielded epimers 275 and 276 in a 1.5:1 ratio and in an 88% combined yield. Thus, our original objective reducing the carbonyl at C-4 regioselectively in 56 was achieved.

In enedione 235, the steric encumbrance between the two carbonyl oxygens is slightly different. Though the sp³ carbon α to the carbonyl at C-10 is disubstituted whereas the sp³ carbon α to the carbonyl at C-9 is monosubstituted, one of the two substituents on the carbon α to the carbonyl at C-10 has to be in axial position, which would be perpendicular to the carbonyl and would not provide steric encumbrance to the carbonyl oxygen. The reduction of 235 with NaBH₄/CeCl₃ gave two monoreduction products in a 20:1 ratio, as indicated by GC-MS, and in a 97% combined yield. The structure of the minor product was not determined, but the major product was found to be identical with the exclusive product from the reduction of 235 with NaBH₄ alone or LiAl(O-*t*-Bu)₃H. This may reasonably be rationalized as follows: cerium trichloride coordinated with the two carbonyl oxygens nearly without selectivity, and therefore the two carbonyls were almost equally activated. The regio- and stereoselectivities were then governed by the axial preference of the reduction.

Due to the minor electronic effect of the allylic methyl group, the reduction of enedione 233 with sodium borohydride alone gave 5% minor reduction at the carbonyl at C-1, which is next to the allylic methyl but not the angular methyl. However, with NaBH₄/CeCl₃, the reduction of 233 occurred exclusively at the carbonyl at C-1, giving carbinol 250 in 98% yield. This is understandable as both the steric and electronic factors would make the oxygen of the C-4 carbonyl more favorable to coordinate with

-223-

cerium(III). Similarly, the reduction of the *trans* isomer 242 with NaBH₄/CeCl₃ afforded exclusively carbinol 254 in 98% yield, whereas the regioselectivity with $LiAl(O-t-Bu)_3H$ was only 8:1 in favor of 254 being produced.

To summarize Part II, our systematic study has shown, for the first time, that in a non-bridged cyclic enediones, either with *cis* or *trans* junction, the seemingly sterically more hindered carbonyl can be reduced highly regio- and stereoselectively with relatively small reducing reagents. The overwhelming cause of both the regio- and stereoselectivities is the axial preference of the reduction. Only one axial approach is sterically allowed. A substituent on the double bond in enedione moieties may somewhat affect the regional selectivity by electron donation. The combination of sodium borohydride and cerium(III) chloride is a useful alternative reagent for the reduction of cyclic enediones. It can either completely reverse or greatly enhance the regioselectivity, depending on the structures of the enediones. With bridged enediones, the regio- and stereochemistry is also controlled by steric factors, but when the steric factors are absent. the regioselectivity will be determined by electronic factors. Benzoquinones are frequently used as excellent dienophiles in Diels-Alder reactions for the syntheses of natural or unnatural polycyclic compounds. We believe that our results from the study of regio- and stereoselectivies in the reductions of cyclic enediones, the Diels-Alder adducts of benzoquinones, can make this approach more versatile.

2.5. Experimental

General procedure for the preparation of 225, 227, 229, 231, 233, 235, and 240 by sealed tube Diels-Alder reactions

A solution of 2,6-dimethyl-1,4-benzoquinone (13) or 2-methyl-1,4naphthoquinone (234) (2-5 mmol) and 1,3-diene 224, 226, 228, 230, or 239 (4-5 equivalents of the dienophiles) in dry toluene (5-10 mL) was degassed and sealed in a thick-walled (1.5 mm) glass tube (32×1.5 or 32×1.0 cm) on a vacuum line. The sealed tube was then heated in a oil bath for a certain period of time (detailed in the individual reports). After cooling to rt, the sealed tube was opened. The solvent and excess diene were removed under vacuum, and the residue was subjected to column chromatography (10-20% EtOAc/hexane) to afford the enedione.

cis-4a,5,8,8a-Tetrahydro-2,6,7,8a-tetramethyl-1,4-naphthalenedione (225)

2,6-Dimethyl-1,4-benzoquinone (13) (688 mg, 5.00 mmol) and 2,3-dimethyl-1,3butadiene (224) (2.80 mL, 24.3 mmol) in dry toluene (10 mL) in a sealed tube at 120-125 °C for 30 h afforded 225 (1.02 g, 94% yield) as a pale yellow oil: IR (neat) 1681(s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.50 (1H, q, J = 1.4 Hz, H3), 2.80 (1H, apparent t, J = 6.0 Hz, H4a), 2.49 (1H, dd, J = 18.4, 5.2 Hz, H5 *anti* to H4a), 2.43 (1H, d, J = 17.5 Hz, H8 *anti* to 8a-methyl), 2.08 (1H, dd, J = 18.4, 5.6 Hz, H5 *syn* to H4a), 1.99 (3H, d, J = 1.4 Hz, 2-methyl), 1.66 (1H, d, J = 17.5 Hz, H8, *syn* to 8a-methyl), 1.63 (3H, s), 1.58 (3H, s), 1.29 (3H, s, 8a-methyl); NOE data 1.29 (2.80, 6%; 2.08, 6%; 1.66, 1%). ¹³C NMR (CDCl₃) δ 203.0 (0), 199.8 (0), 147.5 (0, C2), 135.5 (1, C3), 122.8 (0), 122.7 (0), 52.8 (1, C4a), 48.2 (0, C8a), 38.8 (2, C8), 29.6 (2, C5), 22.8 (3, 8a-methyl), 18.9 (3), 18.6 (3), 16.6 (3, 2-methyl). MS *m/z* 218 (M⁺, 59), 203 (41), 190 (34), 189 (18), 188 (37), 175 (100), 157 (18), 147 (15), 121 (16), 107 (28), 105 (27), 98 (19), 91 (45), 79 (26), 69 (39), 68 (19), 67 (19), 65 (14), 53 (19). HRMS calcd. for C₁₄H₁₈O₂ 218.1307, found 218.1311.

cis-4a,5,8,8a-Tetrahydro-2,8,8a-trimethyl-1,4-naphthalenedione (227)

2,6-Dimethyl-1,4-benzoquinone (13) (275 mg, 2.00 mmol) and piperylene (90%, mixture of *cis* and *trans* isomers, 1.60 mL, 14.4 mmol) in dry toluene (8.0 mL) in a sealed tube at 120 °C for 11 h afforded **227** (315 mg, 77% yield) as a pale yellow oil: IR (neat) 3024 (m), 1688 (s), 1628 (m), 1376 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 6.66 (1H, q, J = 1.4 Hz, H3), 5.65-5.58 (2H, m, H6 and H7), 2.93-2.84 (2H, m, H5 and H4a), 2.15-2.00 (2H, H5 and H8), 2.00 (3H, d, J = 1.4 Hz, 2-methyl), 1.42 (3H, s, 8a-methyl), 0.80 (3H, d, J = 7.3 Hz, 8-methyl). NOE data 1.42 (2.93-2.84, 5%; 2.15-2.00, 6%). ¹³C NMR (CDCl₃) δ 203.8 (0), 198.8 (0), 149.6 (0, C2), 137.7 (1, C3), 130.0 (1), 122.5 (1), 50.5 (0, C8a), 50.3 (1, C4a), 39.3 (1, C8), 23.9 (3, 8a-methyl), 20.5 (2, C5), 19.5 (3, 8-methyl), 16.3 (3, 2-methyl). MS *m*/z 204 (M⁺, 10), 189 (17), 176 (89), 161 (60), 96 (22), 93 (38), 91 (52), 79 (23), 77 (42), 69 (40), 68 (100). HRMS calcd. for C₁₃H₁₆O₂ 204.1150, found 204.1178.

cis-4a,5,8,8a-Tetrahydro-2,6,8,8,8a-pentamethyl-1,4-naphthalenedione (229)

2,6-Dimethyl-1,4-benzoquinone (13) (545 mg, 4.00 mmol) and 2,4-dimethyl-1,3pentadiene (228) (2.60 mL, 19.7 mmol) in dry toluene (10 mL) in a sealed tube at 145 °C for 4 days afforded 229 (421 mg, 45% yield) as a pale yellow oil: IR (neat) 1680 (s), 1374 (m), 1206 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.69 (1H, s, H2), 5.01 (1H, s, H7), 2.91 (1H, d, J = 6.8 Hz, H4a), 2.80 (1H, d, J = 18.0 Hz, H5), 1.99 (3H, s, 2-methyl), 1.95 (1H, dd, J = 18.0, 6.8 Hz, H5), 1.70 (3H, s, 6-methyl), 1.32 (3H, s, 8a-methyl), 0.92 (3H, s, 8-methyl), 0.73 (3H, s, 8-methyl). NOE data 1.32 (2.91, 8%). ¹³C NMR (CDCl₃) δ 202.7 (0), 198.6 (0), 149.7 (0, C2), 138.2 (1, C3), 130.1 (1, C7), 128.0 (0, C6), 53.0 (0, C8a), 52.8 (1, C4a), 38.1 (0, C8), 29.7 (3, 8-methyl), 24.9 (3, 8-methyl), 24.2 (2, C5), 23.2 (3, 6-methyl), 21.1 (3, 8a-methyl), 16.4 (3, 2-methyl). MS *m*/*z* 232 (M⁺, 6), 204 (38), 189 (33), 161 (13), 121 (15), 105 (14), 96 (100), 91 (15), 83 (37), 81 (43), 79 (14), 77 (14), 69 (19). HRMS calcd. for C₁sH₂₀O, 232.1463, found 232.1453.

cis-4a,5,8,8a-Tetrahydro-2,6 and 7,8a-trimethyl-1,4-naphthalenedione (231)

2,6-Dimethyl-1,4-benzoquinone (13) (275 mg, 2.00 mmol) and isoprene (230) (1.0 mL, 10 mmol) in dry toluene (8.0 mL) in a sealed tube at 120-125 °C for 36 h afforded 231 (361 mg, 88% yield) as an almost 1:1 isomeric mixture as a pale yellow oil: ¹H NMR (CDCl₃) δ 6.52 (2H, overlapped narrow signals, H3), 5.38 (1H, m), 5.31 (1H, m), 2.86 (1H, dd, J = 6.6, 4.9 Hz, H4a), 2.79 (1H, t, J = 5.6 Hz, H4a), 2.64-2.37 (4H, m), 2.20-2.01 (2H, m), 2.00 (6H, overlapped narrow doublets, 2-methyl), 1.80-1.69 (2H, m), 1.69 (3H, s), 1.64 (3H, s), 1.32 (3H, s, 8a-methyl), 1.31 (3H, s, 8a-methyl). ¹³C NMR (CDCl₃) (some signals are overlapped) δ 203.1 (0), 202.8 (0), 199.7 (0), 199.3 (0), 147.5 (0, C2), 135.5 (1, C3), 131.2 (0), 131.0 (0), 117.9 (1), 117.8 (1), 52.5 (1, C4a), 51.8 (1, C4a), 48.1 (0, C8a), 47.3 (0, C8a), 37.1 (2), 32.9 (2), 27.5 (2), 23.6 (2), 23.4 (3), 23.2 (3), 22.7 (3), 22.3 (3), 16.6 (3, 2-methyl).

cis-4a,5,8,8a-Tetrahydro-2,4a,6,7-tetramethyl-1,4-naphthalenedione (233)

2,5-Dimethylbenzoquinone (232) (362 mg, 2.66 mmol) and 2,3-dimethyl-1,3butadiene (224) (1.50 mL, 13.2 mmol) in dry toluene (8.0 mL) in a sealed tube at 120-125 °C for 27 h provided 233 (558 mg, 96% yield) as a yellow oil: IR (neat) 1679 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.46 (1H, q, J = 1.5 Hz, H3), 2.83 (1H, t, J = 5.7 Hz, H8a), 2.49 (1H, dd, J = 17.7, 2.0 Hz, H8 *anti* to H8a), 2.40 (1H, d, J = 17.4 Hz, H5 *anti* to 4a-methyl), 2.08 (1H, dd, J = 17.7, 1.6 Hz, H8 *syn* to H8a), 1.98 (3H, d, J = 1.5 Hz, 2-methyl), 1.67 (1H, d, J = 17.4 Hz, H5 *syn* to 4a-methyl), 1.64 (3H, s), 1.58 (3H, s), 1.27 (3H, s, 4a-methyl). NOE data 1.27 (2.83, 7%; 2.08, 5%; 1.67, 1%). ¹³C NMR (CDCl₃) δ 202.6 (0), 200.4 (0), 148.2 (0, C2), 135.0 (1, C3), 122.7 (0, C6 and C7), 52.8 (1, C8a), 48.5 (0, C4a), 38.8 (2, C5), 29.5 (2, C8), 22.7 (3, 4a-methyl), 18.9 (3), 18.6 (3), 16.1 (3, 2-methyl). MS *m*/z 218 (M⁺, 60), 203 (36), 190 (23), 189 (17), 188 (38), 175 (100), 157 (18), 147 (19), 121 (16), 107 (30), 105 (25), 98 (18), 91 (42), 79 (24), 77 (26), 69 (35), 68 (22), 67 (20). HRMS calcd. for C₁₄H₁₈O₂ 218.1307, found 218.1304.

cis-1,4,4a,9a-Tetrahydro-2,3,4a-trimethyl-9,10-anthracenedione (235)

2-Methyl-1,4-naphthoquinone (234) (703 mg, 4.00 mmol) and 2,3-dimethyl-1,3butadiene (224) (1.85 mL, 16.0 mmol) in dry toluene (10 mL) in a sealed tube at 120-125 °C for 28 h gave 235 (0.936 g, 92% yield) as a colorless oil: IR (neat) 3068 (w), 1694 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 8.08-8.00 (2H, m), 7.76-7.29 (2H, m), 3.03 (1H, t, *J* = 6.86 Hz, H9a), 2.60 (1H, d, *J* = 16.5 Hz, H4a *anti* to 10a-methyl), 2.42 (1H, dd, *J* = 18.1, 7.2 Hz, H1a *anti* to H9a), 2.16 (1H, dd, *J* = 18.1, 7.2 Hz, H1a *syn* to H9a), 1.78 (1H, d, *J* = 16.5 Hz, H4a *syn* to 10a-methyl), 1.62 (6H, br s, 2-methyl and 3-methyl), 1.34 (3H, s, 4a-methyl). NOE data 3.03 (2.16, 3%), 1.34 (3.03, 7%; 1.78, 2%). ¹³C NMR (CDCl₃) δ 200.3 (0), 198.6 (0), 134.2 (1), 134.0 (1), 133.5 (0), 132.9 (0), 127.2 (1), 126.5 (1), 123.4 (0), 122.6 (0), 53.6 (1, C9a), 48.4 (0, C4a), 38.6 (2, C4), 31.1 (2, C1), 23.8 (3, 4a-methyl), 18.9 (3), 18.5 (3). MS *m*/*z* 254 (M⁺, 42), 239 (100), 226 (18), 225 (18), 224 (36), 221 (37), 211 (27), 193 (16), 134 (80), 133 (55), 119 (14), 106 (16), 105 (48), 104 (26), 91 (26), 79 (19), 77 (48), 76 (38), 67 (20). HRMS calcd. for C₁₇H₁₈O₂ 254.1307, found 254.1305.

(4aα,5α,8a,8aα)-4a,5,8,8a-Tetrahydro-2-methyl-5,8-methano-1,4-naphthalenedione (237)

A solution of 2-methyl-1,4-benzoquinone (236) (623 mg, 5.00 mmol) and cyclopentadiene (175) (992 mg, 15.0 mmol) in methanol (15 mL) was stirred at rt for 1h. The excess diene and solvent were removed under vacuum, and the residue was purified by column chromatography (30% EtOAc/hexane) to afford 237 (885 mg, 94% yield) as a pale yellow solid: mp 61.5-62.5 °C. IR (Nujol) 1672 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.48 (1H, q, J = 1.4 Hz, H3), 6.06 (1H, dd, J = 5.4, 2.8 Hz), 6.02 (1H, dd, J = 5.4, 2.8 Hz), 3.53-3.52 (2H, m, H5 and H8), 3.23-3.22 (2H, m, H4a and H8a), 1.92 (3H, d, J = 1.4 Hz, 2-methyl), 1.54 (1H, m, H9), 1.45 (1H, m, H9). ¹³C NMR (CDCl₃) δ 199.6 (0), 199.1 (0), 151.6 (0, C2), 139.6 (1, C3), 135.4 (1), 134.8 (1), 49.0 (1), 48.9 (1), 48.8 (2, C9), 48.6 (1), 48.2 (1), 16.3 (3, 2-methyl). MS *m*/z 188 (M⁺, 15), 123 (5), 91 (5), 66 (100), 65 (10). HRMS calcd. for C₁₂H₁₂O₂ 188.0836, found 188.0820.

(4aa,5a,8a,8aa)-4a,5,8,8a-Tetrahydro-2,8a-dimethyl-5,8-methano-1,4-

naphthalenedione (238)

A solution of 2,6-dimethyl-1,4-benzoquinone (13) (275 mg, 2.00 mmol) and cyclopentadiene (175) (264 mg, 4.00 mmol) in methanol (5.0 mL) was stirred at rt for 45 h. The excess diene and solvent were removed under vacuum, and the residue was purified by column chromatography (15% AcOEt/hexane) to afford 238 (388 mg, 96% yield) as a pale yellow oil: IR (neat) 1664 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.49 (1H, q, J = 1.4 Hz, H3), 6.09 (1H, dd, J = 5.6, 2.9 Hz), 5.99 (1H, dd, J = 5.6, 2.8 Hz), 3.42 (1H, m, H5), 3.08 (1H, br s, H8), 2.82 (1H, d, J = 3.9 Hz, H4a), 1.94 (3H, d, J = 1.4 Hz, 2-methyl), 1.68 (1H, m, H9), 1.52 (1H, m, H9), 1.46 (3H, s, 8a-methyl). ¹³C NMR (CDCl₃) δ 203.1 (0), 199.3 (0), 151.2 (0, C2), 139.0 (1), 137.7 (1), 134.9 (1), 57.7, 53.7, 52.4 (0), 48.9, 46.4, 26.6 (3, 8a-methyl), 16.6 (3, 2-methyl). MS *m*/*z* 202 (M⁻, 4), 137 (15), 91 (3), 77 (3), 68 (5), 66 (100). HRMS calcd. for C₁₃H₁₄O₂ 202.0993, found 202.0990.

(4aa,5a,8a,8aa)-4a,5,8,8a-Tetrahydro-2,8a-dimethyl-5,8-ethano-1,4-

naphthalenedione (240)

A solution of 2,6-dimethyl-1,4-benzoquinone (13) (275 mg, 2.00 mmol) and 1,3-cyclohexadiene (239) (0.29 mL, 3.0 mmol) in toluene (5.0 mL) in a sealed tube at 125-135 °C for 48 h. The excess diene and solvent were removed under vacuum, and the residue was subjected to column chromatography (10% AcOEt/hexane) to provide 240 (70 mg, 46% yield) as yellow oil, which solidified in the refrigerator to a pale yellow solid: mp 43.5-44.0 °C: IR (CCl₄) 3048 (w), 1665 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.53 (1H, s, H3), 6.32 (1H, m, H7), 6.12 (1H, m, H6), 3.02 (1H, m, H5), 2.94 (1H, m, H8), 2.51 (1H, d, *J* = 1.8 Hz, H4a), 1.95 (3H, s, 2-methyl), 1.88 (1H, m, H9 *anti* to C6, C7 double bond), 1.73 (1H, H10 *anti* to C6, C7 double bond), 1.39-1.18 (2H, m, H9, H10 *syn* to C6, C7 double bond), 1.33 (3H, s, 8a-methyl). NOE data 2.51 (1.73, 3%), 1.33 (2.51, 8%; 1.88, 5%). ¹³C NMR (CDCl₃) δ 203.2 (0), 199.5 (0), 151.1 (0, C2), 138.2 (1, C3), 136.0 (1, C7), 132.4 (1, C6), 58.8 (1, C4a), 50.5 (0, C8a), 39.3 (1, C8), 36.7 (1, C4), 26.2 (2, C10), 26.1 (3, 8a-methyl), 18.8 (2, C9), 16.9 (3, 2-methyl). MS *m/z* 216 (M⁺, 0.6), 138 (11), 91 (6), 80 (100), 79 (22), 68 (9). HRMS calcd. for C₁₄H₁₆O₂ 216.1150, found 216.1152.

General procedure for the preparation of 241, 242, and 243 by epimerization of the corresponding *cis*-isomers 225, 233, and 235

cis-Fused enediones 225, 233, or 235 (approximately 2 mmol) were heated in glacial acetic acid (10 mL) at reflux overnight. The acetic acid was removed by vacuum distillation. The residue was dissolved in Et_2O (30 mL), and then washed with saturated NaHCO₃ solution (2 x 10 mL), water (10 mL), and brine (10 mL). The solution was dried over anhydrous Na₂SO₄. Removal of the solvent and chromatography of the residue (when necessary) provided mixtures of the *cis* and *trans* isomers in ratios of approximately 1:1. These mixtures were used for the reduction study without separation.

trans-4a,5,8,8a-Tetrahydro-2,6,7,8a-tetramethyl-1,4-naphthalenedione (241)

¹H NMR (CDCl₃) (discernible signals from a mixture of **225** and **241**) δ 6.58 (1H, q, *J* = 1.5 Hz, H3), 2.90 (1H, dd, *J* = 9.8, 7.2 Hz, H4a), 2.01 (3H, d, *J* = 1.5 Hz, 2-methyl), 1.08 (3H, s, 8a-methyl). ¹³C NMR (CDCl₃) δ 204.3 (0), 199.7 (0), 147.9 (0, C2), 136.9 (1, C3), 123.0 (0), 122.6 (0), 50.6 (1, C4a), 47.7 (0, C8a), 39.6 (2), 28.1 (2), 20.0 (3), 19.1 (3), 18.6 (3), 16.5 (3, 2-methyl). MS (from GC-MS) *m/z* 218 (M⁺, 64), 203 (100), 190 (14), 189 (35), 188 (71), 176 (16), 175 (52), 157 (39), 147 (20), 142 (14), 133 (62), 119 (20), 107 (40), 105 (39), 91 (75), 79 (55), 77 (55), 69 (62), 68 (36), 67 (30).

trans-4a,5,8,8a-Tetrahydro-2,4a,6,7-tetramethyl-1,4-naphthalenedione (242)

¹H NMR (CDCl₃) (discernible signals from a mixture of **233** and **242**) δ 6.48 (1H, q, J = 1.5 Hz, H3), 2.91 (1H, dd, J = 10.8, 6.0 Hz, H8a), 2.01 (3H, d, J = 1.5 Hz, 2-methyl), 1.08 (3H, s, 4a-methyl). ¹³C NMR (CDCl₃) δ 204.2 (0), 200.4 (0), 150.0 (0, C2), 135.3 (1, C3), 123.0 (0), 122.7 (0), 50.7 (1, C8a), 48.2 (0, C4a), 39.6 (2), 28.1 (2), 20.1 (3), 19.1 (3), 18.5 (3), 16.0 (3, 2-methyl). MS (from GC-MS) *m/z* 218 (M⁻, 54), 203 (100), 189 (58), 188 (70), 175 (66), 157 (37), 147 (17), 142 (15), 133 (16), 119 (18), 107 (33), 105 (32), 93 (16), 91 (64), 79 (38), 77 (43), 69 (59).

trans-1,4,4a,9a-Tetrahydro-2,3,4a-trimethyl-9,10-anthracenedione (243)

¹H NMR (CDCl₃) (discernible signals from a mixture of **235** and **243**) δ 8.11-8.00 (2H, m), 7.77-7.70 (2H, m), 3.13 (1H, dd, *J* = 10.6, 6.0 Hz, H9a), 1.71 (6H, s, 2-methyl and 3-methyl), 1.12 (3H, s, 4a-methyl). ¹³C NMR (CDCl₃) δ 201.9, 198.2, 135.0, 134.1, 134.0, 133.2, 127.3, 126.0, 122.9, 122.6, 50.2, 47.6, 39.8, 28.4, 19.8, 19.1, 18.5. MS (from GC-MS) *m/z* 254 (M⁺, 29), 239 (100), 236 (12), 225 (13), 224 (35), 222 (14), 221 (47), 147 (10), 134 (10), 133 (49), 105 (29), 104 (16), 79 (13), 77 (33), 76 (28), 51 (13).

General procedure for the reduction of cyclic enediones with lithium tri-tertbutoxyaluminohydride (Method A)

To a solution of enediones (0.5-1.0 mmol) in dry THF (5.0-8.0 mL) was introduced lithium tri-*tert*-butoxyaluminohydride (1.2-1.5 equivalents of enediones) at 0 °C over 5 min. The resulting solution was stirred for a certain period of time (detailed in the individual reports) before it was poured into water (50 mL) and then extracted with ethyl acetate (4 x 25 mL). The combined organic extracts were washed with water (2 x 30 mL), brine (30 mL), and dried over anhydrous MgSO₄. Removal of the solvent and chromatography (when necessary) gave the monoreduction products.

General procedure for the reduction of cyclic enediones with sodium borohydride (Method B)

To a solution of enediones (0.5-1.0 mmol) in methanol (5.0-10 mL) was added sodium borohydride (approximately 0.8 equivalents of enediones) at 0 °C over 3-5 min. The resulting mixture was stirred at the same temperature for another 3-5 min before the reaction was quenched with dilute NH₄Cl solution (40 mL) and extracted with EtOAc (4 x 25 mL). The combined organic extracts were washed with water (2 x 25 mL), brine (25 mL), and dried over anhydrous MgSO₄. Removal of the solvent and chromatography (if necessary) gave the products. (4α,4aβ,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-3,4a,6,7-tetramethylnaphthalen-1one (244)

Method A: Enedione 225 (146 mg, 0.669 mmol) in dry THF (5.0 mL) was reduced with LiAl(O-t-Bu)₃H (0.80 mL, 0.80 mmol) at 0 °C over 18 min to give 244 (142 mg, 97% yield).

Method B: Enedione 225 (129 mg, 0.591 mmol) in methanol (5.0 mL) was reduced with NaBH₄ (18.8 mg, 0.472 mmol) at 0 °C over 8 min to give crude 244 (125 mg), which was contaminated by 4% of a triply reduced product by GC-MS.

Alcohol **244**: mp 129.0-131.0 °C. IR (Nujol,) 3451 (s), 1659 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 5.87 (1H, s, H2), 4.27 (1H, d, J = 6.8 Hz, H4), 2.69 (1H, d, J = 16.1 Hz), 2.23-2.05 (4H, m), 2.02 (3H, s, 3-methyl), 1.64 (3H, s), 1.61 (1H, d, J = 19.0 Hz), 1.55 (3H, s), 1.20 (3H, s, 4a-methyl). NOE data 1.20 (4.27, 9%). ¹³C NMR (CDCl₃) δ 198.7 (0, C1), 160.1 (0, C3), 125.9 (1, C2), 123.5 (0), 122.8 (0), 78.0 (1, C4), 50.4 (1, C8a), 41.0 (0, C4a), 33.9 (2), 27.5 (2), 23.7 (3, 4a-methyl), 20.3 (3, 3-methyl), 19.4 (3), 18.8 (3). MS *m*/*z* 220 (M⁺, 2), 202 (24), 187 (30), 174 (34), 172 (15), 159 (100), 121 (14), 107 (24), 105 (19), 98 (20), 91 (26), 79 (15), 77 (16), 71 (14), 69 (20). HRMS calcd. for C₁₄H₂₀O₂ 220.1463, found 220.1450.

(4α,4aβ,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-3,4a,6 and-7-

tetramethylnaphthalen-1-one (245)

Enedione 231 as 1:1 isomeric mixture (131 mg, 0.641 mmol) in dry THF (5.0 mL) was reduced with LiAl(O-t-Bu)₃H (0.90 mL, 0.90 mmol) at 0 °C over 25 min to give

245 (122 mg, 92% yield) as a colorless, viscous liquid: ¹H NMR (CDCl₃) δ 5.88 (2H, two overlapped singlets, H2), 5.36 (1H, m), 5.25 (1H, m), 4.32 (1H, s, H4a), 4.30 (1H, s, H4a), 2.81 (1H, br d, *J* = 17.0 Hz), 2.70 (1H, d, *J* = 17.1 Hz), 2.30-2.01 (8H, m), 2.02 (6H, two overlapped singlets, H2), 1.77-1.64 (2H, m), 1.69 (3H, s), 1.60 (3H, s), 1.22 (6H, two overlapped singlets, H4a). ¹³C NMR (CDCl₃) (some signals are overlapped) δ 198.7, 198.6, 160.3, 132.0, 131.4, 125.9, 118.7, 118.4, 78.1, 78.0, 50.5, 49.7, 41.2, 40.4, 32.3, 27.7, 25.9, 23.9, 23.6, 23.5, 23.4, 21.3, 20.3.

(4aα,9aα,10β)-1,4,4a,9a,10-Pentahydro-10-hydroxy-2,3,4a-trimethylanthracen-9-one (246)

Method A: Enedione 235 (141 mg, 0.554 mmol) in dry THF (5.0 mL) was reduced with LiAl(O-t-Bu)₃H (0.66 mL, 0.66 mmol) at 0 °C over 18 min to give 246 (139 mg, 98% yield).

Method B: Enedione 235 (116 mg, 0.456 mmol) in methanol (4.0 mL) was reduced with NaBH₄ (14.5 mg, 0.364 mmol) at 0 $^{\circ}$ C over 6 min to give 246 (114 mg, 97% yield).

Alcohol 246: white solid: mp 119.0-120.5 °C. IR (Nujol) 3466 (s), 1664 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 8.00 (1H, d, *J* = 7.8 Hz, H8), 7.98 (1H, d, *J* = 7.8 Hz, H5), 7.62 (1H, m, H6), 7.38 (1H, m, H7), 4.83 (1H, d, *J* = 8.0 Hz, H10), 2.89 (1H, d, *J* = 17.4 Hz, H1β), 2.43 (1H, m, H9a), 2.23-2.21 (2H, m, H1α, 10-hydroxy), 1.87 (1H, d, *J* = 17.4 Hz, H4a), 1.68 (3H, s), 1.60 (1H, d, *J* = 17.4 Hz, H4a), 1.49 (3H, s), 1.31 (3H, s, 4a-methyl). NOE 4.83 (7.98, 2%; 2.43, 5%), 1.31 (4.83, 9%; 2.43, 6%; 2.23-2.21, 4%). ¹³C NMR (CDCl₃) δ 197.5 (0, C9), 143.7 (0), 134.1 (1, C6), 130.5 (0), 127.7 (1, C7), 126.8 (1, C8), 126.5 (1, C5), 123.7 (0), 122.6 (0), 76.2 (1, C10), 50.9 (1, C9a), 41.0 (0, C4a), 33.7 (2, C4), 28.0
(2, C1), 23.6 (3, 4a-methyl), 19.4 (3), 18.9 (3). MS *m/z* 256 (M⁺, 1), 238 (29), 223 (100), 208 (18), 195 (11), 158 (10), 134 (10), 133 (11), 121 (5), 118 (6), 105 (5). HRMS calcd. for C₁₇H₂₀O₂ 256.1463, found 256.1478.

(4α,4aβ,8aβ)-4,4a,5,8,8a-Pentabydro-4-hydroxy-3,4a,5-trimethylnaphthalen-1-one (247)

Enedione 227 (131 mg, 0.641 mmol) in dry THF (5.0 mL) was reduced with LiAl(O-*t*-Bu)₃H (0.80 mL, 0.80 mmol) at 0 °C over 20 min to give 247 (118 mg, 89% yield) as white solid: mp 111.5-112.5 °C. IR (CCl₄) 3503 (s), 1644 (s), 1072 (m) cm⁻¹. ¹H NMR (C₆D₅CD₃, 100 °C, signals are very broad at rt) δ 5.66 (1H, s, H2), 5.41 (2H, m), 3.74 (1H, d, *J* = 5.3 Hz, H4), 2.55 (1H, m, H8), 2.13-1.77 (4H, m), 1.72 (3H, s, 3-methyl), 0.94 (3H, d, *J* = 7.4 Hz, H5), 0.88 (3H, s, 4a-methyl). ¹³C NMR (CD₂Cl₂, -85 °C, a total of 28 signals for two conformers) δ 203.6, 199.6, 163.9, 157.3, 133.6, 131.0, 125.8, 124.3, 122.3, 121.9, 76.7, 72.8, 49.6, 48.3, 45.1, 38.0, 37.6, 35.5, 27.8, 26.5, 25.2, 22.3, 20.9, 20.3, 19.8, 13.2. MS *m*/z 206 (M⁺, 4), 188 (17), 173 (45), 160 (31), 159 (40), 145 (75), 122 (27), 109 (28), 98 (100), 93 (45), 91 (52), 77 (43), 70 (46), 69 (51). HRMS calcd. for C₁₃H₁₈O₂ 206.1307, found 206.1306.

(4α,4aβ,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-3,4a,5,5,7-pentamethylnaphthalen-1-one (248)

Enedione 229 (149 mg, 0.641 mmol) in dry THF (5.0 mL) was reduced with LiAl(O-t-Bu)₃H (0.95 mL, 0.95 mmol) at 0 °C over 2 h to give a mixture of 248 and 249 in a ratio of 10:1 favoring 248, from the ¹H NMR spectrum of the crude product. Column chromatography gave 248 (125 mg, 83% yield) as white solid: mp 86.5-88.0 °C. IR (CCl₄) 3457 (m, br), 1659 (s), 1440 (m), 1374 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 5.80 (1H, s, H2), 5.42 (1H, s, H6), 3.84 (1H, m, H4), 3.16 (1H, d, J = 3.7 Hz, 4-hydroxy), 26.1 (1H, apparent t, J = 8.9 Hz, H8a), 2.16 (2H, apparent d, J = 8.9 Hz, H8), 2.06 (3H, s, 3methyl), 1.67 (3H, s, 3-methyl), 1.20 (3H, s, 5-methyl), 0.95 (3H, s, 5-methyl), 0.91 (3H, s, 4a-methyl). NOE data 3.84 (0.91, 2%), 0.91 (3.84, 5%). ¹³C NMR (CDCl₃) δ 202.3 (0, C1), 157.2 (0, C3), 133.8 (1, C6), 131.5 (0, C7), 122.7 (1, C2), 74.4 (1, C4), 47.2 (1, C8a), 40.6 (0, C4a), 36.4 (0, C5), 32.6 (2, C8), 27.7 (3, 5-methyl), 22.9 (3, 7-methyl), 22.4 (3, 3-methyl), 22.2 (3, 5-methyl), 20.4 (3, 4a-methyl). MS m/z 234 (M⁺, 10), 201 (27), 173 (49), 139 (22), 137 (23), 136 (35), 135 (23), 121 (98), 105 (26), 98 (34), 96 (100), 91 (30), 81 (47), 79 (22), 77 (26), 69 (25). HRMS calcd. for C₁₅H₂₂O₂ 234.1620, found 234.1613.

Spectroscopic data for 249 are given on page of 248.

(4α,4aβ,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-2,4a,6,7-tetramethylnaphthalen-1one (250) and (4ξ,4aα,8aα)-4,4a,5,8,8a-pentahydro-4-hydroxy-3,6,7,8a-

tetramethylnaphthalen-1-one (251)

Method A: Enedione 233 (206 mg, 0.944 mmol) in THF (7.0 mL) was reduced with $LiAl(O-t-Bu)_{3}H$ (1.13 mL, 1.13 mmol) at 0 °C over 25 min to give 250 and 251 as a
mixture (203 mg, 98%) in a ratio of 25:1.

Method B: Enedione 233 (205 mg, 0.939 mmol) in methanol (8.0 mL) was reduced with NaBH₄ (37.4 mg, 0.939 mmol) at 0 °C over 9 min to give 250 and 251 as a mixture (195 mg, 94% yield) in a ratio of 25:1.

Alcohol **250**: white solid: mp 99.0-101.5 °C. IR (Nujol) 3460 (s), 1658 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.46 (1H, m, H3), 4.38 (1H, m, H4), 2.71 (1H, d, *J* = 17.6 Hz), 2.20 (1H, m, H8a), 2.13-2.07 (3H, m), 1.78 (3H, m, 2-methyl), 1.65 (3H, s), 1.57 (1H, d, *J* = 15.1 Hz), 1.55 (3H, s), 1.19 (3H, s, 8a-methyl). NOE data 4.38 (6.46, 4%; 2.20, 4%), 1.19 (4.38, 8%; 2.20, 5%). ¹³C NMR (CDCl₃) δ 199.4 (0, C1), 144.8 (1, C3), 134.6 (0), 123.4 (0), 122.6 (0), 75.1 (1, C4), 50.1 (1, C8a), 42.1 (1, C4a), 33.3 (2), 27.3 (2), 23.5 (3, 4a-methyl), 19.4 (3), 18.8 (3), 15.6 (3, 2-methyl). MS *m/z* 220 (M⁺, 2), 202 (23), 187 (41), 174 (64), 172 (16), 159 (100), 138 (14), 121 (14), 107 (27), 105 (19), 98 (27), 94 (15), 91 (28), 79 (17), 77 (18), 70 (18), 69 (21). HRMS calcd. for C₁₄H₂₀O₂ 220.1463, found 220.1488.

Alcohol **251**: ¹H NMR (CDCl₃, discernible signals from the mixture) δ 5.79 (1H, s, H2), 1.02 (3H, s, 8a-methyl). MS (from GC-MS) *m/z* 220 (M⁺, 9), 159 (12), 150 (18), 138 (100), 121 (11), 107 (21), 105 (16), 98 (20), 91 (27), 79 (17), 77 (19), 69 (22).

(4α,4aα,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-3,4a,6,7-tetramethylnaphthalen-1one (252)

A 1:1 epimeric mixture (146 mg, 0.669 mmol) of 225 and 241 in THF (5.0 mL) was reduced with $LiAl(O-t-Bu)_{3}H$ (0.80 mL, 0.80 mmol) at 0 °C over 25 min to give a 1:1 diastereoisomeric mixture (143 mg, 97% yield) of 244 and 252.

Alcohol **252**: ¹H NMR (CDCl₃, discernible signals from the mixture) δ 5.87 (1H, s, H2), 4.33 (1H, d, *J* = 6.2 Hz, H4), 2.36 (1H, dd, *J* = 11.2, 5.8 Hz, H8a), 2.03 (3H, s, 3-methyl), 0.80 (3H, s, 4a-methyl). NOE data 4.33 (2.36, 5%). ¹³C NMR (CDCl₃) δ 199.9, 161.6, 126.0, 123.4, 122.5, 79.4, 49.8, 44.4, 42.3, 28.2, 20.0, 19.0, 18.7, 11.5. MS (from GC-MS) *m/z* 220 (M⁺, 48), 205 (25), 187 (40), 177 (24), 163 (23), 159 (24), 138 (53), 133 (19), 121 (20), 79 (28), 77 (30), 71 (67), 70 (20), 69 (43), 67 (20), 65 (21), 55 (25), 53 (26), 43 (47), 41 (100).

$(4a\alpha,9a\beta,10\alpha)$ -1,4,4a,9a,10-Pentahydro-10-hydroxy-2,3,4a-trimethyl-9-anthracenone (253)

A 57:43 epimeric mixture (139 mg, 0.546 mmol) of 235 and 243 in THF (5.0 mL) was reduced with $LiAl(O-t-Bu)_{3}H$ (0.76 mL, 0.76 mmol) at 0 °C over 30 min to give a 57:43 diastereoisomeric mixture (133 mg, 95% yield) of 246 and 253.

Alcohol **253**: ¹H NMR (CDCl₃, discernible signals from the mixture) δ 4.84 (1H, d, *J* = 7.6 Hz, H10), 2.58 (1H, dd, *J* = 11.0, 6.0 Hz, H9a), 0.72 (3H, s, 4a-methyl). NOE data 4.84 (2.58, 8%). ¹³C NMR (CDCl₃) δ 198.7, 144.0, 134.0, 130.9, 127.4, 126.4, 125.6, 123.5, 122.6, 77.6, 50.2, 44.5, 41.9, 28.5, 19.1, 18.7, 11.2. MS (from GC-MS) *m/z* 256 (M⁺, 82), 241 (18), 223 (100), 221 (15), 220 (27), 208 (45), 186 (22), 174 (12), 165 (13), 133 (23), 118 (35), 115 (17), 107 (13), 105 (86), 91 (29), 79 (22), 77 (69).

(4α,4aa,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-2,4a,6,7-tetramethylnaphthalen-1-

one (254) and (4ξ , $4a\alpha$, $8a\beta$)-4,4a,5,8,8a-pentahydro-4-hydroxy-3,6,7,8a-tetramethylnaphthalen-1-one (255)

A 55:45 epimeric mixture (136 mg, 0.523 mmol) of 233 and 242 in THF (5.0 mL) was reduced with $LiAl(O-t-Bu)_3H$ (0.75 mL, 0.75 mmol) at 0 °C over 25 min to give a mixture (133 mg, 97% yield) of 250, 251, 254, and 255. The ratio of 250 to 251 was 26:1 by GC-MS, and 254:255 was 8:1 by both GC-MS and ¹H NMR spectroscopy.

Alcohol **254**: ¹H NMR (CDCl₃, discernible signals from the mixture) δ 6.49 (1H, s, H3), 4.40 (1H, m, H4), 2.34 (1H, dd, *J* = 11.1, 5.9 Hz, H8a), 1.78 (3H, s, 2-methyl), 0.80 (3H, s, 4a-methyl). ¹³C NMR (CDCl₃) δ 200.5, 145.6, 134.9, 123.4, 122.4, 77.1, 49.1, 44.5, 43.2, 28.2, 19.0, 18.6, 15.3, 11.5. NOE data 4.40 (2.34, 7%). MS (from GC-MS) *m*/*z* 220 (M⁺, 36), 205 (27), 202 (13), 187 (59), 177 (16), 163 (17), 159 (28), 138 (36), 119 (14), 107 (53), 105 (31), 100 (63), 98 (45), 91 (53), 79 (33), 77 (35), 71 (78), 70 (37), 69 (50), 67 (21), 65 (22), 55 (27), 53 (27), 43 (54), 41 (100).

Alcohol **255**: ¹H NMR (CDCl₃, discernible signals from the mixture) δ 5.84 (1H, q, J = 1.4 Hz, H2), 4.03 (1H, m, H4). MS (from GC-MS) *m/z* 220 (M⁺, 14), 205 (32), 187 (36), 177 (17), 172 (24), 159 (100), 144 (12), 133 (55), 119 (20), 107 (29), 105 (26), 91 (43), 79 (23), 77 (25), 71 (25), 69 (27).

(4α,4aβ,5β,8β,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-2,8a-dimethyl-5,8methanonaphthalen-1-one (256) and (2ξ,4aα,5α,8α,8aα)-2,3,4a,5,8,8a-hexahydro -2,8a-dimethyl-5,8-methanonaphthalen-1-one (257)

Enedione 238 (150 mg, 0.742 mmol) in dry THF (8.0 mL) was reduced with

-240-

LiAl(O-t-Bu)₃H (0.96 mL, 0.96 mmol) at 0 °C for 1 h and then at rt for 2 h to give 256 (102 mg, 67% yield) and a 2.5:1 epimeric mixture 257 (15 mg, 10% yield).

Alcohol **256**: white solid: mp 53.0-54.5 °C. IR (CCl₄) 3435 (s, br), 1641 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.28 (1H, m, H3), 6.10 (1H, dd, J = 5.6, 2.8 Hz, H6), 5.82 (1H, dd, J = 5.6, 2.9 Hz, H7), 4.83 (1H, m, H4), 3.16 (1H, br s, H5), 2.89 (1H, br s, H8), 2.67 (1H, m, H4a), 2.13 (1H, br s, 4-hydroxy), 1.66 (3H, dd, J = 2.4, 1.4 Hz, 2-methyl), 1.57 (1H, d, J = 8.8 Hz, H9 anti to C6,C7 double bond), 1.45 (3H, s, 8a-methyl), 1.43 (1H, m, H9 syn to C6, C7 double bond). NOE data 4.83 (2.67, 5%), 2.67 (4.83, 6%; 1.57, 3%), 1.57 (2.67, 4%). ¹³C NMR (CDCl₃) δ 203.8 (0, C1), 144.8 (0, C2), 144.8 (1, C3), 135.7 (1, C6), 135.4 (1, C7), 65.2 (1, C4), 56.6 (1, C8), 51.0 (0, C8a), 50.4 (1, C4a), 47.1 (2, C9), 45.8 (1, C5), 25.3 (3, 8a-methyl), 15.6 (3, 2-methyl). MS *m/z* 204 (M⁺, 1), 139 (28), 138 (9), 121 (5), 66 (100). HRMS calcd. for C₁₃H₁₆O₂ 204.1149, found 204.1132.

The major isomer of **257**: ¹H NMR (CDCl₃, from the epimeric mixture) δ 6.30 (1H, dd, J = 5.7, 3.0 Hz), 6.04 (1H, dd, J = 5.7, 2.9 Hz), 3.24 (1H, m, H5), 3.08 (1H, m, H8), 2.88 (1H, m, H2), 2.80 (1H, dd, J = 3.8, 1.7 Hz, H4a), 2.54 (1H, overlapped, H3), 2.04 (1H, dd, J = 16.0, 14.2 Hz, H3), 1.61 (1H, d, J = 8.5 Hz, H9), 1.50 (1H, d, J = 8.5 Hz), 1.43 (3H, s, 8a-methyl), 1.01 (3H, d, J = 6.6 Hz, 2-methyl). NOE data 1.43 (3.08, 5%; 2.88, 4%; 2.80, 8%). ¹³C NMR (CDCl₃) δ 213.5 (0), 210.4 (0), 140.5 (1), 134.3 (1), 60.8, 57.1, 51.5, 49.2, 46.4, 45.9, 39.4, 28.0, 14.1.

The minor isomer of **260**: ¹H NMR (CDCl₃, from the epimeric mixture) δ 6.19 (1H, dd, J = 5.7, 2.9 Hz), 6.11 (1H, dd, J = 5.7, 2.9 Hz), 3.38 (1H, m), 2.99 (1H, m), 2.75 (1H, d, J = 3.7 Hz, H4a), 2.55 (1H, overlapped, H3), 2.43 (1H, dd, J = 13.7, 4.9 Hz), 2.23 (1H, m, H2), 1.65-1.50 (2H, overlapped, H9), 1.52 (3H, s, 8a-methyl), 1.16 (3H, d, J = 7.0 Hz, H2). NOE data 1.52 (2.75, 8%). ¹³C NMR (CDCl₃) δ 215.1 (0), 208.9 (0), 137.8 (1), 136.8 (1), 60.7, 55.7, 53.8, 46.5, 46.2, 45.0, 43.1, 27.9, 16.6.

(4α,4aβ,5β,8β,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-2,8a-dimethyl-5,8-ethano naphthalenone (258) and (4α,4aα,5α,8α,8aα)-4,4a,5,8,8a-pentahydro-4-hydroxy-2,8a-dimethyl-5,8-ethano naphthalenone (259)

Enedione 240 (106 mg, 0.490 mmol) in dry THF (5.0 mL) was reduced with $LiAl(O-t-Bu)_{3}H$ (0.69 mL, 0.69 mmol) at 0 °C for 1 h and then at rt for 2 h to give 258 and 259 as a chromatographically inseparable mixture (80 mg, 75% yield) with a ratio of 10:1 in favor of 258.

Alcohol **258**: IR (neat) 3444 (s), 3044 (w), 1658 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.30 (1H, m, H3), 6.24 (1H, m, H6), 5.96 (1H, m, H7), 4.74 (1H, m, H4), 2.90 (1H, m, H5), 2.70 (1H, m, H8), 2.36 (1H, br s, 4-hydroxy), 2.09 (1H, d, J = 7.1 Hz, H4a), 1.78 (1H, m, H9 *anti* to C6, C7 double bond), 1.66 (3H, dd, J = 2.2, 1.5 Hz, 2-methyl), 1.56 (1H, m, H10 *anti* to C6, C7 double bond), 1.28 (3H, s, 8a-methyl), 1.22-1.18 (2H, m, H9, H10 *syn* to C6, C7 double bond). NOE data 4.74 (6.30, 3%; 2.09, 4%), 1.28 (4.74, 3%; 2.09, 7%; 1.78, 4%). ¹³C NMR (CDCl₃) δ 204.0 (0, C1), 143.3 (1, C3), 137.5 (0, C2), 135.8 (1, C6), 131.4 (1, C7), 65.2 (1, C4), 50.2 (1, C4a), 49.9 (0, C8a), 41.4 (1, C8), 29.1 (2, C10), 29.0 (1, C5), 21.8 (3, 8a-methyl), 18.4 (2, C9), 15.6 (3, 2-methyl). MS *m*/z 218 (M⁺, 2), 139 (11), 122 (14), 98 (24), 96 (14), 91 (18), 80 (100), 79 (19), 77 (17), 69 (14). HRMS calcd. for C₁₄H₁₈O₂ 218.1307, found 218.1318.

Alcohol 259: ¹H NMR (CDCl₃, discernible signals from the mixture) δ 6.40 (1H, q, J = 1.4 Hz, H3), 6.33 (1H, partially overlapped), 6.09 (1H, t, J = 7.5 Hz), 4.00 (1H, m, H4). MS *m/z* (from GC-MS) 218 (3), 190 (13), 138 (27), 110 (29), 98 (45), 91 (26), 80 (100), 79 (49), 77 (27).

 $(4\alpha,4a\beta,5\beta,8\beta,8a\beta)-4,4a,5,8,8a$ -Pentahydro-4-hydroxy-3-methyl-5,8methanonaphthalen-1-one (260) and

(4α,4aβ,5β,8β,8aβ)-4,4a,5,8,8a-pentahydro-4-hydroxy-2-methyl-5,8-

methanonaphthalen-1-one (261)

Enedione 237 (153 mg, 0.813 mmol) in dry THF (6.0 mL) was reduced with LiAl(O-t-Bu)₃H (1.06 mL, 1.06 mmol) at 0 °C for 30 min to give 260 (98 mg, 63% yield) and 261 (16 mg, 10% yield).

Alcohol **260**: white solid: mp 93.0-94.5 °C. IR (Nujol) 3380 (s), 1618 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.14 (1H, dd, J = 5.6, 2.9 Hz), 5.83 (1H, dd, J = 5.6, 2.9 Hz), 5.68 (1H, br s, H2), 4.66 (1H, m, H3), 3.39 (1H, m), 3.24 (1H, m), 3.04-3.01 (2H, m, H4a and H8a), 2.36 (1H, d, J = 6.6 Hz, 4-hydroxy), 1.96(3H, s, 3-methyl), 1.45 (1H, m, H9 *syn* to C6, C7 double bond), 1.34 (1H, m, H9 *anti* to C6, C7 double bond). NOE data 4.66 (3.04-3.01, 3%), 3.04-3.01 (4.66, 7%; 1.34, 5%). ¹³C NMR (CDCl₃) δ 200.3 (0, C1), 161.9 (0, C3), 135.6 (1), 134.7 (1), 127.5 (1, C2), 68.2 (1, C4), 50.5 (1), 48.9 (2, C9), 48.6 (1), 45.9 (1), 41.0 (1), 20.4 (3, 3-methyl). MS *m*/*z* 190 (M⁺, 2), 125 (28), 124 (36), 123 (12), 66 (100), 65 (20). HRMS calcd. for C₁₂H₁₄O₂ 190.0993, found 190.0999.

Alcohol 261: colorless, viscous oil: ¹H NMR (CDCl₃) δ 6.27 (1H, m, H3), 6.16

(1H, dd, J = 5.6, 2.9 Hz), 5.78 (1H, dd, J = 5.6, 2.9 Hz), 4.76 (1H, m, H4), 3.38 (1H, m), 3.22 (1H, m), 3.06-2.99 (2H, m, H4a and H8a), 1.92 (3H, br s, 4-hydroxy), 1.66 (3H, m, 2-methyl), 1.44 (1H, m, H9 *syn* to C6, C7 double bond), 1.33 (1H, d, J = 8.5 Hz, H9 *anti* to C6, C7 double bond). NOE data 4.76 (6.27, 3%; 3.06-2.99, 2%), 3.06-2.99 (4.76, 4%; 1.33, 4%). ¹³C NMR (CDCl₃) δ 201.0 (0, C1), 145.6 (1, C3), 136.5 (0, C2), 135.7 (1), 134.1 (1), 65.4 (1, C4), 51.2 (1), 48.9 (2, C9), 47.9 (1), 45.8 (1), 40.9 (1), 15.6 (3, 2-methyl).

(2ξ,4aα,8aα)-2,3,4a,5,8,8a-Hexahydro-2,6,7,8a-tetramethyl-1,4-naphthalenedione (264)

To a solution of enedione 225 (101 mg, 0.463 mmol) in dry THF (5.0 mL) was introduced L-Selectride (1.0 M in THF, 0.56 mL, 0.56 mmol) at -78 °C over 5 min. This was stirred at -78 °C for 1 h before it was quenched with 5% aqueous NaOH solution (1.0 mL), followed by the addition of 30% H₂O₂ solution (1.0 mL). The mixture was then warmed to rt, diluted with EtOAc (50 mL), and washed with 5% aqueous HCI (2 x 20 mL). The resulting organic solution was dried over anhydrous MgSO₄ and concentrated under vacuum to give a mixture of 244, 262, and 264 in a ratio of 1:2.5:1. Column chromatography (20% EtOAc/hexane) of the mixture provided 264 (23 mg, 22% yield) as a white solid: mp 46.5-47.5 °C. IR (CCl₄) 1713 (s), 1452 (m), 1167 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 3.04 (1H, m, H2), 2.85 (1H, m, H4a), 2.78 (1H, dd, *J* = 19.0, 7.0 Hz, H3), 2.58 (1H, d, *J* = 17.9 Hz, H5), 2.30 (1H, dd, *J* = 19.0, 13.5 Hz, H3), 2.03 (1H, br d, *J* = 17.9 Hz, H5), 1.89 (1H, d, *J* = 17.3 Hz, H8), 1.79 (1H, d, *J* = 17.3 Hz, H8), 1.65 (3H, s), 1.55 (3H, s), 1.23 (3H, s, 8a-methyl), 1.15 (3H, d, J = 6.5 Hz, 2-methyl). NOE data 1.23 (2.85, 3%). ¹³C NMR (CDCl₃) δ 214.0 (0), 208.5 (0), 122.9 (0), 121.4 (0), 51.4 (1, C4a), 45.3 (0, C8a), 42.7 (2, C3), 39.6 (1, C2), 37.7 (2, C8), 27.2 (2, C5), 22.5 (3, 8a-methyl), 19.0 (3), 18.6 (3), 14.0 (3, 2-methyl). MS *m/z* 220 (M⁺, 27), 205 (17), 187 (19), 177 (16), 176 (14), 160 (25), 159 (29), 149 (29), 148 (21), 147 (28), 146 (31), 135 (55), 133 (58), 122 (29), 121 (65), 120 (21), 119 (17), 107 (100), 105 (43), 91 (67), 79 (29), 77 (33). HRMS calcd. for C₁₄H₂₀O₂ 220.1463, found 220.1464.

General procedure for the reduction of cyclic enediones with NaBH₄/CeCl₃

To a solution of enediones (0.5-1.0 mmol) and $CeCl_3 \cdot 7H_2O$ (1.0 equivalent) enediones in methanol (5.0-10 mL) was added sodium borohydride (approximately 0.7 equivalents) at 0 °C over 3-5 min. The resulting mixture was stirred at the same temperature for another 2-5 min before it was quenched with dilute NH₄Cl solution (40 mL) and extracted with EtOAc (4 x 25 mL). The combined organic extracts were washed with water (2 x 25 mL), brine (25 mL), and dried over anhydrous MgSO₄. Removal of the solvent and chromatography (when necessary) gave the products.

 $(4\alpha,4a\beta,8a\beta)$ -4,4a,5,8,8a-Pentahydro-4-hydroxy-2,6,7,8a-tetramethylnaphthalen-1one (262) and $(4\alpha,4a\alpha,8a\alpha)$ -4,4a,5,8,8a-pentahydro-4-hydroxy-2,6,7,8atetramethylnaphthalen-1-one (263)

ø

Encline 225 (177 mg, 0.811 mmol) in methanol (8.0 mL) was reduced with NaBH₄ (22.3 mg, 0.560 mmol) in the presence of CeCl₃·7H₂O (302 mg, 0.811 mmol) at 0

°C over 6 min to give 244, 262, and 263 in a ratio of 1:1.8:1, respectively. Partial separation of the mixture by column chromatography (35% EtOAc/hexane) provided small amounts of homogeneous samples of 262 and 263. The total mass of the fractions containing 244, 262, and 263 after the column was 161 mg (90% yield)

Alcohol **262**: colorless crystals: mp 67.5-69.0 °C. IR (Nujol) 3404 (s), 1651 (s), 1060 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.40 (1H, d, J = 1.5 Hz, H3), 4.92 (1H, m, H4), 2.62 (1H, d, J = 17.1 Hz, H8), 2.42 (1H, m, H4a), 2.03 (1H, dd, J = 17.5, 5.6 Hz, H5), 1.92 (1H, dd, J = 17.5, 11.7 Hz, H5), 1.83 (1H, d, J = 7.2 Hz, 4-hydroxy), 1.79 (3H, apparent t, J = 1.5 Hz, 2-methyl), 1.72 (1H, d, J = 17.1 Hz, H8), 1.62 (3H, s), 1.56 (3H, s), 1.18 (3H, s, 8a-methyl). NOE data 4.92 (2.42, 6%; 1.18, 2%), 1.18 (4.92, 9%; 2.42, 5%). ¹³C NMR (CDCl₃) δ 202.2 (0, C1), 142.4 (1, C3), 133.7 (0, C2), 124.3 (0), 123.2 (0), 67.7 (1, C4), 46.2 (1, C4a), 45.9 (0, C8a), 39.8 (2, C8), 29.2 (2, C5), 24.2 (3, 8a-methyl), 18.8 (3), 18.7 (3), 16.0 (3, 2-methyl). MS (from GC-MS) *m*/*z* 220 (M⁺, 2), 202 (11), 187 (22), 174 (44), 172 (16), 159 (100), 138 (23), 121 (14), 107 (28), 105 (21), 98 (18), 91 (34), 79 (21), 77 (26), 69 (28).

Alcohol **263**: colorless, viscous oil: IR (neat) 3434 (s), 1658 (s), 1440 (m), 1026 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.59 (1H, s, H3), 4.26 (1H, m, H4), 2.29 (1H, d, J = 17.0 Hz, H5), 2.19-2.09 (3H, m, H5, H8, and 4-hydroxy), 1.91 (1H, m, H4a), 1.78 (1H, apparent t, J = 1.5 Hz, 2-methyl), 1.65 (3H, s), 1.61 (3H, s), 1.51 (1H, d, J = 17.2 Hz, H8), 1.16 (3H, s, 8a-methyl). ¹³C NMR (CDCl₃) δ 203.4 (0, C1), 146.1 (1, C3), 132.7 (0, C2), 123.9 (0), 122.0 (0), 67.4 (1, C4), 47.7 (1, C4a), 44.5 (0, C8a), 37.5 (2, C8), 29.8 (2, C5), 20.0 (3, 8a-methyl), 19.1 (3), 18.9 (3), 16.1 (3, 2-methyl). MS *m/z* 220 (M⁺, 7), 175

-246-

(6), 159 (11), 138 (100), 121 (14), 107 (25), 105 (18), 98 (23), 91 (30), 79 (16), 77 (20),
69 (24). HRMS calcd. for C₁₄H₂₀O₂ 220.1463, found 220.1476.

(4α,4aβ,8aβ)-4,4a,5,8,8a-Pentahydro-4-hydroxy-2,6 and 7,8a-

tetramethylnaphthalen-1-one (271) and (4a,4aa,8aa)-4,4a,5,8,8a-pentahydro-4-

hydroxy-2,6 or 7,8a-tetramethylnaphthalen-1-one (272)

Enedione 231 (1:1 isomeric mixture) (138 mg, 0.676 mmol) in methanol (5.0 mL) was reduced with NaBH₄ (29.0 mg, 0.728 mmol) in the presence of $CeCl_3 \cdot 7H_2O$ (280 mg, 0.744 mmol) at 0 °C over 10 min to give 245, 271, and 272 as mixture (113 mg, 81% yield) in a ratio of 1.2:1.7:1, respectively.

Clearly discernible ¹H NMR (CDCl₃) signals for **271**: δ 6.41 (1H, br s, H3), 4.94 (1H, narrow m, H4).

Clearly discernible ¹H NMR (CDCl₃) signals for 272: δ 6.59 (1H, br s, H3), 4.30 (1H, narrow m, H4).

 $(4\alpha,4a\beta,8a\beta)-4,4a,5,8,8a$ -Pentahydro-4-hydroxy-2,6,8,8,8a-pentamethylnaphthalen-1-one (250), $(4\alpha,4a\alpha,8a\alpha)-4,4a,5,8,8a$ -pentahydro-4-hydroxy-2,6,8,8,8apentamethylnaphthalen-1-one (273) and $(2\xi,4\xi,4a\alpha,8a\alpha)-1,4,4a,5,8,8a$ -hexahydro-2,6,8,8,8a-pentamethyl-1,4-naphthalenediol (274)

Enedione 229 (190 mg, 0.818 mmol) in methanol (8.0 mL) was reduced with NaBH₄ (40.0 mg, 1.04 mmol) in the presence of CeCl₃·7H₂O (308 mg, 0.818 mmol) at 0 °C over 45 min to give 249, 273, and 274 in a ratio of 4:1.4:1. Partial separation of the

mixture by column chromatography (25% EtOAc/hexane) provided small amounts of homogeneous samples of 249 and 273. The total mass of the fractions containing 249, 273, and 274 after the column was 174 mg (91% yield).

Alcohol 249: colorless oil: IR (neat) 3454 (s, br), 3016 (w), 1682 (s), 1441 (m), 1024 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.31 (1H, s, H3), 5.25 (1H, s, H7), 4.80 (1H, m, H4), 2.75 (1H, m, H4a), 2.08 (1H, dd, J = 18.1, 6.6 Hz, H5 β), 1.89 (1H, dd, J = 18.1, 9.5 Hz, H5 α), 1.76 (3H, s, 2-methyl), 1.59 (3H, s, 6-methyl), 1.34 (3H, s, 8-methyl *anti* to 8amethyl), 1.23 (3H, s, 8a-methyl), 0.94 (3H, s, 8-methyl *syn* to 8a-methyl). NOE data 4.80 (6.31, 5%; 2.75, 6%), 2.75 (4.80, 5%; 2.08, 3%), 1.23 (4.80, 11%; 2.75, 3%), 0.94 (2.75, 12%). ¹³C NMR (CDCl₃) δ 203.2 (0, C1), 140.0 (1, C3), 135.0 (0), 132.7 (1, C7), 128.4 (0), 68.1 (1, C4), 50.5 (0, C8a), 43.7 (1, C4a), 37.4 (0, C8), 28.1 (2, C5), 28.0 (3, 8methyl *syn* to 8a-methyl), 25.1 (3, 8-methyl *anti* to 8a-methyl), 23.3 (3, 6-methyl), 17.2 (3, 8a-methyl), 16.4 (3, 2-methyl). MS *m*/*z* 234 (M⁺, 10), 201 (5), 173 (6), 121 (33), 98 (12), 96 (100), 81 (15), 69 (5). HRMS calcd. for C₁₅H₂₂O₂ 234.1620, found 234.1605.

Alcohol 273: white solid: mp 89.0-91.0 °C. IR (CCl₄) 3465 (s, br), 1664 (s), 1448 (m), 1374 (m) cm⁻¹. ¹H NMR (CDCl₃) δ 6.60 (1H, s, H3), 5.06 (1H, s, H7), 4.32 (1H, m, H4), 2.28 (1H, d, J = 17.4 Hz, H5 *anti* to H4a), 2.14 (1H, dd, J = 17.4, 5.6 Hz, H5 *syn* to H4a), 2.06 (1H, dd, J = 9.7, 6.2 Hz, H4a), 1.95 (1H, br s, 4-hydroxy), 1.80 (3H, s, 2-methyl), 1.69 (3H, s, 6-methyl), 1.18 (3H, s, 8a-methyl), 0.91 (3H, s, 8-methyl *syn* to 8a-methyl), 0.79 (3H, s, 8-methyl *anti* to 8a-methyl). NOE data 4.32 (6.60, 4%; 0.79, 2%), 1.18 (2.14, 2%; 2.06, 6%), 0.91 (5.06, 8%; 1.18, 2%), 0.79 (5.06, 5%; 4.32, 11%). ¹³C NMR (CDCl₃) δ 202.6 (0, C1), 145.9 (1, C3), 136.7 (0), 131.5 (1, C7), 127.2 (0, C2), 68.0

-248-

(1, C4), 50.2 (1, C4a), 48.4 (0, C8a), 36.3 (0, C8), 28.9 (3, 8-methyl anti to 8a-methyl),
27.8 (2, C5), 26.5 (3, 8-methyl syn to 8a-methyl), 23.7 (3, 6-methyl), 21.6 (3, 8a-methyl),
16.2 (3, 2-methyl). MS m/z 234 (M⁺, 0.7), 138 (82), 121 (41), 98 (12), 96 (100), 81 (26),
69 (8). HRMS calcd. for C₁₅H₂₂O₂ 234.1620, found 234.1609.

Discernible ¹H NMR (CDCl₃) data for 274 from the crude mixture: δ 5.36 (1H, s), 5.34 (1H, s), 4.44 (1H, br s), 3.48 (1H, s), 1.82 (3H, s), 1.66 (3H, s), 1.16 (3H, s), 0.95 (3H, s), 0.84 (3H, s).

 $(4\alpha,4a\beta,7a\alpha,10\alpha,10a\alpha,10b\beta,10c\beta)-6-(($ *tert*-Butyldimethylsilyl)oxy)-4,4a,5,7,7a,10,10a,10b,10c-nonahydro-4-hydroxy-2,10,10ctrimethylbenz[6,7]indeno[2,1-*b*]furan-1,9-dione (275) and $<math>(4\alpha,4a\alpha,7a\beta,10\beta,10a\beta,10b\alpha,10c\alpha)-6-(($ *tert*-butyldimethylsilyl)oxy)-4,4a,5,7,7a,10,10a,10b,10c-nonahydro-4-hydroxy-2,10,10ctrimethylbenz[6,7]indeno[2,1-*b*]furan-1,9-dione (276)

Enedione 56 (246 mg, 0.571 mmol) in methanol (10 mL) was reduced with NaBH₄ (15.9 mg, 0.399 mmol) in the presence of CeCl₃·7H₂O (215 mg, 0.571 mmol) at rt over 8 min to give 275 (128 mg, 52% yield) and 276 (90 mg, 36% yield).

Compound 275: white solid: mp 148.5-150.0 °C. IR (CCl₄) 3463 (s), 1769 (s), 1677 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.38 (1H, s, H3), 5.10 (1H, m, H7a), 4.96 (1H, m, H4), 3.31 (1H, dd, J = 13.1, 6.0 Hz, H10a), 2.99 (1H, ddd, J = 16.8, 6.8, 1.8 Hz, H7 α), 2.54 (1H, m, H4a), 2.44-2.35 (2H, m, H7 β and H10), 2.30-2.22 (2H, m, H5 and H10b), 2.03-1.96 (2H, m, 4-hydroxy and H5), 1.75 (3H, s, 2-methyl), 1.31 (3H, d, J = 7.3 Hz, 10methyl), 1.30 (3H, s, 10c-methyl), 0.90 (9H, s, SiC(CH₃)₃), 0.06 (3H, s, SiCH₃), 0.04 (3H, s, SiCH₃). NOE data 4.96 (6.38, 7%; 2.54, 7%), 2.54 (4.96, 8%), 1.30 (4.96, 15%; 2.54, 5%). ¹³C NMR (CDCl₃) δ 202.0 (0, C1), 180.2 (0, C9), 142.1 (1, C3), 140.8 (0), 133.9 (0), 116.6 (0, C6a), 82.6 (1, C7a), 67.6 (1, C4), 54.4 (1, C10b), 49.4 (1, C4a), 49.0 (1, C10a), 48.8 (0, C10c), 43.6 (1, C10), 34.5 (2, C7), 28.6 (2, C5), 25.6 (3, SiC(CH₃)₃), 21.8 (3), 18.0 (3, SiC(CH₃)₃), 15.8 (3, 2-methyl), 15.1 (3), -3.8 (3, SiCH₃), -4.0 (3, SiCH₃). MS *m*/*z* 432 (M⁺, 22), 414 (14), 238 (27), 237 (22), 209 (30), 181 (14), 165 (17), 135 (15), 131 (28), 130 (34), 121 (25), 117 (24), 91 (12), 77 (12), 75 (100), 73 (91). HRMS calcd. for C₂₄H₃₆O₅Si 432.2330, found 432.2338.

Compound **276**: white solid: mp 150.0-151.5 °C. IR (CCl₄) 3456 (s), 1770 (s), 1667 (s) cm⁻¹. ¹H NMR (CDCl₃) δ 6.54 (1H, s, H3), 4.98 (1H, m, H7a), 4.24 (1H, m, H4), 3.05 (1H, dd, J = 16.4, 7.2 Hz, H7 β), 2.55 (1H, m, H10a), 2.39-2.01 (7H, m), 1.81 (3H, s, 2-methyl), 1.43 (3H, s, 10c-methyl), 1.20 (3H, d, J = 7.5 Hz, 10-methyl), 0.92 (9H, s, SiC(CH₃)₃), 0.10 (3H, s, SiCH₃), 0.08 (3H, s, SiCH₃). NOE data 4.24 (6.54, 8%; 2.55, 7%), 2.55 (4.98, 10%; 4.24, 7%). ¹³C NMR (CDCl₃) δ 202.0 (0, C1), 180.0 (0, C9), 142.3 (1, C3), 140.0 (0), 134.9 (0), 116.9 (0, C6a), 81.7 (1, C7a), 67.2 (1, C4), 52.0 (1), 49.9 (1, C10a), 48.5 (1), 45.9 (0, C10c), 42.2 (1), 33.3 (2, C7), 30.9 (2, C5), 25.6 (3, SiC(CH₃)₃), 25.5 (3, 10c-methyl), 16.1 (3), 16.0 (3), -3.9 (3, SiCH₃), -4.1 (3, SiCH₃). MS *m/z* 432 (M⁺, 0.5), 334 (18), 295 (16), 252 (9), 165 (5), 138 (100), 130 (6), 117 (6), 91 (6), 75 (40), 73 (44).

Reduction of enedione 235 with NaBH₄/CeCl₃

Enedione 235 (153 mg, 0.602 mmol) in methanol (5.0 mL) was reduced with NaBH₄ (16.8 mg, 0.422 mmol) in the presence of CeCl₃·7H₂O (224 mg, 0.602 mmol) at 0 °C over 5 min to give 246 and an unidentified isomer as a mixture (149 mg, 97% yield) with a ratio of 20:1 favoring 246.

Reduction of enedione 233 with NaBH₄/CeCl₃

Enedione 233 (188 mg, 0.861 mmol) in methanol (8.0 mL) was reduced with NaBH₄ (24.0 mg, 0.603 mmol) in the presence of CeCl₃·7H₂O (321 mg, 0.861 mmol) at 0 °C over 5 min to give 250 (149 mg, 97% yield) as the single product.

Reduction of enedione 242 with NaBH₄/CeCl₃

A 55:45 epimeric mixture (105 mg, 0.481 mmol) of 233 and 242 in methanol (4 mL) was reduced with NaBH₄ (11.3 mg, 0.284 mmol) in the presence of CeCl₃·7H₂O (179 mg, 0.481 mmol) at 0 °C over 5 min to give a 55:45 diastereoisomeric mixture (104 mg, 98% yield) of 250 and 254 as the only products.

References

- Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S.; Siret, P.; Keck, G. E.; Gras, J.-L. J. Am. Chem. Soc. 1978, 100, 8031-8034.
- Ishihara, M.; Tsuneya, T.; Shiota, H.; Shiga, M.; Nakatsu, K. J. Org. Chem. 1986, 51, 491-495.
- Das, J.; Kubela, R.; MacAlpine, G. A.; Stojanac, Ž.; Valenta, Z. Can. J. Chem. 1979, 57, 3308-3319.
- 4. (a) Bürgi, H. B.; Dunitz, J. D.; Shefter, E. J. Am. Chem. Soc. 1973, 95, 5065-5067.
 (b) Bürgi, H. B.; Dunitz, J. D.; Lehn, J. M.; Wipff, G. Tetrahedron 1974, 30, 1563-1572. (c) Bürgi, H. B.; Lehn, J. M.; Wipff, G. J. Am. Chem. Soc. 1974, 96, 1956-1957.
- (a) Kayser, M. M.; Morand, P. Can. J. Chem. 1978, 56, 1524-1532. (b) Kayser, M. M.; Morand, P. Can. J. Chem. 1980, 58, 2484-2490. (c) Kayser, M. M.; Eisenstein, O. Can. J. Chem. 1981, 59, 2457-2462. (d) Kayser, M. M.; Wipff, G. Can. J. Chem. 1982, 60, 1192-1198. (e) Kayser, M. M.; Salvador, J.; Morand, P.; Krishnamurty, H. G. Can. J. Chem. 1982, 60, 1199-1206. (f) Kayser, M. M.; Breau, L.; Eliev, S.; Morand, P.; Ip, H. S. Can. J. Chem. 1986, 64, 104-109. (g) Soucy, C.; Favreau, D.; Kayser, M. M. J. Org. Chem. 1987, 52, 129-134.
- (a) Huet, J.; Maroni-Barnaud, Y.; Anh, N. T.; Seyden-Penne, J. Tetrahedron Lett. 1976, 159-162.
 (b) Anh, N. T.; Eisenstein, O. Tetrahedron Lett. 1976, 155-158.
- 7. Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1987, 109, 908-910.
- 8. Alder, K.; Flock, F. H.; Beumling, H. Chem. Ber. 1960, 1896-1899.

- 9. Liu, C.; Burnell, D. J. J. Org. Chem. 1997, 62, 3683-3687.
- 10. (a) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454-5459. (b)
 Crimmins, M. T.; O'Mahoney, R. J. Org. Chem. 1989, 54, 1157-1161.
- (a) Wu, Y.-D.; Houk, K. N.; Trost, B. M. J. Am. Chem. Soc. 1987, 109, 5560-5561.
 (b) Wu, Y.-D.; Houk, K. N.; Florez, J.; Trost, B. M. J. Org. Chem. 1991, 56, 3656-3664.
- 12. Cherest, M.; Felkin, H. Tetrahedron Lett. 1968, 2205-2208.
- Toromanoff, E. In Topics in Stereochemistry, Vol. 2, Allinger, N. L.; Eliel, E. L. eds., Interscience: New York, 1967. pp.157-198.
- Liotta, D.; Saindane, M.; Sunay, U.; Jamison, W. C. L.; Grossman, J.; Phillips, P. J. Org. Chem. 1985, 50, 3241-3243.
- Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc.
 1985, 107, 3902-3909.
- Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, Part A, 3rd Ed., Plenum Press, New York, 1990, pp. 215-216.
- 17. (a) Brown, H. C.; Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159-7161. (b)
 Dauben, W. G.; Farkas, I.; Bridon, D. P.; Chuang, C.-P.; Henegar, K. E. J. Am.
 Chem. Soc. 1991, 113, 5883-5884.
- 18. Liu, C.; Burnell, D. J. Tetrahedron Lett. 1997, 38, 6573-6576.

Appendix: Selected ¹H NMR Spectra

The ¹H NMR Spectra of the synthetic samples are arranged in the same order as they appear in the text. All the selected ¹H NMR Spectra in this part were recorded in CDCl₃.

-258-

-259-

-260-

-264-

-267-

-268-

-269-

-270-

IMAGE EVALUATION TEST TARGET (QA-3)

© 1993, Applied Image, Inc., All Rights Reserved

