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Abstract 

Dioscorea starches are presently not used in the food industry due to their poor 

functionality. Annealing has been shown to improve starch functionality. 

Therefore, the objective of this study was to determine the structural changes 

within the amorphous and crystalline domains of starches isolated from varieties 

of D. esculenta and D. a/ata tubers on annealing, and the impact of these 

changes on functional properties. Starches from varieties of Dioscorea esculenta 

(kukulala, java-ala, nattala) and Dioscorea alata (hingurala, raja-ala) tubers 

grown in Sri Lanka were isolated and their yield, morphology, composition 

(phosphorus, bound lipid, total amylose and lipid complexed amylose), molecular 

structure and physicochemical properties were studied in their native and 

annealed states. Among the D. esculenta starches, nattala exhibited the highest 

levels of phosphorus (0.1 0%), bound lipid (0.44%) and lipid complexed amylose 

chains (22.01 %). However, between the D. alata starches, the highest levels of 

phosphorus (0.05%), bound lipid content (0.25%) and lipid complexed amylose 

chains (8.34%) was in hingurala. All isolated starches were pure, undamaged 

and with granule sizes ranging from 3 to 40 !Jm (D. esculenta) and 30 to 45 !Jm 

(D. alata). The granules had smooth surfaces with shapes ranging from 

polygonal (D. escu/enta) to truncated oval or truncated spade in D. alata 

starches. The amylopectin unit chain length distribution and the average chain 

length of native D. esculenta ranged from 24.57-25.85% (Degree of 

polymerization [DP] 6-12), 56.55-59.64% (DP 13-24), 12.61-13.58% (DP25-36), 

3.17-4.41 (DP 37-50) and 17.93-18.33%. However, the corresponding values for 



D. alata starches were 17.89-20.68, 57.40-59.76, 17.46-17.47, 4.46-4.87 and 

19.29-19.61%. Among the D. esculenta starches, the highest proportion of DP 

37-50 and average chain length was in nattala starch. D. esculenta starches 

displayed a 8-type X-ray pattern. However, a 8-type (raja-ala} and Ca-type 

(hingurala) X-ray patterns were displayed by the D. alata starches. Crystallinities 

ranged from 49-53%, in the D. esculenta (nattala>java-ala> kukulala) starches, 

but were similar (43.0%) in the D. alata starches. A V-lipid amylose complex 

peak was also visible in the X-ray pattern of all starches. 

The gelatinization transition temperatures {To [onset], Tp [mid point], Tc 

[conclusion]) and enthalpy (b.H) of gelatinization of native D. esculenta starches 

ranged from 72.55 to 85.40°C and 17.32-18.07 J/g, respectively. The 

corresponding values for the D. alata starches being 75.45-92.70°C and 18.60-

18.98 J/g, respectively. The extent of amylose leaching (AML) at 90°C, ranged 

from 5.58 to 6.19% and 13.20 to 13.60% in the D. esculenta and D. a/ata 

starches, respectively. Variations in AML among varieties of each species was 

negligible. Swelling factor at 90°C, ranged from 53.61 to 64.97% in the native D. 

escu/enta (nattala>java-ala>kukulala} and from 36.60 to 38.64% in the D. alata 

(hingurala>raja-ala) starches. D. esculenta starches exhibited a higher peak 

viscosity (nattala>kukulala> java-ala}, lower pasting temperatures, a greater 

degree of viscosity breakdown (nattala> java-ala> kukulala) and lower set-back 

(kukulala>nattala>java-ala) values than D. alata starches. A similar trend was 

also observed for peak viscosity (raja-ala>hingurala), viscosity breakdown 

(hingurala> raja-ala) and set-back (raja-ala>hingurala) among the D. alata 
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starches. The rate and extent of acid hydrolysis of D. esculenta starches 

(nattala>java-ala>kukulala) were higher than those of the D. alata (raja

ala>hingurala) starches. D. escu/enta Uava-ala>kukulala>nattala) starches were 

more susceptible than D. alata (hingurala>java-ala) towards a-amylolysis. The 

extent of retrogradation of D. escu/enta Uava-ala>kukulala>nattala) was higher 

than that of the D. alata (hingurala>raja-ala) starches. 

The second phase involved a study of the impact of annealing on the structure 

and properties of Dioscorea starches. The granule surface, birefringence 

patterns, concentric growth rings and the amylopectin unit chain length 

distribution of all starches remained unchanged on annealing. The crystallinity of 

some varieties of D. escu/enta (kukulala, java-ala) and D. alata (hingurala) 

starches remained unchanged on annealing. However, crystallinity decreased in 

nattala (D. esculenta) but increased in raja-ala (D. a/ata) starches. In addition 

crystalline polymorphism remained unchanged on annealing. Annealing 

increased the gelatinization temperatures to nearly the same extent for all 

starches. However, the gelatinization temperature range (T c-T 0 ) decreased on 

annealing (hingurala> kukulala>raja-ala>nattala>java-ala). The enthalpy of 

gelatinization increased marginally (kukulala > hingurala > java-ala > nattala > 

raja-ala) on annealing. Amylose leaching (AML) and swelling factor (SF) 

decreased (D. alata> D. esculenta) on annealing. At 90°C, the decrease in AML 

in the D. esculenta and D. alata starches followed the order: 

nattala-kukulala>java-ala and raja-ala>hingurala, respectively. However, at the 

same temperature, the decrease in SF for the D. escu/enta and D. alata starches 
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followed the order: kukulala>nattala>java-ala and raja-ala-hingurala, 

respectively. In the D. esculenta starches, annealing decreased the peak 

viscosity (kukulala>java-ala>nattala). However, annealing increased peak time 

(kukulala > nattala > java-ala) pasting temperature (kukulala > nattala-java-ala) 

and thermal stability (kukulala>nattala>java-ala). The set-back decreased on 

annealing in kukulala, but increased in both nattala and java-ala (nattala>java

ala) starches. In the D. alata starches, annealing decreased peak viscosity (raja

ala>hingurala), but increased peak time (raja-ala>hingurala), pasting temperature 

(raja-ala>hingurala) and thermal stability (hingurala>raja-ala). However, set-back 

decreased in raja-ala but increased in hingurala on annealing. In all starches, 

the acid hydrolysis pattern remained unchanged on annealing. However, the 

extent of acid hydrolysis decreased (D. esculenta Oava-ala>nattala>kukulala] -

D. alata [raja-ala- hingurala]) on annealing. a-amylolysis decreased on 

annealing. The extent of this decrease was more pronounced in D. alata (raja

ala>hingurala) than in the D. escu/enta Uava-ala>kukulala) starches. However, 

annealing increased the susceptibility of nattala starch towards a-amylolysis. 

The enthalpy of retrogradation decreased in both D. escu/enta 

(kukulala-nattala>java-ala) and D. alata (raja-ala>hingurala) starches. The major 

findings of this research are: (1) the different responses shown by the Dioscorea 

cultivars towards annealing were mainly influenced by differences in their 

composition and molecular structure, (2) differences in physicochemical 

properties between native and annealed starches are influenced to a large extent 

by structural changes within the amorphous (interaction between AM-AM and/or 
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AM-AMP chains) and crystalline (AM-AMP and/or AMP-AMP interactions, 

crystallite reorientation, crystallite perfection, reorientation of phosphate groups 

on amylopectin) domains of the starch granule during annealing, (3) annealing 

has a major impact on the thermal stability and extent of retrogradation of 

Dioscorea starches. Consequently, annealed Dioscorea starches can be used for 

applications in foods that are subjected to thermal processing and frozen 

storage. 
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CHAPTER 1 

Introduction 

Starch is a semi-crystalline biopolymer and is stored in various plant locations, 

for example in cereal grains, roots, tubers, stem-piths, leaves, seed, fruit and 

pollen. Starch granules in storage tissues can vary in shape, size and 

composition. The shape and size of the granules depend on the source. The 

chemical composition, structure and properties are also essentially typical of the 

biological origin of the starch (Smith 2001 ). The importance of starch as a food 

stuff may be judged by the fact that it accounts for over 30% of the average diet 

on a dry weight basis and more than 25% on an available energy basis (Galliard 

1989). Starch granules in higher plants, regardless of the plant source, contain 

two principal types of polysaccharides, namely amylose (linear) and amylopectin 

(branched). Both are polymers of a-D glucose connected by a-D-(1-4) linkage 

chains of varying lengths. Amylopectin, the major component of most starches, 

consists of a large number of shorter chains that are bound together at their 

reducing end by a-D-(1-6) linkage, making it extensively branched (Manners 

1989). Amylose consists only of either a single or a few long chains, thus making 

the molecule linear or slightly branched (Hizukuri et a/., 2006). The amylose 

concentration of starches has been found to vary from 17 to 68% (Hizukuri eta/., 

2006). However, waxy starches contain a much lower amylose content (<1 %) or 

even lack the amylose component completely (Waduge eta/., 2006). Several 

studies have shown that variations in starch properties among cereal, tuber and 

legume starches and among varieties of a particular starch source is influenced 
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by differences in: (1) composition, (2) morphology, (3) amylose content, (4) 

molecular structure and (5) arrangement of amylose and amylopectin within the 

granule interior. 

For many years, tuber and root starches such as yam, taro, arrowroot, cassava 

and sweet potato have served as the major carbohydrate sources for people in 

tropical countries. Naturally suited to tropical agro-climatic conditions, they grow 

profusely with little or no artificial inputs. However, in tropical countries, the very 

success of starchy crops as staple foods is limiting their potential contribution to 

agriculture development and economic growth. An extensive search of JSTOR, 

SciFinder Scholar, Web of Science, Agricola, Food Science & Technology 

Abstracts (FSTA) and other databases showed that while intensive research has 

been carried out on the botany, agronomic, and nutritional aspects of yams 

(Dioscorea), they have not benefited from the kind of value added research 

required for competitiveness in domestic or international markets. As a result 

wheat, maize, rice and potato continue to dominate lucrative world markets for 

starches in food and non-food industries. Thus, intensive research is required to 

elucidate the structure-property relationships of native, as well as modified, 

Dioscorea starches. When aiming at functional properties in starch, most food 

processors examine the characteristics of competitive starches in specific 

applications. This establishes a target to shoot for when these characteristics 

are unattainable with native starches; the only alternative is then some form of 

physical or chemical modification that would confer desirable properties, e.g. high 

thermal stability, resistance to shear and pH and low extent of syneresis that add 
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value to the product. These are properties that the end user requires and is 

willing to pay for. So far, no research has been carried out to investigate the 

effect of physical or chemical modification on Dioscorea starches. It should be 

emphasized, that it is not maize, wheat, rice and potato starches themselves that 

are the competition, but rather the physicochemical characteristics of their value 

added products. 

The world's leading tuber and root starch sources are potato, cassava, sweet 

potato, yams (Dioscorea), and taro, respectively. In Sri Lanka Dioscorea is 

commonly known by its vernacular name, 'Vel-ala'. It plays an important role in 

the diet (consumed in the form of a vegetable dish, boiled, or roasted) of 

individuals living in suburban and rural areas of the island. Dioscorea alata 

(variety: hingurala and raja-ala) and Dioscorea esculenta (variety: kukulala, java

ala, nattala) are the two popular yam species widely cultivated in Sri Lanka. A 

survey of the literature on Dioscorea starches have revealed that most of the 

research on these starches has involved studies on starch property 

characterization (65%), whereas research on molecular structure analysis (17%) 

and starch utilization (18%) is limited. The survey also revealed that compared to 

commercially used starches such as rice, maize, wheat, potato and cassava, 

there is a dearth of information on the molecular structure, physicochemical 

properties, functionality and modification of Dioscorea starches. Studies have 

shown that there is a wide diversity in starch characteristics in varieties of potato 

(Genkina et a/., 2004d, Ganga & Corke 1999), sweet potato (Genkina et a/., 

2004c, Collado 1997) and cassava (Moorthy 1994 }. However, most studies on 

3 



Dioscorea starches have involved only one cultivar. Consequently, it is difficult to 

ascertain whether the structure-property relationships that have been developed 

for Dioscorea starches reported in the literature are truly representative of the 

species. In addition, the resulting information on Dioscorea starches are from 

species grown in Africa, South America, China, or India, where environmental 

conditions are different from those in Sri Lanka. Several researchers (Kiseleva et 

a/., 2004, Genkina eta/., 2004d, Protservo eta/., 2002, Tester & Karkalas 2001, 

Haase & Plate 1996, Tester eta/., 1995, Shi eta/., 1994, Hizukuri 1969) have 

shown that the environmental conditions influence synthesis, composition, 

structure and functionality of starches. This suggests that in order to develop 

value added products from starches isolated from Dioscorea tubers grown in Sri 

Lanka, intensive research is required on their molecular structure and 

physicochemical properties. 

One way of adding value to native Dioscorea starches is by a physical 

modification technique known as annealing. Annealing is a type of hydrothermal 

treatment where starch is heated with excess (>60% [w/w]) or intermediate (40% 

[w/w]) water content at a temperature above the glass transition but below the 

gelatinization temperature (Waduge eta/., 2006, Tester & Debon 2000, Jacobs & 

Delcour 1998). Annealing has been shown to cause changes to starch structure 

(increase in granular stability, stronger glucan chain interactions, perfection of 

starch crystallites, formation of new double helices, compartmentalization of 

amylopectin-amylopectin, amylose-amylopectin and amylose-amylose helices, 

increase in contrast between crystalline and amorphous lamellae) and properties, 
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such as elevation of starch gelatinization temperatures, narrowing of the 

gelatinization temperature range, decrease in swelling factor and amylose 

leaching and increase in hot and cold paste viscosities. However, discrepancies 

still exist with regard to the extent of susceptibility of annealed starches towards 

acid and a-amylase hydrolysis (Nakazawa & Wang 2004, Nakazawa & Wang 

2003, Atichokudomchai et a/., 2002, Jacobs et a/., 1998a, 1998b, Hoover & 

Vasanthan 1994a) and the role of naturally occurring phosphate esters on 

annealing properties (Muhrbeck & Wischmann 1998). In many of the above 

studies, the composition and molecular structure of the starches have not been 

reported. This makes it difficult to accurately interpret the observed changes on 

annealing. Surprisingly, retrogradation characteristics of annealed starches have 

not been explored for cereals, tubers and roots, legumes and non-conventional 

starch sources. Furthermore, there is a dearth of information on the effect of 

annealing on: granule morphology, chain length distribution, formation of V

amylose lipid complexes, and crystallinity of pre and post annealed starches. 

Annealing of cereal starches is well documented, however, among tuber 

starches, annealing has been studied in detail only in potato starch. There is 

also some limited information on the effect of annealing on cassava (Gomez et 

a/., 2004) and sweet potato (Genikina et a/., 2004b) starches. The effect of 

annealing on cultivars of other tuber sources has not been investigated. 

Consequently, the structural changes observed during annealing may not have 

been truly representative of the species. Tuber starches have been shown 

(Hoover 2001) to differ from cereal and legume starches with respect to structure 
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(longer amylose and amylopectin chain length, amylopectin chain length 

distribution, unit cell structure), crystallinity, composition (higher phosphorous 

content, trace quantities of lipids) and morphology (larger granule size). 

Furthermore, variations in the above parameters have also been shown (Hoover 

2001) to exist among tuber starches. Consequently, the possibility exists that the 

extent of interaction between glucan chains and the extent of realignment of 

double helices during annealing of tuber starches may be different from that 

observed in cereal starches, and may also vary among tuber starches. Studies 

on tuber starches would thus provide a deeper understanding of how variations 

in starch structure, composition and morphology influence changes to 

physicochemical properties on annealing. It is hypothesized, that if variations 

exist in composition and molecular structure among varieties of Dioscorea 

starches, then these variations will influence the extent to which glucan chains 

within the amorphous and crystalline domains realign and interact during 

annealing. This hypothesis will be tested by probing the molecular structure and 

physicochemical properties of Dioscorea starches before and after annealing 

using a wide variety of techniques. 

Objectives of the present study: 

( 1) The key advantage of Dioscorea starches is that they are low cost sources of 

carbohydrates. To capitalize on this advantage, there is a need for 

development of products whose quality and price are comparable to that of 

cereals. Thus, the first objective of this research was to determine the 

composition, morphology, molecular structure and physicochemical properties 
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of starches extracted from different varieties of Dioscorea esculenta (kukulala, 

java-ala, nattala) and Dioscorea alata (hingurala, raja-ala), grown in the same 

location in Sri Lanka, using a wide variety of analytical techniques such as 

light microscopy, Kofler hot stage microscopy, scanning electron microscopy, 

rapid viscoanalyzer, high pressure anion exchange chromatography with 

pulse amperometric detector, powder X-ray diffractrometry, differential 

scanning calorimetry, susceptibility towards a-amylase and acid, amylose 

leaching, swelling factor and retrogradation. 

2. To determine the types of structural change that could occur when the above 

starches are subjected to one step annealing. 

3. To determine the extent to which structural changes on annealing influence 

granular swelling, extent of amylose leaching, gelatinization transition 

temperatures and enthalpy of gelatinization, rheological characteristics, rate 

and extent of retrogradation, granule crystallinity, X-ray intensities, 

polymorphic form and susceptibility to acid and a-amylase hydrolysis. 
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2.1 Dioscorea 

Overview 

CHAPTER2 

Review of Literature 

Starchy tubers and root crops are important subsidiary or subsistence foods in 

tropical countries. They are rich sources of carbohydrates. Proteins, minerals, 

vitamins, antioxidants, steroids, and saponins, etc. are also present (Jayasuriya 

1995, Gunasena 1994, Wanasundera & Ravindran 1992, Tindall 1983). The 

carbohydrates are mostly starch and are found in storage organs, which may be 

enlarged tubers, roots, corms, or rhizomes. Although a wide range of tuber crops 

are commercially grown worldwide, five species account for almost 99 % of the 

total world production. These are potato (Solanum tuberosum) 47%, cassava 

(Manihot esculenta) 29%, sweet potato (Ipomoea batatus) 17%, yams 

(Dioscorea spp.) 6%, and taro (Colocasia, Cyrtosperma and Xanthosoma spp.) 

-1% (FAO 2006 & 2003). 

2.1.1 Classification, center of origin and distribution of Dioscorea 

Kingdom: Plantae - Plants 
Subkingdom: Tracheobionta -- Vascular plants 

Superdivision: Spermatophyta-- Seed plants 
Division: Magnoliophyta-- Flowering plants 

Class: Liliopsida - Monocotyledons 
Subclass: Liliidae 

Order: Liliales 
Family: Dioscoreaceae --Yam family 

Genus: Dioscorea L. yam 
Species: -630 spp. 
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Dioscorea is a large genus consisting of about 630 species (Jayasuriya 1995). 

Tubers of Dioscorea, commonly called true yams, are important food crops in 

many tropical countries and in some sub-tropical regions. Dioscorea tubers are 

known to contain medicinally important compounds (Riley et a/., 2006). 

Environmentally, they are well adapted to most tropical climates and in many 

cases they can be eaten as a subsidiary diet. 

Dioscorea is a monocotyledous plant. Coursey (1967), Leon (1977) Tindall 

(1983), and Rajapaksha (1998) indicated four distinct centers of origin for edible 

yams such as (1) Indo-China Peninsula possibly Burma and Assam [greater or 

water yam (D. alata), lesser or Asiatic yam (D. esculenta), aerial or potato yam 

(D. bulbifera), intoxicating yam (D. hispida), D. nummularia and D. pentaphylla], 

(2) South China [Chinese yam (D. opposita) and D. japonica], (3) Caribbean 

area [cuch-cush yam (D. trifida), with a subsidiary center in South America] and 

(4) West African forest belt to the savannah [yellow yam (D. cayenensis), white 

or guinea yam (D. rotundata), bitter or wild yam (D. dumetorum) and aerial or 

potato yam (D. bulbifera)]. It is believed that D. alata and D. esculenta possibly 

originated in Burma and Assam (Rajapaksha 1998, Leon 1977) regions. All the 

species referred to are found wild in the areas concerned. However, D. alata is 

unknown in the wild state (Coursey 1967). D. a/ata, the greater or water yam is 

thought to have originated in South-East Asia, possibly in the Assam-Burma 

region, and reached Africa and tropical America in the sixteenth century 

(Jayasuriya 1995, Tindall, 1983). Of the species of Dioscorea, perhaps D. 

esculenta is the least known (Martin 1977). 

9 



2.1.2 World production statistics and current status of Dioscorea starches 

World yam production is approximately 40 million metric tonnes per year (FAO 

2006 & 2003). The bulk of edible yam production comes from the 'yam zone' 

(Nigeria to Ivory Coast) in West Africa and accounts for approximately 91% of 

world edible yam production (FAO 2006 & 2003). The worlds leading yam 

producers are in the area of sub-Saharan Africa: Nigeria (-68%), Ghana (-10%), 

Ivory Coast (-8%) and Benin (-4%), respectively. Yam is not used for starch 

production on an industrial scale. Cereal, potato, cassava are the main sources 

for commercial starch production. However, yam starches have not been 

thoroughly investigated with respect to their structure, functional properties and 

industrial application, consequently, these starches have not benefited from the 

kind of value added research required for competitiveness in domestic or 

international markets. As a result, potato in temperate climates and cassava and 

sweet potato in tropical areas continue to dominate the starch for food market for 

and industrial applications because of their well-documented specific 

physicochemical and functional properties (Jayakody et a/., 2007c & 2005, 

Sansavani & Verzoni 1998). However, research on Dioscorea starches has been 

steadily increasing (Shujun et a/., 2007, Karam et a/., 2006, Otegbayo et a/., 

2006, Peroni eta/., 2006, Riley eta/., 2006, Shujun eta/., 2006a,b,c, Wang eta/., 

2006, Brunnschwelier et. a/., 2006 & 2005, Daiuto et. a/., 2005, Srichuwong et 

a/., 2005a,b,c, Freitas et. a/., 2004, lwuoha 2004, Riley et. a/., 2004, Amani et.al., 

2004, Akissoe et a/., 2003, Rolland-Sabate et. a/., 2003, Alves et. a/., 2002, 

Afoakwa & Sefa-Dedeh 2002, Gunaratne & Hoover 2002). 
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2.1.2.1 Identification and agronomy of popular edible local varieties of 
Dioscorea tubers 

A large number of Dioscorea species are grown widely in South-East Asia, with 

nearly 40 varieties grown in Sri Lanka alone (Seneviratne & Appadurai 1966). 

Dioscorea are long, trailing, perennial vines with shiny, heart-shaped leaves, and 

arise from large underground stems that are technically called tubers. 

Dioscorea varieties differ in the color of the flesh or peel and the size of the tuber 

(Seneviratne & Appadurai 1966), granule size, amylose concentration and 

physicochemical properties (Rolland-Sabate et a/., 2003). Dioscorea tubers 

generally require a loose, deep and well drained fertile soil. A tropical climate 

with temperatures of 30° to 34°C and an annual rainfall of 1500 mm are ideal 

environmental conditions. Regions with a rainfall less than 800 mm per year and 

higher altitudes (sufficiently great for heavy frost to occur) are considered as 

unsuitable areas for Dioscorea cultivation (Coursey 1967). The daylight should 

be more than 12h, which is preferable for stem and leaf growth, however, 

satisfactory tuber formation only occurs during short days (Tindall 1983). 

Dioscorea are well adapted in the traditional agricultural system, because of their 

high yields, resistance to pest and diseases, and taste qualities (Leon 1977). 

There is great variation in the number, size, growth habit, skin color, and shape 

of the tubers produced (Coursey 1967). Shapes of Dioscorea tubers are 

presented in Figure 2-1. 
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Figure 2-1 Shapes of Dioscorea tubers 

Adapted from Coursey (1967) with permission from Longmans & Green 

Information from: Rajapaksha (1998), Gunasena (1994), and Tindal (1983) 
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2.1.2.1.1 Local Dioscorea varieties 

D. alata L. and D. esculenta (Lour.) Burkill, are the most important yam species 

cultivated in Sri Lanka. The stem of the vine of D. esculenta is cylindrical, spiny 

and twining in an anticlockwise direction. D. esculenta forms a tuber cluster 

(which is comprised of a number of single tubers) per vine. The color of its outer 

peel (epidermis) is white. Tubers are generally ovoid and cylindrical, and the 

flesh is white or yellow with a sweet flavor. Dioscorea tubers are sensitive to 

physical tissue damage as a result of harvesting injury, and they are also 

suceptible to rapid deterioration. Kukulala, java-ala, and nattala belong to D. 

esculenta; kukulala is the most popular [Figure 3-1-A, 8, C] varieity. The other 

two types are grown in traditional home gardens, or remain as 'wild types'. The 

average tuber size of kukulala varies from 100 to 300 g, and the potential yield 

varies from 28-30 tons/ha. Java-ala tubers, which are exceptionally large (2-3 kg) 

are often surrounded with a protective cover of thick spiky roots, and are 

extremely sensitive to mechanical damage. Natala ('nut shaped yam') posesses 

thick hairs and yellow flesh. 

Dioscorea alata is a climber with an aerial stem that is square in cross-section 

and twining in a clockwise direction. The fleshy underground stem-base contains 

fibrous roots, whose tips are swollen into tubers. D. alata bears a large solitary 

tuber per vine (Gunasena 1994) and the outer skin (sub-epidermis) color of 

Dioscorea alata tuber is yellow or dark purple. The flesh may be white, cream, or 

yellow, or may contain anthocyanin, producing a pink or red-purple flesh color 

(Gunasena 1994, Tindall 1983). The outer peel is much thicker in certain 

13 



varieties, and thus damaged tubers deteriorate slowly. Raja-ala and hingurala 

belong to D. alata. Hingurala is a flat-shaped tuber, varying from 300-600g, with 

the characteristic shape of a palm or fingers [Figure 3-1-D, E]. The outer surface 

of the tuber is covered with somewhat rough, short hairs. Tuber flesh is hard, 

white in color, and covered with water soluble mucilage. Raja-ala is a fairly large 

tuber (2-5 kg), and very often the peel or flesh contains anthocyanin pigments. 

Hence, the flesh color varies from cream to purple. Tuber flesh is generally 

coarse and the outer skin is always covered with long thick roots. The potential 

yield of raja-ala and hingurala varies from 20 to 24 and 16 to 20 tons/ha, 

respectively (Kirthisinghe 1994 ). Dioscorea are seasonal crops. The "seed plant" 

(app. 200 g pieces of the yam) of Dioscorea is normally planted with the first 

rains from the end of March to April (in early Yala season). The crop is virtually 

ready for harvest between December-February (in late Maha season) with the 

signs of yellowing leaves and withered vines. 

2.2 Starch utilization and developments 

The written history of starch usage for food and medicinal purposes has been 

documented for over four thousand years (e.g. Susrutha Samhitha [C. 4th 

Century B.C], Charaka Samhitha [C. 15t century A.D], Sarartha Sanagrahaya [C. 

5th century A.D]). The ancient Egyptians (3500-4000B.C] (Whistler 1984), and 

later the Romans, used starch as an adhesive for paper and papyrus, whilst the 

ancient Greeks also used it in medical preparations (Pliny 130 B.C). The 

popularity of starch grew in Europe around the 14th century, owing to its use for 

stiffening linen, and starch was subsequently adopted for cosmetic purposes 
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(Radley 1968). Starch has been intensively studied over the last 200 years, 

probably to a greater extent than any other biopolymer. During the last 20 years, 

powerful biochemical, chemical and physical research techniques have 

revolutionised the knowledge of the deposition and characteristics of this 

renewable biopolymer (Tester & Karkalas 2001 ). 

One of the major uses of starch is to impart viscosity to foods such as soup 

mixes, fruit pie fillings, gravy, salad dressings and pastes. Granule size has an 

appreciable influence on its properties (Baldwin 2001, Geddles et a/, 1965). 

Starches utilized commercially have large granules (e.g. corn, potato), and these 

starches show industrially desirable characteristics such as high viscosity, paste 

clarity, and other functional properties. However, there is a growing interest in 

small granule starches, which show superior penetration power into the fabric 

and are less affected by humidity (Lindeboom et a/., 2004 ). Commercial 

biodegradable plastics are made from mixtures of low density plastic and small 

granule starches (e.g. amaranth, quinoa) with other additives (Ahamed et a/., 

1996, Lim eta/., 1992). Starch acts as a filler and increases the porous nature of 

the plastic, consequently plastic degrades faster. There is a growing demand for 

carbohydrate-based fat replacers for frozen desserts, cookies and cheesecakes 

(Lindeboom et a/., 2004 ). Small granules are ideal for the manufacture of fine 

printing paper, formulations of toiletries, "talcum" powders, aerosol sprays, cold 

water laundry-stiffening agent, and fat replacers (Lindeboom et a/., 2004, 

Malinski eta/., 2003, Moorthy 2002, Jayakody 2001 ). Consequently, the small 

granule size of D. esculenta starches (<101-Jm) makes them ideal as fillers in 
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biodegradable plastics and "talcum" powders. However, commercial production 

and utilization of small granule starches is still hampered by practical limitations 

of starch isolation, purification, granule loss and the associated costs (Lindeboom 

eta/., 2004). Only two studies have shown that substitution of yam starches in 

composite bread formulations (Emiola & Delarosa 1981, Rasper eta/., 1974) is 

undesirable, since yam starches exhibit high water-binding capacity resulting in 

excessive hydration. However, the addition of corn and cassava starch have 

been shown to decrease the excessive hydration of yam (e.g. D. alata) starch 

(Karam eta/., 2006). Thus, mixtures of D. a/ata, cassava and corn starch have 

been utilized successfully for preparing bread with a good loaf volume (Karam et 

a/., 2006). It has been shown that Dioscorea starches can be used as a 

thickener in canning applications (Emiola & Delarosa 1981) due their high 

thermal stability. Dioscorea and other tropical tuber starches are presently 

utilized for animal feed formulations (Gallant et a/., 1982). Agwunobi (1999) 

reported that that D. a/ata can replace up to 80% of maize in a laying chicken 

diet. Furthermore, D. alata contains super long amylopectin chains and is 

relatively high in amylose, hence D. alata starches may have a potential use in 

preparing rapid set elastic gels and edible films (Wang eta/., 2006). 

2.2.1 Applications and limitations of native starches 

Starch can be classified into two types: native and modified. Native starches are 

produced through the separation of naturally-occurring starch in amyloplasts from 

different botanical sources. The raw starches produced still retain the original 

structure and unmodified characteristics and are therefore, called 'native 
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starches'. The major sources for the industrial production of purified starch are 

wheat, rice, normal and waxy corn. The production of cassava, arrowroot and 

sago are also similar (Tester & Karkalas 2001 ). However, the starch industry is 

still mainly based on cereals and potato. Furthermore, specific properties of 

potato starch are profitable in certain applications such as paper manufacturing, 

adhesives, plastic substitutes, mining, and drilling (Vasanthan eta/., 1999, Haase 

& Plate 1996). Color is an important attribute of starch quality, especially for 

industrial applications such as paper-making, textiles and sago grains (Moorthy 

2002). Native starches from various botanical sources have diverse functional 

properties. However, native starches cannot be successfully utilized without prior 

modification for the following reasons : (1) inconsistency of viscosity from one 

starch to another, region to region and year to year, (2) color inconsistency, (3) 

poor paste clarity, (4) cool water insolubility, (5) difficulties in obtaining high solid 

concentrations, (6) high viscosity at a low concentration, (7) viscosity breakdown 

at low pH, or high processing temperatures and under shear, (8) gelatinized 

native starches recrystallize or retrograde rapidly upon storage, and (9) rapid 

polymer re-association leading to syneresis. These impaired properties could be 

altered by modifying native starches by chemical and/or physical methods. The 

world leading exporters of modified (chemically or physically) potato and corn 

starches are Europe and the USA, respectively (Vasanthan eta/., 1999). 
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2.3 Starch granule 

2.3.1 Architecture of the starch granule 

Starch is a partially crystalline heteropolymer and is a major reserve 

polysaccharide in higher plants. The hilum is believed to be the botanical center 

or original growing point of the starch granule (Tester et a/., 2001, Hancock & 

Tarbet 2000, Baldwin et a/., 1994, Jane et a/., 1994, Lineback & Rasper 1988, 

French 1984, Lineback 1984) and the center of the 'Maltese Cross' (Baldwin et 

a/., 1994, Lineback & Rasper 1988, Lineback 1984). It has been hypothesized 

that the central area of the granule surrounding the hilum is the least organized 

region or the weakest point of the starch granule (Huber & BeMiller 2000, 

Baldwin et a/., 1994, French 1984), This was based on the observation that 

gelatinization (Baldwin eta/., 1994, Hoseney eta/., 1986), enzymic hydrolysis 

(Huber & BeMiller 2000, Baldwin eta/., 1994, Fuwa eta/., 1978, Leach & Schoch 

1961 ), acid hydrolysis (Chabot eta/., 1978) and cavitation (Whistler & Thornburg 

1957) all originate around this area. French ( 1984) reported that the hilum region 

may contain non-polysaccharide material from the amyloplast. A starch granule 

is a microcrystalline structure, comprised of alternatively arranged crystalline and 

non crystalline domains, and may have some transitional regions. Crystalline 

regions are believed to be mainly constructed of the outermost chains (A chains) 

of amylopectin [A-chains] and some of the inner chains [exterior B-chains] 

(Hizukuri 1996, Jenkins eta/., 1994). Amylose is thought to be mostly in an 

amorphous state (Hizukuri 1996). There are three major structural levels in 

starch granules; (1) microscopic [-0.3-150 IJm] (Jayakody 2001, Jane et a/., 
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1994), (2) sub-microscopic: clusters [-10 nm] (Jane 2006, Cameron & Donald 

1993a), and (3) lamellae [-4-6 nm] (Kiseleva eta/., 2005, Planchot eta/., 1997a, 

Jenkins & Donald 1996) [Figure 2-2]. 

2.3.2 Granular morphology 

Visualisation of the starch granule is of great importance for a better 

understanding of the morphology, (Hoover 2001, Jane eta/., 1994), size (Jane et 

a/., 1994), surface features (Jayakody & Hoover 2002, Baldwin et a/., 1998, 

BeMiller 1997, Huber & Bemiller 1997, Fanon eta/., 1992), internal features 

(Lineback 1984), behavior of starch and starch pastes (Velde eta/., 2002), and 

topography (Aguilera 2000). Starch granule morphology and granule size are 

genetically controlled (Takeda eta/., 1999, Jane eta/., 1994). Radiotracer studies 

on potato tubers (Badenhuizen & Dutton 1956) and beans (Yoshida eta/., 1958) 

have shown that the granule grows by apposition (concentric deposition of 

successive layers). However, this process is dependent upon the supply of 

carbohydrates to the amyloplasts. 

2.3.2.1 Microscopic techniques 

Light microscopy and/or polarizing light microscopy are frequently used to study 

the shape, granule size, position of the hilum and size distribution of starch 

granules from various botanical sources (Jane eta/., 1994, Moss 1976, Wivinis & 

Maywald 1967). The resolution or resolving power (which determines the 

separating power of two adjacent points) is about 0.1-0.2 1-1m for an optical 

system (Velde eta/., 2002, Gallant eta/., 1997). 
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Figure 2-2 Comparative representation of starch granule size; techniques 

for their study and granuler characteristics 

Adapted from Tester & Debon (2000) and information from: BeMiller (1997), 

Jane eta/., (1997), & (1994), Hizukuri (1996), 

Karathanos & Saravacos ( 1993), Cameron & Donald ( 1992) 
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Therefore, the submicroscopic structure of starch granules cannot be 

successfully ascertained with a light microscope [Figure 2-2]. Takaoka (1950) 

was the first to use the electron microscope to observe surface characteristics of 

starch granules. Scanning electron microscopy (SEM), environmental electron 

microscopy (ESEM), transmission electron microscopy (TEM), confocal scanning 

laser microscopy (CSLM) and atomic force microscopy (AFM) are commonly 

used instruments for investigation of both surface and submicroscopic features of 

the starch granules [Figure 2-2] (Shujun et a/., 2007 & 2006a,c, Ohtani et a/., 

2000, Jacobs eta/., 1998c, Jane eta/., 1994, Fannon eta/., 1992). Granular 

morphology and size variation of different botanical sources are presented in 

Table 2-1. 

2.3.2.1.1 Advantages, artefact formation and limitations of different 
microscopic techniques 

Starch granules are non-electrical conducting biological particles, therefore, 

require coating with an electrical conductive material such as gold, palladium, 

carbon or combination of them. This decreases sample charging and improves 

the image quality (Baldwin et a/., 1998). However, the method of sample 

preparation, moisture content, accelerating voltage, beam current, vacuum 

conditions, hardness and softness of the granule, topography of granule clumps, 

sputter coating (i.e. sole metal or combination of a conductive coating such as 

carbon and metal), thickness of coating, nature of mount (e.g. electro- conductive 

or non-conductive double sticky), focusing and scanning speed, resolution, 

working distance, specimen tilt, and magnitude of magnification are critical 
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Table 2-1 Granular morphology and their size distribution of various tuber starches 

Starch source Granular shape Granu~e Hilum Specific Reference 
size {1Jm} area {m2/g} 

D. alata Elliptical 6.8-47 - - Peroni et at., 2006 
D. a/ata - 8-38 - 0.15 Riley eta/., 2006 
D. alata - 25.6 - - Riley eta/., 2004 
D. alata Round, ovoid 18.6-29.3 - - Amani eta/., 2004 
D. alata Rod like, round 19-49 - - Srichuwong et at., 2005c 
D. alata Oval, shell shaped, ellipsoid 10-14 - - Moorthy 2002 
D. alata Oblong to oval 12-100 - - Gunaratne & Hoover 2002 
D. alata Ellipsoid, round 10-35 - - Farhat eta/., 1999 
D. a/ata Round-oval 6-100 Moorthy 1994 
D. a/ata - 20-140 - - Gallant 1982 
D. a/ata - 10-70 - - Rasper & Coursey 1967 

D. esculenta - 5.4 - 0.63 Riley eta/., 2006 
1'\) D. esculenta Polygonal 4.9 - - Srichuwong et at., 2005c 
1'\) D. escu/enta - 1-3 - - Riley eta/., 2004 

D. esculenta Polygonal 5.8-6.2 - - Amani eta/., 2004 
D. esculenta Round, oval, polyhedral, compound 1-15 - - Moorthy 2002 
D. escu/enta Round-oval 1-5 Yu et at., 1999 
D. esculenta - 1-5 - - Gallant 1982 
D. esculenta - 1-5 - - Rasper & Coursey 1967 

D. rotundata - 25.7 - 0.15 Riley eta/., 2006 
D. rotundata - 16-32 - - Riley et at., 2004 
D. rotundata Flattened, ovoid 20.4-30.9 - - Amani eta/., 2004 
D. rotundata Oval, polyhedral oval, round, triangular 10-70 - - Moorthy 2002 
D. rotundata Polyhedral 10-30 - - Farhat et a/., 1999 
D. rotundata* - 7.5-57.5 - Moorthy & Nair 1989 
D. rotundata - 10-70 - - Rasper & Coursey 1967 

D. dumetorum Polygonal 2.2 - - Amani eta/., 2004 
D. dumetorum Round, polygonal 1-16 - - Moorthy 2002 
D. dumetorum Round 3-5 - - Farhat eta/., 1999 
D. dumetorum - 1-3 - - Gallant 1982 
D. dumetorum Round oval 28.5-30.6 - - Emiola & Delarossa 1981 
D. dumetorum - 1-5 - - Rasper & Coursey 1967 



Table 2.1 Granular morphology and their size distribution of various tuber starches (cont.,) 

Starch source Granular shape Granule Hilum Specific Reference 
size {!Jm} area (m2/g) 

D. cayenensis - 34.5 - 0.12 Riley et a/., 2006 
D. cayenensis - 16-42 - - Riley eta/., 2004 
D. cayenensis Polyhedral, ellipsoid 10-70 - - Moorthy 2002 
D. cayenensis Polyhedral, ellipsoid 10-30 - - Farhat eta/., 1999 
D. cayenensis - 10-70 - - Gallant 1982 
D. cayenensis Round-oval 28.5-30.6 - - Emiola & Delarossa 1981 

D. polygonoides - 15.3 - 0.26 Riley et a/., 2006 
D. polygonoides - 4-17 - - Riley eta/., 2004 

D. opposita Irregular 8-80 Shujun eta/., 2007 
D. opposita Round, polygonal, oval 5-60 - - Shujun eta/., 2006 
D. opposite* Oval, polygonal 26-28 - - Shujun eta/., 2004 

D. bal/ophylla Elliptical 6-7-50 Soni eta/., 1985 

D. abyssinica Round 29.2 - - Mariam & Schmidt 1998 

Solenostemon rotundifolius Dome shaped and hemispherical 5-25 - - Jayakody eta/., 2005 
Coleus paraviflorus - 5-20 - - Moorthy 2002 & 1986 
Coleus paraviflorus Spherical to polygonal 2.5-17.5 - - Abraham & Mathew 1985 
Solanum tuberosum - 29.9-42.0 Karim eta/., 2007 
Solanum tuberosum Oval-spherical 42.3 - - Srichuwong eta/., 2005c 
Solanum tuberosum Oval-ellipsoidal 17-99-23.06 - - Yusuph eta/., 2003 
Solanum tuberosum Ellipsoid 12-60 - - Farhat eta/., 1999 
Solanum tuberosum Oval-spherical 5-100 Eccentric 0.1 Swinkels 1985a,Wivinis eta/., 1967 
Cana edulis Broad oval, elliptical 30-100 Centric - Jane eta/., 1994, Wivinis eta/., 1967 
Manihot esculenta Truncated oval 4-35 Centric 0.2 Swinkels 1985a, Wivinis eta/., 1967 
Maranta arundinacea Oval, spherical 35.1 Eccentric - Srichuwong et a/.,2005c, Wivinis et a/.,1967 
Metrozylon sagu Oval, spherical 34.3 Eccentric - Srichuwong et a/.,2005c, Wivinis eta/., 1967 
Ipomea batatas Polygonal, round 22.7 Centric - Srichuwong et a/.,2005c, Wivinis eta/., 1967 
Musa paradisiaca Irregular, oval or pear-shaped - Eccentric Wivinis et a/., 1967 
Xanthosoma sagitifolium Polygonal to variable 3-10 - - Gunaratna & Hoover 2002 
Colocasia esculenta (taro) Polygonal , round to variable 10-50 - Gunaratna & Hoover 2002 
Caladium esculenta ( eddo) Oval, spherical ::>1 - - Wivinis eta/., 1967 
*indicates different varieties 



factors that influence the quality of the SEM image (Jayakody et a/., 2007a, 

Velde eta/., 2002, Baldwin eta/., 1998). A survey of the literature revealed that 

the conditions used in the visulalization of starch granules by SEM have not been 

fully reported. For instance, except for accelerating voltage, other experimental 

conditions are infrequently reported. When a nonconductive specimen such as 

starch is directly illuminated with an electron beam, its electrons collect locally, 

thus preventing normal emission of secondary electrons. This phenomenon is 

called charge-up or charging. Low acceleration voltage decreases beam damage 

and charge-up, resulting in a clear surface structure, however, it decreases 

resolution. In contrast, high voltage increases resolution but it also increases 

charge-up and beam damage. Many researchers have used an accelerating 

voltage from 10 to 30 kV and half of them were at the higher end. A majority of 

these SEM images were of poor qualtiy due to charge-up. It has also been 

reported that sample coating with conductive materials may decrease the 

visualization of the natural granule surface (Velde et a/., 2002), and this could 

lead to misinterpretation of granule morphology at very high resolutions due to 

the presence and size of the metal grains (Gunning eta/., 1995). Gallant eta/., 

(1997 & 1992) reported that methods used in the drying (e.g. warm air, hot air or 

by freeze-drying) of extracted starches yields comparable starch granule surface 

topologies. When observed under a conventional SEM, the surfaces of tuber 

starch granules appear smooth (Hoover 2001 ). However, Gallant et a/., (1997) 

observed that at an extremely low primary accelerating beam current (1x10-13 A), 

the surface of potato starch granules is composed of large microscopic pores (up 
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to 500 nm diameter). Atomic force microscopy (AFM) has shown the presence of 

large protuberances (30-500 nm in diameter) on the surface of potato starch 

granules (Juszczak et a/., 2003a, Baldwin eta/., 1998, Baldwin 1995). These 

observations clearly show the limitations of different instruments and operational 

conditions. 

In summary, SEM and other microscopic methods are very powerful and 

apparently non-destructive techniques for visualization of the starch granule 

surface. The accuracy of observations greatly depend on pre- and post-sample 

preparation and operational conditions. 

2.3.2.2 Granule size and morphology variation 

Enzymes involved in starch biosynthesis contribute to the pronounced 

differences in granule size, shape and characteristics between the various starch 

types (Baldwin 2001 ). Granule size and morphology are intimately associated 

terms. Generally, granule size refers to the average diameter of the starch 

granules, but may also be expressed as the average length of the major and 

minor axes. Granule size distribution is classified as monomodal (similar size) or 

bimodal (e.g. wheat starch large [A granule] and small size [B granule]). Recently 

Lindeboom et a/., (2004) proposed categorization of starch granules based on 

their size variation (e.g. very small [<5 !Jm], small [5-1 0 !Jm], medium [1 0- 25 IJm], 

and large [>25 !Jm]). Aggregated or clustered starch granules are typical for 

small size granules (Lorenz 1990). The aggregate formation causes difficulty in 

accurate granule size estimation. Starch granules in plant leaves are generally 
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smaller (less than 11Jm) than those in storage organs and have a distinct 

macrostructure (Hizukuri 1996, Martin & Smith 1995). Dioscorea starches have a 

quite wide variability in size and shape e.g. D. esculenta from 1 to 15 1Jm 

(Moorthy 2002) and D. alata from -7 to 140 1Jm (Moorthy 2002, Gallant 1982). 

Morphological variations among starch granules from various botanical sources 

are shown in Table 2-1 and Figure 2-3. Colocasia granules are the smallest 

starch granule reported in storage organs [0.3 1Jm] (Moorthy 2002). 

The starch granule is very heterogeneous and its features can vary within the 

same granule population, or species. Starch granular morphology is a composite 

picture of several features of the intact granule. However, the classical dictionary 

meaning of morphology refers only to the 30 view (Council of Science Editors 

2006). Granule morphology is a relatively subjective expression, because 

surface and internal features depend on the quality and extent of reflection 

and/or refraction of light (e.g. polarized and non-polarized light). Therefore a 

description of granular morphology should include features such as: (1) external 

shape, (2) surface characteristics, (e.g. facets, topography, indentation, 

protrusion, fissures, color, textural appearance [smooth, grainy]), (3) structural 

anomaly between granules, and ( 4) refractive features under different light 

conditions (e.g. hilum, growth rings and birefringence). Pores, channels and 

central cavities are special anatomical features of starch structure, hence are 

discussed separately (section 2.3.3.2.1 ). Most tuber starch granules are oval or 
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Figure 2-3 Morphological variations among starch granules from various 

botanical sources 

Information from: Jayakody eta/., (2005), Jayakody (2001a), Jane et a/.,(1994), 

Wivinis & Maywald (1967), Buttrose (1963 & 1960) 
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elliptical in shape. However, round, polygonal, truncated, spherical, dome and 

irregular shaped granules have also been reported. The surface of some 

starches (e.g. innala Solenostemon rotundifolius) have been reported to contain 

slightly concave facets (Jayakody eta/., 2005). In general most of the tuber and 

root starches are simple granules, however compound granules (e.g. taro) have 

also been reported (Hoover 2001 ). 

Granule size has an appreciable influence on its properties, because granule 

composition changes as the granule grows and ages (Baldwin 2001, Geddles et 

a/, 1965). Several factors such as starch composition (Meredith 1981, Kulp 

1973), amylose-lipid complex (Chiotelli & Meste 2002, Myllarinen eta/., 1998a, 

Eliasson & Larsson 1983), chain length distribution (Naka et a/., 1985), 

gelatinization (Yusuph et a/ 2003, Kulp 1973, Stevens & Elton 1971 ), crystallinity 

(Wong & Lelievre 1982), pasting properties (Singh eta/., 2006, Jayakody eta/., 

2005, Goering & DeHass 1972), granule swelling (Liu et a/., 2003, Wong & 

Lelievre 1982), solubility (Lindeboom eta/., 2004), susceptibility to enzyme and 

acid (Jayakody eta/., 2005, Kulp 1973), and quality of backed product (Kulp 

1973, D'Appolonia & Gilles 1971) have been shown to reflect granule size. 

Specific surface area 

Specific surface area is another important parameter which influences the rate 

and extent of certain reactions (e.g. starch solubilization by acid or enzyme). The 

specific surface area of different starches have been reported (m2/g): D. alata 

0.15, D. esculenta 0.63, D. rotundata 0.15, D. cayenensis 0.12, D. po/ygonoides 

0.26, (Riley eta/., 2006), potato 0.1-0.25 (Singh eta/., 2006, Yusuph eta/., 2003, 
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Hellman & Melvin 1950), cassava 0.2-0.25 (Swinkels 1985a, Hellman & Melvin 

1950), grass pea 0.16 (Jayakody eta/., 2007a), corn 0.48 (Hellman & Melvin 

1950), and wheat 0.25-0.9 (Baldwin 2001 ). 

2.3.2.2.1 Effect of environment and growth period on granuler size 

Tester and Karkalas (2001) reported that elevated temperatures result in fewer 

and smaller granules per unit volume of tissue because of the inactivation of 

specific biosynthetic and thermo-sensitive enzymes, such as soluble starch 

synthase. It has been reported that elevated temperature tends to decrease the 

number and/or size of starch granules in potato (Tester eta/., 1999, Cottrell et 

a/., 1995, Hizukuri 1969, Nikuni eta/., 1969), barley (Myllarinen eta/., 1998b, 

Tester eta/., 1991, Tester 1997, MacLeod & Duffus 1988), wheat (Tester eta/., 

1995, Shi eta/., 1994) and corn (Jones eta/., 1985). In general the shape of a 

granule is independent of the environmental temperature (Hizukuri 1969), 

however, when the plant matures, the average size of the granule increases 

(Geddes eta/., 1965). For instance, Moorthy (2002) reported that granule size of 

D. escu/enta and D. alata increases up to five months and then remains steady. 

In summary, granular morphology and size are probably the most variable factors 

within the same starch source. Granule size has an appreciable influence on 

physicochemical properties, however, it is yet unknown what mechanism leads to 

variation in shapes and sizes of starch granules in the same or various botanical 

sources, and why such a variability is important to the plant. 
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2.3.3 Characteristics of granuler surface and interior 

2.3.3.1 Starch granular surface 

There is a dearth of information on the composition or chemical nature of the 

starch granule surface. However, it is known that the starch granule surface is 

mainly carbohydrate (-90-95%) in nature (Baldwin 1995), with lesser quantities 

of the minor starch components such as protein and lipids (Baldwin eta/., 1998). 

It has been shown that lipid, protein and amylose content increases towards the 

granule surface, indicating that the chemical nature of the granule surface is 

different from that of the granule interior. It is now recognized that the granule 

surface plays a significant role as the primary barrier to granule hydration, 

enzyme attack and chemical modification (Baldwin 2001 ). 

2.3.3.2 Starch granule interior 

2.3.3.2.1 Pores, channels and central cavities 

(A) Pores 

The small openings which are randomly distributed over the surface of the starch 

granules are called 'micro openings', 'microscopic pores', 'holes' or 'pin holes' 

(Baldwin 1994, Fannon eta/., 1992, Hall & Sayre 1970b). Hall and Sayre (1970b) 

were the first to report these features by SEM. Pores are present often in clusters 

(Fannon eta/., 1992) and in different quantities (Fannon eta/., 1992, Whistler et 

a/., 1958). However, the shape of the pore may vary from botanical source to 

source. Surface pores have been observed by SEM or environmental scanning 

electron microscopy (ESEM) in various starches such as innala (Jayakody eta/., 

2005), rice (Juszczak et a/., 2003b, Jayakody & Hoover 2002), corn [normal, 
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waxy and high amylose] (Jayakody & Hoover 2GG2, Karathanos & Saravacos 

1993, Fannon eta/., 1992, Fuwa eta/., 1978, Hall & Sayre 197Gb), sorghum 

(BeMiller 1997, Fannon eta/., 1992, Hall & Sayre 197Gb), barley (Waduge eta/., 

2GG6, Li eta/., 2GG1 ), rye (Juszczak eta/., 2GG3b, Fannon eta/., 1992) and millet 

(Fannon et a/., 1992). Pores have been shown to be absent on the surface of 

potato (Fannon eta/., 1992, Hall & Sayre 197Gb), cassava (Fannon eta/., 1992) 

and wheat (Hall & Sayre 197Gb) starches. However, several other research 

groups have reported the presence of pores on the surface of potato (Juszczak 

eta/., 2GG3a,b, Baldwin et a/., 1994, Sterling 1973), cassava (Juszczak eta/., 

2GG3a,b,) and on the small B granules of wheat (Baldwin eta/., 1994) starches. It 

has been reported that pores are rounded and centered in the potato starch 

granule at the intersection of the Maltese cross (Baldwin eta/., 1994). Sterling 

(1973) and Karathanos and Saravacos (1993) have shown that the pores on the 

surface of potato and normal corn starches vary from G.5 nm to 75 nm and 3 nm 

to 1 GG nm, respectively. However, pores have not been reported in oat 

(Jayakody & Hoover 2GG2, Fannon eta/., 1992 Hall & Sayre 197Gb), pinto bean, 

smooth pea, lentil (Zhou et a/., 2GG4), and grass pea (Jayakody et a/., 2GG7a) 

starches. Pores on granule surfaces have been shown to be true anatomical 

features of the native granule structure and not artefacts of starch isolation, 

drying, specimen preparation or microscopic techniques (Fannon et a/., 1992, 

Whistler et a/., 1959). However, it has been suggested (Li 2GG6) that pores in 

maize may also occur due to amylase attack on the granule surface during 

maturation and drying. 
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(B) Channels 

The radial tube like connections that penetrate from the external surface inward 

towards a cavity at the hilum are called 'channels', 'tubelike channels' or 

'serpentine channels' or 'twisted tubelike' channels (Huber & BeMiller 1997, Lynn 

& Stark 1992). Later investigations revealed that not all channels reached the 

hilum (Huber & BeMiller 2000). The channels are found to vary in depth of 

penetration from granule to granule (Huber & BeMiller 2000, Huber & BeMiller 

1997). Fannon eta/., (1993) have postulated that all starch granules have pores 

and channels that are unobserved either because they are covered over the 

sputter coating materials or because they are too small to be viewed by SEM, yet 

large enough for passage for water, reagents, and macromolecules (e.g. 

enzymes). The presence of pores and channels in starch granules has been 

shown to influence its chemical reactivity towards modifying reagents (Whistler et 

a/., 1959). Huber and BeMiller (2000) have suggested that channels could 

provide direct access of reagents to a loosely organized region at the hilum. 

Channels opening to the granule exterior and penetrating into the granule interior 

has been found in starch granules in situ (i.e. native endosperm tissue). This 

indicates that the channels are normal structures and not artefacts (Fannon et 

a/., 1993). Clear evidence of channels has been reported for corn (Huber & 

BeMiller 1997, Karathanos & Saravacos 1993), and sorghum (Huber & BeMiller 

1997). It has been shown that channels are more abundant in normal corn than 

in waxy corn (Huber & BeMiller 2000) starch. Channels have been shown to 

cross over the entire granule matrix, from the outer surface to the central cavity. 
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However, these pores and channels could be altered or enlarged by drying 

(Baldwin et a/., 1994, Karathanos & Saravacos 1993, Fannon et a/., 1992, 

Whistler eta/., 1958), moisture content (Whistler eta/., 1958) or by the method of 

starch extraction (Baldwin et a/., 1994 ). Gallant et a/., ( 1997) hypothesized that 

channels are not void spaces, but instead may contain amorphous material. The 

biological origin of channels remains unknown. 

(C) Cavities 

Central cavities were first reported by Reichert (1913). Cavities may not always 

be visible within hydrated granules due to complications of refractive index 

(Baldwin eta/., 1994). Cavities have been reported in granules of potato (Baldwin 

et a/., 1994, Hall & Sayre 1970a), canna (Hall & Sayre 1970a), normal corn 

(Zhao eta/., 1996, Hall & Sayre 1973), waxy corn (Chabot eta/., 1978), sorghum 

(Hall & Sayre 1973), barley (Hall & Sayre 1973), lentils (Revilla & Tarrago 1986) 

and rice (Baldwin et a/., 1994) starches. Cavity size in potato starch has been 

reported to vary from granule to granule (Baldwin et a/., 1994 ). No apparent 

relationship between granule size and cavity size has been reported, and it 

seems that granules of all sizes possess cavities (Baldwin eta/., 1994). Overall, 

the available evidence suggests that cavities located at the hilum of certain 

native starch granules are actual granule features and not artefacts of specimen 

preparation. However, Baldwin et a/., (1994), Whistler and Thornburg (1957) 

have suggested that formation and development of cavities in native starch 

granules occur on drying at elevated temperatures. 
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2.3.4 Starch damage 

Brown and Heron (1879) identified that damaged starch granules result in greater 

rate of diastatic activity. Their efforts greatly contributed to the establishment of 

basic concepts for the study of starch properties such as absorption of water, 

gelatinization characteristics, granule swelling, pasting properties, enzyme 

susceptibility and dye absorption. A necessary prerequisite to starch property 

characterization is the isolation of starch granules without any damage (Karlsson 

& Eliasson 2003, Vasanthan eta/., 1999, Evers eta/., 1984). Several types of 

granule damage have been reported such as radial cracking, chipping or 

splitting, abrasions, and squashing or flattening (Williams 1969). Vasanthan 

and Hoover (1992a) reported the possibility of cross-contamination of surface 

(free and bound) with internal (free and bound) lipids, vice versa, during cold and 

hot solvent extractions of damaged starches. Furthermore, solvent extraction of 

physically damaged starches under certain conditions has been reported to be 

extract amylose with other starch components (Stark & Yin 1986). Morrison eta/., 

(1994) have shown that the double helical content and crystallinity decreases 

with the extent of starch damage. 

2.3.4.1 Techniques of starch damage determination 

Damaged starch differs from intact granules in a number of ways such as water 

absorption (Stevens & Elton 1971, Williams 1969, Sandstedt & Mattern 1960), 

solubility (Stark & Yin 1986, Craig & Stark 1984), susceptibility to staining with 

iodine and certain dyes [e.g. Schultze's solution, Congo red] (Williams 1969, 

Dadswell & Gardner 1947), and susceptibility towards amylase hydrolysis (Greer 
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& Stewart 1959, Sandstedt & Fleming 1954, Dadswell & Gardner 1947). 

Damaged granules can be distinguished either microscopically [e.g. preferential 

staining or partial or total loss of birefringence] (Stevens & Elton 1971, Williams 

1969) or by susceptibility towards amylolytic enzymes (Jayakody et a/., 2005, 

Stark and Yin 1986, Stevens & Elton 1971, Sandstedt & Mattern 1960). It has 

been shown that methods based on amylolytic activity are more suitable due to 

their reliability, reproducibility, simplicity, convenience and minimum requirement 

for special equipment (Blish & Sandstedt 1933). Microbial amylases (e.g. fungal 

a-amylase Aspergillus oryzae) are more effective for short term hydrolysis than 

pancreatic amylases (Valetudie et a/., 1993) and are cost effective. Thus 

microbial amylases are widely used for damaged starch estimations. 

2.3.5 Growth rings 

Overview 

Examination of hydrated or chemically treated (enzyme eroded or acid treated) 

(Jenkins & Donald 1996) starch granules under an optical (Tester & Karkalas 

2001, French 1984) or electron microscope (Tester & Karkalas 2001, Gallant et 

a/., 1997, French 1984) has shown the presence of broad amorphous zones (so 

called light regions) that are interspersed with alternating crystalline and 

amorphous laminate structure (so called dark regions) that create concentric 

rings or growth rings (Tester & Karkalas 2001, Jenkins & Donald 1996, Jenkins 

eta/., 1993, French 1984, Lineback 1984, Yamaguchi eta/., 1979). 
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2.3.5.1 Theories of growth ring formation 

The origin of growth rings remains obscure. Cameron and Donald (1992) and 

French (1972) have suggested that the rings represent periodic growth which 

reflects daily fluctuation (diurnal rhythm) in carbohydrate availability for starch 

deposition. However, this is not a new theory, since it was originally proposed by 

Meyer (1895). Yamaguchi eta/., (1979) suggested that part or all of the amylose 

and amylopectin molecules terminate at the boundary of a ring. Thus, the length 

of a starch molecule (i.e. amylose and amylopectin) would be similar to the 

thickness of a growth ring. It is believed that the molecular chains of starch are 

fairly perpendicular to these growth rings and to the surface of the granule 

(Yamaguchi eta/., 1979, French 1972, Kreger 1951). Extensive studies by small 

angle X-ray scattering (SAXS) and electron microscopy revealed that the semi

crystalline rings are composed of stacks of alternating crystalline and amorphous 

lamellae (Jenkins & Donald 1996). These lamellae are distinctly visible when 

they are oriented parallel to the electron beam (Yamaguchi eta/., 1979). The 

currently accepted crystalline structure model consists of a radial arrangement of 

clusters of amylopectin proposed originally by Robin eta/., (1974 & 1975). 

The average thickness of the semi-crystalline growth rings in certain starch 

granules (e.g. wheat) increases with increasing amylose content (Yuryev eta/., 

2004). The thickness and hardness of the growth rings differ with botanical 

origin; thickness tends to decrease towards the edges of the granules while 

hardness increases (Ridout eta/., 2003, Szymrioska & Krok 2003, Tang eta/., 

2001a,b, Kaker et a/., 2001, Vasanthan & Bhatty 1996). There are no 
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recognizable growth rings at the center of the granule near the hilum (Ridout et 

a/., 2003, Tang eta/., 2001 a,b). 

2.3.5.2 Birefringence 

The phenomenon of double refraction (i.e. two unequally reflected or transmitted 

waves) of light wave fronts in a molecularly ordered material is called 

birefringence. The starch granule has a high degree of molecular order. Thus, 

the ordering present in starch granules may be visualized at the molecular level 

as birefringence (Marchant & Blanshard 1980). Native starch granules are 

birefringent in polarized light and they exhibit the so called 'Maltese Cross', which 

may be centric or eccentric [Table 2-1]. Birefringence indicates the orientation of 

starch molecules (radial direction) and the intrinsic semicrystalline nature of the 

native starch granule (Cameron & Donald 1992). Birefringence and crystallinity 

are not essentially related to each other (Hoseney 1994, Lineback & Rasper 

1988). Birefringence implies that a high degree of molecular order exists in the 

granule, without any relation to crystalline form. There is a lack of information on 

the birefringence and growth rings of Dioscorea starches. 

In summary, growth rings are common features of starch granules. The interplay 

of circadian rhythms, physical mechanisms, and perhaps diurnal rhythms 

possibly contribute to the control of growth ring formation in starch granules 

(Matheson 1996). However, the exact mechanism of growth ring formation still 

remains unknown. 
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2.3.6 Granuler composition 

Overview 

Starch has been the subject of intensive scientific investigation for over two 

centuries. There have been a number of hypotheses put forward to explain the 

origin, nature and structure of the starch granule (Schimper 1880, Nageli 1874, 

Maschke 1852, Payen 1838, Fritsche 1834). However, much of the early work is 

confusing. For instance, all varieties of sugar and sugar-like substances derived 

from starch were called amylose (Wiley 1881). Nageli, in 1858, constructed a 

theory concerning the chemical nature of the starch granule, its manner of origin 

and subsequent growth. He postulated that the starch granule is made up of two 

substances called cellulose and granulose (Kraemer 1902, Gregory 1895). 

However, in later literature it was indicated that granulose gives a blue color with 

iodine (Kraemer 1902), what is now called amylose. Meyer (1895) postulated that 

starch is mainly composed of two substances and named them as a-amylose 

and ~-amylose. Maquennel and Roux (1903) separated starch into two fractions 

by a precipitation method and called these fractions as 'amylose' and 

'amylopectin'. Mayer and Bernfeld (1940) showed that amylose (linear molecule) 

and amylopectin (branched molecule) are two different fractions of starch. The 

molecular features of amylose and amylopectin were first studied by Hirst eta/., 

(1932). Branching of amylose was first suggested by Peat eta/., (1952). 
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2.3.6.1 Major components 

2.3.6.1.1 Amylose 

Amylose is synthesized by granular-bound starch synthase (Jane 2006, Smith 

2001, Denyer eta/., 1999, Ballet a/., 1998, Martin & Smith 1995). Amylases 

from various botanical sources are not exactly identical showing variation in 

molecular size and branching (Hizukuri 1996). The molecular weight and its 

distribution are characteristic of the amylose source (Takeda et a/., 1984, 

Hizukuri eta/., 1981). Amylose is found with molecular weights ranging from 1x 

105 to 2x 106 Da (Tester & Karkalas 2001, Hizukuri eta/., 1989). In general, the 

molecular size of amylose is in the range 200-20,000 DP (degree of 

polymerization), however amylases from tuber and root starches have fewer 

small amylose molecules than cereal amylases (Hizukuri 1996). Generally, the 

distribution of molecular size of amylose by gel permeation chromatography or 

HPLC is monomodal (Takeda et a/., 1986). Molecular characteristics of 

amylases are presented in Table 2-2. 

Normal starches and high-amylose starches contain -16-40% and -40-92% 

amylose, respectively (Jayakody 2001, Shi eta/., 1998). Amylose is considered 

to be essentially a linear biopolymer, but it also contains a few branches. Tester 

and Karkalas (2001) reported that about 99:1 ratio of a-D-( 1---+4) to a-D-( 1---+6) 

bonds are present in the amylose molecule. It has been reported that hot-water 

soluble potato amylose is more branched than a similar amount of amylose 

containied in cereal starch (Murugesan eta/., 1993). Colonna and Mercier (1984) 

reported 2-3 branch points/molecule for pea starches. The side chains of rice 
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Table 2-2 Molecular characteristics of amylose and amylopectin from various tuber starches 

Botanical source Amylose 
Apparent(%) Total(%) 

D. alata 28.5 
D. a/ata 32.6 
D. a/ata 32.2-34.3 
D. a/ata 23.4-25.4 
D. alata - 20.8 
D. alata 25.3-27.4 
D. alata 21.0 
D. a/ata 36 
D. a/ata 25-27 
D. alata 21-30 
D. a/ata 24.6 28.5 
D. alata 21.5 
D. alata - -
D. alata 24.1 
D. alata -30 
D. alata 22.2 
D. a/ata -21 

D. esculenta 14.2 
D. esculenta 14.1-15.7 
D. esculenta 11.1 
D. escu/enta 16 
D. esculenta 14 
D. esculenta 14.2 

D. rotundata 25.2-28.8 
D. rotundata 22.1 
D. rotundata 25-29 
D. rotundata 21.1-25.3 
D. rotundata 20.9-24.6 
D. rotundata 22.4 
D. rotundata 20.9-24.6 

D. dumetorum 16.6 
D. dumetorum 17 
D. dumetorum 25.4 
D. dumetorum 10-15 

Amylopectin 
DPn CL ECL ICL 

1800 29 18.5 9.5 

2000 

f3 amylolysis Reference 
%) 

57± 4 

Karam eta/., 2006 
Peroni et at., 2006 
Wang eta/., 2006 
Brunnschweiler eta/., 2005 
Srichowong eta/., 2005a 
Amani eta/., 2004 
Riley et at., 2004 
Freitas et at., 2004 
Rolland-Sabate et at., 2003 
Moorthy 2002 
Gunaratne & Hoover 2002 
Valetudie eta/., 1993 
Suzuki eta/., 1986 
Soni eta/., 1985 
Gallant eta/., 1982 
Emolia & Delarosa 1981 
Rasper & Coursey 1967 

Srichowong eta/., 2005a 
Amani eta/., 2004 
Riley eta/., 2004 
Rolland-Sabate et at., 2003 
Gallant eta/., 1982 
Rasper & Coursey 1967 

Amani eta/., 2004 
Riley et at., 2004 
Rolland-Sabate et at., 2003 
Moorthy 2002 
Moorthy & Nair 1989 
Emolia & Delarosa 1981 
Rasper & Coursey 1967 

Amani eta/., 2004 
Rolland-Sabate et at., 2003 
Emolia & Delarosa 1981 
Gallant eta/., 1982 



Table 2-2 Molecular properties of amylose and amylopectin from various tuber starches (cont.,) 

Botanical source 

D. cayenensis 
D. cayenensis 
D. cayenensis 
D. cayenensis 
D. cayenensis 

D. polygonoides 
D. po/ygonoides 
D. po/ygonoides 

D. abyssinica 

D. batata 
D. opposita 

Amylose 
Apparent(%) Total(%) 

25.6 
26.5 

23.2-27 
27 

21.6 

11.9 
21.17-25 
20.7-25.9 

29.7 

34.0-34.6 

DPn 
Amylopectin 

CL ECL ICL 

21.3 

13 amylolysis Reference 
(%) 

Brunnschweiler et at., 2005 
Riley et at., 2004 
Moorthy 2002 
Gallant et at., 1982 
Emolia & Delarosa 1981 

Riley et at., 2004 
Shujun eta/., 2006a 
Shujun eta/., 2006c 

Moorthy 2002 

Wang et at., 2006 
Hizukuri et at., 1983 

S. rotundifolius 16.25-22.95 18.7-25.2 - Jayakody et at., 2005 
Coleus paraviflorus - 33 - - - - - Moorthy 1986 
Coleus paraviflorus 18.5 - - - - - - Abraham & Mathew 1985 
Solanum tuberosum 24.5 - - - - - - Brunnschweiler eta/., 2005 
Solanum tuberosum 18-7-23.9 - - 22.5-22.9 - - - Kim et at., 2007, Hizukuri 1983 
Solanum tuberosum - - 211 0-4920 - - - - Hoover 2001 
Solanum tuberosum 18-33 - - - - - - Yusuph eta/., 2003 
Solanum tuberosum 25.2 28.1 4850 ± 75 28.1 18.6 8.5 - Gunaratna & Hoover 2002 
Cana edulis - 27.9 - Srichowong et at., 2005a 
Cana edulis 27 - Hizukuri et at., 1983 
Manihot esculenta - 17.9 - - - - - Srichowong et at., 2005a 
Manihot esculenta 19.8 22.4 2500 ± 62 24.5 16.2 7.3 58± 2 Gunaratna & Hoover 2002 
M. arundinacea - 20.0 - - - - - Srichowong et at., 2005a 
Metrozylon sagu - 21.9 - - - - - Srichowong et at., 2005a 
Ipomea batatas 19.8 - - 20.3-20.9 - - - Hizukuri 1983 
X. sagitifolium 19.8 - - - - - - Valetudie et at., 1993 
X. sagitifolium 26.1 29.3 2775 24.2 15.8 7.4 57± 2 Gunaratna & Hoover 2002 
C. esculenta (taro) 22.3 26.4 2200 26.1 16.6 8.4 56± 4 Gunaratna & Hoover 2002 
Apparent & total amylose content was determined by 12 binding before and after removal of bound lipids, respectively 

DP n: number average degree of polymerization CL : average chain length ECL: external chain length ICL: internal chain length 



amylose has been reported to range from -1 0 to 4000 DP, however the majority 

of side chains are less than 1 00 DP (Hizukuri 1996). The molar ratio of super 

long (DP>200), long (30-200 DP) and short (1 0-30 DP) rice amylose side chains 

are 4:3:20, respectively. This suggests that predominant side chains are similar 

to amylopectin (Takeda eta/., 1993). 

2.3.6.1.2 Location of amylose in starch granule 

The exact location of amylose and amylopectin in native granule is still in dispute. 

Jane and Shen (1993) have shown using stepwise chemical [CaCI2 4M, at 23°C] 

gelatinization, that potato and corn starch granules have increasing amylose 

concentration towards the granule periphery relative to that at the core. Studies 

on amylose leaching, V-complex formation, and iodine vapour complexing 

suggests that amylose is separated from amylopectin in normal corn starch but 

interspersed among amylopectin in potato starch (Zobel 1988). Blanshard (1986) 

proposed that amylose is present in the amorphous area partially co-crystallized 

with amylopectin (e.g. potato starch). Jane eta/., (1992a) have postulated that 

amylose (e.g. from potato, and corn starch) could be randomly mixed together 

with individual molecules of amylopectin rather than being in bundles of amylose. 

2.3.6.1.3 Factors influencing amylose concentaration in various botanical 
sources 

Amylose content has been shown to be influenced by the environmental 

temperature (Debon et a/., 1998, Cottrell et a/., 1995, Asaoka et a/., 1987, 

Hizukuri 1969), date of planting (Hizukuri 1969, Zuber 1965), seasonal variation 

[e.g. wet or dry season] (Madamba & San Pedro 1976), age of crop (Moorthy 
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2002), age of tuber (Sugimoto et a/., 1987, Geddes et a/., 1965), harvesting 

period (Liu eta/., 2003), granule age and size (Jane 2006, Shujun eta/., 2006c, 

Wasiluk eta/., 1994, Zayas eta/., 1994, Jones eta/., 1992, Matheson 1971, 

Geddes eta/., 1965) and length of storage (Sriroth eta/., 1999). 

2.3.6.1.3.1 Amylose determination techniques 

Different methods such as (1) colorimetry (Jayakody eta/., 2005, Juliano eta/., 

1981, Sowbhagya & Bhattacharya 1971, Williams et a/., 1958, McCready & 

Hassid 1943), (2) potentiometry (Bates et a/., 1943), (3) semi-micro differential 

potentiometry (Banks & Greenwood 1975), (4) amperometry (Larson et a/., 

1953), (5) differential scanning calorimetry [DSC] (Moorthy eta/., 2006, Sievert & 

Lausanne 1993, Kugimiya & Donovan 1981 ), (6) high performance size exclusion 

chromatography [HPSEC] (Grant et a/., 2002), or gel permeation 

chromatography [GPC] (Sargeant 1982), (7) near infrared reflectance [NIR] 

(Delwiche eta/., 1995), (8) preferential precipitation (Yun & Matheson 1990) and 

(9) polarimetry (Shuman & Plunkett 1964) have been used for amylose 

determination. 

All of the above methods are useful but suffer from some inherent drawbacks. 

Colorimetry is very popular due to its versatility and simplicity. However, the 

major objection to the colorimetric method is the strong interference of 

amylopectin in the iodine-amylose color at low pH and difficulties in solubilizing 

the sample. The amylose-iodine color is blue at neutral to basic pH but is green 

at acid pH (Perez & Juliano 1978). However, it has been shown by a cooperative 
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study (Juliano eta/., 1981 ), that phosphate buffers greatly increase the stability of 

the starch iodine-blue color complex. Other negative features of the colorimetric 

method are the tendency of amylose to retrograde in aqueous solution, and the 

susceptibility to interference by bound lipids (Morrison & Laignelet 1983, 

Sargeant 1982). The amperometric/potentiometric method shows high accuracy, 

but the process is tedious and the broad inflection point can lead to inaccuracies. 

DSC has proven to be satisfactory for high amylose starches. Total amylose 

determination by DSC does not require a prior defatting step. However, it gives 

an over estimation for low amylose starches (Sievert & Lausanne 1993). The NIR 

procedure is rapid but requires tedious standardization and validation processes, 

and also gives a poor response to high-amylose starches (Polaske eta/., 2005). 

The GPC and HPSEC methods are reliable, but the GPC procedure is laborious 

and needs costly enzymes (Fredriksson et a/., 1998). The HPSEC method is 

simple and uses deionized water as the eluant but amylose is not stable in water 

(Grant eta/., 2002). The preferential precipitation method essentially precipitates 

the amylopectin fraction, but it needs costly enzymes and is time consuming. The 

polarimetric method is sensitive, however the downside of this method is the 

requirement for heavy metal containing reagents (e.g. HgCI2). 

2.3.6.1.4 Amylose conformation 

The amylose molecule is presently believed to be arranged in a left-handed helix 

due to the natural twist present in the chair conformation of glucose (Kowblansky 

1985). The helix consists of six glucose units per turn, with exterior, and central 

cavity diameters of 12.97 A, and 5 A, respectively (Fonslick & Khan 1989, Rundle 
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& French 1943). Takeo and Kuge (1969) and Krog (1971) reported that the inside 

diameter of the helix can vary between 4.5-6.0 A, where the helix consists of 6 or 

7 glucose units per helical turn. The amylose helix is stabilized by hydrogen 

bonds between the hydroxyl groups of adjacent glucosyl residues and inter-turn 

hydrogen bonds located on the outer surface of the helix (Banks & Greewood 

1975). Studies of light scattering, viscosity analysis and molecular weight have 

shown that the conformation of the amylose helix appears to be either a random 

helical coil (6 glucose units per turn) [Figure 2-4-A-(a)] (Banks & Greenwood 

1971 ), interrupted helix [i.e. segregated helical with 10-15 turns and linear parts 

in the same molecule] [Figure 2-4-A-(b)] (Szejtli & August 1966), or a deformed 

helix/worm-like coil (Rao & Foster 1963) in aqueous solution [Figure 2-4-A-(c)]. 

Amylose in solid state shows two X-ray diffraction patterns which are similar to 

the A- and B-type of amylopectin crystallites in native starches (Wu & Sarka 

1978a). 

2.3.6.1.5 Co-crystallization of amylose 

The effects of varying amylose content on the internal granular structure of 

normal, waxy and high amylose corn starches have been studied by small angle 

X-ray scattering (Jenkins & Donald 1995). These authors showed that an 

increase in amylose content increases the size of the crystalline portion of the 

amylopectin cluster and that amylose acts to disrupt the packing of the 

amylopectin double helices within the crystalline lamellae. Jenkins and Donald 

(1995) have suggested that the disrupting effect of amylose on amylopectin 
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Figure 2-4 Models proposed for (A) amylose conformation in aqueous solutions: 

(a) random coil, (b) interrupted helix and (c) deformed helix/worm-like coil 

(B) amylose-lipid complex (C) linear-chain structure of amylose 

Adapted from Banks & Greenwood (1975), and Carlson eta/., (1979) with 

permission from: Edinburgh University Press, & Wiley lnterScience 
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structure could be due to (1) co-crystallization of a portion of an amylose chain 

into a hybrid amylose/amylopectin helix within the crystalline lamellae, or (2) 

penetration of amylose into the amorphous regions where the a a-D-(1 ~6) 

branch points are located. However, Jane et a/., (1986) have postulated that 

amylose in the normal starch interacts with amylopectin, thereby preserving 

starch granule integrity. However, it is not clear whether both mechanisms occur 

concurrently or separately. Waduge et a/., (2006) suggested that when the 

amylose content reaches a certain threshold, amylose chains may interact with 

amylopectin. 

2.3.6.1.6 Amylose inclusion complexes 

The formation of inclusion complexes between glucan chains and a hydrophobic 

guest molecule has long been known (Mikus eta/., 1946). The long linear nature 

of amylose chains gives them some unique properties, such as the ability to form 

complexes with iodine, fatty acids, organic alcohol, or acids. Such complexes 

are called clathrates or helical inclusion compounds (Hoseney 1994). 

2.3.6.1.6.1 Amylose-lipid complex 

It has been known for many years that saturated distilled monoglycerides form 

insoluble inclusion complexes with amylose. Complex formation between corn 

starch and fatty acids was first reported by Schoch and Williams (1944). The core 

of the amylose helix consists solely of C-H bonds and is thus hydrophobic 

[Figure 2-4-B]. Consequently, the hydrophobic part of the fatty acid chain has a 

great affinity for the core of the amylose helix. However, Waduge et a/., (2006) 
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reported lipids in starches may also be present trapped in the spaces between 

amylose and amylopectin. Potato starches include little or no lipids, and other 

tuber and root starches contain less lipids than those from cereals (Hizukuri 

1996). Complex formation with amylose is dependent on the length of the fatty 

acid molecule. It has been reported that lipids and surfactants are required to 

have a minimum of 8 carbons in the fatty acid chain (Yamamoto eta/., 1984) to 

form a complex. However, chain lengths between 12-18 (Kowblansky 1985, 

Krong 1970), 14-18, (Russell1983) or carbons~ 12 (Tufvesson eta/., 2003) are 

required for optimum complexing effect. It has been reported that optimum 

complexing occurs when the fatty acid chain length is between C-12 & C14 

(Hoover & Hadziyev 1981 ). 

The crystalline melting temperature of amylose-lipid complex has been reported 

to occur in the range -85-125°C (Waduge eta/., 2006, Nakazawa & Wang 2004, 

Jacobs eta/., 1998a, Karkalas eta/., 1995, Slade & Levine 1988, Biliaderis eta/., 

1986b, Biliaderis et a/., 1985, Kugimiya & Donovan 1981, Russell 1987b). 

Amylose-lipid complexes exhibit a V-type X-ray diffraction pattern centered at 

-20 28 (Evans 1986, Kowblansky 1985, Jane & Robyt 1984, Bulemn eta/., 1984, 

Yamamoto et a/., 1984). The V-type crystalline structure of fatty acid-amylose 

complexes is formed by single helices with six anhydroglucose monomer resides 

per helical turn (Gallant eta/., 1992). Amylose-lipid complexes have been shown 

to greatly restrict the hydration capacity, and granule swelling of starch (Hoover 

2001, Zheng & Sosulski 1997, Swinkels 1985a), thus amylose-lipid complex 

greatly influences the functional properties of starch. 
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2.3.6.1.6.2 Iodine-starch complex 

The formation of a blue color when starch is reacted with iodine was first 

observed in 1814 (Colin & Claubry 1814). Until 1937, it was a classical test for 

identification of starch. However, Hanes (1937) hypothesized that the blue color 

may be due to complex formation between amylose & iodine with iodine ) 

occupying the helical cavity of the amylose helix. It was later established that 

Hanes (hypothesis was correct (Rundle eta/., 1944, Rundle & Baldwin 1943, 

Rundle & French 1943, Rundle & Edwards 1943). The actual nature of the iodine 

chromophore within the amylose helix has been the subject of considerable 

speculation and controversy. One of the classical schools of thought is that the 

triiodide ion (b-) must be present to form a blue color with the iodine-starch 

complex (John et a/. 1983, Hatch, 1982, Zitomer & Lambert 1962, Lambert 

1951 ). However, Teitelbaum et a/., (1980 & 1978) have postulated that the 

principal chromophore was the pentaiodide (Is-) ion. The amylose-iodine 

complex is pH sensitive and is thermally unstable. The complex is stable below 

15°C (Fonslick & Khan 1989). Teitelbaum eta/., (1980) have shown that Is- ion 

breaksdown into the triiodide (b-) ion and molecular iodine at elevated 

temperatures. Monoacyl lipids (free fatty acids and lysophospholipids) 

competitively inhibit the accessibility of iodine into the amylose helix, and thus 

reduces its ability to form a complex (Morrison & Laignelet 1983, Mius eta/., 

1946). However, lipid interferences can be overcome by defatting native starch. 
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2.3.6.1.6.2.1 Effect of chain length, composition of amylose & amylopectin 
on color intensity 

The color of the iodine-amylose complex may vary as a result of the chain length 

(DP) of amylose, which influences its binding capacity with iodide anions. John et 

a/., (1983) showed that the color of the complexes changes from blue (DP>47), 

blue-violet (DP 39-46), red-violet (DP 30-38), red (DP 25-29), brown (DP 21-24), 

and finally no color (achroic limit [where the iodine coloration disappears]) at a 

DP below 20. The most stable complex of linear amylose with iodine is formed 

above DP>40 (Yamamoto eta/., 1984). 

Studies on amylopectin have shown that a minimum of 15-20 glucose units of the 

outer branches are required for complex formation with iodine at low 

temperatures (Banks et a/., 1970). In general, amylopectin fractions of high-

amylose cereal and legume starches have longer A- and 8-chains than other 

starches. For instance, super long amylopectin 8-chains (average chain length of 

DP 85-180) have a very high affinity for iodine (Takeda et a/., 1987). These 

chains could bind iodine resulting in an overestimation of amylose content 

(Morrison & Karkalas 1990). 

In general, the absorbance maxima (Amax) value for normal starch is greater than 

600 nm [Table 2-3]. However, several researchers have shown that branched 

amylose molecules greatly decrease the Amax of the starch-iodine complex 

(Zeeman et a/., 2002, Fuwa et a/., 1999). The Amax also depends on the 

proportion of amylose and amylopectin in the mixture [Table 2-3] (McGrance 

eta/., 1998). The solubility of starch will influence variability between samples. 
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Table 2-3 Absorbance maxima of amylose (AM) and amylopectin (AMP) from various starch sources 

Starch source 
Amylose (purity not indicated) from Yam, Nagaimo 
1 00% amylose from potato 
1 00% amylose from potato 
Amylose from potato* 
Amylose from lily* 
Amylose from edible canna* 
Amylose from cassava* 
Amylose from sago* 
Amylose from kuzu* 
Amylose from water chestnut* 
Amylose from chestnut 
100% amylose from rice (Japonica) 
100% amylose from (Indica) 
Amylose from wheat* 
Amylose from barley* 
Amylose from normal maize* 
Amylose from high amylomaize* 
1 00% amylose from smooth-pea 
1 00% amylose from wrinkled-pea 

1 00% amylopectin from D. a/ata 
1 00% amylopectin from D. batata 
1 00% amylopectin from potato 
1 00% amylopectin from potato 
1 00% amylopectin from potato 
Amylopectin from potato* 
Amylopectin from edible canna* 
Amylopectin from sago* 
Amylopectin from kuzu* 
Amylopectin from water chestnut* 
100% amylop~ctin from rice (Japonica) 

Amax (nm) 
658 
636 
618 
660 
648 
654 
662 
653-656 
656 
640 
655 
656-658 
653-657 
636-648 
652-653 
643-645 
645-650 
625 
630 

556-558 
555 
552 
550 
548 
560 
558 
528-532 
556 
554 
531-542 

Reference 
Hizukuri 1996 
McGrance eta/., 1998 
Hovenkamp-Hermelink eta/., 1998 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Takeda et a/., 1987 
Takeda eta/., 1989 & 1987 
Shibanuma eta/., 1994 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Colonna & Mercier 1984 
Colonna & Mercier 1984 

Wang eta/., 2006 
Wang et a/., 2006 
McGrance eta/., 1998 
Hovenkamp-Hermelink eta/., 1998 
Jarvis & Walker 1993 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Hizukuri 1996 
Takeda eta/., 1987 



Table 2-3 Absorbance maxima of amylose (AM) and amylopectin (AMP) from various starch sources (cont.,) 

Starch source 
100% amylopectin from (Indica) 
Amylopectin from wheat* 
Amylopectin from barley* 
1 00% amylopectin from corn 
Amylopectin from normal maize* 
Amylopectin from high amylomaize* 
1 00% amylopectin from smooth-pea 
100% amylopectin from wrinkled-pea 

75% potato AM + 25% potato AMP 
50% potato AM + 50% potato AMP 
25% potato AM + 75% potato AMP 
10% potato AM+ 90% potato AMP 

70% corn AM + 30% corn AMP 

Corn starch (amylose content not specified) 
Corn starch (normal) 
Corn starch (waxy) 

Wheat starch (amylose content not specified) 

Wrinkled pea starch (amylose content not specified) 
Smooth pea starch (amylose content not specified) 

Intermediate material 

* Purity was not available Absorbance maxima: (Amax) 

Amax (nm) Reference 
542-575 Takeda eta/., 1989 & 1987 
547-560 Shibanuma eta/., 1994 
540-546 Hizukuri 1996 
521 McGrance et a/., 1998 
554 Hizukuri 1996 
573-575 Hizukuri 1996 
560 Colonna & Mercier 1984 
560 Colonna & Mercier 1984 

628 McGrance eta/., 1998 
613 McGrance et a/., 1998 
592 McGrance et a/., 1998 
566 McGrance et a/., 1998 

604 McGrance eta/., 1998 

606 McGrance eta/., 1998 
590-593 Fuwa et a/., 1999 
535-536 Fuwa eta/., 1999 

617 McGrance et a/., 1998 

605 Colonna & Mercier 1984 
595-600 Colonna & Mercier 1984 

570-580 Hizukuri 1996 

Absorbance maxima of iodine solution (0.0025M b/0.0065M Kl): 352 nm (McGrance eta/., 1998) 



This must be kept in mind during amylose quantification. 

The stability of amylose and complexes follows the order: pure anhydrous 

amylose crystals (Biliaderis et a/., 1986a, & 1985) >> amylose-lipid complex 

(Slade & Levine 1987) > hydrated amylose (Biliaderis eta/., 1986a) > amylose

iodine complex (Yamamoto eta/., 1984). 

2.3.6.1.2 Amylopectin 

Amylopectin is one of the largest branched biomolecules found in nature (Falk et 

a/., 1996). It is synthesized by soluble starch synthases (Jane 2006), which is 

responsible for the biosynthesis of super-long branch chains of amylopectin 

(Denyer et a/., 1999). The initial proof of a-D-(1 ~6) branch linkage in 

amylopectin was provided by oxidation of the methylated amylopectin molecule 

with periodic acid (Halsall eta/., 1947). The final proof of the presence of the a

D-(1 ~6) linkage was demonstrated by the isolation of panose from a partial acid 

hydrolysis of waxy corn amylopectin (Thompson & Wolform 1951 ). The 

molecular weight (weight average) of amylopectin can vary from 108 to 109 Da for 

cereal, tuber and root starches (Jane 2006, Hoover 2001 ). The molecular 

weights of normal and high-amylose starch amylopectins are smaller than that of 

the waxy starch amylopectin (Jane 2006). Amylopectin molecules radiate from 

the hilum (Tester & Karkalas 2001, Hancock & Tarbet 2000). Amylopectin is an 

important component in food as it can lead to time dependent changes in the 

texture and digestibility of food (Kalichevsky et a/., 1990). Molecular 

characteritics of amylopectin are summarized in Table 2-2. 
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2.3.6.1.2.1 Structure of amylopectin 

The concentric trichitic model was first suggested by Arthur Mayer in 1895 

[Figure 2-5-a]. Since then, a number of models of amylopectin have been 

proposed including; (1) the laminated structure [Figure 2-5-b] (Haworth et a/., 

1937), though not intended as a complete representation of the true molecule, (2) 

the herring-bone structure Staudinger and Husemann (1937), in which the single 

main chain carries all the branch linkages [Figure 2-5-c], and (3) the randomly

branched or tree like structure [Figure 2-5-d] (Meyer & Bernfeld 1940). 

2.3.6.1.2.1.1 Development of cluster model 

The Mayer and Bernfeld (1940) model has been significantly amended since the 

late 1960's due to its inability to explain certain structural and physicochemical 

property related issues such as: (1) how amylopectin molecules make a 

crystalline structure (Kainuma & French 1972, Mark 1940, Katz & van ltallie 

1930), (2) why a bimodal chain length distribution exists in the amylopectin 

fraction (Gunja-Smith et a/., 1970) and (3) why amylopectin molecules show 

higher viscosities ([11] -90-150 cm-3/g) than glycogen (['1] -6-13 cm-3/g) of similar 

molecular weight (Yamaguchi eta/., 1979). However, thirty years later a revised 

version of Meyer and Bernfeld's model was proposed by Gunja-Smith et a/., 

(1970) [Figure 2-5-e]. Nikuni's (1969) [Figure 2-5-f], French's (1972) [Figure 2-

5-g] and later Hizukuri's (1986) [Figure 2-5-i] remarkable contribution led to the 

development of the cluster model [Figure 2-6]. 
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Figure 2-5 Schematic representation of the models proposed for 

amylopectin structure 

Adapted with permission from Marcel Dekker, Inc., 
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This model was able to answer the above questions successfully: ( 1) the double 

helices of amylopectin form the crystallites (French 1972), (2) the amylopectin 

molecule is composed of varying chain lengths which correspond to bimodal or 

polymodal distributions (Hizukuri 1986, Sargeant 1982), and (3) the viscosity of 

amylopectin depends on molecular shape, chain-length distribution (longer the 

chain length higher the viscosity), amount of ionized groups (e.g. phosphate 

groups) and on its molecular weight (Hizukuri 1996). 

2.3.6.1.2.1.2 Nomenclature and classification of branch chains 

Amylopectin has three types of chains kown as A-, B-and C-chains. Peat eta/., 

(1956) developed a systematic nomenclature for these chains. A-chains are the 

outer most unbranched and are linked to the rest of the molecule through their 

reducing end-group. B-chains could be linked in similar way but carries other A

and/or B-chains at one or more of its primary hydroxyl groups (Peat eta/., 1956). 

However, the ratio of the A to B varies chains greatly with different botanical 

sources [A: B: 1-2:1] (Hizukuri 1996). Every amylopectin molecule has a single 

C-chain with a free reducing end group [Figure 2-6]. 

2.3.6.1.2.1.2.1 Chain length distribution and cluster model 

Enzymatic methods which use specific a-D-(1---.6) glucosidases, collectively 

called debranching enzymes, have been developed to study the fine structure of 

amylopectin. The common debranching enzymes are isoamylase and 

pullulanase (Gunja-Smith eta/., 1970). lsoamylase is more useful since it 

completely debranches the amylopectin molecule. 
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Figure 2-6 Schematic diagram of starch granule structure and branch chain 

length distribution of amylopectin 

Adapted from Jenkins eta/., (1994) and Hizukuri (1986) with permission from 

Wiley lnterScience and Elsevier 
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Gel permeation chromatography has shown a bimodal distribution (FII & Fill) of 

chain length which corresponds to the A-chains (Fill: DP<18) and 8-chains (FII: 

18>DP<60). However, more segregated polymodal distribution of 8-chains (such 

as 81, 82, 83) [Figure 2-6] has been reported by HPLC techniques (Hizukuri 

1986). The compact parts of oriented chains present between adjacent branch 

points is called a cluster and it is the basic unit of the cluster model (Hizukuri 

1986). These primary units are linked by long chains which traverse into two or 

more clusters. A single cluster is composed mainly of A and 81 (80-90%) chains, 

and approximately 10% of 82 chains connect two clusters, 1-3% of 8 3 and very 

few (0.1-0.6%) 84 chains connect three and four clusters, respectively (Jane et 

a/., 1999, Jane eta/., 1997, Hizukuri 1996) [Figure 2-6]. It is envisaged that 

within a single cluster, chains have an average DP of 14-18, while longer chains 

with an average DP of 45-55 interconnect multiple clusters (Vermeylen et a/., 

2004). Shorter chains with DP 6-24 consist of A and 81 chains (Hanashiro eta/., 

1996, Hizukuri 1986). The average chain lengths of 81, 82, and 83 fractions are 

in the range DP: 20-24, 42-48, and 69-75, respectively, and the relative lengths 

are approximately 1 :2:3. The A and 81 are side or lateral chains while 82 to 84 

basically act as connecting chains in the amylopectin molecule [Figure 2-6]. It 

has been estimated that 80-90% of the total number of chains in an amylopectin 

molecule are involved in forming the lateral chain clusters, whilst the remaining 

10-20% of chains form the inter-cluster connections (Manners 1989). 
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2.3.6.1.2.1.2.1.1 Average chain length 

The average chain length of most amylopectins are in the range DP 18 to 24 

(Hizukuri 1996). In general the average chain length of cereal starches (mainly 

A-type) are shorter than tuber (mainly B-type) and legume starches (mainly C

type) (Hizukuri 1985). Average chain length of Dioscorea starches has been 

shown to vary from DP 18 to 29 (Wang eta/., 2006, Gunaratne & Hoover 2002, 

McPherson & Jane 1999, Emiola & Delarossa 1981 ). Little or no influence of 

environmental temperature on average chain length of potato starch has been 

observed (Hizukuri 1969, Nikuni et a/., 1969). However, Geddes et a/., (1965) 

reported that average amylopectin chain lengths of starch decreases with 

increasing tuber maturity stage. 

2.3.6.1.2.1.2.1.2 Long, super long B chains and lamellae formation 

A single super long amylopectin chain extends over several lamellae, and double 

helical branches in adjacent crystalline lamellae are covalently bound to each 

other through amylopectin a-D-(1 ~6) branch points (Hizukuri 1986). Branch 

points reside mainly in the amorphous lamellae [Figure 2-11-A] (Jenkins eta/., 

1994, Oostergetel eta/., 1989, Robin eta/, 1974), whereas amylopectin double 

helices (formed by short chains) are present in the crystalline lamellae (Jane 

2006, Jane eta/., 1997, Jenkins & Donald, 1996 & 1995, Jenkins eta/., 1994, 

Robin eta/., 1975). Jane eta/., (1997) have suggested that a-D-(1~6) linkages 

are more confined to the amorphous lamellae in B-type than in A-type starches 

[Figure 2-11-A]. Figure 2-6 depicts an expanded view of the internal granular 

structure. Crystalline double helices are called short-range order, whereas, long 
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range order refers to alternating of crystalline and amorphous lamellae (Jenkins 

et a/., 1994). However, according to Russell (1987a,b) short-range ordering 

involves both bulk amorphous regions and intercrystalline areas, permitting 

double helix formation between amylose and amylopectin (i.e. co-crystallization). 

It is clear that long chains are mandatory for the formation of long range order in 

starch structure. Short A-chains form clusters while long B-chains help to connect 

the cluster. The super long chain (DP>100) content is significantly higher in 

Dioscorea starches than in cassava, kuzu (Hizukuri 1986), rice (Lu eta/., 1997b), 

wheat (Shibanuma et a/., 1996), and potato (Hizukuri 1986) amylopectins. 

However, no definitive DP limits have been set for short, long and super long unit 

chains. 

2.3.6.1.2.1.2.2 Periodicity or repeat distance 

It has been hypothesized, that the starch granule is composed of 10-40 clusters 

( -15 nm wide) and the length of the amylopectin molecule is believed to 

correspond to the thickness of the growth rings (Jenkins & Donald 1995, Martin & 

Smith 1995). Studies on small angle X-ray scattering (SAXS) have shown that 

long-range (alternatively arranged crystalline and amorphous lamellae) 

periodicities in various moist starch granules vary from 9 to 11 nm for potato, 

sweet potato cassava, rice, barley, wheat, normal corn and waxy corn starches 

(Vermeylen et a/., 2004, Jenkins et a/., 1997, Blanshard et a/., 1984, Hizukuri et 

a/., 1964, Sterling 1962). Jenkins et a/., ( 1997) postulated that the uniform 

periodicity or repeat distance (combined size of crystalline and amorphous 

lamellae) is independent of the botanical source and it is found to be 9 nm. 
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Kiseleva eta/., (2005) reported that the amylopectin cluster size is approximately 

1 0 nm and cluster thickness is not influenced by amylose content. However, 

lamellae thickness depends on the maturity stage of the plant. For instance, 

lamellae thickness of fully matured pea starch is 9.1 nm, whereas at the milky 

stage of development it is 6.3 nm (Yurvev eta/., 2002, Kozhevnikov eta/., 2001 ). 

This indicates that double helical formation and crystallite perfection is influenced 

by the thickness of the crystalline lamellae. However, the authors have not 

mentioned variations in the thickness of the intercrystalline lamellae during the 

maturation period. 

2.3.6.1.2.2 Powder X-ray diffraction and crystallinity 

Overview 

The semi-crystalline nature of the starch granule was first demonstrated by X-ray 

diffraction (Scherrer 1920). Naray-Szab6 (1928) analyzed different starches, and 

such as yam, potato, canna, cassava, turmeric, sweet potato, and cereals. He 

was the first to suggest 'potato group' (kartoffe/gruppe) and 'rice group' 

(reisgruppe) X-ray diffraction patterns in native starches [Figure 2-7-1]. The 

classical work of Katz and van ltallie (1930) established that starch granules 

contain sufficiently ordered crystalline areas to diffract X-rays, and were the first 

to introduce three types of X-ray diffraction patterns [Rontgenspektrum] or 

"spectrums" designated as A- (wheat, rice, corn, rye & oat), B- (potato, canna & 

common hourse-chestnut) and C-patterns (arrowroot, cassava, banana & sago) 

and V-spectrum ('V' refers to 'Verkleisterung' which means agglutination or 

'complexing'). Figure 2-7 shows the original Katz and van ltallie (1930) 
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Figure 2-7 Debye-Scherrer (I) and digital spectrums (II) of A-, 8-, & C-type 

starches 

Adapted from Katz & van ltallie (1930) and Jayakody eta/., (2007c, & 2006) 
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Debye-Scherrer patterns of A-, 8-, & C-type [Figure 2-7-1] and their modern 

digital spectra [Figure 2-7-11]. 

2.3.6.1.2.2.1 Wide angle X-ray scattering (WAXS) & small angle X-ray 
scattering (SAXS) 

Wide angle X-ray diffraction patterns of various botanical sources are presented 

in Table 2-4. Wide angle X-ray scattering (WAXS) quantifies crystalline order 

throughout starch granules, but small angle X-ray scattering (SAXS) quantifies 

differences (periodicity) at the level of amorphous-crystalline lamellae radiating 

from the hilum to the periphery of starch granules (Tester & Debon 2000). Thus, 

SAXS is a versatile tool for the determination of scattering density of absorbed 

water within the crystalline lamellae, amorphous lamellae and amorphous 

background of the starch granule (Jenkins & Donald 1996). Cameron and 

Donald (1992, 1993a, & 1993b) developed a model fitting technique to generate 

electron density profiles from SAXS. Low electron density profiles have been 

reported in more water rich areas of the starch granule (e.g. corn starch). The 

crystalline lamellae contain the highest density of carbohydrate and the lowest 

density of water, whereas, the reverse order has been reported for the 

amorphous lamellae (Perry & Donald 2000). SAXS has shown that more water is 

present within the amorphous lamellae than in the amorphous background region 

of the granule (Perry & Donald 2000, Jenkins & Donald 1996). The above 

authors suggested that the amorphous lamella is less compact than the 

amorphous growth ring. 
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Table 2-4 Polymorphic patterns, crystallinity, method of moisture equilibration & diffractormeter settings for various starches 

Starch source 

D. alata 
D. alata 
D. alata 
D. a/ata 
D. alata 
D. alata 
D. a/ata 
D. alata 

D. esculenta 
D. esculenta 
D. escutenta 
D. escutenta 
D. escutenta 

D. rotundata 
D. rotundata 

D. cayenensis 
D. cayenensis 
D. cayenensis 
D. cayenensis 

D. dumetorum 
D. dumetorum 
D. dumetorum 

D. oposita 
D. oposita 
D. oposita 
D. oposita 

Dioscorea (spp. NA) 

Polymorphic 
pattern 

B 
B 

B,C 
B 
B 
c 
B 
B 

c 
B,C 
c 
c 
B 

B,C 
B 

B 
B 
B 
B 

A 
A 
A 

c 
c 
c 
c 

Ca 

Crystallinity 
(%) 

* 
29.5 

31-41 
* 

32 
* 
* 
* 

27.8 
26-35 

* 
* 
* 

27-45 
* 

* 
* 
* 
* 

37 
* 
* 

43.1 
34-49 

31.5-45.9 
32.99-50.2 

* 

Moisture 
equilibration 

90 min over water 
** 

Moisture 16-18% 
Over saturated CuS04, 2 Wks 

** 
Over saturated CuS04 , 2 Wks 

** 

** 
Moisture 16-18% 
Over saturated CuS04 , 2 Wks 
Over saturated CuS04 , 2 Wks 

Moisture 16-18% 
Over saturated CuS04 , 2 Wks 

90 min over water 
Over saturated CuS04 , 2 Wks 

Over saturated CuS04, 2 Wks 

Moisture 16-18% 
Over saturated CuS04, 2 Wks 

** 
** 
** 
** 

100% RH, 24h 

Diffractometer 
settings 

40kV, 35mA, 4-30° 28 
30kV, 10mA, 4-30° 28 
40kV, 30mA, 3-30° 28 
-, -, 4-38° 28 
40kV, 1 OOmA, 3-35° 28 
40kV, 50mA, 4-38° 28 
40kV, 50mA, -

30kV, 1 OmA, 4-30° 28 
40kV, 30mA, 3-30° 28 

-, -, 4-38° 28 
40kV, 50mA, 4-38° 28 

40kV, 30mA, 3-30° 28 
-, -, 4-38° 28 

40kV, 35mA, 4-30 28 
-, -, 4-38° 28 

40kV, 50mA, 4-38° 28 

40kV, 30mA, 3-30° 28 
40kV, 50mA, 4-38° 28 

40kV, 40mA, 4-40° 28 
40kV, 40mA, 4-40° 28 
40kV, 40mA, 4-40° 28 
40kV, 40mA, 4-40° 28 

50kV, 27mA, 4-40° 28 

Reference 

Brunnschweiler eta/., 2005 
Srichowong et at., 2005a 
Amani eta/., 2004 
Riley et at., 2004 
Gunaratne & Hoover 2002 
Farhat et at., 1999 
Valetudie et at., 1993 
Gallant et a/., 1982 

Srichowong et at., 2005a 
Amani eta/., 2004 
Riley eta/., 2004 
Farhat et at., 1999 
Gallant et at., 1982 

Amani et at., 2004 
Riley et at., 2004 

Brunnschweiler eta/., 2005 
Riley et at., 2004 
Gallant et at., 1982 
Farhat et at., 1999 

Amani eta/., 2004 
Farhat eta/., 1999 
Gallant et at., 1982 

Shujun et at., 2007 
Shujun et at., 2006a 
Shujun et at., 2006b 
Shujun eta/., 2006c 

McPherson & Jane 1999 



Table 2-4 Polymorphic patterns, crystallinity, method of moisture equilibration & diffractormeter settings for various starches (cont.,) 

Starch source 

D. hispida Dennst 

D. po/ygonoides 

S. rotundifolius 
Coleus paraviflorus 
Solanum tuberosum 
Solanum tuberosum 
Solanum tuberosum 
Solanum tuberosum 
S. tuberosum- normal 
S. tuberosum- waxy 
Solanum tuberosum 
Solanum tuberosum 
Cana edulis 
Manihot esculenta 
Manihot escu/enta 
Manihot escu/enta 
Maranta arundinacea 
Metrozylon sagu 
Ipomea batatas 
Ipomea batatas 
Ipomea batatas 
Kudzu 
Lathyrus sativus L. 
Caryota urenes 
Borassus flabellifer L. 
Artocarpus heterophyllus 
X sagitifolium 
X sagitifo/ium 
X sagitifolium 
Colocasia esculenta 
Co/ocasia escu/enta 

Polymorphic 
pattern 

B 

A 

Ca 
A 

B 
B 
B 
B 
B 
B 
B 
B 
A 
A 
Ca 
A 
A 
A 
c 
Ca 
A 
c 
c 
c 
c 
A 
A 
Ca 
A 
A 

*Not determined -: Data not available 

Crystallinity 
(%) 

* 

* 

37-40 
* 

29.8 
43 

29.8 
30 
* 
* 

24-32 
* 

27.2 
35.8 
37 
* 

34.6 
32.9 
34.4 

* 
* 

34.4 
33-34 

42 
39 
35 

33.2 
45 
* 

31 
35.3 

Moisture 
equilibration 

** 

Over saturated. CuS04, 2 Wks 

Over saturated BaCI2, 1 Wk 

** 
Over Sat. NaCI,-

** 
** 

Over 100 RH, 24h 
Over 100 RH, 24h 

** 
** 
** 
** 
** 
''* 
** 
** 
** 

Over 1 00 RH, 24h 
''* 
** 

Over saturated K2S04 , 1 Wk 
Over saturated K2S04 , 1 Wk 
Over saturated K2S04 , 1 Wk 
Over saturated K2S04 , 1 Wk 

** 
** 
** 
** 
** 

Diffractometer 
settings 

40kV, 30mA, 5-45° 28 

-, -, 4-38° 28 

40kV, 1 OOmA, 3-35° 28 

40kV, 20mA, 5-35° 28 
NA, NA, 6.5-33° 28 
30kV, 1Om A, 4-30° 28 
40kV, 1 OOmA, 3-35° 28 
50kV, 27mA, 4-40° 28 
50kV, 27mA, 4-40° 28 
40kV, 40mA, 4-30° 28 
40kV, 50mA, -
30kV, 1 OmA, 4-30° 28 
30kV, 1Om A, 4-30° 28 
40kV, 1 OOmA, 3-35° 28 
40kV, 50mA,-
30kV, 10mA, 4-30° 28 
30kV, 10mA, 4-30° 28 
30kV, 10mA, 4-30° 28 
50kV, 27mA, 4-40° 28 
40kV, 50mA, -
30kV, 10mA, 4-30° 28 
40kV, 1 OOmA, 3-35° 28 
40kV, 1 OOmA, 3-35° 28 
40kV, 1 OOmA, 3-35° 28 
40kV, 1 OOmA, 3-35° 28 
30kV, 1Om A, 4-30° 28 
40kV, 100mA, 3-35° 28 
40kV, 50mA,-
40kV, 1 OOmA, 3-35° 28 
30kV, 1Om A, 4-30° 28 

** Moisture equilibration was not carried out prior to X-ray diffraction 

Reference 

Tattiyakul eta/., 2006 

Riley eta/., 2004 

Jayakody et a/., 2005 
Abraham & Mathew 1985 
Zhang eta/., 2006 
Vermeylen eta/., 2006 
Srichowong eta/., 2005a 
Gunaratne & Hoover 2002 
McPherson & Jane 1999 
McPherson & Jane 1999 
Yusuph eta/., 2003 
Valetudie eta/., 1993 
Srichowong eta/., 2005a 
Srichowong eta/., 2005a 
Gunaratne & Hoover 2002 
Valetudie eta/., 1993 
Srichowong eta/., 2005a 
Srichowong eta/., 2005a 
Srichowong eta/., 2005a 
McPherson & Jane 1999 
Valetudie eta/., 1993 
Srichowong eta/., 2005a 
Jayakody eta/., 2007a 
Jayakody eta/., 2007b 
Jayakody eta/., 2007b 
Jayakody eta/., 2007b 
Srichowong eta/., 2005a 
Gunaratne & Hoover 2002 
Valetudie eta/., 1993 
Gunaratne & Hoover 2002 
Srichowong eta/., 2005a 



2.3.6.1.2.2.1.1 Nomenclature of polymorphic patterns and diffraction angles 

The modern wide angle powder X-ray diffractometer produces a digital signal. 

Consequently, it is relatively easy to determine polymorphic patterns and granule 

crystallinity. Most cereal, tuber and legume starches exhibit A-, 8-, and C-type 

X-ray diffraction patterns, respectively [Figure 2-7], although some exceptional 

cases have been reported (Jayakody eta/., 2007b, Jayakody & Hoover 2002, 

Cheetham & Tao 1998, Hizukuri 1969 & 1960). For instance, X-ray diffraction 

patterns of high amylose cereal and legume starches show a 8-type polymorphic 

pattern and low crystallinity (Jayakody & Hoover 2002). The A- and 8-types are 

believed to be independent. However, the C-type is suggested to be a 

superposition of the A- and 8-types in various proportions (8uleon eta/., 1998). 

The C-type has been further classified into subgroups as Ca (>95% A-type), Cb, 

and Cc (50% A-type) based on the extent of their relative resemblance to A-type 

and 8-type or between the two types, respectively (Hizukuri et a/., 1 960). In 

general, the scanning range of WAXS varies from 3 to 35° 28 [Table 2-4], which 

encompasses all major diffraction peaks. Tuber starches have been shown to 

exhibit a 8-type X-ray pattern with reflections centered at -5.5, 15.0, 17.0, 19.7, 

22.2 and 24° 28 angles. The A-type starches exhibit reflections at -15.3, 17.0, 

18.0, 20.0 and 23.4° 28 angles, whereas, C-type starches exhibit major peaks 

centered at -5.5, 17.0, 18.0, 20.0 and 23.5° 28 (Jayakody eta/., 2005, Cheetham 

& Tao 1998, Shi & Seib 1992, Zobel 1988, Hizukuri et a/., 1983a). Peak 

intensities and 28 values of various starches and the influence of amylose 

content (within a particular species) on the WAXS are shown in Table 2-5. 
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Table 2-5 Effect of amylose content on major X-ray diffraction intensities and diffraction patterns 

Starch source 28 X-ray Reference 
-50 -15° -17° -18° -20° -22° -23° pattern 

Waxy maize - 14.86 16.7 17.84 19.70 - 22.86 A Cheetham & Tao 1998 
(0% amylose) 

Normal maize - 14.96 16.96 17.78 19.70 - 22.86 A Cheetham & Tao 1998 
(amylose 28%) 

Maize 5.24 14.66 16.80 - 19.46 - 22.60 c Cheetham & Tao 1998 
(amylose 40%) 

High amylose maize 5.3 to 5.6 14.42 to 14.68 16.74 to 16.96 - 19.50 to 19.60 21.84 to 21.98 23.6 to 23.8 B Cheetham & Tao 1998 
(amylose 56-84%) 

0) 
Smooth pea 5.49 14.97 16.89 19.53 22.86 c Jayakody et a/., 2006 w - -

(amylose -35%) 

Grass pea (Lath 96) 5.52 14.97 16.95 - 19.80 - 22.98 c Jayakody eta/., 2007a 
(amylose-38%) 

Grass pea (NC-8A) 5.58 14.91 17.01 - 19.62 - 22.89 c Jayakody eta/., 2007a 
(amylose-38%) 

Wrinkled pea 5.46 14.88 16.92 - 19.47 - 21.90 B Jayakody et a/., 2006 
(amylose -80%) 

lnnala (Bola) 5.52 14.97 17.04 - 19.92 - 22.92 Ca Jayakody et a/., 2005 
(amylose-19%) 

lnnala (0/K) 5.52 15.0 17.04 - 20.01 - 22.80 Ca Jayakody et a/., 2005 
(amylose -25%) 



In maize starch, the WAXS pattern changes from A-type (waxy maize -0% 

amylose) to 8-type (high amylose maize - 56-84% amylose), whereas, in pea 

starches, the trend is for a C-type (smooth pea - 35% amylose) to 8-type 

(wrinkled pea- 80% amylose) [Table 2-5]. 

2.3.6.1.2.2.2 Influence of amylopectin chain length on double helix 
formation and starch polymorphism 

Nakamura eta/., (2002) and Martin and Smith (1995) have shown that the double 

helical formation occurs completely during starch biosynthesis, while Gidley and 

8ulpin (1987) indicated that a minimum chain length of DP 10 is required for 

double helical formation. The double helices of amylopectin are left-handed, 

parallel-stranded and are packed in a parallel manner. Hydrogen bonds are 

found only in inter-strands between 0-2 and 0-6, which tightly binds the double 

helices. Lineback ( 1984) postulated that branch points of the amylopectin 

molecule are the initiative sites of double helical formation. The packing of double 

helices in A- and 8-type starches are shown in Figure 2-8. Polymorphic variation 

is mainly controlled by packing differences of double helices in the granule 

(lmberty et a/., 1988, lmberty & Perez 1988). Starch crystallinity is positively 

correlated with the proportion of the short chain fraction in amylopectin 

(Cheetham & Tao 1998). The average chain length of amylopectin has been 

found to influence crystalline polymorphism. In general, branch chain-length 

distributions for the different type of starches show that the A-type polymorphic 

starch has a larger population of short branch chains (CL:5-20.0) (Srichuwong et 

a/., 2005a, Hizukuri eta/., 1983a) 
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Figure 2-8 Hexagonal packing arrangement of double helices in A-type and 

8-type 

starches (dots indicate water molecules) 

Adapted from Wu & Sarka (1978a, b) with permission from Elsevier 

65 



A-type 
(Top view) 

water 
molecules 

D 

B-type 
(Top view) 

water 
molecules 

____ Water molecules 
. ---./' - -----=~.,.......1_ 

a =t- 90° 
{J, y = 90° 

Monoclinic unit cell 

a 

a=t=c 

Hexagonal unit cell 



and is more densely packed in helical structures (Perry & Donald 2000, Wang et 

a/., 1998, Gidley & 8ulpin 1987), whereas 8-type (tuber & high-amylose) 

starches have fewer short branch chains, but more long branch or linear chains 

[CL2:-22] (82, 83 & longer chains)(Jane eta/., 1999, Jane eta/., 1997, Hizukuri 

1986). The intermediate chain length [CL -20.0 and -22] is associated with C

type (e.g. legume starches) crystallinity (Hizukuri 1985, Hizukuri et a/., 1983a). 

The super long chains seem to have no effect on polymorphism. 

A-type starches have been shown to have less hydration capacity than 8-type 

starches (Hizukuri 1996). The presence of shorter amylopectin chains in A-type 

starch allows effective packing of helices and the incorporation of only four water 

molecules per 12 glucose molecules per A-type unit cell [Figure 2-8], whereas 8-

type starches have longer amylopectin branches and exhibit less effective helical 

packing, resulting in the incorporation of 36 molecules of water molecules for the 

same amount of glucose residues per 8-type unit cells [Figure 2-8] (Perry & 

Donald 2000, Hizukuri 1996, lmberty eta/., 1988, lmberty eta/., 1987, Wu & 

Sarka 1978a,b). The double helices of A-type and 8-type are packed in 

monoclinic and hexagonal arrays, respectively [Figure 2-8]. 

2.3.6.1.2.2.3 Crystalline structure and crystallinity 

Kainuma and French (1972) were the first to suggest that the crystalline 

orientation of starch is due to both parallel and anti parallel arrangement of 

double helices. The double helices of the outer branch chains of amylopectin 

form the crystalline structure of the starch granule. (Srichuwong et a/., 2005a). 
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During crystallization, portions of the glucan chains align themselves in a parallel 

array and, many crystallites ordinarily grow radially from a common nucleus 

resulting in the formation of a 'spherulitic' aggregate (Flory 1967). Spherulitic 

aggregates are structures that are made up of many crystallites that are large 

enough to diffract X-rays and are responsible for the crystallinity of starch. 

Crystallites are densely packed in crystalline lamellae while amorphous areas 

invariably fill the intervening space between the crystallites or crystalline regions 

(Flory 1967) Thus, it is now widely accepted that the amylopectin fraction of 

starch mainly contributes to granule crystallinity (Tang eta/., 2006, Zoble 1988a). 

However, crystallinity is also dependent on the chain length of the amylopectin 

and its degree of branching and is thus, an indirect measurement of the above 

two factors (Cottrell 1995). Among the tuber starches, D. alata starches appears 

to have the maximum variability in crystalline structure (Moorthy 2002). 

2.3.6.1.2.2.3.1 Factors influencing granule crystallinity 

Starch granule crystallinity is influenced by several factors: the method of sample 

preparation (Cottrell eta/., 1995), moisture content (Jayakody eta/., 2007a, 2006 

& 2005, Buleon eta/., 1998, Cheetham & Tao 1998, Buleon eta/., 1987, Nara et 

a/., 1978, Hermans & Weidinger 1948), method of starch drying (Ahmed & 

Lelievre 1978), granule size (Wong & Lelievre 1982), chain length of amylopectin 

(Biliaderis 1981a, Biliaderis et a/., 1980), degree of amylopectin branching 

(Cottrell., 1995), crystal size (Jayakody eta/., 2005, French 1984), orientation of 

the double helices [within the crystallites] (Jayakody et a/., 2005), number of 

crystallites (Jayakody eta/., 2005), extent of packing of double helices within the 
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crystalline lamella (Jayakody eta/., 2005), amylose content (Waduge eta/., 2006, 

Jayakody eta/., 2006, Jayakody & Hoover 2002, Cheetham & Tao 1998), extent 

of disruption of amylopectin crystallites by amylose (Jenkins & Donald 1995, 

Jenkins 1994) and the X-ray diffractometer settings (Jayakody eta/., 2006). 

Interpretation of X-ray data is difficult for starch due to its small crystallite size 

and crystallite imperfections (French 1984). The X-ray diffractograms of starch 

granules are somewhat diffuse, indicating that the crystalline domains are not 

perfectly developed. Broad diffraction peaks indicate either imperfect or relatively 

small crystallites while sharp peaks indicate more perfect or sufficiently large 

crystallites (Cooke & Gidley 1992). Crystallinity progressively decreases with 

increase in amylose content (Waduge eta/., 2006, Jayakody 2001 ). 

Crystallinity of native starch granules could vary from 15 to 45% (Zobel 1988). 

Granular crystallinity plays a significant role in the granular architecture and 

physicochemical properties, such as the susceptibility to acid and enzyme 

(Jayakody eta/., 2005, Tang eta/., 2002), insolubility in cold water (Tang eta/., 

2006), granular integrity (Jayakody et a/., 2005), granule swelling (Jayakody et 

a/., 2005), and pasting properties (Jayakody et a/., 2005). Wong and Lelievre 

(1982) reported that in wheat starch, small granules are more crystalline than 

large granules. It has also been reported that crystallinity is decreased by high 

phosphate levels (Muhrbeck eta/., 1991 ). Several researchers have shown by 

studies on potato (Tester eta/., 1999, Cottrell eta/., 1995), rice (Asaoka eta/., 

1985 & 1984, Suzuki & Murayama 1967) and sweet potato (Nod a et a/., 1997) 
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that crystallinity is influenced by environmental conditions and harvesting time. 

Polymorphic transition by thermal treatment has been observed to follow the 

order: 8-, C-, and A-types (Jacobs & Delcour 1998, Hizukuri eta/., 1980). A- and 

8-type spherulites were found to melt at 90°C and 77°C, respectively (Whittam et 

a/., 1990). The A-type crystallinity is more thermodynamically stable and cannot 

be converted to the 8- or C-type by hydrothermal treatment (Kiseleva et a/., 

2004, Tester & Karkalas 2001, Jacobs & Delcour 1998, Eliasson & Gudmudsoon 

1996). However, the exact mechanism of polymorphic transformation under 

hydrothermal treatment is not known. 

2.3.6.1.2.2.3.1.1 Effect of moisture content on crystallinity 

Hermans and Weidinger (1946 &1948) have shown that hydration increases 

crystallinity. In native dry starch, the double helices are not properly aligned 

(side by side), however, the alignment of double helices improves with increased 

moisture content. Consequently, diffraction of X-rays is higher in hydrated starch 

than in the dry starch (Hermans & Weidinger 1948, 1946). Diffraction peaks 

become sharper and peak resolution is more pronounced upon hydration 

(Jayakody eta/., 2007c, 2006, & 2005, Cheetham & Tao 1997, Sievert eta/., 

1991 ). However, an increase in moisture content does not always increase 

crystallinity. Several factors such as: botanical source, the type of unit cell, 

amylose content, lipid content, relative humidity (RH), and the storage 

temperature have also been shown to influence crystallinity (Jayakody et a/., 

2007a,b & 2006 Jayakody & Hoover 2002, Cheetham & Tao 1998, Hizukuri 

1996). 
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2.3.6.1.2.2.4 Absolute crystallinity versus relative crystallinity 

Hermans and Weidinger (1946) were the first to discuss crystallinity in 

biopolymers (e.g. cellulose). Later, different authors expressed crystallinity of 

starch in different ways such as (1) percent relative crystallinity (Gunaratne & 

Hoover 2002, Vasanthan eta/., 1999, Vasanthan 1994, Wakelin eta/., 1959), (2) 

percent absolute crystallinity (Tester et a/., 2004, Moorthy 2002, Blanshard 

1986), (3) percent crystallinity (Jayakody eta/., 2007c, Hoover 2001 ), (4) percent 

crystalline order (Cooke & Gidley 1992), (5) percent degree of crystallinity 

(Cheetham & Tao 1998), (6) degree of crystallinity (Hermans & Weidinger 1948), 

(7) crystal index (Nara & Komiya 1983), and (8) percent crystallinity index 

(Ahmed & Lelievre 1978). Two different methods have been used to express 

crystallinity. One method using the area corresponding to the respective 

contributions of amorphous and crystalline scattering, was first introduced by 

Hermans and Weidinger (1948). This measurement was expressed as degree of 

crystallinity and later called absolute crystallinity (Wakelin eta/., 1959). In the 

second method crystallinity was expressed as relative crystallinity (Wakelin eta/., 

1959). Relative crystallinity of starches was determined by calculating the 

proportion of crystallinity within the starch granules using reference materials with 

zero percent representing a fully amorphous material (freeze-dried gelatinized 

starch) and 100 percent crystallinity representing quarts (Vasanthan 1994) or 

starch in which all the amorphous material had been eroded by acid hydrolysis 

(Tester et a/. 2004 ). 
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2.3.6.2 Minor components 

In addition to the major components, the starch granule also contains minor 

components such as protein, lipids, and minerals [ash] [Table 2-6]. Minor 

components have been shown to influence physicochemical properties (granular 

swelling, gelatinization, amylose leaching, acid and enzyme digestibility, paste 

clarity, pasting properties, and retrogradation), and the quality of starch-derived 

products (Han & Hamaker 2002, Baldwin 2001, Jayakody 2001, Appelqvist & 

Debet 1997, Skerritt eta/., 1990, Craig eta/., 1989, Galliard & Bowler 1987). 

Baldwin (2001) hypothesized, that, higher levels of minor components may have 

a structural role in maintaining granule integrity, resistance to hydration and 

enzymes. 

2.3.6.2.1 Lipids 

The existence of lipids as an inherent part of the starch has long been known 

(Taylor & Nelson 1920). Lipids associated with starch can be classified into three 

categories: (1) surface (lipids present on the surface of the granule), (2) internal, 

bound or starch lipid (lipids present complexed with glucan chains), and (3) non

starch lipids (present in the aleurone layers and germ of the grain) (Morrison 

1988b ). Surface lipids are mainly triacylglycerols, followed by free fatty acids, 

glycolipids and phospholipids (Vasanthan & Hoover 1992b, Galliard & Bowler 

1987, Morrison 1981) and can be extracted by a mixture of chloroform and 

methanol in the ratio of 2:1 [v/v] (Folch eta/., 1957). However, any unbound 

lipids, despite their location, could be dissolved in this solvent, hence, 'free lipid' 

would be a more appropriate term rather than surface lipid. The exact location 
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Table 2-6 Composition(%, dry basis) of some minor components of various starches 

Starch source Lipid(%) Nitrogen(%) Ash(%) Reference 
D. alata 0.50 0.03 0.13 Karam et at., 2006 
D. alata 0.10 0.01 0.22 Peroni et at., 2006 
D. alata (different varieties) 0.09-0.11 0.03-0.05 0.08-0.38 Amani et at., 2004 
D. alata - 0.02 - Freitas et at., 2004 
D. alata 0.01 0.05 0.12 Gunaratne & Hoover 2002 
D. alata 0.09 0.03 0.12 Valetudie et at., 1993 
D. alata 0.03 0.01 - Emolia & Delarosa 1981 
D. alata (different varieties) - 0.021-0.024 0.2-0.23 Rasper & Coursey 1967 

D. esculenta (different varieties) 0.06-0.09 0.01-0.06 0.21-0.23 Amani et at., 2004 
D. esculenta - 0.013 0.44 Rasper & Coursey 1967 

D. rotundata 0.03-0.10 0.02-0.04 0.06-0.26 Amani et at., 2004 
D. rotundata 0.04 0.005 - Emolia & Delarosa 1981 

-...J D. rotundata (different varieties) - 0.008-0.24 0.15-0.28 Rasper & Coursey 1967 
I\) 

D. dumetorum 0.04 0.01 - Emolia & Delarosa 1981 
D. dumetorum - 0.24 0.29 Rasper & Coursey 1967 

D. baflophyfla 1.08 0.41 0.27 Soni et at., 1985 

So/enostemon rotundifolius (variety-Dik) 0.07 0.07 0.10 Jayakody eta/., 2005 
Solenostemon rotundifolius (variety-Bola) 0.05 0.05 0.09 Jayakody eta/., 2005 

Solanum tuberosum 0.12 0.09 0.25 Gunaratne & Hoover 2002 
Solanum tuberosum (different varieties) - 0.02-0.14 - Vasanthan et at., 1999 
Solanum tuberosum 0.16 - 0.19 Valetudie et at., 1993 
Solanum tuberosum 0.05 0.06 0.4 Swinkels 1985a 

Maranta arundinacea (arrowroot) 0.17 0.02 0.28 Peroni et at., 2006 

Ipomea batatas 0.14 0.02 0.21 Peroni et at., 2006 
Ipomea batatas 0.36 0.02 0.08 Valetudie et at., 1993 

Co/ocasia esculenta (taro) 0.04 0.03 0.14 Gunaratne & Hoover 2002 



Table 2-6 Composition(%, dry basis) of some minor components of various starches (cont.,) 

Starch source Lipid(%) Nitrogen(%) Ash(%) Reference 
Manihot esculenta 0.28 0.02 0.22 Karam eta/., 2006 
Manihot esculenta 0.15 0.03 0.21 Peroni eta/., 2006 
Manihot esculenta 1.2 0.02 - Freitas eta/., 2004 
Manihot esculenta 0.08 0.02 0.11 Gunaratne & Hoover 2002 
Manihot esculenta - 0.03 - Th~praphunk~eta~.2003 
Manihot esculenta 0.08 0.02 0.09 Valetudie eta/., 1993 
Manihot escu/enta 0.34 0.02 0.22 Soni eta/., 1985 
Manihot esculenta 0.10 0.10 0.20 Swinkels 1985a 

Xanthosoma sagitifolium 0.30 0.08 0.15 Gunaratne & Hoover 2002 
Xanthosoma sagitifolium 0.01 0.03 0.11 Valetudie eta/., 1993 

Cana edulis 0.19 0.2 0.24 Peroni eta/., 2006 
Cana edulis (different varieties) 0.014-0.019 -0.01 - Thitipraphunkul eta/., 2003 

Lathyrus sativus L.(grass pea) NC-8A 0.8 0.11 0.15 Jayakody eta/., 2007a 
Lathyrus sativus L.(grass pea) Lath 96 0.8 0.03 0.18 Jayakody eta/., 2007a 

Mung bean 0.14 0.9 - Thitipraphunkul eta/., 2003 

Pisum sativum L. - Wrinkled pea 0.8 0.03 0.1 Zhou eta/., 2004 

Pisum sativum L. - Smooth pea 0.47-0.48 0.02-0.08 0.02 Zhou et a/., 2004 

Pisum sativum L. - Green pea 0.15 0.13 0.09 Hoover & Manual 1996 

Lens escu/enlus- Lentil 0.72-0.81 0.04-0.05 0.03 Zhou eta/., 2004 
Lens esculenlus- Lentil 0.09 0.06 0.11 Hoover & Manual 1996 

Artocarpus artilis (bread fruit) 0.51 0.26 0.35 Adebowale eta/., 2005 

Caryota urines (Kithul) - - 0.24 Jayakody eta/., 2007b 
Borassus f/abel/ifer L. (Palmyhra) - - 0.13 Jayakody eta/., 2007b 
Artocarpus heterophyllus (Jack fruit) - - 0.07-0.16 Jayakody eta/., 2007b 



of the lipids on the granule surface is still unknown (Buleon eta/., 1998). In cereal 

(e.g. wheat, barley, and rye) starches, the internal or bound lipids are 

predominantly lysophospholipids (Morrison 1988b, Swinkels 1985a, Morrison 

1981, Hargin & Morrison 1980). More polar solvents (e.g. n-propanol-water or 

water saturated butanol) and a long refluxing time (-72h) are needed to 

completely extract bound lipids from native starches (Vasanthan & Hoover 

1992b). Normal cereal starches contain approximately up to 1.5% of lipid by 

weight (Tester & Karkalas 2001 ). Lipids reduce water binding capacity (Tester & 

Morrison 1990a) and increase opaqueness of a starch paste (Swinkels 1985a). 

Free fatty acids contribute up to 30-50% of lipids in normal maize and rice 

starches (Morrison 1988b ). Amylomaize starches contain 40-70% more lipids 

than normal maize (Jayakody & Hoover 2002, Jayakody 2001 ). Trace quantities 

of lipids (mainly phospholipids) are present in tuber starches (0.1-0.2%) 

(Jayakody eta/., 2005, Hoover 2001, Vasanthan & Hoover 1992b) [Table 2-6]. 

However, very little is known about the deposition of lipid or its regulation during 

starch biosynthesis. 

Starch-lipids improve the textural properties of various foods (Moorthy 2002). 

However, the high amount of lipid has certain unfavourable effects such as 

undesirable flavors (due to oxidation of lipids), opaque or cloudy appearance of 

starch films (due to amylose-lipid inclusion compounds), reduction of granular 

swelling, solubilization and water-binding capacity of starches (Hoover 2001, 

Swinkels 1985a). 
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2.3.6.2.2 Proteins 

Nitrogen is generally considered to be present as protein, but it may also be part 

of lipids (e.g. lysophosphatidylcholine in wheat starch) (Morrison 1988a). It has 

been postulated that all major granule associated proteins are remnants of 

proteins associated with amyloplast during starch biosynthesis (Rahman et a/, 

1995, Galliard 1983). Protein is intimately associated with starch granule matrix 

as storage protein (e.g. gluten and gliadin) and starch granule-associated 

protein. Storage proteins remain adsorbed to the granule surface while starch 

granule-associated proteins occur as 'internal' granule-associated proteins (Li et 

a/., 2003) and 'surface' granule-associated proteins (Baldwin 2001, Skerritt eta/, 

1990). The 'surface' granule-associated proteins are low molecular weight 

proteins (Mw < 30 kDa) and 'internal' granule-associated proteins are high 

molecular weight proteins (60<Mw>149 kDa) (Baldwin 2001 ). 

Morrison ( 1988a & 1981) reported that nitrogen content of isolated starches 

represents contamination from storage proteins, lipids that contain choline, 

ethanolamine and serine, and other proteins located inside the starch granules. 

Thus, the amount of protein present in purified starch is a good indicator of starch 

purity. In general, purified starches contain less than 0.6% protein (Tester eta/, 

2004). Average nitrogen content of well purified starches is 0.05-0.06%, and 

0.25-0.5% in potato and cereal starches, respectively (Baldwin 2001, Martin & 

Smith 1995, Skerritt eta/., 1990, Swinkels 1985a, Lowy eta/., 1981) [Table 2-6]. 

Most of the starch granule associated proteins are easily removed by repeated 

washing in water (Lowy eta/., 1981). Surface proteins can be readily extracted 
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with diluted NaCI, aqueous alkali solution or 1-2% sodium dodecyl sulfate 

solution at room temperature (Seguchi & Yamada 1989, Lowy et a/., 1981). 

However, internal protein can be extracted only after starch gelatinization (Lowy 

eta/., 1981, Mu-Forster & Wasserman 1998). This indicates, internal proteins are 

interspersed within the starch matrix, whereas surface proteins are deposited on 

the granule surface as aggregates (Mu-Forster & Wasserman 1998). 

Several physicochemical properties, such as gelatinization, pasting, and enzyme 

resistance characteristics, could be influenced by the presence, orientation and 

nature of starch granule-associated proteins (Baldwin 2001 ). These proteins may 

contribute to the flavor, foam formation and color of starch (Martin & Smith 1995, 

Galliard & Bowler 1987, Swinkels 1985a). 

2.3.6.2.3 Phosphorous 

Tuber starches contain significantly more esterified monophosphate groups than 

other starches [Table 2-7]. The phosphorous content of tuber starches varies 

from 0.003 to 0.08% (Moorthy 2002). Potato starch has a relatively high ash 

content because of large number of phosphate groups. For instance, starch 

bound phosphorous content of a potato starch is -0.1% of the dry matter 

(Galliard & Bowler 1987). Phosphorous is present mainly on amylopectin, 

however, pure amylose is phosphorous free (Sherman & Baker 1916). 

Phosphorus in native starch is found in three major forms: (1) phosphate 

monoester (bound to amylopectin), (2) phospholipids (complexed with 

lysophospholipids) and (3) inorganic phosphate [Table 2-7]. 
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Table 2-7 Phosphorous content(%, dry basis) of various starches 

Starch source Total phosphorous(%) Phosphate Phospholipids Inorganic Reference 

31 P NMR 
monoester (%) phosphorous 

Colorimetric (%) (%) 
D. alata 0.022 - - - - Peroni eta/., 2006 
D. alata (native starch) 0.0302 - - - - Srichuwong eta/., 2005c 
D. alata (defatted starch) 0.0285 - - - - Srichuwong eta/., 2005c 
D. alata (2 varieties) 0.032-0.074 - - - - Wang eta/., 2005 
D. alata 0.03 - - - - Gunaratne & Hoover 2002 
Dioscorea (spp. not specified) 0.012 0.012 0.011 Not detected 0.001 McPherson & Jane 1999 
D. alata 0.017 - - - - Moorthy 1991 

D. esculenta (native starch) 0.0290 - - - - Srichuwong eta/., 2005c 
D. esculenta (defatted starch) 0.0282 - - - Srichuwong eta/., 2005c 
D. esculenta 0.017 - - - - Moorthy 1991 
D. rotundata 0.011-0.015 - - - - Moorthy 2002 

-...! D. rotundata 0.012 Moorthy 2002 
0> D. dumetorum 0.003 - - - - Moorthy 2002 

D. ballophylla 0.005 - - - - Soni eta/., 1985 
D. batata (2 varieties) 0.006-0.01 - - - - Wang eta/., 2005 

Solanum tuberosum 0.051-0.094 - - - - Karim et a/., 2007 
Solanum tuberosum (normal) 0.075 - - - - Srichuwong eta/., 2005c 
Solanum tuberosum (defatted) 0.0691 - - - - Srichuwong et at., 2005c 
S. tuberosum (diff. stored temp.) 0.041-0.075 - - - Tester eta/., 2005 
Solanum tuberosum 0.038-0.069 - - - - Liue eta/., 2003 
Solanum tuberosum (varieties) 0.039-0.075 - - - - Yusuph eta/., 2003 
Solanum tuberosum 0.01- - - - - Gunaratne & Hoover 2002 
Solanum tuberosum - normal 0.075 0.075 0.073 Not detected 0.001 McPherson & Jane 1999 
Solanum tuberosum - waxy 0.066 0.069 0.069 Not detected 0.001 McPherson & Jane 1999 
S. tuberosum (small granules) 0.059-0.101 - - - - Vasanthan eta/., 1999 
S. tuberosum (large granules) 0.049-0.079 - - - - Vasanthan eta/., 1999 
Solanum tuberosum 0.061-0.078 - - - - Debbon eta/., 1998 
Solanum tuberosum 0.090 0.091 0.086 Not detected 0.0048 Kasemsuwan & Jane 1996 
Solanum tuberosum * 0.046-0.059 - - - - Haase & Plate 1996 
Solanum tuberosum ** 0.07-0.1 - - - - Cottrell et at., 1995 
Solanum tuberosum - 0.090 0.089 Not detected 0.001 Lim eta/., 1994 
Solanum tuberosum ** 0.053-0.093 - 0.032-0.058 - - Nikuni et at., 1969 



Table 2-7 Phosphorous content(%, dry basis) of various starches (cont.,) 

Starch source Total phosphorous(%) Phosphate Phospholipids Inorganic Reference 

31 P NMR 
monoester (%) phosphorous 

Colorimetric (%} (%) 
Solanum tuberosum (varieties) 0.046-0.075 - 0.031-0.053 [C-6] - - Hizukuri eta/., 1970 
Potato amylopectin 0.0477 - 0.0322 (C-6) - - Hizukuri eta/., 1970 
Ipomea batatas 0.014 - - - - Peroni et al., 2006 
Ipomea batatas (native starch) 0.0226 - - - - Srichuwong eta/., 2005c 
Ipomea batatas (defatted starch) 0.0221 - - - - Srichuwong et a/., 2005c 
Ipomea batatas 0.020 0.021 0.020 Not detected 0.001 McPherson & Jane 1999 
Ipomea batatas - 0.012 -0.011 Not detected Not detected Lim eta/., 1994 
Ipomea batatas (diff. temp. levels) 0.009-0.0123 - 0.006-0.009 [C-6] - - Hizukuri eta/., 1970 
Cana edulis 0.031 - - - - Peroni eta/., 2006 
Cana edulis (different varieties) 0.036-0.04 - - - - Thitipraphunkul et al., 2003 
Cana edu/is (native) 0.0339 - - - - Srichuwong eta/., 2005c 
Cana edu/is (defatted starch) 0.0313 - - - - Srichuwong eta/., 2005c 
Cana edu/is 0.01-0.08 - - - - Moorthy 2002 
Manihot esculenta 0.007 - - - - Peroni eta/., 2006 
Manihot esculenta (native) 0.0113 - - - - Srichuwong eta/., 2005c 
Manihot esculenta (defatted) 0.0087 - - - - Srichuwong eta/., 2005c 
Manihot esculenta 0.007 0.006 0.0062 Not detected Trace Kasemsuwan & Jane 1996 
Manihot esculenta - 0.009 0.008 Not detected 0.001 Lim et al., 1994 
Manihot esculenta 0.0075 - - - - Soni eta/., 1985 
Ne/umbo nucifera - lotus - 0.005 0.005 Not detected Not detected Lim eta/., 1994 
Maranta arundinacea - arrowroot - 0.022 0.021 Not detected 0.001 Lim eta/., 1994 
Trapa natans- water chestnut - 0.011 0.004 Not detected 0.007 Lim eta/., 1994 
Metrozylon sagu (native starch) 0.0110 - - - - Srichuwong et al., 2005c 
Metrozylon sagu (defatted starch) 0.0107 - - - - Srichuwong et al., 2005c 
Pueraria hirsuta - Kuzu 0.0092 - 0.005 [C-6] - - Hizukuri eta/., , 1970 
Xanthosoma sagitifolium 0.02 Gunaratne & Hoover 2002 
Co/ocasia esculenta (taro) 0.02 Gunaratne & Hoover 2002 
Cucurbita maxima - winter squash 0.022-0.026 - - - - Stevenson et al., 2005 
S. rotundifolius, variety-Dik 0.02 - - - - Jayakody eta/., 2005 
S. rotundifolius, variety-Bola 0.01 - - - - Jayakody eta/., 2005 
Phaseo/us aureus 0.012 0.012 0.0083 0.0006 Not detected Kasemsuwan & Jane 1996 
Phaseolus aureus - 0.013 0.011 0.001 0.001 Lim eta/., 1994 
Caryota urines - kithul 0.007 - - - - Jayakody et at., 2007b 
Borassus flabellifer L. -palmyrah 0.012 - - - - Jayakody eta/., 2007b 

* Different fertilizer levels ** Different temperature levels 



Phosphorus in tuber (potato), root (sweet potato, cassava, water chestnut and 

lotus), rhizome (arrowroot), legume (green pea, lima bean, mung bean, lentils), 

waxy maize, and amaranth starches contain mainly starch phosphate 

monoesters (Hizukuri 1996, Bay-Smidt et a/., 1994, Kasemsuwan & Jane 1996, 

Lim eta/., 1994, Takeda & Hizukuri 1982, Tabata & Hizukuri 1971, Hizukuri eta/., 

1970, Schoch 1941) with some inorganic phosphate, however, no phospholipids 

has been reported for the above starches (Lim eta/., 1994) [Table 2-7]. Normal 

cereal (maize, wheat, rice, oat and millet) and waxy (du-waxy maize, rice) 

starches contain phosphorous in the form of phospholipids such as 

lysophospholipids (Hizukuri 1996, Lim et a/., 1994, Morrison 1988b, Morrison & 

Gad an 1987, Swinkels 1985a, Hizukuri eta/., 1983b, Morrison 1981 ). 

2.3.6.2.3.1 Location of phosphorus in starch granule 

Amylose is nearly free from covalently bound phosphate. However, Hizukuri 

( 1996) has reported that organic phosphorous content of amylose varies from 1 

to 14 ppm for various botanical sources. On average, 1 of every 200 to 500 

glucose residues of amylopectin is phosphorylated (Jacobson et a/., 1998, 

Nielsen et a/., 1994, Swinkels 1985a). On a macromolecular basis, the 

monophosphate esters have been reported to be distributed over the long 8 

chains of amylopectin except in the vicinity of the branch points (Hizukuri 1996, 

Takeda & Hizukuri 1982). It has been shown that in amylopectin, phosphate 

groups are mainly located at C-6 (61 %), C-3 (38%), and C-2 (1 %) positions (Bay

Smidt et a/., 1994, Hizukuri 1996, Lim et a/., 1994, Takeda & Hizukuri 1982, 

Tabata & Hizukuri 1971, Hizukuri eta/., 1970, Hizukuri 1969). Lim eta/., (1994) 
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reported that tuber and root starches contain more phosphate derivatives on C-6 

than at the C-3 position. However, physical and biochemical methods indicate 

that phosphorylation at the C-6 position varies between potato cultivars, but the 

C-3 phosphorylation level remains almost constant (8ay-Smidt et a/., 1994, 

Muhrbeck & Tellier 1991 ). Several authors have shown that severe heat 

treatments (e.g. autoclaving, heat-moisture treatment) and acid hydrolysis 

liberate inorganic phosphate mainly from C-3 position (Jacobson eta/., 1998, 

Nielsen eta/., 1994, Tabata & Hisukuri 1971, Hizukuri eta/., 1970). Phosphate 

groups have been shown to be about nine glucosyl residues away from a branch 

point and no phosphate groups are present in the unit chains with a DP less than 

-20 (Takeda & Hizukuri 1982). Furthermore, Takeda and Hizukuri (1982) 

concluded that about one third of the phosphate groups are present in the inner 

regions of the 8-chains, and two thirds in the A-chains and the outer regions of 

the 8-chains. This fact suggests that phosphate groups are mainly present 

bound to 8 chains (-88%) and with trace quantities associated with A-chains 

(-12%). It has been hypothesized, that phosphate groups are not evenly 

distributed thought the amylopectin molecule and it might be densely localized on 

the surface of the starch granule (Yamada eta/., 1987). 

2.3.6.2.3.2 Factors influencing phosphorylation & phosphorous content in 
starch granule 

The degree of phosphorylation depends on cultivar (Haase & Plate 1996, Nielsen 

et a/., 1994, Muhrbeck & Teiller 1991, Veselovsky 1940), granule size 

(Vasanthan et a/., 1999, Nielsen et a/., 1994, Jane & Shen 1993), growth 
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conditions (Cottrell et a/., 1995, Nikuni et a/., 1969), type and level of fertilizer 

(Jacobsen et a/., 1988, Haase & Plate 1996, Edelbauer 1988), growth 

temperature (Cottrell eta/., 1995), and storage (Hizukuri 1996). Vasanthan eta/., 

(1999) observed that in potato starch, smaller granules contain more 

phosphorous than the larger granules. It has also been reported that in potato 

starch, small granules starch contain more C-6 phosphate (-25% more) than the 

larger granules (Nielsen eta/., 1994, Jane & Shen 1993). Furthermore, Nielsen 

et a/., (1994) indicated that phosphorylation constantly occurs during tuber 

development, but the efficiency of phosphorylation decreases with starch granule 

development. Prolonged storage of starch at room temperature results in a 

release of organic phosphate at the C-6 position and an increase in the relative 

amount of inorganic phosphate (Hizukuri 1996). The biochemical pathway for 

starch phosphorylation in potato tubers and the exact function of starch 

phosphorylation in the plant metabolism remains unknown (Jacobson et a/., 

1998). However, it is believed that the level of phosphorylation could be 

manipulated either through plant breeding or by agronomic means (Haase & 

Plate 1996). 

2.3.6.2.3.3 Functional properties and stability of starch phosphates 

Phosphate monoesters in tuber and root starches have been shown to increase 

water holding capacity (Swinkels 1985a), swelling factor/power (Karim et at., 

2007, Jayakody et a/., 2005, Singh et a/., 2005, Swinkels 1985a), paste clarity 

(Lim eta/., 1994, Jane et a/., 1996), and gel strength (Moorthy 2002). Many 

desirable starch properties such as low rates of retrogradation (Jayakody eta/., 
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2005, Kasemsuwan & Jane 1996), increased paste clarity and light transmittance 

(Singh eta/., 2006, Lim & Seib 1993, Craig eta/., 1989), increased peak viscosity 

(Wang eta/., 2006, Noda eta/., 2004, Moorthy 2002, Jacobson eta/., 1998, Bay

Smidt et a/., 1994, Kim et a/., 1995, Swinkels 1985a), decreased gelatinization 

temperature (Palasinsky 1980, Veselovsky 1940), resistance to freezing and 

thawing (Wang et a/., 2006, Hoover et a/., 1988), and improved textural 

properties (Vasanthan et a/., 1999) have been attributed to starch phosphate 

content. Phosphate esters bound to C-6 carbons have been shown to reduce 

the gelatinization enthalpy, whereas phosphate esters at C-3 have very little 

influence on starch gelatinization (Muhrbeck & Eliasson 1991 ). Phosphate esters 

have been shown to influence starch crystallinity (Muhrbeck & Eliasson 1991, 

Muhrbeck eta/., 1991 ). 

2.3.6.2.3.4 Techniques of phosphorous determination 

A survey of the literature revealed that colorimetry [-76%] and nuclear magnetic 

resonance [23%] (31 P-NMR) have been used widely for quantification of 

phosphorous in starches. Colorimetric methods are based on analysis of 

inorganic phosphrous liberated from organic matter incineration or wet digestion 

(Jayakody et a/., 2005, Singh & Ari 1987, Kovacs 1986, Totani et a/., 1982, 

Hizukuri eta/., 1970, Laws 1965, Smith & Caruso 1964, Morrison 1964, Fleischer 

eta/., 1956, Chen eta/., 1956, Beveridge & Johnson 1949, Berenblum & Chain 

1938, Fiske & Subbarow 1925). The phosphorous content determined by 31 P

NMR is in good agreement with that determined by colorimetry Table 2-7. 

80 



2.4 Physicochemical properties and starch functionality 

Overview 

The physicochemical properties of starches are differentiated on the basis of 

their responses to physical or/and chemical stimuli, which may be applied in 

various ways such as heat (e.g. gelatinization, granular swelling, amylose 

leaching, viscosity, retrogradation), shear (pasting properties), light 

(birefringence) or X-ray scattering (crystallinity), and susceptibility to acid and 

enzymes. The physicochemical parameters of starches are dependent mainly on 

genetic factors and to some extent are affected by environmental (Hizukuri 1969) 

and other non-genetic factors (Hizukuri 1969) such as starch modification and 

processing conditions (Jul et a/., 1996, Kempf et a/., 1961, Wegner 1957). 

Environmental temperature has been shown to influence starch structure by 

mediation of endogenous enzymes (Tester & Karkalas 2001 ). Physicochemical 

properties of starch may vary with maturity of the granule, because granules of 

different maturity may have differing quantities of major and minor components, 

and hence, different structural characteristics (Baldwin 2001, Cottrell et a/., 

1995). 

2.4.1 Gelatinization 

Starch gelatinization is the collapse (disruption) of molecular order within the 

starch granule manifested in irreversible changes in granular properties such as 

granular swelling, native crystallite melting, loss of birefringence, and starch 

solubilization. The point of initial gelatinization (To) and the range over which it 

occurs is governed by starch concentration, granule type, pre-treatments and 
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heterogeneities within the granule population under observation (Nakazawa & 

Wang 2004 & 2003, Jacobs eta/., 1998a,b,c, Atwell, eta/., 1988, Cooke & Gidley 

1992). 

2.4.1.1 Mechanism of starch gelatinization 

Gelatinization is a cooperative event between the amorphous and crystalline 

region in starches. Hydration first occurs in the amorphous background followed 

by the hydration of the crystalline lamellae (Tester & Debon 2000, Jenkins & 

Donald 1997, Cameron & Donald 1993). The onset of gelatinization reflects 

initiation of granule swelling which is closely related to the state of plasticization 

of the amorphous domains. As the crystalline domains are closely associated 

with the amorphous domains, the swelling and movement in the amorphous 

domains tears the crystallites apart, a phenomenon is called solvation assisted 

melting (Donovan 1979). Crystallites melt cooperatively (smaller crystallites are 

destroyed first) at a lower temperature than they would if isolated from the 

amorphous region. It has been shown that water content in the amorphous 

growth ring in 8-type starches are much higher than in A-type starches [where 

water density/carbohydrate density is -1.6 and -1.0 for potato and waxy corn 

starch, respectively] (Perry & Donald 2000). Since the amorphous growth ring is 

well plasticized at room temperature, less thermal energy input is required to 

initiate gelatinization of the starch. Plasticization increases chain mobility within 

the crystalline regions, thus it could lead to a loss of crystalline order at lower 

temperatures. Cottrell et a/., (1995) have shown that the onset gelatinization 

temperature of tuber starches are significantly lower than those of cereal 
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starches. If water content is low then the non-cooperative melting endotherm 

occurs at higher temperatures. 

2.4.1.2 Techniques of measuring gelatinization characteristics 

Granular property changes during starch gelatinization are monitored using 

different analytical probes such as visco-amylograph (measures changes in 

viscosity as result of granule swelling and solubilization), thermal analysis 

(quantifies both melting of amylopectin crystallites and conformational 

disordering of double helices), loss of granule birefringence (determines 

randomization of crystallite orientation induced by the initial stages of granule 

swelling or crystallites melting), swelling power or swelling factor (measures 

granular volume changes) (Ziegler eta/., 1993, Tester & Morrison 1990a). The 

most commonly used thermal analysis technique in the study of starch 

gelatinization is differential scanning calorimetry (DSC) (Tester & Karkalas 2001, 

Atwell, et a/., 1988). In addition, several other methods have been used for 

measuring gelatinization such as Kofler hot stage microscopy [measures loss of 

birefringence] (Emiola & Delarosa 1981, Watson 1964), confocal scanning laser 

microscopy (CSLM) [measures swelling and expansion ofthe granule with time] 

(Velde eta/., 2002), WAXS [measures loss of granule crystallinity] (Jacobs eta/., 

1998b, Zobel et a/., 1988), SAXS [measures electron density differences 

between crystalline and amorphous lamellae] (Jenkins & Donald 1996, Cameron 

& Donald 1992, 1993a, & 1993b), proton NMR [measures increase in mobility 

and hydration of glucan chains] (DaSilva eta/., 1996, Lelievre & Mitchell 1975), 

spectrophotometry [measures changes in light reflectance] (Howitt eta/., 2005), 
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viscosity analyzer [measures viscosity changes] (Ross et a/., 1987, Schoch 

1959), enzyme susceptibility [measures reducing sugar content] (Chiang & 

Johnson 1977), paste clarity [measures loss of clarity] (Cook & Axtmayer 1937), 

swelling [measures changes in granule dimensions] (Collison & Elton 1961 ), 

solubility [measures rapid increases in soluble material] (Collison 1968a), and 

absorption of dyes [measures staining power of starch] (Jones 1940). Zobel et 

a/., (1965) were the first to use differential thermal analysis (DTA) for 

measurement of starch gelatinization. 

2.4.1.2.1 Differential scanning calorimetry (DSC) & gelatinization parameters 

Stevens and Elton (1971) were the first to use DSC to study starch gelatinization. 

DSC measures the gelatinization parameters such as temperatures onset (T 0 ), 

midpoint or peak (T p), conclusion (Tc) and enthalpy (~H) of gelatinization. The 

gelatinization temperature range (Tc-To) reflects the crystallites stability. 

Gelatinization is a moisture dependent process. A single endotherm is formed in 

the presence of excess water. The overall DSC endotherm reflects endothermic 

transitions of a heterogeneous granule population (Karim et a/., 2007). The 

gelatinization endotherm reflects endothermic [melting of crystallites, loss of 

double helical order, granule swelling] and exothermic [hydration of starch 

molecules and formation of amylose-lipid complex] events (Cooke & Gidley 1992, 

Stute 1992, Tester & Morrison 1990a,b Kugimiya et a/., 1980). Gelatinization 

parameters and DSC settings are summarized in Table 2-8. Tester and 

Morrison (1990a) have postulated that ~H reflects the overall crystallinity (quality 

and quantity of starch crystallites) of amylopectin. Noda eta/., 1996) have 
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Table 2-8 Gelatinization parameters and scanning conditions of various tuber starches 

Starch source To (0 C) T12 CC) Tc (0 C) ~H (J/g} Starch:H20 Scanning conditions (DSC/Kofler) Reference 
D. alata 73.0 76.3 82.5 20.1 1:9 30-120°C, 10°C/min Karam eta/., 2006 
D. alata 70.8 74.5 77.8 14.3 1:3 25-100°C, 10°C/min Peroni eta/., 2006 
D. alata - 81.6 - 19.9 -1:2.3 4-180°C, 10°C/min Brunnschweiler eta/., 2005 
D. alata 78.2 81.0 91.4 19.4 1:2 15-120°C, 2°C/min Srichuwong eta/., 2005a 
D. alata 69.0 77.0 72.5 11.5 1:2 Not available, 2.5°C/min Freitas eta/., 2004 
D. alata 69.0 77.0 72.5 11.5 1:2 Not available, 3°C/min Freitas eta/., 2004 
D. alata 69.0 78.0 72.5 12.0 1:2 Not available, 4°C/min Freitas eta/., 2004 
D. alata 69.5 79.0 73.0 11.5 1:2 Not available, 5°C/min Freitas eta/., 2004 
D. alata -75-76 - - 16.1-18.1 1:5 25-160°C, 10°C/min Amani eta/., 2004 
D. alata * -70-77 -74-82 -80-85 11.6-20.9 Not available Not available Moorthy 2002 
D. alata 74.4 78.8 84.9 17.3 1:9 20-120°C, 1 0°C/min Alves eta/., 2002 
D. alata 75 80 91.2 17.8 1:3 20-120°C, 10°C/min Gunaratne & Hoover 2002 
D. alata 76.5 78.8 81.9 -19.8 -1:2.3 2-100°C, 10°C/min Farhat eta/., 1999 
D. alata 70.2 74.4 80.9 20.9 1:4 30-180°C, 1°C/min Valetudie eta/., 1995 
D. alata 65 69 71.5 - - Kofler hot stage microscopy Emolia & Delarosa 1981 

(X) 
01 

D. esculenta 71.9 74.8 82.4 14.3 1:2 15-120°C, 2°C/min Srichuwong eta/., 2005a 
D. esculenta 72-74 - - 19.5-20.3 1:5 25-160°C, 10°C/min Amani eta/., 2004 
D. esculenta * 75.9 79.8 85.7 13.3-13.6 Not available Not available Moorthy 2002 

D. rotundata 70-77 - - 13.7-16.7 1:5 25-160°C, 10°C/min Amani eta/., 2004 
D. rotundata * 72-79 75-83 81-88 10.3-15.0 Not available Not available Moorthy 2002 
D. rotundata 71.5 74.8 80.5 -19.8 -1:2.3 2-100°C, 10°C/min Farhat eta/., 1999 
D. rotundata 63.5 66 71 - - Kofler hot stage microscopy Emolia & Delarosa 1981 

D. dumetorum 81.7 - - 16.7 1:5 25-160°C, 10°C/min Amani eta/., 2004 
D. dumetorum 78.1 81.3 86.4 18.6 -1:2.3 2-100°C, 10°C/min Farhat eta/., 1999 
D. dumetorum 65.5 68 72.5 - - Kofler hot stage microscopy Emolia & Delarosa 1981 

D. cayenensis 66-69 72.9 76.7 - Not available Not available Moorthy 2002 
D. cayenensis 69.4 72.9 76.7 -19.8 -1:2.3 2-100°C, 10°C/min Farhat eta/., 1999 
D. cayenensis 68 72 74.5 - - Kofler hot stage microscopy Emolia & Delarosa 1981 

D. opposita -74-75 -81-82 -85-87 10.8-11.4 1:2 20-120°C, 10°C/min Shujun eta/., 2006b 
D. opposita -74-75 -79-81 83-87 8.4-12.4 1:2 20-120°C, 10°C/min Shujun eta/., 2006c 
D. opposita * -73-74 -78-80 82-86 6.5-12.1 1:2 20-120°C, 10°C/min Shujun eta/., 2004 



Table 2~8 Gelatinization parameters and scanning conditions of various tuber starches (cont.,) 

Starch source To (0C) T~ (OC) Tc (0C) ~H (J/g) Starch:H20 Scanning conditions (DSC/Kofler) Reference 
D. abysinica 64.2 68.2 74.8 19.2 1:2 40-90°C, 1 0°C/min Gebre-Mariam & Schimidt 98" 
Dioscorea 64.6 70.9 77.8 13.3 1:3 25-100°C, 10°C/min McPherson & Jane 1999 

Canna edulis 65.4 70.1 74.8 14.2 1:3 25-100°C, 10°C/min Peroni eta/., 2006 
Canna edulis 67.4 70.0 78.9 18.7 1:2 15-120°C, 2°C/m in Srichuwong et a/., 2005a 
Canna edulis * -66-67 -68-69 -70-72 -17-18 1:2 30-150°C, 5°C/min Thitipraphunkul eta/., 2003 
Canna edulis 65 - 70 - - Kofler hot stage microscopy Soni eta/., 1990 
C. maxima* -35-37 52-55 64-65 7.8-8.9 1:3 1 0-120°C, 1 0°C/min Stevenson eta/., 2005 
Cucurbita foetidissima 61.2 - 68.8 - - Kofler hot stage microscopy Dreher & Berry 1983 
S. tuberosum * -59-62 -62-65 -70-74 -14.3-17.4 Not available 30-100°C, 5°C/min Karim eta/., 2007 
S. tuberosum * -60-63 -64-67 -70-72 -12.8-15.8 1:2 20-100°C, 10°C/min Singh eta/., 2006 
Solanum tuberosum 61.4 65.0 77.7 19.8 1:2 15-120°C, 2°C/min Srichuwong et a/., 2005a 
S. tuberosum * -65-68 -70-75 - 16-18 -1:3 5-180°C, 10°C/min Liu et al., 2003 
Solanum tuberosum 59.8 64.3 69.3 17.9 -1:2.3 2-100°C, 10°C/min Farhat eta/., 1999 
S. tuberosum- waxy 62.5 66.6 70.2 18.2 1:3 25-1 00°C, 1 0°C/min McPherson & Jane 1999 
Manihot esculenta 63 70 79 13.5 1:9 30-120°C, 10°C/min Karam eta/., 2006 
Manihot escu/enta 61.6 66.7 72.9 10.4 1:3 25-100°C, 10°C/min Peroni eta/., 2006 
Manihot escu/enta 59.3 65.7 79.6 17.6 1:2 15-120°C, 2°C/min Srichuwong eta/., 2005a 
Manihot esculenta 51.5 71.0 63.5 6.5 1:2 Not available, 5°C/min Freitas et a/., 2004 
Manihot escu/enta 65.5 69.7 80.6 18.1 1:2 30-150°C, 5°C/min Thitipraphunkul eta/., 2003 
Manihot esculenta 58.5 - 70.0 - - Kofler hot stage microscopy Srivastava et a/., 1970 
Manihot escu/enta 64.1 69.0 76.4 - -1:2.3 2-100°C, 10°C/min Farhat eta/., 1999 
M. arundinacea 73.5 75.9 86.8 17.5 1:2 15-120°C, 2°C/min Srichuwong eta/., 2005a 
M. sagu (sago) 65.4 70.4 81.9 17.0 1:2 15-120°C, 2°C/min Srichuwong et a/., 2005a 
Ipomea batatas 62.9 70.6 77.9 12.9 1:3 25-100°C, 10°C/min Peroni eta/., 2006 
Ipomea batatas 66.7 74.0 86.6 18.4 1:2 15-120°C, 2°C/min Srichuwong eta/., 2005a 
S. rotundifolius * -74-77 -79-83 -87-91 17.8-18.7 1:3 25-130°C, 10°C/min Jayakody eta/., 2005 
Caryota urines 74.1 77.5 83.2 12.6 1:3 25-130°C, 10°C/min Jayakody eta/., 2007b 
Borassus flabellifer 75.6 81.4 88.8 14.9 1:3 25-130°C, 10°C/min Jayakody eta/., 2007b 
X. sagitifolium 74.3 77.2 87.3 13.7 1:2 15-120°C, 2°C/min Srichuwong eta/., 2005a 
X. sagitifolium 71.5 77.2 85.4 13.1 1:3 20-120°C, 1 0°C/min Gunaratne & Hoover 2002 
Co/ocasia escu/enta 74.2 77.4 86.4 16.2 1:2 15-120°C, 2°C/m in Srichuwong et a/., 2005a 
Co/ocasia esculenta 76.8 83.0 95.2 14.5 1:3 20-120°C, 10°C/min Gunaratne & Hoover 2002 
Pueraria lobata 68.4 74.8 88.2 17.4 1:2 15-120°C, 2°C/min Srichuwong et a/., 2005a 
A.heterophyllus 60.1 66.1 74.2 12.8 1:3 25-130°C, 10°C/min Jayakody eta/., 2007b 
Zingiber officinale 82.4 87.4 92.5 15.9 1:3 25-100°C, 10°C/min Peroni eta/., 2006 
* Study on varieties Scanning conditions: canning range (0C), heating rate (°C/min) 



postulated that gelatinization parameters are influenced by the molecular 

architecture of the crystalline region, which corresponds to the distribution of 

amylopectin short chains (DP 6-11) and not by amylose: amylopectin ratio. X-ray 

scattering studies have shown that a rapid drop in crystallinity occurs between 

the onset (T 0 ) and maximum or peak (T p) temperature in the DSC endotherm. 

After the conclusion temperature (T c). all amylopectin double helices are 

dissociated (Tester & Debon 2000). It is believed that the high peak temperature 

(Tp) is a reflection of perfection (registration) of crystallites (Jacobson & BeMiller 

1998). Cooke and Gidley (1992) have suggested that the gelatinization enthalpy 

(LlH) primarily reflects Joss of double-helical (molecular) order rather than loss of 

crystalline register (perfection). However, Tester and Morrison ( 1990b) have 

suggested that LlH reflects crystallite perfection. 

The endothermic enthalpy values of native starches are in the range -10-21 J/g 

[Table 2-8]. In general, T0 , Tp. Tc and LlH are higher for Dioscorea starches than 

normal maize, rice, and oat starches (Jayakody 2001 ). To values for Dioscorea 

starches have been shown to be higher than those of potato, sweet potato, 

cassava, and canna starches [Table 2-8]. This indicates existence of the 

stronger bonding forces between Dioscorea glucan chains than in the other 

starch sources. 

2.4.1.3 Factors influencing gelatinization characteristics 

Gelatinization parameters of starches are influenced by: botanical source (Peroni 

eta/., 2006, Srichuwong eta/., 2005a, Matsuki eta/., 2003, Vandeputte eta/., 
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2003a, Wong eta/., 2003, Nakamura eta/., 2002, Noda eta/., 1998), method of 

starch extraction (Waigh eta/., 2000b), granule size (Shujun eta/., 2006c, Singh 

et a/., 2006, Jayakody et a/., 2005, Yusuph et a/., 2003, Karlsson & Eliasson 

2003, Liu et a/., 2003, Stevens & Elton 1 971, Geddes et a/., 1965 ), growth 

temperature (Tester et a/., 1999, Debon et a/., 1988, Cottrell et a/., 1995, 

Myllarinen eta/., 1998b, Macleod & Duffus 1998, Tester 1997, Lu eta/., 1996, 

Tester eta/., 1995, Shi eta/., 1994, Tester eta/., 1991, Morrison &Azudin 1987, 

Asaoka et a/., 1985a,b, & 1984, Wiegand & Cuellar 1981), planting and 

harvesting period (Sriroth et a/., 1999, Defloor et a/., 1998, Noda et a/., 1997, 

Campbell et a/., 1994 ), development stage of tuber/roots (Nod a et a/., 1997), 

maturity of starch granule (Karlsson & Eliasson 2003), granule morphology 

(Stevens & Elton 1971), starch: water ratio (Farhat eta/., 1999, Cottrell eta/., 

1995, Ziegler eta/., 1993, Barichello eta/., 1991, Blanshard 1987, French 1984, 

Donovan 1979), damaged starch content (Waduge et a/., 2005, Karlsson and 

Eliasson 2003, Tester eta/., 1998, Hoover & Manuel 1996, Kulp 1972), amylose 

content (Peroni eta/., 2006, Shujun eta/., 2006c, Sandhu eta/., (2004), Baldwin 

2001, Hizukuri 1996, Cottrell et a/., 1995, Hizukuri 1969), lipid content (Russell 

1987b, Biliaderis eta/., 1986b, Evans 1986, Biliaderis eta/., 1985, Kugimiya & 

Donovan 1981 ), phosphorus content (Singh et a/., 2006, Yuan 1 993), crystallite 

size (Singh et a/., 2006), degree of crystallinity {Tester et a/., 1991, Tester & 

Morrison 1 990b ), crystallite perfection (Perera et a/., 2001, Tester et a/., 1991 ), 

double helical order/molecular order (Cooke & Gidley 1992), length of the double 

helices (Jacobs et a/., 1998a), amylopectin chain length (Wang et a/., 2006, 
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Srichuwong eta/., 2005a, Matsuki eta/., 2003, Vandeputte eta/., 2003a, Wong et 

a/., 2003, Nakamura et a/., 2002, Noda et al., 1998, Cooke & Gidley 1992), 

degree of amylopectin chain branching (Leszkowiat et a/., 1990, Hoover & 

Sosulski 1985), starch structure stability (Singh et a/., 2006, Biliaderis et a/., 

1986a, Hoover & Sosulski 1985, Maurice eta/., 1985), stability of amorphous 

region (Biliaderis eta/., 1990, Leszkowiat eta/., 1990, Tester & Morrison 1990b), 

intermolecular attractions (Moorthy 2002), granule swelling (Emiola & Delarosa 

1981), thermal history (Waigh eta/., 2000a,b), heating rate (Freitas eta/., 2004, 

Ziegler eta/., 1993, Liu & Lelievre 1991a, Dodd & Tonge 1987, Biliaderis eta/., 

1986b, Donovan 1979), moisture equilibration period (Jayakody 2001, Gebre

Mariam & Schmidt 1998, Barichello eta/., 1990, Hoover & Sosulski 1984), and 

possibly location and quantity of starch granule-associated proteins and lipids 

(Hamaker & Griffin 1993, Hamaker & Griffin 1990, Maiiingat & Juliano 1980). 

2.4.1.3.1 Effect of water to starch ratio 

The relationship between the type of endotherm (e.g. single peak or double 

peak) and water to starch ratio was first demonstrated by Donovan (1979). The 

single peak endotherm (G) is associated with a high water [Figure 2-9-A]: starch 

ratio (>65%) and the second endotherm (M1) occurs at a medium water content 

(< 50%) (Cottrell eta/., 1995, Barichello eta/., 1991, Tester & Morrison 1990a) 

[Figure 2-9-B]. At extremely low water content, the first endotherm disappears 

and gelatinization occurs entirely by melting of the crystallites (Bianshard 1987, 

French 1984, Donovan eta/., 1983) [Figure 2-9-C]. However, no apparent 
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Figure 2-9 Gelatinization mechanism at different starch: water ratios 

Adapted from Waigh eta/., (2000a), Jayakody & Hoover (2004) 

with permission from Elsevier 

A-C indicates the helix to coil transformation in presence of excess water (A), 

intermediate water (B) and low water (C) contents 

D-F indicates the DSC endotherm in presence of excess water (D), intermediate 

water (E) and low water (F) contents 
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endothermic transition is observed when starch concentration is at or below 30% 

(Ziegler eta/., 1993). 

2.4.1.3.2 Effect of heating rate and gelatinization parameters 

In general, the height of the endotherm is proportional to the heating rate. 

Therefore, a reasonably fast heating rate is needed to obtain peaks in the 

thermograms with a good signal-to-noise ratio. However, Dodd and Tong (1987) 

have shown that increasing the heating rate will often decrease the resolution 

between two adjacent peaks. Therefore, a median heating rate of 1 0°C/min is 

normally used. The upper temperature limit is generally below 180°C, since 

starch thermal decomposition occurs at 180°C (Puddington 1948). It has been 

observed that an increase in the heating rate increases peak temperature (T p) 

but does not significantly influence the onset temperature (To) (Freitas et a/., 

2004, Ziegler eta/., 1993, Liu & Lelievre 1991a, Biliaderis eta/., 1986b). Freitas 

eta/., (2004) have shown that increasing the heating rate slightly increases Tc 

but it does not significantly affect the enthalpy values (b.H) of yam (D. a/ata) 

starches. 

2.4.1.3.3 Effect of phosphorous content 

Singh eta/., (2006) and Yuan eta/., (1993) have shown a positive correlation 

between lower gelatinization transition temperatures and higher amount of 

phosphorus in starches. The phosphate groups may destabilize the crystalline 

structures in the amylopectin regions of the starch granules, leading to lowering 

of the gelatinization and melting temperatures of the starches (Wischmann eta/., 
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2005). Wang et a/., (2006) suggested that phosphorus reduces crystallite 

perfection and decreases gelatinization temperatures. 

2.4.2 Granular swelling 

Overview 

The initial absorption of water and rapid radial swelling occur primarily within the 

amorphous growth ring. When starch is heated in excess water, the crystalline 

structure is disrupted (due to dissociation of hydrogen bonds) and water 

molecules become linked by hydrogen bonding to the exposed hydroxyl groups 

of the starch components (Liu et a/., 1999, Tester & Karkalas 1996, Lee & 

Osman 1991 ). This leads to increase in granule swelling and amylose leaching 

(Tester & Morrison 1990a, Blanshard 1987). Tester and Morrison (1990a) have 

hypothesized that the swelling is a property of amylopectin, and amylose acts as 

a diluent. In general, legume, tuber and root starches exhibit single stage 

swelling and solubilization patterns (Hoover 2001, Hoover & Sosulski 1991, 

Richard eta/., 1991, Kawabata eta/., 1984), whereas, cereal starches show a 

two stage swelling and solubilization (Langton & Hermansson 1989, Doublier et 

a/., 1987b, Soni eta/., 1985, Leach eta/., 1959). A single stage swelling pattern 

indicates relaxation of bonding forces within starch granules over one 

temperature and not at multiple temperature ranges because bonding forces are 

more uniform and stronger. Two-stage swelling indicates that there are two types 

of forces within granule structure which requires different energy inputs to 

weaken glucan chain interactions (Soni & Agarwal 1983, Leach 1965, Leach et 

a/., 1959). Several authors have shown that Dioscorea starches swell to a much 
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lower extent than potato starch (Karam eta/., 2006, Brunnschweiler eta/., 2005, 

Srichuwong et a/., 2005c, Emiola & Delarosa 1981 ). However, among different 

starches, the extent of granular swelling follows the order: waxy>normal>high 

amylose (Debet & Gidley 2006, Waduge eta/., 2005, Jayakody & Hoover 2002). 

Debet and Gidley (2006) have shown that although the temperatures of structural 

disorganization (as monitored by loss of birefringence or by DSC) are relatively 

similar, yet swelling profiles show major differences. This illustrates the fact that 

starch swelling rates and the extent of swelling cannot be predicted directly from 

a knowledge of the thermally induced loss of granular order. 

Gravimetry (Leach eta/., 1959), colorimetry (Tester & Morrison 1990a), and laser 

light scattering (Ziegler eta/., 1993) have been used to determine the extent of 

granular swelling. The extent of granular swelling has been expressed as 

swelling power [SP] (Kite et a/., 1957) and as swelling factor [SF] (Tester & 

Morrison 1990a) [Table 2-9]. The SF is defined as the ratio of the swollen 

volume to the initial volume of air dried starch and has no units (Tester & 

Morrison 1990a). The measurement of SF was based on the observation that 

blue dextran dye (molecular weight 2x106 Da) will dissolve in the supernatant 

and interstitial water but not in the intragranular water. Hence, SF measures only 

the water that enters the granule and hence contributes to volume expansion on 

heating. The SP is defined as weight of a sedimented starch gel, relative to its 

dry weight, obtained after gelatinizing starch in excess water at a given 

temperature for a specified time followed by centrifugation (Crosbie 1991, 

Swinkels 1985a, Leach eta/., 1959, Kite eta/., 1957). 
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Table 2-9 Swelling factor (SF), swelling power (SP), solubility and amylose leaching (AML) of various starches 

Starch source SF SP [g/g] Solubility(%) AML (%} Reference 
D. alata (2 varieties) - 14.5-19.5 [95°C] - - Wang eta/., 2006 
D. alata (different varieties) - 13.8-16.0 [90°C] - - Amani eta/., 2004 
D. alata - -2 [70°C) 0.0 [70°C] - Srichuwong et a/., 2005c 
D. alata - -15 [80°C) -9 [80°C] - Srichuwong eta/., 2005c 
D. alata - -23 [90°C] -10 [90°C] - Srichuwong eta/., 2005c 
D. alata 5.3 [70°C] - - 1.1 [70°C] Gunaratne & Hoover 2002 
D. a/ata 26.0 [80°C] - - 13.0 [80°C] Gunaratne & Hoover 2002 
D. alata 33.0 [90°C] - - 20.1 [90°C] Gunaratne & Hoover 2002 
D. alata - 20.5 [95°C] 7.8 [95°C] - Emolia & Delarosa 1981 

D. escu/enta - -2 [60°C) -o [60°CJ -o [60°CJ Srichuwong eta/., 2005c 
D. esculenta - -8 [70°C] -5 [70°C) -4 [70°C] Srichuwong eta/., 2005c 
D. escu/enta - -21 [80°C] -8 [80°C] -7 [80°C] Srichuwong eta/., 2005c 
D. esculenta - -34 [90°C) -15 [90°C] -9 [90°C] Srichuwong eta/., 2005c 

<O D. esculenta 
w D. esculenta (different varieties) - 13.9-14.8 [90°C) - - Amani eta/., 2004 

D. rotundata (different varieties) - 10.8-16.4 [90°C) - - Amani eta/., 2004 
D. rotundata - 21.5 [95°C] 11.9 [95°C) - Emolia & Delarosa 1981 

D. dumetorum (different varieties) - 13.7 [95°C) - - Amani eta/., 2004 
D. dumetorum - 18.6 [95°C) 16.8 [95°C] - Emolia & Delarosa 1981 

D. opposita (different varieties) - 10.9-12.4 [NA] 10.6-11.3 [NA] - Shujun eta/., 2006a 
D. opposita ( 4 varieties) - 10.5-11.8 [NA] 10.2-11.7 [NA] - Shujun eta/., 2006c 

D. abyssinica - 10 [65°C] 3.5 [65°C] - Gebre-Mariam & Schmidt 1998 
D. abyssinica - 17 [75°C) 5.5 [75°C) - Gebre-Mariam & Schmidt 1998 
D. abyssinica - 23 [85°C] 11.0 [85°C) - Gebre-Mariam & Schmidt 1998 

D. hispida Dennst - 15.6 [90°C) - 15.8 [90°C] T attiyakul et a/., 2006 

D. batata (2 varieties) - 10.6-11.1 [95°C) - - Wang eta/., 2006 



Table 2-9 Swelling factor (SF}, swelling power (SP), solubility and amylose leaching (AML) of various starches (cont.,) 

Starch source SF SP [g/g] Solubility(%) AML (%} Reference 
So/enostemon rotundifolius - 2 verities -2.47 [60°C] - - 0.0 [60°C] Jayakody eta/., 2005 
So/enostemon rotundifo/ius - 2 verities -1.4-2.9 [70°C] - - 0.0 [70°C] Jayakody eta/., 2005 
Solenostemon rotundifolius - 2 verities -17-23 [80°C] - - -3.4-1.6 [80°C] Jayakody eta/., 2005 
So/enostemon rotundifolius - 2 verities -34-27 [90°C] - - -3.8-10.3 [90°C] Jayakody eta/., 2005 
Coleus parvilorus - -35 [95°C] -35 [95°C] - Abraham & Mathew 1985 
Curcubita foetidisima - 14.6-26.5 [80°C] 14-15.6 [80°C] - Dreher & Berry 1983 
Pueraria tuberosa - 23 [95°C] 22 [95°C] - Soni & Agrawal1983 
Solanum tuberosum - 31.3-48.9 [80°C] 3.3-8.9 [80°C] - Karim eta/., 2007 
S. tuberosum (different varieties) 94-146 [80°C] - - - Yusuph eta/., 2003 
Solanum tuberosum 37.6 [60°C] - - 4.5 [60°C] Gunaratne & Hoover 2002 
Solanum tuberosum 57.4 [70°C] - - 18.1 [70°C] Gunaratne & Hoover 2002 
Solanum tuberosum 60.0 [80°C] - - 22.0 [80°C] Gunaratne & Hoover 2002 
Solanum tuberosum 54.0 [90°C] - - 22.2 [90°C] Gunaratne & Hoover 2002 
Artocapuc artilis- breadfruit -native - 6.40 [80°C] 93.5 [80°C] - Adebowale et a/., 2005 
Artocapuc artilis - annealed starch - 5.57 [80°C] 88.4 7 (80°C] - Adebowale eta/., 2005 
Artocapuc artilis- HMT starch - 5.44 [80°C] 49.93 [80°C] - Adebowale eta/., 2005 
Manihot esculenta 4.6 [60°C] 7.0 [60°C] Gunaratne & Hoover 2002 
Manihot esculenta 31.0 [70°C] - - 15.0 [70°C] Gunaratne & Hoover 2002 
Manihot esculenta 43.0 [80°C] - - 16.6 [80°C] Gunaratne & Hoover 2002 
Manihot esculenta 36.5 [90°C] - - 17.2 [90°C] Gunaratne & Hoover 2002 
Manihot esculenta - 51 [95°C] 26 [95°C] - Tian eta/., 1991 
Colocasia escu/enta 2.5 [60°C] - - 0.3 [60°C] Gunaratne & Hoover 2002 
Colocasia escu/enta 8.5 [70°C] - - 2.3 [70°C] Gunaratne & Hoover 2002 
Colocasia esculenta 36.0 [80°C] - - 22.1 [80°C] Gunaratne & Hoover 2002 
Co/ocasia esculenta 34.2 [90°C] - - 23.0 [90°C] Gunaratne & Hoover 2002 
Canna edulis - -38 [90°C] -21 [90°C] -17 [90°C] Srichuwong eta/., 2005c 
Canna edulis - 19 [95°C] 17 [95°C] - Rickard eta/., 1991 
Xanthosoma sagitifolium 5.0 [60°C] 0.1 [60°C] Gunaratne & Hoover 2002 
Xanthosoma sagitifolium 10.6 [70°C] - - 0.6 [70°C] Gunaratne & Hoover 2002 
Xanthosoma sagitifolium 18.0 [80°C] - - 2.9 [80°C] Gunaratne & Hoover 2002 
Xanthosoma sagitifo/ium 22.0 [90°C] - - 5.4 [90°C] Gunaratne & Hoover 2002 
Xanthosoma sagitifolium - NA 189 [100°C] - Lauzon eta/., 1995 
Ipomea batatas - 80 {90°C] 68 [90°C] - Sego et a/., 1987 

SF, SP, AML and solubility determined temperatures are shown in parentheses HMT: heat moisture treated NA: Data not available 



SP is expressed on a weight basis (g/g). The SP measures both the intergranular 

and intragranular water. The SF and SP of various starches are represented in 

Table 2-9. 

2.4.2.1 Factors influencing granular swelling 

Differences in granular swelling among starches are influenced by the interplay 

of several factors: botanical source (Debet & Gidley 2006, Peroni eta/., 2006, 

Brunnschweiler eta/., 2005, Hoover & Sosulski 1991, Hoover & Sosulski 1985, 

Swinkeles 1985a, Emiola & Delarosa 1981 ), granule size (Vasanthan et a/., 

1999, Vasanthan & Bhatty 1996, Wong & Lelievre 1982), granule integrity 

(Sandhya Rani & Bhattacharya 1989), crystallinity (Jayakody et a/., 2007a & 

2005, Jayakody & Hoover 2002, Vasanthan et a/., 1999, Tester & Morrison 

1990a,b), amylose content (Waduge eta/., 2006, Tester eta/., 2000, Sasaki & 

Matsuki 1998, Morrison eta/., 1993a,b), amylose-lipid complex (Waduge eta/., 

2006, Jayakody eta/., 2005, Moorthy 2002, Hoover & Manuei1995,Tester eta/., 

1993, Tester & Morrison 1990a,b, Swinkels 1985a, Lorenz & Kulp 1983, 

Mafiingat & Juliano 1980), amylopectin structure (Sasaki & Matsuki 1998, Tester 

et a/., 1993, Shi & Seib 1992), amylopectin unit-chain length distribution 

(Srichuwong et a/., 2005c), glucan chain interactions (Jayakody et a/., 2007a, 

Waduge et a/., 2006, Tester et a/., 2000, Hoover & Manuel 1996, Hoover & 

Vasanthan 1994 a,c ), phosphorous content (Karim et a/., 2007, Jayakody et a/., 

2005, Singh eta/., 2003, Vasanthan eta/., 1999, Galliard & Bowler 1987) extent 

of starch damage (Tester eta/., 1998, Kulp 1972), hydrothermal modifications 

(Hoover & Vasanthan 1994a,b), chemical modifications (Landerito & Wang 
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2005), surface proteins and lipids (Debet & Gidley 2006), growth temperature 

(Myllarinen eta/., 1998b, Shi eta/., 1994, Tester eta/., 1991, Hizukuri 1969, 

Nikuni eta/., 1969). Starches having a high phosphate content have been shown 

to exhibit a high extent of granule swelling (Gerad eta/., 2001c). This has been 

attributed to increased accessibility of water molecules to the amorphous 

lamealle resulting from repulsion between negatively charged phosphate groups 

present on starch molecules (Karim et at 2007, Wang et at., 2006, Singh et at., 

2006, Gerad eta/., 2001 c, Vasanthan eta/., 1999, Kim eta/., 1996). 

2.4.3 Amylose leaching (AML) 

Studies on amylose leaching is important because the soluble fraction provides 

information on the extent of interaction between amylose-amylose and/or 

amylose-amylopectin in the granule interior. The extent of AML has been shown 

to be influenced by: heating temperature (Rolland-Sabate eta/., 2003, Roger & 

Colonna 1986, Ring et a/., 1985), total amylose content (Nakazawa & Wang 

2003, Rolland-Sabate et a/., 2003), strength of interaction between amylose

amylose and amylose-amylopectin chains within granules of native starches 

(Waduge eta/., 2006, Jayakody eta/., 2005, Hoover & Vasanthan 1994a, Hoover 

& Hadziyev 1981 ), molecular size of amylose (Nakazawa & Wang 2003), amount 

of lipid complexed amylose chains (Jayakody & Hoover 2002, Hoover & 

Vasanthan 1994a, Tester & Morrison 1990a), and extent of glucan chain 

interactions within the amorphous domains (Waduge et a/., 2006). Data on 

mylose leaching at various temperatures are presented in Table 2-9. 
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Molecular properties of leached amylose have been shown to be influenced by 

the duration and extent of heating (Rolland-Sabate eta/., 2003, Roger & Colonna 

1986, Ring et a/., 1985). Several researchers (Tester & Morriosn 1990, 

Svegmark & Hermannson 1991, Ellis eta/., 1988, Doublier 1981) have shown 

that the material leached out during heating (50-70°C) of potato and most cereal 

starch granules in water is mainly amylose. In these starches, most of the 

amylose is solubilized before leaching of amylopectin begins (Doublier 1981 ). 

However, co-leaching of amylose and amylopectin has been shown to occur in 

the temperature range 70-90°C in oat starches (Hoover et a/., 1992, Doublier 

1987b). Ellis eta/., (1988) have shown that not all of the amylose present within 

the native granule leaches out during heating. For instance, at 90°C, pea, wheat 

and maize starches were found to contain, 16%, 8.3% and 8.0% amylose, 

respectively. Colonna and Mercier (1985) showed that the amount of leached 

amylose corresponds to only 6 to 9% of the total starch in high amylose maize 

and pea starches but 60 to 76% in normal maize starch. It has been shown that 

the extent of amylose leaching of high amylose and the high lipid containing 

starches (e.g. amylomaize V, VII and oat) are much lower than normal and low 

lipid containing starches due to strong glucan chain interactions and high amount 

of amylose complexed with lipids (Jayakody & Hoover 2002). Both these factors 

hinder amylose leaching due to low mobility of glucan chains and reduced 

granular hydration. Amylose-lipid complexes decrease the extent of amylose 

leaching. Lipid does not leach out with amylose, since the AM-lipid complex does 

not dissociate until the temperature reaches 94-104°C (Tester & Morrison 
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1990a). Rolland-Sabate et a/., (2003) reported that the leached fraction may 

contain different sizes of soluble components (e.g. amylose of different chain 

lengths). The above authors also showed that even at 90°C, densely branched 

fractions remain inside the granule. The leaching of amylose is necessary for gel 

formation. However, in the production of pasta or dehydrated potato flakes, 

leached amylose causes stickiness (Hoover & Hadziyev 1981 ). This problem 

has been overcome by adding monoglycerides during manufacture of dehydrated 

potato granules (Hoover & Hadziyev 1981 ). 

2.4.5 Pasting characteristics 

Overview 

A paste is defined as a viscous mass consisting of a continuous phase (a 

molecular dispersion) of solubilized amylose and/or amylopectin and a 

discontinous phase of granule ghosts and fragments (Whistler & BeMiller 1977). 

The changes that occur during gelatinization and pasting greatly affect the 

rheological properties of the starch suspension (Jacobs & Delcour 1988). Thus, 

pasting characteristics are usually studied by observing changes in viscosity 

during heating of a starch suspension. Pasting characteristics of starch were first 

demonstrated by Caesar (1932) using a 'consistometer'. Subsequently, several 

other measuring devices have been introduced, such as the Brabender 

amylograph in the 1930s (Brabender 1965), corn industries' viscometer (Kesler & 

Bechtel 1947), the Ottawa starch viscometer (Voisey eta/., 1977), the Haake 

Rotovisko (Ceh & Stropnik 1976), and rapid visco analyzer [RVA] (Ross eta/., 

1987). Many researchers have used the terms gelatinization and pasting 
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interchangeably. However, it should be borne in mind that gelatinization refers 

specifically to the disruption of the molecular order of the starch polymer and 

occurs first, whereas, pasting refers to the evidence of disruption of molecular 

order, such as an increase in viscosity when a starch paste is subjected to shear 

(Atwell et a/., 1988 ). As a starch-water system cools, glucan chain-water 

interactions (i.e. AM-H20 and/or AMP-H20) are replaced mainly with starch

glucan chains interactions, and a gel network is formed (Zeng eta/., 1997). Use 

of starch in the food, paper and textile industries depends on the viscosity of the 

starch paste. Viscosity stability during heating and shear is important in foods 

that are subjected to high temperature processing. 

2.4.5.1 Factors influencing pasting properties 

The factors that influence viscosity development on heating and cooling of a 

starch suspenstion has been attributed to the interplay of several factors: 

botanical source (Otegbayo eta/., 2006, Akissoe eta/., 2003, Alves eta/., 2002, 

Jacobs & Delcour 1998, Liu et a/., 1997), granule size (Singh et a/., 2006, 

Jayakody eta/., 2005, Zheng & Sosulski 1997, Goering & DeHass 1972), starch 

concentration (Jacobs et a/., 1995, Standsted & Abbot 1961 ), amylopectin 

content (Peroni et a/., 2006, Singh et a/., 2006 & 2005, Zeng et a/., 1997), 

granule swelling (Hamaker & Griffin 1993, Doublier et a/., 1987a , Lineback & 

Rasper 1988), phosphorus content (Karim eta/., 2007, Moorthy 2002), leaching 

of macromolecules [e.g. amylose] (Ziegler eta/., 1993, Olkku and Rha 1978) that 

form an entangled network (Miller et a/., 1973), formation of a tightly packed 

array of swollen, deformable granules (Evans & Haisman 1979, Schoch 1969), 
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amylose-lipid complex formation (Oikku & Rha 1978), the resistance of the 

swollen granules to dissolution by heat or fragmentation (Schoch & Maywald 

1968), friction between swollen granules (Singh eta/., 2006), heating and cooling 

rate (Jacobs and Delcour 1998), rotational speed of spindle (Deffernbaugh & 

Walker 1989, Goto & Yokoo 1969), competition between leached amylose & 

remaining ungelatinized granules for free water (Oikku & Rha 1978), harvesting 

period (Liu et a/., 2003, Madsen & Christensen 1996), and growth temperature 

(Hizukuri eta/., 1969, Nikuni eta/., 1969). The pasting conditions are presented 

in [Table 2-1 0]. 

It has been shown that higher proportions of large granules contain fewer granule 

remnants in their pastes (Singh et a/., 2006), thus allowing for greater light 

transmittance. This feature is important in the production of clear gels or films. 

The viscosity properties of Dioscorea and other starches have been extensively 

investigated. Dioscorea starches show lower peak viscosity than potato starch 

(Brunnschweiler eta/., 2006, Frarhat eta/., 1999). Otegbayo eta/., (2006) have 

shown that starch pastes of D. rotundata exhibit a higher viscosity breakdown, 

set back and final viscosity than pastes from D. alata. Moorthy (2002) reported 

that D. alata starch does not exhibit a sharp peak viscosity, whereas, a peak 

viscosity occurs in D. esculenta starch. However, both D. alata (Brunnschweiler 

eta/., 2005) and D. esculenta (Moorthy 2002) starches are resistant to viscosity 

breakdown during heating and shear. Singh eta/., (2006) have shown that the 

presence of higher amounts of large granules increase peak viscosity. 
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Table 2-10 Pasting profiles of various starches determined by Brabender (units BU) and Rapid visco analyzer (units RVU) 

Botanical source Pasting Peak Peak Viscosity Final Setback Conditions Reference 
temp. time viscosity breakdown viscosity RVU/BU Starch concentration % (w/w), 
(DC) (min) RVU/BU RVU/BU RVU/BU rotational speed (rpm), heating 

range {°C}, heating rate °C/min 
D. alata 76.6 - 172 RVU 28 RVU 304 RVU 160 RVU 9%,160 rpm, 50-90°C, 6°C/min Peroni eta/., 2006 

D. alata -variety TN2 NA NA 613 RVU NA 342 RVU 40RVU NA Wang eta/., 2006 
D. alata -fresh paste 82.6 4.62 231 RVU 71 RVU 202 RVU 42RVU NA Otegbago eta/., 2006 
D. alata 83.2 11.1 394 RVU 17.7 RVU 556.3 RVU 179.4 RVU 8%,160 rpm, 50-90°C, 6°C/min Srichuwong eta/., 2005c 
D. alata- varieties 82.9 - 23.7 RVU - 32.9 RVU - 4%,160 rpm, 30-90°C, 6°C/min Amani eta/., 2004 
D. alata 79.8 5.70 3230 mPa NA 3034 mPa 5826 mPa 10%, NA, 50-95°C, 12°C/min Farhat eta/., 1999 
D. alata 83-97 - 400 BU 300 BU - 600 BU 5%,NA Moorthy 1991 

D. esculenta 75.7 8.2 219 RVU 118.7 RVU 246.9 RVU 73.5 RVU 8%,160 rpm, 50-90°C, 6°C/min Srichuwong et a/., 2005c 
D. escu/enta 78.7 - 9.1 RVU - 15.3 RVU - 4%,160 rpm, 30-90°C, 6°C/min Amani eta/., 2004 
D. escu/enta 79-97 - 580 BU 560 BU - 620 BU 6%,NA Moorthy 1991 

~ D. cayenensis 75.0 4.67 3893 mPa NA 3073 mPa 3965 mPa 10%, NA, 50-95°C, 12°C/min Farhat et a/., 1999 
0 

D. dumetorum 87.5 - 2.5 RVU - 5.0 RVU - 4%, 160 rpm, 30-90°C, 6°C/min Amani eta/., 2004 
D. dumetorum 83.1 4.67 2028 mPa NA 1593 m Pa 2278 m Pa 10%, NA, 50-95°C, 12°C/min Farhat et at., 1999 

D. rotundata- fresh paste 79.5 4.62 375 RVU 172 RVU 397 RVU 195 RVU NA Otegbago eta/., 2006 
D. rotundata 78.2 4.93 3273 mPa NA 2779 mPa 4227 mPa 10%, NA, 50-95°C, 12°C/min Farhat eta/., 1999 
D. rotundata 83-97 - 480 BU 400 BU - 420 BU 5%,NA Moorthy 1991 

D. hispida Dennst 78.3 NA 361 RVU 285 RVU 377 RVU 92RVU 12%, NA, 50-95°C, 12°C/min Tattiyakul eta/., 2006 

Ipomea batatas 74.2 - 281 RVU 148 RVU 206 RVU 73RVU 9%, 160 rpm, 50-90°C, 6°C/min Peroni eta/., 2006 

Ipomea batatas 75.2 7.0 265 RVU 151 RVU 187 RVU 73RVU 8%, 160 rpm, 50-90°C, 6°C/min Srichuwong eta/., 2005c 
Ipomea batatas 81-84 340 BU 340 BU - 360 BU 6%,NA Moorthy 1991 

S. tuberosum- verities NA NA 338 RVU 119 RVU 218 RVU 31 RVU 7.4%,160 rpm,50-90°C, 12°C/min Singhe eta/., 2006 
S. tuberosum- verities NA NA 489 RVU 256 RVU 266 RVU 37RVU 7.4%,160 rpm,50-90°C, 12°C/min Singhe eta/., 2006 
Solanum tuberosum 67.3 5.1 79RVU 563 RVU 287 RVU 59RVU 8%, 160 rpm, 50-90°C, 6°C /min Srichuwong et at., 2005c 
Solanum tuberosum 65.5 2.87 8944 mPa NA 1933 mPa 2968 mPa 10%, NA, 50-95°C, 12°C/min Farhat eta/., 1999 

Pueraria /obata 76.0 7.3 231 RVU 109 RVU 188 RVU 66RVU 8%, 160 rpm, 50-90°C, 6°C/min Srichuwong eta/., 2005c 



Table 2-10 Pasting profiles of various starches determined by Brabender (units BU) & Rapid visco analyzer (units RVU) (cont.,) 
Botanical source Pasting Peak Peak Viscosity Final Setback Conditions Reference 

temp. time viscosity breakdown viscosity Starch concentration % (w/w), 
(OC) (min) rotational speed (rpm), heating 

range {0 C}: heating rate °C/min 
S. rotundifolius- (Bola) 78.0 9.2 122 RVU 15 RVU 166 RVU 60 RVU 7%,160 rpm, 50-90°C, 6°C/min Jayakody et a/., 2005 
S. rotundifolius- (Dik) 83.0 8.8 119 RVU 12 RVU 187 RVU 80RVU 7%,160 rpm, 50-90°C, 6°C/min Jayakody et a/., 2005 

M. arundinacea 77.8 6.7 361 RVU 203 RVU 255 RVU 96RVU 8%, 160 rpm, 50-90°C 6°C/min Srichuwong eta/., 2005c 
M. arundinacea 71.7 - 339 RVU 204 RVU 197 RVU 62RVU 9%, 160 rpm, 50-90°C 6°C/min Peroni eta/., 2006 
M. sagu (sago) 72.8 6.3 204 RVU 128 RVU 137 RVU 61 RVU 8%, 160 rpm, 50-90°C 6°C/min Srichuwong eta/., 2005c 

Caryota urines 73.8 6.4 134 RVU 60RVU 130 RVU 55RVU 7%,160 rpm, 50-90°C, 6°C/min Jayakody eta/., 2007b 

Borassus flabellifer 76.7 8.2 92RVU 33RVU 97RVU 38RVU 7%,160 rpm, 50-90°C, 6°C/min Jayakody eta/., 2007b 

A.heterophyllus -flesh 65.4 8.8 130 RVU 36RVU 182 RVU 88RVU 7%,160 rpm, 50-90°C, 6°C/min Jayakody eta/., 2007b 
A.heterophyllus -seed 83.0 8.3 41 RVU 16 RVU 37RVU 11 RVU 7%,160 rpm, 50-90°C, 6°C/m in Jayakody eta/., 2007b 

Canna edulis 71.2 - 413 RVU 198 RVU 335 RVU 120 RVU 9%,160 rpm, 50-90°C, 6°C/min Peroni eta/., 2006 
Canna edulis 72.4 7.5 397 RVU 140 RVU 381 RVU 124 RVU 8%,160 rpm, 50-90°C 6°C/min Srichuwong eta/., 2005c 

X. sagitifo/ium 73.6 7.3 248 RVU 98RVU 269 RVU 120 RVU 8%, 160 rpm, 50-90°C 6°C/min Srichuwong eta/., 2005c 
X. sagitifolium 81-87 - 470 BU 470 BU - 550 BU 6%,NA Moorthy 1991 

Co/ocasia esculenta 78 7.7 251 RVU 112 RVU 249 RVU 110 RVU 8%, 160 rpm, 50-90°C 6°C/min Srichuwong et a/., 2005c 
Co/ocasia esculenta 79-88 - 420 BU 400 BU - 400 BU 6%,NA Moorthy 1991 

Artocapuc artilis -native 64.6 - 467 RVU 379 RVU 641 RVU 174 RVU NA Adebowale eta/., 2005 
A. artilis- annealed 63.6 - 407 RVU 321 RVU 443RVU 36RVU NA Adebowale eta/., 2005 
A. artilis- HMT 65.0 - 43.8 RVU 20.3 RVU 47.2 RVU 3RVU NA Adebowale eta/., 2005 

Manihot esculenta 67.4 - 263 RVU 160 RVU 164 RVU 61 RVU 9%,160 rpm, 50-90°C, 6°C/min Peroni eta/., 2006 
Manihot escu/enta 67.4 6.1 188 RVU 121 RVU 113 RVU 47RVU 8%,160 rpm, 50-90°C, 6°C/min Srichuwong eta/., 2005c 
Manihot escu/enta 68.6 3.73 3134 mPa NA 1316mPa 2381 mPa 10%, NA, 50-95°C, 0.2°C/s Farhat eta/., 1999 
Manihot escu/enta 70-90 - 480 BU 420 BU - 380 BU 5%,NA Moorthy 1991 

Zingiber officinale >95 - 78RVU 0.2 RVU 119 RVU 41 RVU 9%, 160 rpm,50-90°C, 6°C/min Peroni eta/., 2006 

Lathyrus sativus-( lath) 74 8.8 268 RVU 41 RVU 417 RVU 189 RVU 7%,160 rpm, 50-90°C, 6°C/min Jayakody eta/., 2007a 
NA: data not available some authors have reported viscosity (using the RVA) as mili Pascal (mPa) HMT: Heat moisture treated 



Large granules (e.g. potato starch) swell to a greater extent and occupy more 

volume. Consequently, they enhance viscosity (Singh et a/., 2006). Studies on 

Colocasia starches showed small granules have a lower pasting temperature 

than large granules (Zheng & Sosulski 1997, Goering & DeHass 1972). Amani et 

a/., (2004) reported that viscosity variables positively correlate with amylose 

content, granule size and swelling power of Dioscorea starches. However, in 

general, starches with lower amylose contents (i.e. apparent or total) are 

generally associated with higher peak viscosities (Moorthy 2002, Dengate 1984), 

greater viscosity (e.g. corn starch) breakdown, lower final viscosity and low 

setback (Zeng et a/., 1997). Zeng et a/., ( 1997) have observed that a 1 % 

reduction in apparent or total amylose content corresponds to an increase in 

peak viscosity of about 22 to 25 Rapid Visco Analyzer units (RVU) at 12% starch 

concentration (Zeng et a/., 1997). Hamaker and Griffin ( 1993) have shown that 

proteins with intact disulfide bonds make the swollen granules less susceptible to 

breakdown under shear, either by giving extra strength to the swollen granules or 

by decreasing granular swelling. Phosphorus has been shown to have a negative 

effect on setback (Karim et a/., 2007). In Dioscorea starches, phosphorus 

content was found to correlate positively with peak viscosity, but was negatively 

correlated with final viscosity (Wang et a/., 2006). Studies on D. alata, D. 

escu/enta and D. rotundata starches revealed that pasting properties do not 

significantly change with the maturity stage of the tubers (Moorthy 2002). The 

RVA pasting profile data of Dioscorea starches are presented in [Table 2-1 0]. 
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2.4.5.2 Pasting curves 

The changes in viscosity or pasting characteristics of a starch suspension during 

heating and cooling under shear stress has been monitored using the Brabender 

and the rapid visco analyzer (RVA). In the RVA, viscosity is often expressed in 

Rapid visco analyser units (RVU) which could also be expressed as standard 

units (1 centipoise [cP] == 12 RVU), whereas, in the Brabender, viscosity is 

expressed in Brabender units (BU). The major disadvantage of the Brabender 

viscoamylogram are the units (BU) in which viscosity is expressed (this unit does 

not match with Sl units), and the large sample size. In contrast, the RVA has 

several significant differences over the conventional Brabender amylograph such 

as: (1) smaller sample size/run [-25g vs 500g] (Perera & Hoover 1999, Jacobs et 

a/., 1996), (2) shorter analysis time [-20 min vs -120 min], (3) out-put in standard 

viscosity units (cP vs BU), (4) higher heating and cooling rates [6.34°C/min vs 

1.5°C/min] (AACC 2000, Jacobs et a/., 1996), (5) higher start and end 

temperatures [50°C vs 35°C/min] (Jacobs et a/., 1996), (6) geometry of the 

stirring device [stirring paddle vs stationary vertical pins and moving bowl], 

(Jacobs et a/., 1996), (7) higher stirring speed [160 rpm vs 75 rpm] (Perera & 

Hoover 1999, Jacobs eta/., 1996), (8) greater simplicity (Deffenbaugh & Walker 

1989), and (9) higher shear rate (Jacobs et a/., 1995 & 1996). In addition, 

Dengate (1984) reported that the results of Brabender are not reproducible 

unless certain critical points are considered such as: time and temperature 

regime, starch concentration, model type, bowl speed, volume of slurry, torsion 

spring settings in use, exact slurry concentration, method of slurry preparation, 
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total weight of volume, and holding time. However, Jacobs eta/., (1996) have 

reported that pasting properties mainly depend on the heating/cooling rate and 

lor the start/end temperature of the measurement rather than on the measuring 

geometry, sample size or shear rate conditions. Several researchers have shown 

that compared to the Brabender, the RVA has a higher shear rate and therefore 

enhances greater granule swelling which leads to a more significant breakdown 

of the granules (Jacobs eta/., 1996, Deffenbaugh & Walker 1989). 

The viscosity profile of a starch suspension subjected to controlled heating and 

cooling in the RVA provides the following information [Figure 2-10]: (1) pasting 

temperature (indicates the initial increase in viscosity), (2) the peak viscosity 

(maximum viscosity attained during the heating cycle), (3) peak time (time to 

reach the peak viscosity) (4) break down viscosity or paste stability (difference 

between the peak viscosity and minimum viscosity during holding cycle), (4) set

back or cold paste viscosity (difference between the maximum viscosity during 

cooling and the minimum viscosity during holding cycle), (5) final viscosity or 

stability of the cooked paste (viscosity at the end of the RVA run) (Dengate 

1984). 

During the holding cycle, the granule disintegration appears to reach equilibrium. 

Breakdown viscosity is considered as a measure of the degree of disintegration 

of the swollen granule (Mazurs et a/., 1957). The more swollen the starch 

granules, the more shear-sensitive the paste. Trough or minimum viscosities 

have been shown to be lower in Dioscorea starches than in potato or 
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Figure 2-10 RVA pasting curve showing changes to granule size and integrity 

Adapted from Jayakody & Hoover (2004) and information from: Jayakody eta/., 

(2007a,b), Thomas & Atwell (1999), Zhou eta/., (1998), Dengate (1984), 

Zeng et a/., ( 1977) 

(cP and RVU indicate centipoises and rapid visco analyzer units, respectively) 

104 



-N 
~ -c.. 
(.) -:::) 
> a:= 

160 Holding cycle 
;·· ~ooling cycle T 100 

I 
; .. 

\ i 
:: 

. . 
Final viscosity 140 'ffY' 

H1o 90 

120 .. 
I I. __ .. : __ -· __ . ./ I Pea~viscositv I 

I 
I 

Breakdown 
I Setpack + 80 

100 l / I '- I 
I 
I 

80 1/-- ~- 0 ~~H20 I 70 

60 ~ 

\ 
40 

I 

20 

0 

0 

... Y .. 

HzO 

Swollen granule 60 
... 

'- r."!!Q.P -~u 
H1o 

50 

_ 'V Pasting temperature 1 

_...._ -'~ l 
-- F • I --- ~~ 

5 
,r¢: Amylose 

r : Amylopectin 

b : Granule fragments 

10 15 20 25 

Time (min) 

-(J 
0 -e 

:::::s -e 
Q) 
~ 

E 
Q) .... 



cassava starches (Frarhat et a/., 1999). This indicates that the granules of 

Dioscorea starches are more stable to shear. Hot paste viscosity has been 

reported to decrease in the order: D. alata > D. rotundata > D. esculenta >D. 

dumetorum (Amani et a/., 2004, Farhat et a/., 1999). Setback viscosity is 

generally considered as a measure of gelling capacity or 'retrogradation' 

tendency of a starch paste (Mazurs et a/., 1957). Amylose content has been 

positively correlated with set-back (Singh et a/., 2006, Singh et a/., 2005, Lie et 

a/., 2003, Leelavathi et a/., 1987) and negatively correlated with viscosity 

breakdown (Singh eta/., 2006). During the cooling cycle, the solubilized amylose 

fraction retrogrades. The extent of the retrogrdation is measured by the 

difference between the final viscosity and the viscosity at the end of the holding 

period. In general, Dioscorea starches show positive setback during cooling 

(Moorthy 2002). 

2.4.6 Acid hydrolysis 

Overview 

Acid hydrolysis has been used for over a century to modify starch granule 

structure and produce 'soluble' starch (Kirchoff 1811 ). Prolonged acid hydrolysis 

is commonly performed with either sulfuric (15.3%, 25°C) or hydrochloric acid 

(2.2M, 30-40°C) to produce Nageli (1874) or Lintner (1886) amylodextrins, 

respectively (Jayakody 2001 ). In general, acidic and enzymatic attack on starch 

are similar since they both involve hydrolysis of the bonds in the starch polymers. 

In more precise terms however, significant differences exist between enzyme 

and acid hydrolysis with respect to hydrolytic cleavage. a-Amylase hydrolysis the 
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amorphous and crystalline regions simultaneously, the mode of attack being 

concentrated only on the a-D-(1---+4) linkages, whereas acids hydrolysis the 

amorphous regions initially and then the crystalline region. Acid hydrolysis both 

a-D-( 1---+4) and a-D-( 1---+6) linkages. Furthermore, the extent of starch polymer 

degradation has been shown to be higher during enzyme hydrolysis (Zhou eta/., 

2004, Jayakody 2001, Zherebtsov eta/., 1995). 

The rate and extent of acid hydrolysis has been shown to be influenced by: 

starch source (Srichuwong et a/., 2005a, Hoover 2001, Hoover & Vasanthan 

1994a), granule size (Jayakody eta/., 2005, Jayakody & Hoover, 2002, Jayakody 

2001, Vasanthan & Bhatty 1996, Biliaderis et a/., 1981 ), type of unit cell (Jane 

2006), proportion of B-type crystallites (Srichuwong et a/., 2005b), presence of 

pores on the granule surface (Jayakody & Hoover 2002), amylopectin structure 

(Srichuwong et a/., 2005b, Jacobs et a/., 1998a), crystallinity (Jayakody et a/., 

2005), amylopectin unit chain-length distribution (Srichuwong et a/., 2005b, 

Tester et a/., 2005), characteristics of amorphous lamellae (Srichuwong et a/., 

2005b), amylose content (Jayakody & Hoover 2002, Jayakody 2001 ), lipid 

complexed amylose chains (Waduge et a/., 2006, Jayakody & Hoover 2002, 

Jayakody 2001, Hoover 2000, Morrison et a/., 1994), phosphorus content 

(Jayakody eta/., 2005, Hoover 2000), granular swelling (Jayakody eta/., 2005) 

and extent of starch damage (Tester eta/., 1998). 

Two mechanisms have been recently proposed to explain how branch chain 

linkages are protected from acid hydrolysis (Jane 2006). The A-type starches 
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contain more shorter chains than 8-type starches and most of their a-D-( 1-6) 

branch points are present in the crystalline regions [Figure 2-11-A]. The a-D

(1-6) branch linkages that are scattered in the amorphous region are readily 

susceptible to acid hydrolysis, whereas branch points located in the crystalline 

regions are protected from acid attack [Figure 2-11-A]. However, 8-type 

starches contain a larger proportion of long 8 chains with most of the branch 

linkages in the amorphous region, which are, therefore, more susceptible to acid 

hydrolysis (Jane eta/., 1997). 

The second mechanism is based on the type of unit cell present in the A- and 8-

type of starches. The A- and 8-types of polymorphic starches have a monoclinic 

and hexagonal unit cell, respectively. The a-D-(1-6) branch points of A-type 

starches are tightly packed within the monoclinic unit cell, consequently, they are 

not easily accessible to attack by H30+. However, the a-D-(1-6) branch points 

of 8-type starches are loosely packed within the hexagonal unit cell and are thus 

more accessible to hydolysis by H30+. The postulates of Jane (2006) are not in 

agreement with the results obtained by Srichuwong eta/., (2005b), Vermeylen et 

a/., (2004), Jayakody & Hoover (2002), and Jayakody (2001 ). The above 

researches have shown that 8-type starches are more resistant to acid 

hydrolysis than A-type starches [Figure 2-11-B]. It has also been shown that 

long 8 chains (DP-30) (low branch density of 8-type starches) are more acid 

resistant than the short chains (high branch density) of A-type starches 

(Vermeylen eta/., 2004). Resistance of 8-type crystallites to acid hydrolysis has 

also been shown to be due to their higher stability and three dimensional size 
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Figure 2-11 (A) Schematic representation of amylopectin branch chains 

and branch point distribution between A- and 8-type starches 

(B) Acid hydrolysis patterns of A-, B & C-type starches 

Adapted from Srichuwong eta/., (2005b), Jayakody (2001) Jane eta/., (1997) 

with permission from Elsevier 
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(Vermeylen eta/., 2004). Srichuwong eta/., (2005b) have shown by studies on 

cereal and tuber starches, that although the characteristics of the amorphous 

lamella are a critical factor influencing hydrolysis rates, the amylopectin chain 

length distribution also plays a significant role in influencing the extent of acid 

hydrolysis. These authors also showed that very short chains (DP 6-8) of 

amylopectin are readily hydrolyzed together with amorphous material by acid, 

since they are not long enough to form stable double helices. 

2.4.6.1 Susceptibility of amorphous and crystalline domains towards acid 
hydrolysis 

Two distinct phases are observed during acid hydrolysis. The first phase is 

attributed to the relatively fast hydrolysis within the amorphous lamellae, followed 

by slow hydrolysis within the crystalline lamellae (Jayakody et a/., 2005, 

Jayakody & Hoover 2001, Hoover 2000, Manelius et a/., 2000, Jacobs et a/., 

1998a, b, Lineback 1984, Biliaderis et a/., 1981 b, Robin et a/., 197 4, Buttrose 

1963, Cowie & Greenwood 1957, Alsberg 1938). To account for the 

heterogeneous rates of hydrolysis of the starch granule, two hypotheses have 

been proposed (Kainuma & French 1971, BeMiller 1967). One suggests that the 

compact packing of glucan chains within the starch crystallites does not readily 

permit the penetration of H30+ into these regions (Kainuma & French 1971 ), 

whereas, amorphous regions of the starch molecule are penetrable by the H30+ 

and are thus hydrolyzed much faster. BeMiller (1967) has postulated that acid 

hydrolysis of a glucosidic bond may require a change in conformation (chair ~ 

half chair) of the a-0-glucopyranosyl unit. Thus, if the crystalline structure 
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immobilizes the sugar conformation then the switch from the chair conformation 

to a half chair conformation would be sterically impossible, hence, slow 

hydrolysis. Crystallinity has been shown to increase with hydrolysis time 

(Jayakody & Hoover, 2002, Jayakody 2001, Jenkins & Donald, 1997, Muhr eta/., 

1984, Biliaderis eta/., 1981b, Robin eta/., 1974, Kainnuma & French 1971) since 

acid preferentially attacks the amorphous regions. 

2.4.7 Alpha-amylase hydrolysis 

Overview 

A study of starch digestibility by a-amylase is important for evaluating nutritive 

value and also suitability for some industrial applications (Moorthy 2002). a

amylases ( 1---+4 a-0-glucanohydrolase, E.C. 3.2.1.1) also known as 'liquefying' 

enzymes cleave a-D-(1---+4) glucosidic bonds but not a-D-(1---+6) glucosidic 

bonds. The products of hydrolysis, which are oligosaccharides of varying chain 

lengths, have the a-configuration at C1 of the reducing glucose unit, hence the 

name a-amylase. a-amylases hydrolyze the bonds located in the inner regions 

of the substrate resulting in a rapid decrease in the viscosity of the starch 

solution, as well as a decrease in iodine binding capacity. Granular starches are 

more resistant towards a-amylolysis than their gelatinized counterparts (Jacobs 

et a/., 1998c). When intact granules are exposed to a-amylase, the first 

alteration in structure is seen to be pitting at the surface (Zhang eta/., 2006). In 

the case of cereal starches, these small pits become pores with extensive 

hydrolysis. 
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2.4.7 .1 Amylolysis patterns 

The morphological changes undergone by starches from various botanical 

sources has been well documented (Li et a/., 2004, Hoover & Zhou 2003, 

Sarikaya eta/., 2000, Lauro eta/., 1999, Bertoft eta/., 1993 & 1992, Gallant et 

a/., 1992, 1982, & 1972, Hoover & Sosulski 1985). Two different types of 

amylolysis mechanims have been proposed: (1) inside-out digestion [Figure 2-

12-{b)] (Gallant et a/., 1992) and (2) side-by-side digestion [Figure 2-12-{c)] 

(Zhang eta/., 2006, Pohu eta/., 2004). 

(A) Side-by-side digestion 

Hydrolysis begins with the diffusion of a-amylase to the starch surface, followed 

by adsorption and catalysis. The porosity and accessibility of the starch surface 

has been shown (Oates 1997, Leloup eta/., 1991b) to influence the number of 

adsorption sites on the granule surface. Digestion occurs initially at the granule 

surface followed by pore formation as the enzyme penetrates into the granule 

interior. The internal sides of the pores and channels then become active sites 

for a-amylase action. Since double helices are arranged parallel to each other 

and perpendicular to the granule surface, the enzyme easily binds with the 

double helices in a parallel direction or side by side. Hydrolysis from the sides of 

the crystalline lamellae enlarges the internal channels [Figure 2-12] resulting in 

granule fragmentation. This digestion profile is called side-by-side digestion. 

According to this digestion mechanism, there is no preferential attack either on 

the amorphous or crystalline lamellae and both regions are digested evenly. The 

side-by-side digestion mechanism produces a different hydrolysis pattern known 
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Figure 2-12 Digestion patterns of amylolysis 

Adapted from Zhang eta/., (2006) with permission from American Chemical 

Society 
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as 'exo-pitting' (Gallant eta/., 1997, 1992). 

(B) Inside-out digestion 

The initiation of hydrolysis from the hilum region towards the outside of the 

granule is called inside-out digestion. Inside-out digestion occurs when there is a 

high concentration of amylopectin and tightly packed chains on the granule 

surface. The starch granule then presents a resistant surface to a-amylase 

(Oates 1997) and consequently, the granule surface is digested slowly, whereas, 

digestion proceeds rapidly within the granule interior. The above pattern of 

hydrolysis is seen mainly in A-type (mainly cereal) starches, since pores and 

channels present in these starches provide a gateway for the entry of a-amylase 

into the granule interior (Lynn & Stark 1992). Zhang et a/., (2006) believe that 

inside-out digestion is a different projection of the side-by-side digestion. 

2.4.7.2 Factors influencing a-amylase hydrolysis 

Starch hydrolysis by a-amylases is known to be controlled by numerous factors 

such as: botanical source (Srichuwong eta/., 2005a, Jacobs eta/., 1998c, Ring 

eta/., 1988, Gudmundsson & Eliassen 1993, Gallant & Bouchet 1986, Snow & 

O'Dea 1981, Fuwa et a/., 1979, Rasper et a/., 1974, Gallant et a/., 1972), 

amylase source (Liakopoulou-Kyriakides et a/., 2001, Wang et a/., 1995, 

Valetudie eta/., 1993, Colonna & Buleon 1992a, Gallant eta/., 1992 & 1973, 

Robyt & Whelan 1968), granule morphology (Planchet eta/., 1997b, Valetudie et 

a/., 1993, Fujita eta/., 1989, Colonna eta/., 1988), granuler size (Noda eta/., 

2005, Snow & Glover 1997, Cottrell eta/., 1995, Valetudie eta/., 1993, Ring et 

a/., 1988, Snow & O'Dea, 1981, Leach & Schoch 1961), granule size distribution 
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(Zhang eta/., 2006, Vasanthan & Bhatty 1996, Ring eta/., 1988, Knutson eta/., 

1982), compound granules (Snow & O'Dea 1981 ), surface area: volume ratio 

{Tester eta/., 2006, Kong eta/., 2003, Yook & Robyt 2002, Guraya eta/., 2001, 

Leloup eta/., 1992, Knutson eta/., 1982), surface pores (Zhang eta/., 2006, 

Jane et a/., 1997, Fannon et a/., 1993 & 1992), presence of channels and 

blocklets (Fannon et a/., 2004, Huber & BeMiller 1997, Gallant et a/., 1997, 

Helbert et a/., 1996), amylose: amylopectin ratio (Li et a/., 2004, Noda, eta/., 

2002, Vasanthan & Bhatty 1996, Barichello et a/., 1991, Gallant eta/., 1992, 

Leloup eta/., 1990, Fujita eta/., 1989, Ring eta/., 1988, Sievert & Pomeranz 

1989, Hoover & Sosulski 1985, Knutson eta/., 1982, Fuwa eta/., 1977), extent of 

packing of amylopectin and amylose at the granule surface (Jane 2006, Zhang et 

a/., 2006), glucan chain interactions in granule interior (Dreher, et a/., 1984 ), 

double helical content (Tester et a/., 2004, Gerard et a/., 2001 a, Tester & 

Sommerville 2000, Zhang & Oates 1999, Karkalas eta/., 1992, Gallant eta/., 

1992), accessibility of enzyme to substrate (Colonna et a/., 1998), structural 

inhomogeneities (Leloup et a/., 1992), crystallinity (Jayakody et a/., 2005, 

Srichuwong eta/., 2005a, Planchot eta/., 1997a, Colonna eta/., 1992b, Jane et 

a/., 1992a, Gallant eta/., 1992, Hoover & Sosulski 1985, Knutson eta/., 1982), 

crystal size (Pianchot eta/., 1997b), extent of crystallite perfection (Zhang eta/., 

2006), amount of crystallites at the granule surface (Colonna & Buleon 1992a), 

polymorphic form (Zhang et a/., 2006, Srichwong et a/., 2005a, Gerard et a/., 

2001a, Jane eta/., 1997, Jacobs eta/., 1998c, Planchot eta/., 1997b, Valetudie 

et a/., 1993, Gallant et a/., 1992, Williamson et a/., 1992), B-type crystallites 
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content and distribution (Jane 2006, Zhang et a/., 2006, Srichuwong et a/., 

2005a, Planchot et a/., 1997b, Gerard et a/., 2001 a,b, Bertoff et a/., 1993), 

amylopectin chain length distribution (Srichuwong et a/., 2005a, Gallant et a/., 

1992), extent of distribution of a-(1 ~6) branch points between the amorphous 

and crystalline region of amylopectin (Jane eta/., 1992b ), degree of gelatinization 

(Sievert & Pomeranz 1989, Siljestrom et a/., 1989), cooked starch (Holm et a/., 

1985), lipid complexed amylose chains (Jayakody eta/., 2005, Cui & Oates 1999, 

Lauro eta/., 1999, Perera & Hoover 1998, Anger eta/., 1994, Seneviratne & 

Biliaderis 1991, Colonna eta/., 1988, Holm eta/., 1983, Hanna & Lelievre, 1975), 

starch protein interactions (Holm & Bjorck 1988, Jenkins eta/., 1987, Valetudie et 

a/., 1993, Dreher et a/., 1984 ), phosphate content (Slaughter et a/., 2001, Sitohy 

& Ramadon 2001, Gallant eta/., 1973), enzyme adsorption at granule surface 

(Leloup et a/., 1992, Svensson 1988), ability of the enzyme to diffuse into the 

granule interior (Colonna & Buleon 1992a, Leloup eta/., 1992, Colonna eta/., 

1988), composition and concentration of hydrolyzed products (Leloup et a/., 

1991b, Franco eta/., 1987), antinutrients (Thorne eta/., 1983), food processing 

(Slaughter et a/., 2001, Oates 1997), physical (Hoover & Vasanthan 1994a,b, 

Lauro eta/., 1993) & chemical (Wolf eta/., 1999, Tharanathan & Ramadas Bhat 

1988) modification, and extent of starch damage (Lelievre 197 4 ). 

Scanning and transmission electron microscopy studies on the susceptibility of 

starches towards a-amylases (e.g. bacterial, fungal, and porcine pancreatic) 

have shown the presence of successive strong and weak radial internal layers 

(Zhou eta/., 2004, Planchot eta/., 1995, Bertoft eta/., 1993, Gallant eta/., 1973). 
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Valetudie eta/., (1993) have shown that the hydrolysis rate is higher for potato, 

sweet potato, and cassava starches with porcine pancreatic amylase than with 

bacterial amylase [Bacillus subtilis]. Hydrolysis of native Dioscorea [e.g. D. alata] 

(Valetudie eta/., 1993), potato (Leach & Schoch 1961), sago [Metroxylon sp.] 

(Wang et a/., 1995) and wheat (Colonna et a/., 1988, Jacobs et a/., 1998c) 

starches with bacterial a-amylase has shown that hydrolysis occurs granule by 

granule. In contrast acid hydrolysis occurs throught the entire granular population 

with preferential attack on the amorphous parts (Robin eta/., 1974, Kainuma & 

French 1971 ). Bacillus licheniformis a-amylase is one of the most efficient 

enzymes among bacterial a-amylases (Liakopoulou-Kyriakides et a/., 2001 ). 

Valetudie eta/., (1993) have suggested that proteins on the granule surface of 

yam starches greatly decrease the extent of hydrolysis. However, purification of 

the granule surface by proteolysis has been shown to increase hydrolysis. 

A-type starches are more susceptible to a-amylase activity than 8-type starches 

(Zhang et a/., 2006, Srichuwong et a/., 2005a, Planchot et a/., 1997b). The 

digestibility of C-type starches is intermediate between that of A- and 8-type 

starches (Jacobs et a/., 1998c, Valetudie et a/., 1993). Colonna and 8uleon 

(1992a) proposed that the low susceptibility of 8-type starches is due to the 

presence of a larger number of crystallites at the surface of the granules. 

Suceptibility towards a-amylase has been shown to be influenced by granule size 

[e.g. small> large granules] (Cottrell eta/., 1995, Snow & Glover 1997, Noda et 

a/., 1992) and shape [truncated>polyhedral>spherical granule shapes] (Valetudie 

eta/., 1993). Srichuwong eta/., (2005a) have observed that starch digestibility by 
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a-amylase has a positive correlation with shorter chains (DP 8 to 12) and a 

negative correlation with longer chains (DP 16 to 26). Gallant eta/., (1992) have 

shown that long amylopectin side chains and the thickness of the growth rings 

influence a-amylase hydrolysis. Several researchers (Zhang eta/., 2006, Gerad 

eta/., 2001b, Leach & Schoch 1961, Colonna eta/., 1988, Lauro eta/., 1999) 

have shown that a-amylases can simultaneously solubilize both amorphous and 

crystalline regions of starch granules. This is evident by the unchanged granule 

crystallinity after a-amylolysis, whereas acid hydrolysis occurs throughout the 

entire granular population with preferential attack on the amorphous regions. 

Amylose-lipid complexes in native cereal starch granules (Morrison eta/., 1993 

a, b) have been shown to be fairly resistant to a-amylolysis (Anger et a/., 1994 

Seneviratne & Biliaderis 1991, Holm eta/., 1983, Hanna & Lelievre 1975). 

2.4.7 Retrogradation 

Overview 

Retrogradation means, in very simple terms, 'return to the granular state' (Miles 

et a/1985c). Retrogradation is of great interest to food scientists, technologists or 

food processors, since it profoundly affects quality, consumer acceptability and 

shelf-life of starch containing products (Biliaderis 1991 ). Retrogradation is a term 

that was first used to describe a group of events that occurs when a starch paste 

ages (e.g. reformation of H-bonds within or between aqueous amylose, and 

formation of a precipitate at low starch concentration (>2%) (Atwell 1988, 

Collison 1968b ). However, this definition is not valid for gels and food systems in 

which the starch: water ratio is high. Starch retrogradation is now defined as a 
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process that occurs when the starch components in gelatinized starch 

reassociate in an ordered structure. In its initial phase, two or more glucan 

chains may form a simple juncture point which then may develop into more 

extensively ordered regions. Ultimately, under favorable conditions, a crystalline 

order appears (Atwell, et a/., 1988). Retrogradation or set-back results in an 

increase in viscosity that occurs on cooling of a gelatinized starch paste or during 

aging of products containing starch as an ingrendient (Swinkels 1985a). 

2.4. 7.1 Advantages, disadvantages and consequences of retrogradation 

The effects of retrogradation in starch-based products are often considered as 

undesirable. For instance, staling or undesirable firming of bread and other 

bakery products (Seow & Thevamalar 1988, D'Appolonia & Morad 1981, Kulp & 

Ponte 1981, Knightly 1977, Marga 1975, Willhoff 1973), weeping or syneresis 

(Swinkels 1985a), turbidity/opacity formation (Swinkels 1985a), high tendency to 

form stiff gels (Swinkels 1985a), and decreased starch digestibility (Okuda eta/., 

2006). However, retrogradation has been shown to be beneficial in the 

production of parboiled rice, breakfast cereals (Colonna et a/., 1992b) and 

dehydrated mashed potatoes since it results in reduced stickiness and improved 

graininess of the products (Ooraikul et a/., 1974). Weeping or syneresis 

(expulsion of water) is a visible direct consequence of retrogradation. 

2.4.7.2 Techniques of measuring extent of retrogradation 

Retrogradation has been monitored using a wide variety of techniques. These 

methods are mainly based on time-dependent changes in structure, sensory or 

118 



digestibility of gelatinized starch. The commonly used techniques in the study of 

starch retrogradation are: DSC [measures enthalpy change in reformed 

crystallites e.g. gel and paste] (Jayakody eta/., 2005, Fredriksson eta/., 1998, 

Atwell, et a/., 1988, Russell 1987b), freeze thaw stability [measures extent of 

syneresis e.g. gel] (Yuan & Thompson 1998, Zheng & Sosulski 1998, Hoover et 

a/., 1991 ), turbidity [measures precipitation of insoluble aggregates e.g. 0.2-5% 

aqueous starch solutions] (Jacobson eta/., 1997, Gidley & Bulpin 1989, Ring et 

a/., 1987, Swinkels 1985a, Miles eta/., 1985a,b), light-scattering [measures low 

molecular weight amylose chains e.g. stored amylose solutions] (Kadama & 

Noda 1978, Pfannemuller et a/., 1971 ), X-ray diffraction [measures 

transformation of polymorphic pattern and crystallinity e.g. gels, bread crumb] 

(I'Anson et a/., 1988, Katz & van ltallie 1930), elastic modulus measurement 

[measures extent of crystallization e.g. bread] (Colwell eta/., 1969, Axford eta/., 

1968, Mciver et a/., 1968), texture profile analysis (TPA) [measures 

compressibility of sample e.g. bread, starch gels] (Karim eta/., 2000), rheology 

[measures changes in viscoelastic properties (i.e. viscous and solid like) e.g. 

cooked noodles] (Gudmundsson 1994, Mita 1992, I'Anson et a/., 1988), light 

microscopy on stained paste [measures loss of network nature of amylose on 

retrogradate paste] (Jacobson et a/ 1997), Fourier transform infared 

spectroscopy (FTIR) [measures extent of molecular order by band narrowing e.g. 

bread crumbs] (van Soest eta/., 1995, Wilson eta/., 1991), 1H NMR [measures 

changes in molecular mobility e.g. bound water content in starch gel] (Karim et 
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a/., 2000, Wu & Eads 1993) and acid or enzyme hydrolysis [measures resistant 

of starch to hydrolysis e.g. gels] (Sievert eta/., 1991, Ring eta/., 1988). 

The differential thermal analysis (DTA) for retrogradation studies was first used 

by Axford and Colwell (1967). DSC (Russell 1987b, Fredriksson et a/1998) and 

X-ray diffraction (I'Anson et a/1988) are the most widely employed methods, for 

the study of rate and extent of starch retrogradation. Katz and van ltallie (1930) 

were the first to observe transformation of A-type pattern into to B-type on aging 

by X-ray diffraction. The intensity of the B polymorph increases slowly with time 

(Gudmundsson 1994, Zoble 1973). However, starch retrogradation is a complex 

process affected by various factors. Therefore, it is unlikely that any single 

technique would be able to give a comprehensive picture of the retrogradation at 

the macroscopic and supramolecular levels. Independent evidence derived from 

two or more methods would allow cross comparisons that can provide more 

reliable and realistic information. 

2.4.7.3 Mechanism of retrogradation 

The relation between crystallization of gelatinized starch and retrogradation upon 

storage has been known for a long time (Cornford et a/., 1964). During 

retrogradation, gelatinized starch transforms from a solvated, dispersed or 

amorphous state to an insoluble, aggregated or crystalline condition (Swinkels 

1985b ). This phenomenon has been understood as a non-equilibrium thermo

reversible re-crystallization process (Thygesen et a/., 2003). Polymer crystal 

growth theory states that there are three sequential steps to polymer 
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crystallization such as nucleation, propagation (crystal growth) and maturation 

(crystal perfection) (Slade & Levine 1987). March and Blanshard (1988) and 

Slade and Levine (1987) have shown that amylopectin crystallization is a 

nucleation-limiting process that occurs above the glass transition temperature 

(T9) (--5°C) but below the melting temperature (T m) of amylopectin (-60°C) 

(Jacobson & BeMiller 1998). It has been shown that the rate of retrogradation of 

starch paste (50% w/w) is optimum at around 5°C (March & Blanshard 1988, 

Slade & Levine 1987). X-ray diffraction studies have shown that crystallization 

occurs during gelation and storage of starch gels (Banks & Greenwood 1975, 

Hellman eta/., 1954). However, the mechanism involved on a molecular level is 

still not completely understood. 

2.4. 7 .3.1 Step 1 - Nucleation 

Amylopectin re-crystallization is a nucleation-controlled process [Figure 2-13] 

(Slade & Levine 1987, Miles eta/., 1985c). It has been proposed that nucleation 

occurs at junction points of two or more glucan chains (Slade & Levine 1987). 

Crystal growth requires that molecules are able to diffuse to the surface of the 

growing nuclei. The rate of the process is sensitive to temperature (e.g. 

refrigeration, frozen), cooling rate, and impurities. Some degree of supercooling 

below the crystallization temperature is necessary in order to form crystallites. 

The greater the degree of supercooling the more rapidly the crystallites (less 

symmetrically perfect) form. During storage at low temperatures (e.g. 4°C), 

gelatinized starch molecules re-associate, but in a less ordered and hence a less 
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Figure 2-13 Schematic representation of the effect temperature on rate of 

nucleation, crystal growth and crystallization on retrogradation 

Adapted from Slade & Levine (1987) 
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perfect or stable form than their native counterparts (Gidley 1987, Nakazawa et 

a/., 1985). Nucleation of amylose crystals in a high-moisture environment is 

significantly high near -5°C (Slade & Levine 1987). These crystals have a lower 

melting temperature than those formed at higher storage temperatures 

(Gudmundsson 1994). It has been shown that the temperature location of the 

endotherm associated with melting of recrystallized amylopectin also depends 

upon the storage temperature (Gudmundsson 1994 ). For instance, less perfect 

crystallites are produced at low storage temperatures. The melting temperature 

range indicates the quality and heterogeneity of the recrystalized amylopectin. 

Thus, a wider melting range (T 0 - T c) might imply a large number of crystals of 

varying stabilities (formed during aging), whereas a narrow range implies that 

crystals are more homogenous in quality and are nearly of the same order of 

stability (Karim et a/., 2000). Nucleation rate increases exponentially with 

decreasing temperature down to T 9 (Slade & Levine 1987). However, storage of 

gels below T 9 significantly inhibits the nucleation process (Eiiasson 1985, Colwell 

eta/., 1969). Slade and Levine (1987) reported that homogeneous nucleation of 

new amylose-lipid crystals occurs above room temperature (near 33°C). Several 

studies have shown that the rate limiting step during re-crystallization is 

nucleation (enhanced at low temperature) rather than propagation (enhanced at 

high temperature) (Slade & Levine 1987, Jankowski & Rha 1986, Fearn & 

Russell 1982). Therefore, maximizing the nucleation step (both temperature and 

duration) is very critical for the study of starch retrogradation. Small angle X-ray 

scattering (SAXS) studies have shown that nucleation and limited growth of rod-
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shaped crystals occur during network formation of amylose and nucleation is the 

factor limiting the overall levels of crystallization (Morris 1990). Gelatinization 

parameters of retrograded starches and the conditions used in their study are 

summarized in Table 2-11. 

2.4.7.3.2 Step 2- Propagation (crystal growth) 

Jankowski and Rha ( 1986) have shown that an increase in propagation 

temperature (30-40°C) has a positive correlation with increased onset (T 0 ) 

temperature of retrogradation, but a negative correlation with the melting 

temperature range (Tc-To) of the crystallites (Silverio eta/., 2000, Jang & Pyun 

1997, Jankowski & Rha 1986, Eliassen 1985, Nakazawa et a/., 1985). DSC 

studies have shown that starch crystals appear more symmetrically perfect and 

have increased stability at higher temperatures than at prolonged low 

temperature storage (Longton & LeGrys 1981 ). Silverio et a/., (2000) have 

postulated that a narrowing of the melting temperature range reflects formation of 

homogeneous crystallites at 40°C. Slade and Levine (1987) have reported that 

no propagation occurs below Tg, because propagation is a diffusion-controlled 

process and requires the liquid state. However, propagation rate increases 

exponentially with increasing temperature up to crystalline melting temperature 

{T m) [Figure 2-13]. Consequently, at temperatures above T 9 the rate of crystal 

growth also goes to zero, since crystals can neither nucleate nor propagate (i.e. 

crystals melt instantaneously). Slade and Levine (1987) have shown that the 

optimum temperature for nucleation and propagation is 4°C and 40°C, 

respectively, for maximum rate of re-crystallization (Slade & Levine 1987). The 
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Table 2-11 Gelatinization parameters of retrograded starches and the conditions used in their study 

Starch source AMP To Tp (°C) Tc Ll.HR Starch:H20 Incubation Propagation Range (0C} Reference 
(%) (oC) ("C) (J/g) Temp/time Temp/time Speed (°C/min) 

D. alata 67.4 42.48 60.65 74.76 10.6 1:3 4°C/7days ** 25-100°C, 10°C/min Peroni eta/., 2006 
D. alata 79.2 55.8 66.6 77.9 11.3 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong et at., 2005a 

D. escu/enta 85.8 54.0 64.6 73.5 11.1 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/m in Srichuwong eta/., 2005a 

Dioscorea (spp.NA) 70.8 39.2 51.9 61.5 5.0 1:3 4°C/7days ** 25-1 00°C, 10°C/min McPherson & Jane 1999 

Canna edulis 68.3 42.8 61.1 74.5 7.9 1:3 4°C/7days ** 25-100°C, 10°C/min Peroni et a/., 2006 
Canna edulis 72.7 55.2 65.8 76.2 8.7 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong eta/., 2005a 
S. tuberosum* 81.3-76.1 -42-46 -56-59 -67-75 3.8-10 NA 4°C/7days - 30-100°C, 5°C/min Karim et a/., 2007 
S. tuberosum 82 54.4 65.1 75.0 9.1 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong eta/., 2005a 
S. tuberosum* 71.7-68.6 -46-48 -64-70 - -8.4-10 -1:3 4°C/14days ** 5-180°C, 10°C/min Liu eta/., 2003 
S. tuberosum 62.2 41.1 56.1 66.4 6.9 1:3 4°C/7days ** 25-100°C, 10°C/min McPherson & Jane 1999 

...... S. tuberosum-waxy 19.2 38.6 56.0 65.2 7.8 1:3 4°C/7days ** 25-100°C, 10°C/min McPherson & Jane 1999 
N 
c.n M. arundinacea 80.0 53.6 63.3 72.8 8.5 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong eta/., 2005a 

M. arundinacea 79.2 41.2 54.4 65.9 4.9 1:3 4°C/7days ** 25-100°C, 10°C/min Peroni eta/., 2006 
M. sagu (sago) 78.1 52.5 61.5 69.5 7.8 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong eta/., 2005a 
Manihot esculenta 80.2 42.7 64.6 62.0 2.7 1:3 4°C/7days ** 25-100°C, 10°C/min Peroni eta/., 2006 
Manihot escu/enta 82.1 53.1 61.5 67.1 3.1 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong eta/., 2005a 
Ipomea batatas 80.2 53.9 63.3 70.2 7.5 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong eta/., 2005a 
Ipomea batatas 77.4 42.0 55.4 66.3 6.4 1:3 4°C/7days ** 25-100°C, 10°C/min Peroni eta/., 2006 
Ipomea batatas 66.9 39.9 52.7 63.2 6.1 1:3 4°C/7days ** 25-100°C, 10°C/min McPherson & Jane 1999 
S. rotundifolius* 83.7-77.0 57-62 69-72 80-84 -9-12 1:2 4°C/1 day 40°C/1-7days 15-120°C, 2°C/min Jayakody eta/., 2005 
X. sagitifolium 77.5 53.0 62.1 70.5 9.2 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong eta/., 2005a 
C. esculenta 83.7 53.6 62.5 69.5 7.7 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong eta/., 2005a 
Pueraria lobata 80.4 53.7 63.3 70.8 8.1 1:2 4°C/2days 37°C/7days 15-120°C, 2°C/min Srichuwong et a/., 2005a 
Zingiber officinale 73.5 45.3 60.9 74.0 10.9 1:3 4°C/7days ** 25-1 00°C, 1 0°C/min Peroni eta/., 2006 

AMP: Amylopectin content(%) *: Indicates different varieties **: Indicates propagation step was not involved b.HR- Retrogradation enthalpy 

NA: Information not reported/specified Range: DSC scanning range (0 C) Speed: DSC scanning speed (°C/min) 



onset (T 0 ) temperature of melting of retrograded crystallites and the enthalpy of 

retrogradation is usually 10·26°C (Srichuwong et at., 2005a, Baker & Rayas

Duarte 1998, Yuan eta/., 1993, White eta/., 1989) and 60-80% lower (Karim et 

a/., 2000), respectively, than that of their native counterparts. The lower DSC 

parameters [Table 2-11] of retrograded starches indicate improper alignment of 

the glucan chains during re·association (Srichuwong et a/., 2005a, Jane et a/., 

1999, Kalichevsky eta/., 1990). 

2.4.7.3.3 Step 3- Maturation (crystal perfection) 

Maturation is further crystal growth and/or perfection (Wunderlich 1976). At the 

maturation stage, microcrystallites become perfect crystallites via Oswald 

ripening (Levine & Slade 1986). During crystal perfection the radius of the 

spherulitic superstructure gradually increases by merging neighbouring 

spherulites (Wunderlich 1976). The rate of maturation process increases with 

increasing temperature up to a maximum crystalline melting temperature of most 

mature crystals (Slade & Levine 1987). 

2.4.7.4 Factors affecting starch retrogradation 

Many factors such as botanical source (Jacobson & BeMiller 1998, Jacobson et 

a/., 1997, Russell 1987b, Orford et a/., 1987), storage temperature (Slade & 

Levine 1987, Jankowski & Rha 1986), water content (Zeleznak & Hoseney 1986, 

Longton & LeGrys 1981 ), starch concentration (Liu & Thompson 1998, Orford et 

a/., 1987, Longton & Legrays 1981), initial heating temperature (Liu & Thompson 

1998), rate of freezing (Volz & Ramstad 1952), chain length distribution of 
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amylopectin (Thygesen eta/., 2003, Yao eta/., 2002, Gudmundsoon 1994, Liu & 

Thompson 1998, Shi & Seib 1995, Yuan et a/.,1993), amylose content (Sing et 

a/., 2006, Thygesen eta/., 2003, lshiguro eta/., 2000, Fan & Marks 1998, Silverio 

et a/., 1996), molecular size of amylose (Lu et a/., 1997a), molar ratio and 

structure of amylose and amylopectin (Jacobson & BeMiller 1998, Morris 1990), 

lipids (Keetels eta/., 1996, Hoover eta/., 1994, Ward eta/., 1994, Biliaderis & 

Tonogai 1991), protein (Escarpa 1997), salts (Ward eta/., 1994), sugars (Seow 

eta/., 1996, Biliaderis & Prokopowich 1994), shear force (Jacobson & BeMiller 

1998), time of adding ingredients (Jacobson & BeMiller 1998), physical 

modification (Orford et a/., 1993), and chemical modification (Perera & Hoover 

1998) have been shown to influence starch retrogradation. However, in general, 

it is quite difficult to compare data between studies due to differences in starch 

concentration, preparation techniques, different instrumental techniques, variable 

temperatures of storage and other conditions [Table 2-11]. 

2.4. 7 .4.1 Water content and starch concentration 

Several studies have shown that the extent of retrogradation is very sensitive to 

the water content of starch gels (Fredriksson 1998, Longton & LeGrys 1981 ). To 

study the retrogradation mechanism by DSC, a starch concentration of >20% 

(w/w) is required (Karim et a/., 2000). A gelatinized starch gel is completely 

amorphous and its water is uniformly distributed. The re-crystallization process 

depends on the T 9 of the amorphous gel as the mobility of the chains determines 

their rate of aggregation (Gudmundsson 1994). Since water is a plasticizer, it 

influences the T9 of the amorphous gel. At very low water content, T9 is above 
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room temperature consequently, the amorphous gel is glassy and effectively 

hinders chain mobility. However, the rate and extent of re-crystallization 

increases with increase in water content (T 9 is depressed below room 

temperature, and hence glucan chains have greater mobility). DSC studies have 

shown that re-crystallization increases with increase in water content (up to 40-

60%, w/v). However, with further increase of water content up to 90% [1 0% 

starch] (Thygesen et a/., 2003, Leon et a/., 1997, Leloup et a/., 1991 a, Zeleznak 

& Hoseney 1986, Eliasson 1983, Longton & LeGrys 1981) re-crystallization does 

not occur due to excess dilution of the components with the potential to 

crystallize (Slade & Levine 1987). Highly concentrated (80%) gels also suppress 

re-crystallization (Longton & LeGrys 1981 ). Retrogradation is only dependent on 

the water content during ageing, but not during gelatinization (Zeleznak & 

Hoseney 1986). Table 2-11 shows starch to water ratios of retrograded gels. 

2.4.7.4.2 Effect of amylose and amylopectin 

2.4. 7.4.2. 1 Role of amylose in retrogradation 

The exact role of amylose on starch retrogradation is still unclear. However, 

amylose itself retrogrades rapidly within a few hours after cooking, forming an 

ordered (on the molecular level) matrix which is not necessarily highly crystalline 

(Ring et a/1987, Miles et a/1985a,c). Amylose can form inter chain associations 

with other amylose molecules. Miles eta/., (1985c) reported that some of these 

amylose crystallites remain ('residual crystallinity') even after heating to 1 00°C. It 

is believed this interaction accounts for the greater stability of amylose 

crystallites. Jacobson eta/., (1997) reported that the initial turbidity formation of a 
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potato starch slurry (2% w/w) corresponds to aggregation of the amylose, this is 

deduced from the reduction in the blue color of amylose iodine complex. Singh et 

a/., (2006), Gidley and Bulpin (1989) studied different varieties of potato starches 

and concluded that amylose has a positive correlation with retrogradation. Gidley 

and Bulpin (1989) reported that the rate of aggregation of amylose is strongly 

dependent on chain length. For instance, amylose aggregation is initially slow 

(for DP<50), increases rapidly to a maximum rate (at DP-80), and then becomes 

steadily slower until at DP> 2000, only slow and limited aggregation is observed 

in dilute amylose solution. However, extensive amylose-amylose chain 

interactions occur at -DP 50 (Roulet eta/., 1988). Therefore, a DP in the range 

-50-80 is critical for amylose retrogradation. Jane and Robyt ( 1984) have 

postulated that a DP in the range 50-80 may be responsible for the initial 

retrogradation of starch gels. Dioscorea starches show a high initial rate and 

extent of retrogradation, which implies rapid amylose re-organization 

(Brunnschweiler et a/., 2005). Amylose retrogradation basically involves a 

gelation-via-crystallization process which gives rise to a 8-type X-ray diffraction 

pattern (Gidely 1989, Marsh & Blanshard 1988, Galliard & Bowler 1987, 

Blanshard 1987, Miles eta/., 1985b, Miles eta/., 1985c). The extent of amylose 

retrogradation is known to be an inhibiting factor in the enzymic digestion of 

starch (Morris 1990). 

2.4. 7.4.2.2 Role of amylopectin in retrogradation 

It was first suggested by Schoch and French ( 194 7) that staling of bread 

essentially involves the retrogradation of the amylopectin (AMP) but not the 
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amylose fraction. Amylopectin (AMP) is more stable in solution and retrogrades 

very slowly (Thygesen eta/., 2003). Retrogradation of AMP extends over a long

term, possibly taking several days or weeks to attain maximum crystallinity after 

starch gelatinization (Ring et a/., 1987, Miles et a/., 1985c). Schoch (1965) 

reported that gradual re-association of the amylopectin fraction is mainly 

responsible for long term changes in bread or starch gels during storage. He 

further reported that the amylose fraction does not retrograde immediately on 

cooling. Much evidence suggests that changes in amylopectin are the main 

cause for retrogradation because they are responsible for all long-term 

rheological and structural changes. However, amylose is responsible for the 

short-term changes (Gudmundsson 1994). Amylopectin from A-type starches 

such as cereals, cassava and sweet potato have been shown to retrograde to a 

lesser extent than potato, Dioscorea, pea, and canna amylopectin (Srichuwong 

eta/., 2005a,c, Kalichevsky eta/., 1990, Orford eta/., 1987). The association of 

amylopectin chains in a starch gel is extensive and is thermoreversible at 

temperatures below 100°C (Ring eta/., 1987, Miles eta/., 1985c). However, 

amylose gels are thermally irreversible at this temperature (Gudmundsson 1994). 

The stability of amylopectin crystallites has been shown to be lower than that of 

amylose crystallites. Recrystallized amylopectin melts in the temperature range 

40-100°C (Srichuwong et a/., 2005a, Karim et a/., 2000, Russell 1987b). 

However, amylose crystallites melt at a much higher temperatures (120-170°C) 

(Eerlingen eta/., 1994, Sievert & Pomeranz 1989). 
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2.4. 7.4.2.3 Interactions between amylose and amylopectin on retrogradation 

Yao et a/., (2002) suggested, from studies on 18 different rice cultivars, that 

amylose may interact with the external chains of amylopectin during 

retrogradation. Russell ( 1987b ), postulated that the amylose fraction has 

synergistic effects on amylopectin retrogradation. Vanderputte eta/., (2003) have 

suggested that amylose squeezes itself in between amylopectin chains and 

hence may restrict the possibility of amylopectin chains partially restoring a 

crystalline polymer structure and/or amylose chains could co-crystallize with 

amylopectin chains, resulting in a less perfectly regained crystalline polymer 

system (reflected by a lower enthalpy of retrogradation ~HR of amylopectin). 

2.4.7.4.3 Role of chain length distribution 

The minimum requirement for the aggregation of amylose and amylopectin 

chains has been reported to be 10 (Gidley & Bulpin 1987) and 15 (Ring eta/., 

1987, Robin et a/., 197 4) glucose units, respectively. The relative proportion of 

amylopectin short chains has been shown to inhibit or retard the rate of 

retrogradation (Thygesen et a/., 2003). It has been reported that short [DP 6] 

(Vandeputte et a/., 2003b), medium chains [DP 12-22] (Vandeputte et a/., 

2003b), [DP 14-24] (Levine & Slade 1986, Shi & Seib 1992), [DP 14-18] (Karim 

eta/., 2000), [DP 15-18] (Yao eta/., 2002), [DP 18-19] (Vandeputte eta/., 2003b) 

and long chains > [DP 40] (Silverio et a/., 2000) increase amylopectin 

retrogradation. However, the influence of AMP unit chain length on the extent of 

retrogradation is in dispute. For instance, very short chains [DP 6-9] 

(Gudmundsson 1994, Shi & Seib 1992), [DP 8-11] (Silverio eta/., 2000), and 
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long chains [DP 22-34] (Silverio et a/., 2000), [> DP 25] (Srichuwong et a/., 

2005a, Vandeputte eta/., 2003b) inhibit or retard retrogradation. However, DSC 

studies showed that T0 , Tp and Tc of retrograded starch gels (e.g. potato and 

edible canna) was negatively correlated with shorter chains (DP 8 to 12) and 

positively correlated with longer chains (DP 16 to 26) (Srichuwong eta/., 2005a). 

Yao eta/., (2002) also showed that DP -15-18 facilitates the formation of double 

helices which results in a higher rate of retrogradation. Several studies have 

shown that longer branch-chains increase the extent of retrogradation (Wang et 

a/., 2006, Srichuwong et a/., 2005a, Vandeputte et a/., 2003b, Silverio et a/., 

2000, Shi & Seib 1995 & 1992, Kalichevsky eta/., 1990). For instance, Wang et 

a/., (2006) have suggested that long chain fractions of amylopectin facilitate 

retrogradation in Dioscorea starch gels. It is clear from the above studies, that 

the influence of chain length on the extent of retrogradation is different for 

different starch sources. However, there is no conclusive agreement between 

unit chain length distribution and rate of retrogradation [Table 2-12]. Chain length 

is not the sole factor which determines the retrogradation rate because various 

other factors also influence the extent of retrogradation. 

2.4.7.4.4 Effect of storage temperature and freezing rate 

The first study of the effect of temperature on the rate of retrogradation was 

reported by Maquenne (1904). Several studies (Slade & Levine 1987, Jankowski 

& Rha 1986, Fearn & Russell 1982) have shown that although the rate limiting 

step for starch retrogradation is nucleation, the physicochemical properties of a 

retrograded starch gel depends on the storage temperature (Jankowski & Rha 
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Table 2-12 Amylopectin unit branch chain length distribution of various starches 

Starch source Very short(%) Short(%) Medium(%) Medium long Average Reference 
(%) (%) 

D. alata -variety- TN 2 - - - 41.7(DP<40) 25.5-28.5 Wang eta/., 2006 
D. alata -variety- China long - - - 48.0 (DP <40) 18.8-19.3 Wang eta/., 2006 
D. alata 3.9 (DP 6-8) 18.9 (DP 9-12) 67.5 (DP 13-24) 9. 7 (DP 25-30) - Srichuwong et a/., 2005a 

D. escu/enta 11.6 (DP 6-8) 24.9 (DP 9-12) 56.2 (DP 13-24) 7.3 (DP 25-30) - Srichuwong eta/., 2005a 

Yam (spp. not specified) 19.1(DP 6-12) 44.8 (DP13-24) 14.3 ( DP 25-36) 21.8 (DP>37) 25.8 McPherson & Jane 1999 

Solanum tuberosum normal 10.2 (DP 6-8) 23.5 (DP 9-12) 58.9 (DP 13-24) 7.4 (DP 25-30) - Srichuwong et a/., 2005a 
Solanum tuberosum normal 13.1 (DP 6-12) 44.4 (DP13-24) 14.0 ( DP 25-36) 28.5 (DP>37) 28.6 McPherson & Jane 1999 

_.. Solanum tuberosum waxy 14.8 (DP 6-12) 48.4 (DP13-24) 14.4 ( DP 25-36) 22.4 (DP>37) 25.8 McPherson & Jane 1999 
w 
w 

Ipomea batatas 11.0 (DP 6-8) 27.9 (DP 9-12) 54.1 (DP 13-24) 7.0 (DP 25-30) - Srichuwong eta/., 2005a 
Ipomea batatas 17.1 (DP6-12) 48.1 (DP13-24) 13.6 ( DP 25-36) 23.4 (DP>37) 26.3 McPherson & Jane 1999 

Metrozylon sagu 9.0 (DP 6-8) 28.1 (DP 9-12) 56.2 (DP 13-24) 6. 7 (DP 25-30) - Srichuwong eta/., 2005a 

Cana edulis 7.2 (DP 6-8) 21.5 (DP 9-12) 63.4 (DP 13-24) 7.9 (DP 25-30) - Srichuwong eta/., 2005a 

Xanthosoma sagitifolium 7.4 (DP 6-8) 27.3 (DP 6-8) 58.7 (DP 6-8) 6.6 (DP 6-8) - Srichuwong eta/., 2005a 

Co/ocasia esculenta (taro) 7.4 (DP 6-8) 28.9 (DP 6-8) 57.3 (DP 6-8) 6.4 (DP 6-8) - Srichuwong et a/., 2005a 

Maranta arundinacea 4.0 (DP 6-8) 27.7 (DP 6-8) 58.4 (DP 6-8) 9.9 (DP 6-8) - Srichuwong et a/., 2005a 

Manihot esculenta 9.9 (DP 6-8) 36.3 (DP 6-8) 48.3 (DP 6-8) 5.5 (DP 6-8) - Srichuwong eta/., 2005a 

Note: This table shows that there is no consensus with regard to classifying the amylopectin unit branch length into: very short, 
short, medium and medium long. Degree of polymerization (DP) is indicated in parenthesis. 



1986) and storage period (Colwell et a/., 1969). The nucleation rate increases 

with a decrease in temperature and the propagation rate increases with 

increasing temperature (Wunderlich 1976). Thygesen eta/., (2003) have shown 

that rate of retrogradation increases when the temperature is lowered from 25 to 

5°C. It has been shown that fast or slow cooling has no effect on rate of 

crystallization (Mciver eta/., 1968). 

2.4. 7 .4.5 Effect of phosphorous content 

The effect of covalently linked phosphate on retrogradation is less clear. It is 

known that amylose readily retrogrades. However, amylose retrogradation is 

decreased in the presence of high levels of starch phosphate monoesters 

(Thygesen et a/., 2003). In waxy starches, retrogradation is dramatically 

suppressed, but in this situation phosphorus plays a less significant role 

(Thygesen eta/., 2003). 

2.4.7 .4.6 Lipid 

It is known that amylose complexes with lipids during gelatinization (Moorthy 

2006, Kugimiya et a/., 1980, Zoble 1973). It is believed that only the outer 

branches of the amylopectin could complex with lipids (Eiiasson & Ljunger 1988, 

Batres & White 1986, Evans 1986). Yao et a/., (2002) hypothesized that 

amylose-lipid interactions decrease the amount of amylose available for 

interaction with the external chains of amylopectin, thus leading to a decrease in 

co-crystallization of amylose and amylopectin. Various theories have been put 

forward to explain the role of lipids on starch retrogradation such as : (1) 
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formation of a V-amylose-lipid complex retards chain mobility, thereby 

decreasing the extent of retrogradation [Gudmundsson1992, Gudmundsson & 

Eliasson 1990, Eliasson & Lunger 1988, Slade & Levine 1987, Evans 1986, 

Batres & White 1986], (2) the V-amylose-lipids complex changes the water 

distribution around the helical complex thereby retarding retrogradation 

[D'Appolnia & Morad 1981], and (3) lipids reduce retrogradation by mechanically 

covering parts of the starch granule, reducing the ability of starch molecules to 

absorb water [Germani eta/., 1983]. 

2.4.8 Annealing 

Overview 

Gough and Pybus (1971) showed that elevated gelatinization temperatures and a 

sharply narrowed gelatinization temperature range occurs when wheat starch is 

treated with water at 50°C for 72h. This was similar to that observed in annealed 

starches. However, the above authors never used the term annealing for their 

treatment. Ahmed and Lelievere (1978) were the first to define the term 

annealing as an increase in order of crystalline material. A general definition of 

annealing in the context of polymer science was coined by Wunderlich (1976). In 

polymer science, the word annealing (from the old English anael>onaelan

heat) is used to describe the improvement of crystallization by heating to 

temperatures below the melting point of crystallites which results in growth of 

crystalline areas, perfection of crystals and a change to a more stable crystalline 

structure. Annealing of starch (a semicrystalline polymer) is a physical treatment 

of starch granules in the presence of heat and excess water. The effect of 
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moisture content on in vitro annealing of wheat starch (Tester eta/., 1998) has 

shown (by the use of differential scanning calorimetry [DSC]) that annealing can 

be initiated at room temperature when the moisture content exceeds 22% on a 

total weight basis, but is restricted (in terms of its effect on increasing the 

gelatinization temperature) unless it exceeds 60% by weight. Annealing is a 

process whereby starch granules in excess {>60% [w/w]) or at intermediate water 

content ( 40% [w/w]) is held at a temperature above the glass transition 

temperature (T 9) but below the onset {T 0 ) temperature of gelatinization for a set 

period of time (Tester & Debon 2000, Jacobs & Delcour 1998). T9 refers to the 

temperature at which the amorphous domains of the starch granule are 

transformed from a rigid glassy to a mobile rubbery state when heated in the 

presence of solvents such as water or glycerol. These solvents are refered to as 

plasticizers {Tester & Debon 2000). The plasticizing effect of water increases 

glucan chain mobility within the amorphous lamellar regions of the 

semicrystalline growth ring (Perry & Donald 2000). Several authors {Tester & 

Debon 2000, Jacobs & Delcour 1998, Muhrbeck & Svensson 1996, Seow & Teo 

1993, Larsson & Eliasson 1991, Tester & Morrison 1990b, Slade & Levine 1987, 

Lorenz et a/., 1984) have described starch annealing as a crystal 

growth/perfection, diffusion controlled non-equilibrium process. 

2.4.8.1 Mechanism of annealing 

In semicrystalline polymers, annealing has been interpreted as a: (1) 'sliding 

diffusion', which entails the movement of complete molecular sequences within a 

crystalline lattice (this mechanism being favoured by high mobility of the chains in 
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the crystals), and/or (2) a 'complete or partial fusion' of crystals and subsequent 

re-crystallization of the melted materials at the annealing temperature. 

Experimental evidence supports both mechanisms (Martuscelli & Pracella 1974). 

According to the side-chain liquid crystalline analogy of Waigh (1997), the rigid 

amylopectin double helices are attached to an amorphous backbone [Figure 2-

14-A]. Waigh et a/., (1996) and Perry and Donald (2000) have proposed that 

double helices of the unhydrated form of starch are intact, but are not arranged 

regularly side by side [Figure 2-14-A], due to the differing lengths of radial and 

tangential branches [Figure 2-14-8] (Waigh eta/., 1996). This state is called a 

nematic, collapsed or a 'withered state' [Figure 2-14-A]. The amorphous region 

of the granule is the area most vulnerable to the initial water absorption and 

plasticization. Before hydration the amorphous area is more glassy and immobile 

[Figure 2-14-8]; hydration of the starch granule increases the mobility of the 

amorphous regions. This induces vibrational movement of tangential and radial 

chains in both amorphous and crystalline domains [Figure 2-14-8]. 

Simultaneously hydration causes limited but reversible granule swelling, allowing 

mobility of crystalline domains [Figure 2-14-A]. An increase in annealing 

temperature (> T 9 but < T 0 ) and excess water accelerates the rate of hydration 

and increases glucan chain mobility [Figure 2-14-8]. This dynamic nature allows 

limited side by side movement of the double helices resulting in the formation of 

a smectic-type structure [Figure 2-14-C] (Waigh 1997, Perry & Donald 2000). An 

increase in the incubation temperature enhances, initially, the order of the 

amorphous lamellae and, subsequently, the order of double helices of 
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Figure 2-14 Schematic representation of mechanism of annealing 

(A) Hydration of starch at room temperature, (B) Crystalline perfection during 

annealing, (C) Movement of crystalline lattices during annealing 

Adapted from Tester & Debon (2000), Waigh et a/.,(1996) and 

Martuscelli & Pracella ( 197 4) with permission of The Royal Society of Chemistry 

Elsevier BV, and Elsevier 
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amylopectin (Tester eta/., 1999). At this stage, molecules are closely aligned in a 

distinct series of layers, with their axes lying perpendicular to the plane of the 

layers [Figure 2-14-C]. With the progress of annealing the initially weaker or 

imperfect crystallites gradually disappear, while the rest of the crystallites 

become more perfect due to fusion and re-crystallization. The crystallite 

perfection on annealing was first suggested by Lorenz eta/., (1980). Stute (1992) 

postulated that crystallite perfection may also occur due to: (1) larger crystal 

formation from smaller crystals, (2) a change of crystal shape, (3) a change in 

direction of crystal growth, (4) orientation of crystallites, (5) interactions between 

crystallites, and (6) changes within amorphous regions. This clearly indicates that 

crystalline perfection does not necessarily correlate with an increase in 

crystallinity. The native starch (in vivo) contains crystallites of varying stabilities. 

However, annealing decreases the variations in crystalline stabilities resulting in 

more homogenous crystallites (Tester & Debon 2000, Tester eta/., 1998, Jacobs 

eta/., 1998b, Hoover & Vasanthan 1994a, Larsson & Eliasson 1991, Paredes

Lopez & Hernandez-Lopez 1991, Tester & Morrison 1990b, Yost & Hoseney 

1986). Jacobs eta/., (1998a) and Hoover & Vasanthan (1994a) postulated that 

amylose chain mobility could increase on annealing, resulting in the formation of 

double helices arising from interactions between amylose-amylose and/or 

amylose-amylopectin chains. 

2.4.8.2 Single, double and multi-step annealing 

Studies on annealing have been mainly conducted as a single cycle event [single 

step annealing] (Tukomane eta/., 2007, Kohyama & Sasaki 2006, Waduge eta/., 
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2006, Vermeylen eta/., 2006, Qi eta/., 2005, Tester eta/., 2005, Kiseleva eta/., 

2005 & 2004, Genkina et a/., 2004a,d, Ozcan & Jackson 2003, Muhrbeck & 

Wischmann 1998, Hoover & Manuel 1996, Muhrbeck & Svensson 1996, Jacobs 

eta/., 1996 & 1995, Hoover & Vasanthan 1994a, Seow & Vasanti-Nair 1994, 

Seow & Teo 1993, Stute 1992, Larsson & Eliasson 1991, Krueger eta/., 1987b). 

Whereas, double (Jacobs eta/., 1998a,b, & c) and multi-step (Nakazawa & Wang 

2004 & 2003, Knutson 1990) annealing have been carried out to a limited extent. 

[Table 2-13]. The multi-step annealing involves initial annealing below T 0 of the 

native starch, then re-annealing below To of the annealed starch. Since the first 

annealing increases T 0 , the sample could be held at a higher annealing 

temperature, that is just below the new T0 , without triggering gelatinization. This 

process could be repeated until no further increase in To of the annealed starch. 

2.4.8.3 Starch to water ratio on annealing treatment 

Annealing of starches has been studied at various starch: water ratios (1 :1, 1:3, 

1 :5) and at temperatures ranging from 40 to 75°C (Kozlov eta/., 2007, Tukomane 

eta/., 2007, Kohyama & Sasaki, 2006, Vermeylen eta/., 2006, Kiseleva eta/., 

2005, 2004, Lawai 2005, Genkina eta/., 2004a, Genkina et a/.,2004b, Gomez et 

a/.,2004, Kiseleva et a/., 2004, Nakazawa and Wang, 2004, Qi et a/., 2004, 

Nakazawa & Wang, 2003, Ozcan & Jackson, 2003, Atichokudomchai et a/.,2002, 

Tester eta/., 2000, Andreev, et a/.,1999, 1998a, Jacobs et a/.,1998b, Jacobs et 

a/., 1998c, Tester et a/., 1998, Wang et a/., 1997, Hoover & Manuel, 1996, 

Muhrbeck & Svensson, 1996, Jacobs et a/.,1995, Seow & Vasanti-Nair 1994, 

Hoover & Vasanthan 1994a,b, Seow & Teo 1993, Stute 1992, Cameron & 
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Table 2-13 Annealing conditions for various starches 

Starch source Determinative Annealing conditions: No. of Time H20: Reference 
factor temperature (°C), container steps starch 

method of incubation ratio 
Potato, cassava, corn * 40, 45, 50°C**a Multi 24h 3:1 Nakazawa & Wang 2004 
Potato, wheat, cassava, mung * 50°C**a Multi 24h 3:1 Nakazawa & Wang 2003 
Potato, wheat, and pea * 55-70°C** Multi 2-72h 3:1 Knutson 1990 
Potato, wheat and pea 3-4%below T P (K) -45-50°C, in H20 batha 1&2 24-48h 2:1 Jacobs eta/., 1998a 
Potato and wheat 3-4%below T P (K) 48-55°C, in H20 batha 1&2 24h 2:1 Jacobs eta/., 1998b 
Potato, wheat, and pea 3-4%below T p (K) -45-50°C, in H20 batha 1&2 24h 2:1 Jacobs eta/., 1998c 
Potato, wheat, and corn * 20-50°C, samples in H20 bath Single 72h 10:1 Kohyama & Sasaki 2006 
Potato 3.3%below T P (K) -44-51 °C, in H20 batha Single 24h 2:1 Vermeylen eta/., 2006 
Potato different varieties * 5-25°C: in vivo tuber & 55°C: in vitro** Single 7 days 4:1 Tester eta/., 2005 
Potato 2-3°C below T 0 57-68°C, in H20 batha Single 0-10h 97:3 Genkina eta/., 2004d 
Potato, and waxy corn 5°C belowT0 40-45°C, in DSC pan Single 2min-48h 4:1 Muhrbeck & Wischmann 1998 
Potato, wheat, pea, rice 3-4%below T P (K) 43-55°C, in H20 batha Single 24h 2:1 Jacobs eta/., 1996 & 1995 

~ Potato, wheat, lentils, & oat * 50°C,in an air avena Single 0.5- 72h 3:1 Hoover & Vasanthan 1994a 
...... Potato * 52°C, continuous rotation in oil bath Single 95h 5:1 Stute 1992 

Potato, normal & waxy corn * 25-50°C** Single 10min 48h 1:1 Larsson & Eliasson 1981 

Sweet potato 2-3K below T 0 54-78°C, in thermostat cella Single 0-10h 97:3 Genkina eta/., 2004a 
Cassava * Spray dried at 60°C NA NA NA Tukomane eta/., 2007 
Cassava 4% below T P (K) 51°C, in H20 bath8 Single 24h 3:1 Atichokudomchai et a/., 2002 
Sago * 60°C, 0.1 M acetate buffer** Single 0.5-Sh 4:1 Wang eta/., 1996 
Breadfruit * 50°C, in H20 bath8 Single 48h 2:1 Adebowale eta/., 2005a 
Black & pinto beans, lentils, pea * 55°C** Single 72h 3:1 Hoover & Manuel 1996 

Barley * 50°C, in H20 batha Single 72h 3:1 Waduge eta/., 2006 
Barley (grains & starch) 2-3 K below T 0 7-20°C:in situ & -30-46°C:in vitro** Single 0-10h 2:1' 3:1 Kiseleva eta/., 2004 
Corn: 9 varieties: normal/waxy * 50-55°C8 Single 3-7 days 96:4 Qi et a/., 2005 
Corn: normal, waxy, HAM * 50°C** Single 48h NA Kruger eta/., 1987b 
Wheat: waxy, normal, HAM 2-3 K below T 0 56-63°C, in H20 bath8 Single 0-10h 97:3 Kiseleva et a/., 2005 
Wheat * 27-56°C, in sealed pan** Single 30 min 1 :1 Yost & Hoseney 1986 
Sorghum * 50°C** NA 24h NA Adebowale et a/., 2005b 

*Determinative factor of annealing was not specified ** Method of incubation was not available NA: Data was not available 

1 & 2 indicates single and double step annealing, respectively a: indicates sample was placed in sealed glass container HAM: High amylose 



Donald 1992, Larsson & Eliasson 1991, Lopez & Lopez 1991, Knutson 1990, 

Krueger et a/., 1987a, Krueger et a/., 1987b, Yost & Hoseney 1986, Kuge & 

Kitamura 1985). Table 2-13 shows annealing conditions (starch: water, 

temperature, time, steps) for various starches. 

2.4.8.4 Probes used in the study of annealing 

The effect of annealing on the molecular structure and properties of starches has 

been probed using XRD [wide angle & small angle] (Tukomane et a/., 2007, 

Waduge et a/., 2006, Qi et a/., 2005, Jacobs et a/., 1998b, Muhrbeck & 

Wischmann 1998, Hoover & Manuel 1996, Cameron & Donald 1992, Stute 1992, 

Lorenz eta/., 1980, Gough & Pybus 1971), DSC (Waduge, eta/., 2006, Qi eta/., 

2005, Freitas eta/., 2004, Kiseleva eta/., 2004, Nakazawa & Wang 2003, Ozcan 

& Jackson 2003, Tester eta/., 2000, Jacobs & Delcour 1998, Tester eta/., 1998, 

Jacobs eta/., 1998b,c & 1995, Muhrbeck & Svensson 1996, Wang eta/., 1997, 

Hoover & Vasanthan 1994a, Ziegler eta/., 1993, Stute 1992, Larsson & Eliasson 

1991, Muhrbeck & Eliasson 1991, Liu & Lelievre 1991 b, Paredes-Lopez & 

Hernandez-Lopez 1991, Knutson 1990, Tester & Morrison 1990b, Krueger eta/., 

1987a,b, Slade & Levine 1987, Yost & Hoseney 1986, Zeleznak & Hoseney 

1987, Kuge & Kitamura 1985, Lorenz eta/., 1984, Lorenz eta/., 1980, Lorenz & 

Kulp 1978a), 13C cross polarization magic angle spinning/NMR C3C-CP 

MAS/NMR] (Tester et a/., 2000 & 1998, Jacobs et a/., 1998c), microscopy 

(Waduge eta/., 2006, Kiseleva & et at., 2005, Jacobs eta/., 1998c, Hoover & 

Vasanthan 1994a, Stute 1992, Gough and Pybus 1971, Wiegel 1933), 

susceptibility to acids (Waduge eta/., 2006, Hoover & Vasanthan 1994a, Jacobs 
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et a/., 1998a, Tester et a/., 1998, Nakazawa & Wang 2003), and enzymes 

(Jacobs eta/., 1998c, Wang eta/., 1997, Hoover & Manuel 1996, Lauro & eta/., 

1993, Hoover & Vasanthan 1994a, Kuge & Kitamura 1985, Lorenz eta/., 1980, 

Gough & Pybus 1971 ), granule swelling (Waduge eta/., 2006, Adebowale eta/., 

2005a, Nakazawa & Wang 2004, Tester et a/., 1998, Hoover & Vasanthan 

1994a), and amylose leaching (Waduge et a/., 2006, Jacobs et a/., 1998b, 

Eliassen & Gudmundsson 1996, Hoover & Vasanathan 1994a, Knutson 1990, 

Krueger et a/., 1987a, Lorenz eta/., 1984) and pasting (Jacobs et a/., 1995, 

Hoover & Vasanthan 1994a, Stute 1992). Annealing conditions for various 

botanical sources are presented in Table 2-13. 

2.4.8.5 Effect of annealing on structural changes 

The following changes have been shown to occur on annealing: a polymorphic 

transformation of the A+B pattern to the A-pattern (Waduge eta/., 2006, Genkina 

et a/., 2004c), increase in granule stability (Hoover and Vasanthan 1994a), 

crystallite growth and perfection/optimization (Tester & Debon 2000, Tester eta/., 

1998, Jacobs et a/., 1998b, Hoover & Vasanthan 1994a, Larsson & Eliassen 

1991, Paredes-Lopez & Hernandez-Lopez 1991, Tester & Morrison 199Gb, Yost 

& Hoseney 1986), increase in granule rigidity (Jacobs et a/., 1995), twisting of 

unordered ends of double helices (Tester et a/., 1999, Tester et a/., 1998), 

glucan chain interactions within the amorphous and crystalline domains of the 

granule (Jacobs & Delcour 1998, Hoover and Vasanthan 1994a, Stute 1992), 

increase in order within the amorphous domain without increase in crystallinity 

(Tester & Debon 2000, Jacobs & Delcour 1998), development of crystallinity in 
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the amorphous regions of the granule (Munzing 1989, Krueger eta/., 1987a,b), 

formation of double helices and compartmentalization of AM-AM, AMP-AMP and 

AM-AMP helices (Atichokudomchai eta/., 2002, Tester eta/., 2000, Jacobs eta/., 

1998a,b, Shi eta/., 1998, Hoover and Vasanthan 1994a, Seow & Vasanti-Nair 

1994, Morrison et a/., 1993a, Knutson 1990), induce AM-lipid interactions 

(Jacobs eta/., 1998b), extra reinforcing of a-D-(1---+6) linkages (Jacobs eta/., 

1998a), polymer chain realignment within granules and partial crystallite melting 

(Marchant & Blanshard 1980), mobility differences in amorphous or crystalline 

regions (Stute 1992, Nakazawa eta/., 1984), reorientation of the crystallites (e.g. 

amylose) within the amorphous matrix (Stute 1992), increase binding (coupling) 

forces between crystallites and the amorphous matrix (Stute 1992), and increase 

in glassy nature (more rigid and less mobile) of amorphous material {Tester & 

Debon 2000). However, annealing has been shown to have no influence on the 

wide angle X-ray diffraction pattern (Tukomane eta/., 2007, Waduge eta/., 2006, 

Qi et a/., 2005, Muhrbeck & Wischmann 1998, Hoover & Manuel 1996, Stute 

1992, Gough & Pybus 1971), peak position tansformation (Muhrbeck & 

Svensson 1996) and d-spacing (Muhrbeck & Svensson 1996, Hoover and 

Vasanthan 1994a). Vermeylen eta/., (2006) have shown by small angle X-ray 

scattering studies on potato starch, that the 9 nm scattering intensity increases 

post-annealing. For instance, the 9 nm scattering intensity was more 

pronounced at 51°C (close to To) than at 44 or 47°C. The enhanced intensity 

was attributed to more efficient packing (increases density of the crystalline 

lamellae) of the double helices. The enhanced density contrast between the 
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crystalline and amorphous lamellae was also observed by Kiseleva eta/., (2005) 

and Jacobs eta/., (1998b). 

2.4.8.6 Effect of annealing on granule morphology 

Granule morphology, granule size distribution and surface characteristics play an 

important role in many food and non-food applications of starch, it was surprising 

to find that there is a dearth of information (especially for tuber & root starches) 

on the effect of annealing on the above parameters. Several authors (Waduge et 

a/., 2006, Jacobs eta/., 1998c, Hoover & Vasanthan 1994a, Stute 1992, Wiegel 

1933) have found no changes to granule morphology on annealing of wheat, oat, 

lentil, barley (certain cultivars) and potato starches. However, Kiseleva et a/., 

(2005) observed that the lens shaped granules of high amylose and waxy wheat 

starches were slightly deformed on annealing. The extent of this deformation 

being greater in the latter. Gough and Pybus (1971) observed a granule size 

increase (5 ~m) on annealing of normal wheat starch. Wang eta/., (1997) have 

postulated that annealing could create pores or fissures. Waduge eta/., (2006) 

reported that in some cultivars of barley, pore size increased slightly on 

annealing. Kiseleva eta/., (2003) reported that the Maltese-cross and concentric 

growth rings remain unchanged on annealing. However, concentric growth rings 

were much denser after annealing. 

2.4.8. 7 Effect of annealing on gelatinization characteristics 

Annealing has been shown to increase the gelatinization temperatures (To, T P• 

T c) and decrease the gelatinization temperature range (T c-T 0 ) in all starches 
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(Kohyama & Sasaki 2006, Vermeylen eta/., 2006, Waduge, eta/., 2006, Kiseleva 

et a/., 2004, Tester eta/., 2005, Tester eta/., 2000, Jacobs & Delcour 1998, 

Tester eta/., 1998, Jacobs eta/., 1998c & 1995, Muhrbeck & Svensson 1996, 

Wang eta/., 1997, Hoover & Vasanthan 1994a, Stute 1992, Larsson & Eliasson 

1991, Muhrbeck & Eliasson 1991, Liu & Lelievre 1991 b, Parades-Lopez & 

Hernandez-Lopez 1991, Knutson 1990, Tester & Morrison 1990b, Krueger et al., 

1987a,b, Slade & Levine 1987, Yost & Hoseney 1986, Kuge & Kitamura 1985, 

Lorenz et al., 1984, Lorenz et a/., 1980, Lorenz & Kulp 1978a). However, 

gelatinization enthalpies (~H) have been reported to increase (Waduge, et a/., 

2006, Kiseleva et a/., 2005, Kiseleva et a/., 2004, Genkina et a/., 2004b, 

Nakazawa & Wang 2003 & 2004, Atichokudomchai eta/., 2002, Jacobs eta/., 

1998b,c, Hoover & Manuel 1996, Muhrbeck & Svensson 1996, Jacobs et 

a/.,1995, Hoover & Vasanthan 1994a, Larsson & Eliasson 1991, Knutson 1990, 

Krueger eta/., 1987a,b, Slade & Levine 1987), remain unchanged (Waduge, et 

a/., 2006, Qi eta/., 2005, Jacobs eta/., 1998c, Muhrbeck & Wischmann 1998, 

Eerlingen eta/., 1996, Wang eta/., 1997, Seow & Teo 1993, Shi & Seib 1992, 

Stute 1992, Larsson & Eliasson 1991, Yost & Hoseney 1986) and decrease 

(Kohyama & Sasaki 2006, Larsson & Eliasson 1991) on annealing [Table 2-14]. 

The increase in gelatinization temperature has been shown to be most 

pronounced for To and least for Tc [Table 2-14]. Annealing has a greater 

influence on To. since To represents melting of the weakest crystallites 

(Nakazawa & Wang 2003, Wang eta/., 1997, Larsson & Eliasson 1991). These 

crystallites are more susceptible to crystallite perfection on annealing than 
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Tables 2-14 Gelatinization parameters and annealing conditions of various starches 

Starch source Ta (0C) Tp (OC) Tc Tc-Ta ~H (J/g) Annealing*: H20 content(%), incubation period (0 C) Reference 
(oC) (OC) DSC scanning**: range {0 C}, rate {°C/min} 

Potato- native 60.4 64.4 69.7 9.3 16.9 20-140°C, 10°C/min** Nakazawa & Wang 2004 
Potato- annealed 71.4 74.5 78.5 7.1 18.5 75%, 50°C-24h, multi-step*; 20-140°C, 10°C/min** Nakazawa & Wang 2004 
Potato- native 58.4 67.3 73.5 15.1 16.5 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Potato- annealed 69.9 73.3 78.1 8.2 18.5 75%, 50°C-24h, multi-step; 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Potato- native 59.1 61.9 66.8 7.7 18.3 20-130°C, 4°C/min** Vermeylen eta/., 2006 
Potato- annealed 61.5 63.6 68.0 6.5 18.4 66%, 44°C-24h, 1 step* ; 20-130°C, 4°C/min** Vermeylen eta/., 2006 
Potato- annealed 63.1 65.0 60.2 6.2 18.4 66%, 47°C-24h, 1 step*; 20-130°C, 4°C/min** Vermeylen eta/., 2006 
Potato- annealed 64.9 66.8 71.1 6.2 18.3 66%, 51 °C-24h, 1 step* ; 20-130°C, 4°C/min** Vermeylen eta/., 2006 
Potato- native NA NA NA NA NA 25-130°C, 1°C/min** Kohyama & Sasaki 2006 
Potato- annealed 54.3 58.1 70.4 16.1 19.1 90%, 20°C-72h,1 step*; 25-130°C, 1°C/min** Kohyama & Sasaki 2006 
Potato- annealed 61.1 63.1 70.7 9.6 18.0 90%, 50°C-72h, 1 step*; 25-130°C, 1°C/min** Kohyama & Sasaki 2006 
Potato- native 59.1 63.2 70.3 11.1 18.6 5-100°C, 10°C/min** Tester et a/., 2005 
Potato- annealed 70.3 72.8 78.4 8.3 20.6 80%, 55°C-7days, 1 step*; 5-100°C, 10°C/min** Tester et a/., 2005 

....... 
~ Potato- native 58.0 62.5 70.5 12.5 18.7 5-150°C, 4°C/min** Jacobs eta/., 1998a 
-......! Potato- annealed 64.7 67.5 72.7 8.0 20.0 * Jacobs et a!., 1998a & c 66%, -50°C/24h, 1 step ; 5-150°C, 4°C/min** 

Potato- annealed 67.3 69.8 74.2 6.9 20.5 66%, 54°C-48h, 2 step* ; 5-150°C, 4°C/min** Jacobs eta/., 1998a & c 
Potato- native 57.6 61.3 66.5 8.9 17.5 5-150°C, 2°C/min** Jacobs et a/., 1998b 
Potato- annealed 63.4 65.5 69.3 5.9 19.1 66%, 50°C-24h, 1 step* ; 5-150°C, 2°C/min** Jacobs et at., 1998b 
Potato- annealed 65.7 67.8 71.5 5.8 19.1 66%, 55°C-48h,1 step*; 5-150°C, 2°C/min** Jacobs eta/., 1998b 
Potato- native 58.6 63.0 72.2 13.6 19.2 5-150°C 4°C/min** Jacobs eta/., 1996 
Potato- annealed 64.8 67.7 73.0 8.2 19.9 66%, 50°C-24h, 1 step* ; 5-150°C 4°C/min** Jacobs eta/., 1996 
Potato- native 58.6 63.0 72.2 13.6 19.2 66%, 5-150°C, 4°C/min** Jacobs eta/., 1995 
Potato- annealed 64.8 67.7 73.0 8.2 19.9 66%, 50°C-24h, 1 step; 66%, 5-150°C, 4°C/min** Jacobs et at., 1995 
Potato- native 54.0 58.8 64.5 10.5 16.8 40-120°C, 5°C/min** Hoover & Vasanthan 1994a 
Potato- annealed 71.2 74.2 78.4 7.2 20.2 75%, 50°C-72h, single step*; 40-120°C, 5°C/min** Hoover & Vasanthan 1994a 

Cassava- native 63.7 69.6 77.5 13.8 10.7 20-140°C, 10°C/min** Nakazawa & Wang 2004 
Cassava- annealed 69.5 73.3 79.5 10.0 13.5 75% 50°C-24h, multi-step*; 20-140°C, 10°C/min** Nakazawa & Wang 2004 
Cassava- native 61.3 70.1 76.2 14.9 10.6 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Cassava- annealed 69.1 73.0 79.4 10.3 13.6 75%, 50°C/24h, multi-step*; 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Cassava- native 65.4 71.5 81.5 16.1 8.8 20-120°C, 1 0°C/min** Atichokudomchai et a/.,2002 
Cassava- annealed 70.7 74.0 81.3 10.6 9.4 75%. 2°C-24h. 1 step*; 20-120°C, 10°C/min** Atichokudomchai et a/.,2002 



Tables 2-14 Gelatinization parameters and annealing conditions of various starches (cont.,) 

Starch source To (°C) Tp Tc Tc-To ~H (J/g) Annealing*: H20 content(%), incubation period (0 C) Reference 
("C) (oC) (oC) DSC scanning**: range (°C}, rate (°C/min} 

Sago-native 63.1 70.1 - - 15.15 30-11 0°C, 1 0°C/min** Wang et at., 1996 
Sago -annealed 65.0 70.2 - - 15.24 80%, 60°C-0.5h, 1 step*; 30-110°C, 10°C/min** Wang et at., 1996 
Sago -annealed 96.6 72.8 - - 15.16 80%, 60°C-5h,1 step*; 30-110°C, 10°C/min** Wang et at., 1996 

Wheat-native NA NA NA NA NA 25-130°C, 1 °C/min** Kohyama & Sasaki 2006 
Wheat-annealed 48.2 56.2 68.5 20.3 10.6 90%, 20°C-72h, 1 step*; 25-130°C, 1°C/min** Kohyama & Sasaki 2006 
Wheat-annealed 60.1 62.5 68.1 8.0 9.9 90%, 50°C-72h, 1 step*; 25-130°C, 1°C/min** Kohyama & Sasaki 2006 
Wheat-native 52.5 58.7 71.5 19.0 10.6 5-100°C, 10°C/min** Tester et at., 1998 
Wheat-annealed 54.6 59.4 71.3 16.7 10.2 % NA, 25°C-6days, 1 step*; 5-100°C, 10°C/min** Tester et at., 1998 
Wheat-annealed 59.2 62.2 72.9 13.7 10.4 % NA, 35°C-6days,1 step*; 5-100°C, 10°C/min** Tester et a/., 1998 
Wheat-annealed 63.7 66.3 76.3 12.6 10.1 % NA, 45°C-6days,1 step*; 5-100°C, 10°C/min** Tester et at., 1998 
Wheat-native 52.0 56.8 63.5 11.5 10.3 5-150°C, 2°C/min** Jacobs eta/., 1998b 
Wheat-annealed 60.2 62.3 65.6 5.4 11.7 66%, 48°C-24h, 1 step*; 5-150°C, 2°C/min** Jacobs et at., 1998b 
Wheat-native 51.5 56.2 61.6 10.1 10.6 5-150°C, 4°C/min** Jacobs et at., 1996 
Wheat-annealed 59.7 61.7 64.9 5.2 11.0 66%, 43°C-24h, 1 step* ; 5-150°C, 4°C/min** Jacobs et at., 1996 
Wheat-native 54.4 58.7 63.6 9.2 11.8 5-150°C, 4°C/min** Jacobs et at., 1998a 
Wheat-annealed 61.6 63.7 66.9 5.3 12.2 66%, -52°C-24h, 1 step* ; 5-150°C, 4°C/min** Jacobs et at., 1998a & c 
Wheat-annealed 64.2 66.3 69.7 5.5 12.3 66%, -52°C-24h,1, 2 step*; 5-150°C, 4°C/min** Jacobs et at., 1998a & c 
Wheat-native 58.7 65.0 68.5 9.8 10.0 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Wheat-annealed 69.1 71.7 75.0 5.9 12.4 75%, 50°C-24h, multi-step*; 20-120°C, 10°C/min** Nakazawa & Wang 2003 

Normal corn-native 68.1 72.3 77.3 9.2 12.3 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Normal corn-annealed 71.3 74.3 78.8 7.5 14.3 75%, 50°C-24h, multi-step*; 20-120°C, 1 0°C/min** Nakazawa & Wang 2003 
Waxy corn-native 65.3 72.8 78.2 12.9 14.9 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Waxy corn-annealed 71.4 74.4 78.8 7.4 17.5 75%, 50°C-24h, multi-step*; 20-120°C, 1 0°C/min** Nakazawa & Wang 2003 
Hylong V-native 68.0 76.2 106.8 38.1 16.5 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Hylong V-annealed 71.9 78.5 108.8 36.9 18.8 75%, 50°C/24h, multi-step*; 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Hylong VII-native 68.9 82.0 110.8 41.9 16.7 20-120°C, 10°C/min** Nakazawa & Wang 2003 
Hylong VII-annealed 73.3 85.1 115.0 41.7 20.1 75% 50°C-24h, multi-step*; 20-120°C, 10°C/min** Nakazawa & Wang 2003 

Annealing conditions: Incubation was carried out in constant temperature in a water bath NA: Data not available 



crystallites that have higher stability (represent by T c) (Jacobs et a/., 1998b ). The 

decrease in Tc-To on annealing indicates greater homogeneity and cooperative 

melting of crystallites (Jacobs & Delcour 1998). Increase in starch mobility within 

the amorphous regions leads to a molecular re-organization which involves 

interaction between amylose-amylose (AM-AM) and/or amylose-amylopectin 

(AM-AMP) chains (Atichokudomchai eta/., 2002, Tester eta/., 2000, Jacobs et 

a/., 1998a,b, Shi eta/., 1998, Hoover & Vasanthan 1994a, Seow & Vasanti-Nair 

1994, Morrison et a/., 1993a, Knutson 1990). This interaction together with 

crystallite perfection increases T 9. Consequently, this increases T 0 , T P and T c in 

the annealed starches. Qi et a/., (2005), Kiseleva et a/., (2004), Tester et a/., 

(2000) and Tester et a/., (1998) have postulated that changes to the 

gelatinization transition temperataures on annealing could also be due to 

lengthening of the double helices that were not optimized during biosynthesis. 

Kiseleva et a/., (2004) have postulated that twisting of unordered end of double 

helices during annealing leads to the formation of additional intrahelical hydrogen 

bonds. The intertwining being facilitated by the increase in glucan chain mobility 

that occurs on annealing. Kiseleva et a/., (2004) have attributed the increase in 

melting temperature on annealing to an increase in crystalline lamellae thickness, 

resulting from the twisting of the unordered ends of the double helices. For such 

a mechanism to have a significant impact on gelatinization temperatures, the free 

ends of the double helices should be long enough to intertwine and form strong 

intrahelcial hydrogen bonds. Similarly, Vermeylen eta/., (2006) have postulated 
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that the increase in gelatinization temperatures on annealing may be due to 

higher packing density. 

Cooke and Gidley (1992) have shown by using 13C cross polarization magic 

angle spinning/NMR and DSC that LlH is a reflection of the number of double 

helices that unravel and melt during gelatinization. Thus, starches in which LlH 

remains the same pre- and post-annealing, suggests that the only molecular re

organization that occurs in these starches is crystalline perfection, and that the 

double helical order (number of double helices and stabilizing hydrogen bonds) is 

not influenced by annealing. Evidence for the constancy of LlH pre- and post

annealing in wheat (Tester eta/., 1998) and corn (Tester eta/., 2000) starch was 

shown by 13C-CP MAS/NMR. Significant increases in LlH has been shown to 

occur mainly in high amylose barley (Waduge et a/., 2006) and corn starches 

(Tester eta/., 2000). Waduge eta/., (2006), Tester eta/., (2000) and Knutson 

(1990) hypothesized, that when amylose content reaches a certain threshold, 

amylose chains may be in close proximity to each other and/or with amylopectin 

chains. Consequently, on annealing interactions could occur between AM-AM 

and/or AM-AMP chains resulting in the formation of new double helices. Tester 

eta/., (2000) showed using 13C-CP MAS/NMR that the amount of double helices 

in amylomaize starch (63.1% amylose) increase by 11% on annealing (single 

step). The corresponding increase in LlH being -5%. Waduge et a/., (2006) 

showed by studies on barley starches of varying amylose content (0-55.3%) that 

a particular cultivar (SB 94893) having the highest amylose content (55.3%) 

exhibited the largest increase in LlH (-28%) on annealing. However, its unit 
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amylopectin chain length distribution was higher (DP 5-17: 56.9%) than the 

barley cultivar SB 948907 (DP 5-17: 52.6%) [amylose content 43.7%] in which 

b.H remained unchanged on annealing. This clearly demonstrates that the 

increase in b.H is influenced by the interplay of: (1) amylose content, (2) location 

of amylose and amylopectin within the starch granule interior, and (3) 

amylopectin unit chain length distribution. 

2.4.8.7.1 Impact of annealing temperature, moisture content and annealing 

time on gelatinization parameters 

Several studies (Tester & Debon 2000, Hoover & Vasanthan 1994a, Larsson & 

Eliasson 1991, Knutson 1990, Krueger et a/., 1987a, Slade & Levine 1987, 

Lorenz eta/., 1984) have shown that the effect of annealing on starch structure is 

more pronounced if the annealing temperature is set (close) to but below T 0 • 

However, if the annealing temperature is set very close to T 0 , then it would trigger 

starch gelatinization. Therefore, annealing temperatures are generally kept at 

about 5 to 15°C below To (Tester & Debon 2000, Eliasson & Gudmundsson 

1996). However, annealing temperatures (15 to 28°C) below T0 has also been 

shown to have a significant impact on the gelatinization parameters of starches 

(Nakazawa & Wang 2003, Tester eta/., 1998). Kruger eta/., (1987a) showed 

that on annealing To and Tp of maize starch increased gradually up to a moisture 

content of 67% (w/w), after which excess water had no further effect. Hoover 

and Vasanthan (1994a) reported steep increase in T0 , Tp and Tc at an annealing 

moisture of 50% in wheat and lentil starches and at 10% and 70%, respectively, 

in potato and oat starches. For b.H, a steep increase occurred at moisture 
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contents of 40 and 50% in potato and wheat starches, respectively. Whereas 

changes in b.H for oat and lentil starches were gradual (Hoover & Vasanthan 

1994a). Interaction between AM-AM and/or AM-AMP chains allows enthalpically 

driven assembly of the lamellar structure to be initiated with amylopectin double 

helices moving into alignment [Figure 2-14-B]. This would then explain the 

increase in gelatinization parameters with increase in moisture content. 

The impact of annealing time on T0 , Tp. Tc and b.H was studied by Kiseleva eta/., 

2005, Genkina eta/., 2004a,b, Jacobs eta/., 1998a, Muhrbeck & Wischmann 

1998, Hoover & Vasanathan 1994a, Seow & Vasanti-Nair 1994, Seow & Teo 

1993, Knutson 1990, Larsson & Eliasson 1991, Krueger et a/., 1987a). In 

general, T0 , Tp and Tc increases with annealing time. The increase being more 

pronounced in To and least in Tc [Table 2-14]. Hoover and Vasanthan (1994a) 

showed that in oat, wheat, potato and lentil starches, increases in To. T P• T c and 

b.H do not begin simultaneously during the time course of annealing (at 50°C). 

The rates of increase in T 0 , T P• and T c were gradual in wheat and oat starches, 

but rapid in potato (during the first 30 min). Annealing beyond 24h, did not 

significantly increase T 0 , T P• and T c of oat, potato and lentil starches. However, 

those of wheat starch became more pronounced as the annealing time exceeded 

24h. Increases in b.H were slower and were evident in wheat, oat, potato and 

lentil starches only after annealing had been in progress for 48, 6, 2 and 1 h, 

respectively. Genkina eta/., (2004a) showed that To of sweet potato starches 

increased rapidly during the first 60 min of annealing (at 45°C). After, that 

increments were much lower tending towards constant value after 8h. Larsson 
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and Eliasson (1991) reported that for wheat starch the largest changes in T0 , Tp, 

Tc and Tc-To occurred during the first 4h of annealing (at 50°C). No changes 

were observed after 6h. 

2.4.8.7.2 Impact of phosphorylation on gelatinization parameters 

The extent of increase in gelatinization parameters on annealing has been shown 

to be influenced by the level of negatively charged phosphate groups located on 

the A-chains and on the inner and outer sections of the 8-chains of amylopectin 

(Muhrbeck & Svensson 1996). Studies on potato starches of varying degrees of 

phosphorylation (13 to 24 IJmol G-6-P/g starch) showed the largest increase in Tp 

on annealing occurred for those samples with the lowest degree of 

phosphorylation. Whereas, the largest increase in ~H was observed for the 

highly phosphorylated starches (Muhrbeck & Svensson 1996). Muhrbeck eta/., 

(1991) showed that the degree of crystallinity (due mainly to amylopectin) is 

reduced by a high phosphate level. This was attributed to dislocations in the 

amylopectin clusters induced by bulky phosphate groups interfering with the 

building up of the structures during starch biosynthesis. Muhrbeck and Svensson 

(1996) postulated that reorientation of phosphate groups occur during annealing. 

Consequently, after annealing, the ~H would be increased, since the double 

helices would be better aligned than in the native starch (phosphate groups in the 

native starch could hinder double helical chain realignment), resulting in stronger 

interhelical and intrahelical hydrogen bonding. The extent of this increase was 

found to be more pronounced in the high phosphate level starches, since in their 

native state ~H is lower (due to greater extent of crystallite disruption) than in the 
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low phosphate level starches. The increase in T P on annealing was found to 

higher in the low phosphate level starches, due to less crystallite disruption in the 

native state. Muhrbeck and Wischmann (1998), & Muhrbeck and Svensson 

(1996) have reported that covalently bound starch-phosphate esters are not 

hydrolyzed during annealing. 

2.4.8.8 Impact of annealing on amylose-lipid complex 

Morrison eta/., (1993b) have shown by means of 13CCP-MAS NMR, DSC and X

ray studies the presence of amylose-lipid complexes in native starch granules of 

barley, maize, rice and oat starches. DSC studies have shown that the amylose

lipid complex transition occurs in the range 85-115°C (Slade & Levine 1988, 

Russell 1987b, Biliaderis et a/., 1986b, Biliaderis et a/., 1985, Kugimiya & 

Donovan 1981), 96-125°C (Karkalas eta/., 1995) -110°C (Nakazawa & Wang 

2004) and 93.2-96.8°C (Andreev et a/., 1999). Tester et a/., (2005) postulated 

that since amylose-lipid complexes are distinct entities and they are unlikely to be 

formed during annealing (Tester et a/., 2005). Several reports have indicated 

that new amylose-lipid complexes are not formed during single or double step 

annealing (Kiseleva eta/., 2005, Nakazawa & Wang 2004, Jacobs eta/., 1998c, 

Larsson & Eliassen 1991 ). This was based on the unchanged DSC amylose-lipid 

complex melting endotherm (Koyama & Sasaki 2006, Kiseleva et a/., 2005, 

Nakazawa & Wang 2004, Wasserman, eta/., 2002, Jacobs eta/., 1998a & 1995, 

Larsson & Eliassen 1991 ), the 13CCP-MAS NMR signal at 31 ppm, which 

remained unchanged after annealing (Jacobs et a/., 1998a), and unchanged 

apparent amylose content in pre and post annealed [single step, 20 & 50°C/72h] 
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starches [e.g. potato, wheat & corn ] (Koyama & Sasaki 2006). Tester and 

Debon (2000), Jacobs et a/., (1998c), Morrison et a/., (1993c), Larsson and 

Eliasson ( 1991) have postulated that this may be due to the fact that the 

annealing temperature (35-50°C) is much lower than the melting temperature 

range (85-125°C) of the amylose-lipid complex. Andreev et a/., (1999) have 

shown by DSC studies on (maize, wheat, barley, and rye) and high amylose 

(barley) starches, that only maize starch has the ability to form additional 

amylose-lipid complexes on annealing. Wasserman, et a/., (2002) have 

postulated that the ability of maize starch to form additional amylose-lipid 

complexes on annealing may be due to the entry of surface lipids (via the 

channels on granule surface) into the granule interior. It is likely, that once inside 

the granule interior, the thermal energy imparted to the fatty acid chain during 

annealing may increase its mobility, thereby facilitating its interaction with the 

amylose helix. Waduge eta/., (2006), Lorenz eta/., (1984) have shown increases 

in the intensity of V-amylose lipid complex (28 -20°) in barley starches on 

annealing. However, the enthalpy of melting of amylose-lipid complex remained 

unchanged on annealing [single step] (Waduge et a/., 2006). Waduge et a/., 

(2006) postulated that the increased intensity in barley starches was not due to 

formation of additional amylose-lipid complexes, but to enhanced ordering of lipid 

molecules that were present as V-amylose-lipid complexes within granules of the 

native starches. 
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2.4.8.9 Impact of annealing on X-ray diffraction pattern and crystallinity 

Gough and Pybus (1971) were the first to study X-ray diffraction patterns of 

annealed starches. Muhrbeck and Wischmann (1998) reported that the effect of 

annealing is more pronounced in 8-type starches than on A-type starches. 

Annealing of potato (Vermeylen et a/., 2006, Jacobs et a/., 1998a, Hoover & 

Vasanthan 1994a), cassava {Tukomane eta/., 2007), wheat (Qi et a/., 2005, 

Jacobs eta/., 1998a, Hoover & Manuel 1996, Hoover & Vasanthan, 1994a, Stute 

1992, Gough & Pybus 1971 ), oat (Hoover & Vasanthan 1994a), pea (Hoover & 

Manuel 1996), lentil (Hoover & Vasanthan 1994a), maize (Qi eta/., 2005, Ozcan 

& Jackson 2003), and barley (Waduge et a/., 2006) starches have shown no 

effect on their polymorphic pattern. However, in some varieties of barley 

(Waduge et a/., 2006), sweet potato (Genkina et a/., 2004c), and cassava 

(Gomez et a/., 2004), the A+B X-ray diffraction pattern changed to a A-type 

pattern on annealing. The X-ray intensities has been shown to increase slightly 

on annealing in potato, lentil, oat, wheat (Hoover & Vasanthan 1994a), and 

barley starches (Waduge eta/., 2006, Jacobs eta/., 1998b). 

X-ray crystallinity has been shown to increase in high amylose barley (Waduge et 

a/., 2006), wheat (Hoover & Vasanthan 1994a), and to decrease in potato 

(Vermeylen et a/., 2006) or remain unchanged in potato (Jacobs & Delcour 

1998), wheat (Jacobs & Delcour 1998, Slade & Levine 1987), maize (Ozcan & 

Jackson 2003), pea (Jacobs & Delcour 1998), and in normal and waxy barley 

(Waduge et a/., 2006) starches on annealing. The increase in crystallinity on 

annealing was attributed to the interplay of the following factors: ( 1) amylopectin 
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content (Waduge eta/., 2006), (2) changes in orientation of the starch crystallites 

(Tester & Debon 2000), (3) crystallite perfection (Tester & Debon 2000, Jacobs & 

Delcour 1998, Muhrbeck & Svensson 1996, Seow & Teo 1993, Larsson & 

Eliasson 1991, Tester & Morrison 1990b, Slade & Levine 1987, Lorenz et a/., 

1984), (4) enhanced ordering of the V-amylose lipid complex (Lorenz et a/., 

1984) and (5) formation of amylose crystallites (Kruger et a/., 1987a,b). The 

unchanged crystallinity observed in some starches on annealing is indicative that 

changes in factor 2 to 5 may have been of a low order of magnitude. The slight 

decrease in crystallinity reported by Vermeylen eta/., (2006) may be crystallite 

disruption or crystallite reorientation. However, the authors have not provided any 

explanation for this phenomenon. 

2.4.8.9.1 Impact of drying method on starch crystallinity 

Ahmed and Lelievre (1978) have shown that oven drying (at 40°C), vacuum 

drying (at 20°C) and freeze drying of wheat starch changes granule crystallinity. 

However, crystallinity remains unchanged on air drying (at 20°C). Therefore, it is 

recommended that air-dried starches be used for annealing. In many instances, 

commercial starches have been used in annealing studies, consequently, it is 

difficult to ascertain the drying method used after starch isolation. Thus, the 

annealing properties of a laboratory extracted and air dried starch may not be 

identical to the same starch that may have been extracted and dried 

commercially. 
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2.4.8.10 Impact of annealing on granular swelling 

Annealing has been shown to reduce granular swelling in potato (Nakazawa & 

Wang 2004, Debon & Tester 2000, Hoover & Vasanthan 1994a), cassava 

(Nakazawa & Wang 2004), breadfruit (Adebowale eta/., 2005a), wheat (Tester et 

a/., 1998, Hoover & Vasanthan 1994a, Lorenz & Kulp 1978a), corn (Qi et a/., 

2005, Nakazawa & Wang 2004), lentil (Hoover & Vasanthan 1994a), oat (Hoover 

& Vasanthan 1994a), pea (Hoover & Manuel 1996), and barley (Waduge eta/., 

2006) starches. The decrease in granular swelling has been attributed to the 

interplay of the following factors: (1) increased crystalline perfection and 

decreased hydration (Waduge et a/., 2006, Tester et a/., 1998), (2) AM-AM 

and/or AMP-AMP interaction (Jacobs et a/., 1998b ), (3) increased intragranular 

binding forces and reinforcement of the granule (Hizukuri 1996, Jacobs et a/., 

1995), and (4) V-amylose-lipid complex formation (Waduge eta/., 2006, Jacobs 

eta/., 1998b, Hoover & Vasanthan 1994a). 

2.4.8.11 Impact of annealing on amylose leaching (AML) 

Annealing [single, two and multi-step] treatments reduce amylose leaching at all 

temperatures below 1 00°C in potato (Nakazawa & Wang 2004, Jacobs et a/., 

1995, Hoover & Vasanthan 1994a, Kuge & Kitamura 1985), wheat (Hoover & 

Vasanthan 1994a, Lorenz & Kulp 1978a), lentil & oat (Hoover & Vasanthan 

1994a), pea & rice (Jacobs eta/., 1995), cassava (Gomez et a/., 2004), and 

certain cultivars of barley (Waduge eta/., 2006) starches. However, an increase 

in AML has been reported for wheat (Jacobs eta/., 1995) and certain cultivars of 

barley starches (Waduge eta/., 2006) on annealing. The reduction in AML has 
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been attributed to the interplay of the following: (1) interactions between AM-AM 

and/or AM-AMP (Waduge et a/., 2006, Hoover & Vasanthan 1994a), (2) 

decrease in granular swelling (Tester et a/., 2000), and (3) increase in V

amylose-lipid content (Waduge eta/., 2006, Tester eta/., 2000) and molecular 

size of amylose (Waduge eta/., 2006). 

2.4.8.12 Impact of annealing on pasting properties 

The effects of annealing on pasting properties are complex and vary among 

starches. The information currently available on the pasting properties of 

annealed starches is for wheat (Jacobs eta/., 1995), lentil (Hoover & Vasanthan 

1994a), oat (Hoover & Vasanthan 1994a), potato (Jacobs eta/., 1995, Hoover & 

Vasanthan 1994a, Stute 1992), pea (Jacobs eta/., 1995), rice (Jacobs eta/., 

1995), breadfruit [Artocarpus artilis] (Adebowale et a/., 2005a), sorghum 

(Adebowale eta/., 2005b), and bambarra ground nut [Voandzeia subterranean] 

(Adebowale & Lawai 2002) starches. Generally, annealing has been shown to 

increase the pasting temperature, thermal stability and decrease peak viscosity 

and the viscosity at the end of the cooling cycle (Adebowale et a/., 2005a, 

Adebowale & Lawai 2002, Jacobs eta/., 1995, Hoover & Vasanthan 1994a, Stute 

1992} The exceptions being, rice (Jacobs eta/., 1995), wheat (Jacobs eta/., 

1995, Hoover & Vasanthan 1994a), and pea (Jacobs eta/., 1995) starches which 

exhibit a higher peak viscosity (wheat>pea>rice) on annealing. The RVA profile 

of annealed [single step] rice starch shows an increase in pasting temperature. 

However, this parameter remains unchanged in the Brabender viscoamylograph 

(Jacobs et a/., 1995). The reduced viscosity and improved shear stability on 
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annealing has been attributed to reduced granular swelling and amylose 

leaching, and increased interaction between glucan chains during annealing 

(Jacobs eta/., 1995, Hoover & Vasanthan 1994a, Stute 1992). The increase in 

viscosity exhibited by wheat starch on annealing was attributed by Jacobs et a/., 

(1995) to higher rigidity and resistance to shear. Hoover and Vasanthan (1994a) 

have shown by DSC studies, that on annealing, wheat starch exhibits a higher 

decrease in Tc-To than potato starch. This, indicates, that interaction between 

double helices (in the crystalline domain) are more extensive in wheat than in 

potato starch. Thus, although, the extent of granular swelling is reduced 

(wheat> potato) (Hoover & Vasanthan 1994a) as a result of annealing, the 

increase in granular stability of wheat starch on annealing is so high that it 

negates the effect of decreased granular swelling on peak viscosity. This would 

then explain why the viscosity of wheat starch increases on annealing, whereas 

that of potato starch decreases. 

2.4.8.13 Impact of annealing on acid hydrolysis 

The impact of annealing on acid hydrolysis has been shown to be in influenced 

by the method used for annealing (single step, double step, and multi-step), 

annealing temperature and starch source (Waduge eta/., 2006, Qi eta/., 2005, 

Nakazawa & Wang 2003, Jacobs eta/., 1998a, Tester eta/., 1998, Hoover & 

Vasanthan 1994a). Waduge et a/., (2006) reported that in starches extracted 

from different cultivars of barley, the difference in acid hydrolysis [single step, 

0.25g starch/1 Oml 2.2 M HCI, at 35°C/18 days] between native and annealed 

starches was only marginal. No difference in hydrolysis was observed between 
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native and annealed wheat and pea starches subjected to double step anenaling 

[0.167g starch/10ml 2.2 M HCI, at 35°C/20 days] (Jacobs et a/., 1998a). 

However, Nakazawa and Wang (2003) showed by studies on potato, wheat, 

cassava, maize, waxy maize and high amylose maize starches that annealing 

increased acid susceptibility [multi-step, 15.3% H2S04, 0.5g starch/1 Oml, at 

38°C/30 days] in all starches, with potato starch showing the greatest and high 

amylose maize starch showing the smallest change. Tester et al., (1998) 

reported that during the rapid phase of acid hydrolysis [single step, 0.1 g 

starch/1 Oml 2M HCI, at 35°C/1 0 days], annealed wheat starch was more 

extensively degraded than its native counterpart, while during the slow phase of 

hydrolysis, there was no difference in the extent of hydrolysis. Hoover and 

Vasanthan (1994a) reported that in potato, lentil, oat, and wheat the difference in 

acid hydrolysis [single step, 0.25g starch/1 Oml 2.2 M HCI, at 35°C/20 days] 

between native and annealed starches were -5%. 

The decrease in acid hydrolysis on annealing has been attributed to: (1) 

perfection of starch crystallites (Waduge et a/., 2006), (2) formation of double 

helical structures between amylose chains (Jacobs eta/., 1998a), (3) increased 

embedding of a-(1 ~6) branch points within the crystalline structure (Jacobs et 

a/., 1998a), and (4) formation of V-amylose lipid complexes (Waduge eta/., 2006, 

Jacobs et a/., 1998a, Hoover & Vasanthan 1994a). The increase in acid 

hydrolysis on annealing has been attributed to: ( 1) an increase in the 

concentration of a-glucan in the amorphous region as a consequence of 

crystalline perfection (Tester eta/., 2000) and (2) formation of void spaces in the 
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crystalline lamellae due to crystalline perfection (Nakazawa & Wang 2003). 

Similarity in acid hydrolysis between native and annealed starches during the 

slow phase of hydrolysis has been attributed to: (1) limited crystallite perfection 

and (2) unchanged double helical content pre- and post-annealing (Nakazawa & 

Wang 2003, Tester eta/., 2000). 

In summary, that there is conflicting information with respect to the susceptibility 

of annealed starches towards acid hydrolysis. For instance, the same type of 

starch (e.g. potato or corn or wheat) has been shown to behave differently 

towards H30+ after annealing (Nakazawa & Wang 2003, Tester et a/., 2000, 

Jacobs et a/., 1998a, Hoover & Vasanthan 1994a). This could be attributed 

differences in: (1) variety of the starch source (2) number of steps used in 

annealing [single vs double vs multi-step], (3) type of acid [HCI vs H2S04], (4) 

acid concentration [1.7M H2S04 vs 2.2M HCI] (5) starch:acid ratio, (6) 

temperature of the reaction mixture [35°C vs 38°C] and (7) hydrolysis period. 

2.4.8.14 Impact of annealing on a-amylase hydrolysis 

There is a dearth of information on the impact of annealing on a-amylase 

hydrolysis and what is available is often conflicting. It is difficult to find a 

consensus of the action pattern of a-amylase on native annealed starches 

reported in the literature (Jacobs et a/., 1998c, Wang eta/., 1997, Hoover & 

Manuel 1996, Hoover & Vasanthan 1994a, Gough & Pybus 1971) due to 

differences in a-amylase sources, enzyme purity, enzyme concentration, time of 

hydrolysis, varietal differences, annealing temperature, time and the number of 
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annealing steps. It has been shown that annealing increases the susceptibility of 

wheat starch towards fungal a-amylase (Lorenz et a/., 1980) and bacterial a

amylase [Bacillus subtilis] (Gough & Pybus 1971 ). However, Jacobs et a/., 

(1998c) showed by using pancreatin (a mixture of a-amylase from porcine 

stomach mucosa, lipids and protease) that during the early stages of hydrolysis 

{<20h), susceptibility of one step and double step annealed wheat starches is 

lower than that of its native counterpart. However, during the latter stages {>20h) 

this trend is reversed. Hoover and Vasanthan (1994a) reported that the 

susceptibility of annealed (single step) wheat starch was lower than its native 

counterpart throughout the time course of hydrolysis by porcine pancreatic a

amylase. Both single step (Jacobs eta/., 1998c, Hoover & Vasanthan 1994a) 

and double step (Jacobs eta/., 1998c) annealing has been shown to decrease 

the susceptibility of potato starch towards porcine pancreatic a-amylase (Hoover 

& Vasanthan 1994a) and pancreatin (Jacobs eta/., 1998c). Legume starches 

such as pinto bean, black bean, lentil and field pea starches have been shown 

(Hoover & Manuel 1996) to exhibit increased susceptibility towards porcine 

pancreatic a-amylase on annealing (single step). A similar finding was also 

reported by Jacobs et a/., (1998c) for pancreatin hydrolyzed single and double 

step annealed pea starch. However, the extent of hydrolysis of the single and 

double step annealed pea starches were nearly similar. An increase in 

hydrolysis on annealing (single step) has also been observed in sago 

(Metroxylon sp.) starch (Wang eta/., 1997). Lauro et a/., (1993) reported that 

enzyme (Bacillus licheniformis and porcine pancreatin a-amylases) hydrolysis of 
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of annealed [single step] barley starch does not occur below 50°C/3h. The 

decrease in a-amylase susceptibility on annealing has been attributed to the 

interplay of the following factors: (1) crystallite perfection and double helical 

content, (2) crystal type (3) annealing steps, (4) interaction between AM-AM 

and/or AM-AMP chains and (5) amylose-lipid complex formation on annealing 

(Jacobs eta/., 1998c, Hoover & Vasanthan 1994a). Wang eta/., (2004) have 

speculated that annealing may create pores or fissures which alter the pattern of 

amylase hydrolysis from surface to internal erosion. If this were to happen, it 

could negate the effect of glucan chain interaction and crystallite perfection on a

amylase hydrolysis and thereby facilitate the entry of a-amylase into the granule 

interior. This could then explain the increase in hydrolysis observed in some 

starches on annealing. However, a clear relationship between pore/fissures 

development on annealing, and its influence on hydrolysis cannot be made, until 

a systematic study is carried out on the nature of the granule surface of different 

starches before and after annealing. 

2.4.8.15 Impact of environmental temperature on annealing 

The crystalline nature of tuber and root starch has been shown to be influenced 

by environmental conditions (e.g. soil temperature) during starch biosynthesis 

(Kiseleva eta/., 2004, Genkina eta/., 2004d, Protservo eta/., 2002). Genkina et 

a/., (2004b) showed that an increase in soil temperature from 1 0 to 25°C 

increased gelatinization temperature and enthalpy of potato starch by 17% and 

82%, respectively. A similar observation was also reported for sweet potatoes [15 

& 33°C] (Genkina et a/., 2004a), normal, waxy and high amylose barley [7 & 
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20°C) (Kiseleva eta/., 2004) grown at different temperatures. It was shown that 

crystallites of starches formed at higher soil temperatures were more perfect than 

those formed at a lower soil temperature (Genkina eta/., 2004a,b, Kiseleva eta/., 

2004). However, Tester et a/., (1999) showed that though the gelatinization 

temperatures of potato starch increased as growth temperature was increased 

from 10 to 25°C, b.H remained constant. Debon and Tester (2000), Tester eta/., 

(1999 & 1998) have shown by studies on starches in potato microtubers and 

potato starches, that when there is a constant background of amylopectin 

structure and amylose to amylopectin ratio, the gelatinization and swelling 

characteristic of starches can be modified during biosynthesis by increasing 

growth temperature. These observations are analogous to in vitro annealing. 

Both elevated growth temperature (in vivo annealing) and heating of starches in 

excess water (in vitro annealing) causes double helical realignment (resulting in 

crystalline perfection) without the formation of more double helices in crystalline 

regions (Tester eta/., 1999 & 1998). Tester and Debon (2000) have postulated 

that the major molecular re-organization underlying both in vivo and in vitro 

annealing are improved perfection of starch crystallites and improved ordering of 

glucan chains within the amorphous domains. Waxy starches have been shown 

to be more responsive to high environmental temperatures than their high 

amylose counterparts (Debon & Teaster 2000). Thermal energy is the major 

variable cost associated with annealing. Tester and Debon (2000) have stated 

that the effects of growth temperature during starch biosynthesis potentially has 

important industrial consequences such as the energy needed for starch 
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gelatinization in food products for malting and brewing. Modifying starch 

structure by in vivo and in vitro annealing would be a way of reducing the 

processing cost. 

2.4.8.16 Potential uses of annealed starches 

Annealing has been shown to improve thermal stability and decrease the extent 

of set-back (Adebowale eta/., 2005a, Jacobs eta/., 1995, Hoover & Vasanthan 

1994a, Stute 1991 ), therefore annealed starches could be utilized in the canned 

and frozen food industries, for their respective advantages. Rice noodles 

prepared from rice flour are widely consumed in South East Asia. Traditionally, 

rice noodles are prepared from long-grain rice which has been stored for a period 

of time. This process limits starch granule swelling and improves the paste or 

gel quality (Zhou eta/., 2003), making the rice flour suitable for preparing good 

quality noodles. The decrease in granular swelling and amylose leaching, and 

the increase in heat and shear stability that occur on annealing are all desirable 

properties for noodle manufacture. Hormdok and Noomhorm (2007) evaluated 

rice starch (native & annealed), fresh rice flour, aged flour and compound rice 

flours with 50/100 g native rice starch or annealed rice starch as replacement 

ingredients for the manufacture of noodles of acceptable quality. The study 

showed that the textural (adhesiveness, chewiness, tensile strength) quality of 

the rice noodle prepared using annealed rice starch was comparable to that of 

commercial noodles. 
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Lorenz and Kulp (1980 & 1978b) assessed the baked bread quality of wheat 

starches extracted from wheat grains steeped at various temperatures (25-50°C) 

for different periods of time (1-3 days). The study showed that crumb softness 

increased with duration and temperature of grain steeping. The temperature of 

steeping was found to be more critical in affecting overall bread quality than the 

actual time of steeping at a given temperature. The authors have postulated that 

the increase in softness was due to the higher moisture content of the breads 

made with starches from steeped grains. It is difficult to understand how 

annealing (which occurs during grain steeping) increases water absorption 

capacity, since hydration capacity of starch decreases with annealing 

temperature. It is likely, that the increase in softness may have been due to a 

decrease in amylose leaching which occurs on annealing. A decrease in 

amylose leaching would decrease the extent of retrogradation, thereby improving 

bread texture (e.g. softness). 

Lorenz and Kulp (1980) have also shown that cakes of acceptable quality could 

be produced with starch extracted from wheat grains steeped in the temperature 

range (25-50°C) for period ranging from 1 to 3 days. The study showed that 

cakes prepared with starch extracted from grains steeped at 50°C resulted in a 

complete collapse of the cake during baking, resulting in a course and gummy 

texture. Whereas, cakes prepared from starches extracted from grains steeped 

at 25 and 40°C for 3 days produced cakes of acceptable quality. A satisfactory 

explanation was not provided for the above observations. 
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3.1 Materials 

CHAPTER 3 

Materials and Methods 

Tubers from Dioscorea esculenta (kukulala, java-ala, nattala) and Dioscorea 

alata (raja-ala, hingurala) were grown under the same field conditions in Algama, 

Sri Lanka. Crystalline porcine pancreatic a-amylase (type 1A, 790 units/mg 

protein), fungal a-amylase (157 units/mg protein) from Aspergillus oryzae were 

purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). lsoamylase 

(68,000 1-1/mg protein) from Pseudomonas amylodermosa were purchased from 

Hayashibana Biochemical Laboratories Ltd. (Okayama, Japan). All chemicals 

and solvents were of ACS certified grade and were purchased from Sigma

Aldrich Co. (St. Louis, MO, USA). 

3.2 Methods 

3.2.1 Starch isolation 

3.2.1.1 Sampling 

For starch isolation, well matured tubers from each variety of D. esculenta 

[Figure 3-1-A, B, C] and D. alata [Figure 3-1-D, E] were harvested from three 

separate vines in late Maha season in 2002. 

3.2.1.2 Starch extraction and purification 

Starch extraction and purification was performed according to the procedure of 

Jayakody et. a/., (2005). Dioscorea tubers were washed, peeled and fibrous roots 

removed. Immediately after peeling, the tubers were sliced into 2-3 em cubes, 
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Figure 3-1 Morphology of Dioscorea tubers 

Dioscorea escu/enta: 

(A) kukulala, 

(B) java-ala 

(C) nattala 

Dioscorea alata: 

(D) hingurala 

(E) raja-ala 

(The scale bar represents 5 em) 
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soaked in chilled potassium metabisulfite (50 mg/L) solution for 1 h, and then 

shredded (1 part sliced cubes to 3 parts chilled water) in a Waring blender 

(model 33BL73, New Hartford, CT, USA) for 10s at high speed and then at low 

speed for 15s. The starch in the slurry was separated from the cell debris by 

vacuum filtration through a muslin cloth. The filtrate containing the starch was 

allowed to stand(- 2h for D. alata spp. and -12 h for D. esculenta spp.) at room 

temperature until a dense firm starch layer was obtained. The supernatant was 

siphoned and discarded and the precipitate was suspended in excess 0.02% 

sodium hydroxide. After standing (- 4h), the supernatant was removed. The 

washing-sedimentation process with alkali was repeated until the supernatant 

layer was almost free of color and suspended haze. The final sediment was 

suspended in deionized water, passed through a 70 !Jm polypropylene screen 

(Spectrum Laboratory Products, CA, USA), neutralized to pH 7.0, filtered through 

a Buchner funnel and thoroughly washed on the filter with deionized water. The 

starch was air dried at room temperature (25°C) and then passed through a 250 

J.,Jm test sieve (Fisher Scientific Company, Mentor, OH, USA) to obtain a free 

flowing powder, which was weighed and the yield was calculated as the 

percentage of the initial tuber weight. 

3.2.2 Granular morphology and size estimation 

3.2.2.1 Light microscopy 

Granule morphology and size estimation was carried out according to the 

procedure outlined by Jayakody et a/. (2007c, 2005). The size and shape of 

native starches were examined by a Leica Gallen Ill (Buffalo, NY, USA) light 
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microscope. Light micrographs were obtained using a light microscope (Nikon, 

Eclipse Model E 600, Japan) equipped with a Leica digital camera (Leica DFC-

500, Heerbrugg, Switzerland) and Leica Application Suite (LAS) version 2.3.4 

software (Heerbrugg, Switzerland). To minimize movement, starch granules were 

suspended in a 50% (v/v) glycerol-water mixture. The same field of view was 

photographed three times using a multi-focus module of the LAS. The range of 

granule size was determined by measuring the length and width of approximately 

75 granules from a 1.0% (w/v) starch suspension (stained with 0.01 M iodine) at 

1 OOOx magnification, measured with an ocular micrometer. 

3.2.2.2 Birefringence 

A Leica binocular microscope model DME (Leica Microsystems®, Wetzlar, 

Germany) equipped with a Micropublisher 3.3 RTV digital camera (Qimaging, 

Surrey, BC, Canada) was used to observe the birefringence of starch granules. 

Samples were dispersed in water (-10% w/w) by stirring, and the dispersions 

then placed on a microscopic slide for examination. The images in polarized light 

were recorded at the same magnification ( 400x) for all starch samples. 

3.2.2.3 Scanning Electron Microscopy (SEM} 

The granule surface of the starches were examined by a FEI Quanta 400 

environmental scanning electron microscope (Brno, Czech Republic). Starch 

samples were freed of granule clumps by sieving through a 250 !Jm mesh sieve. 

The samples were then mounted on a Cambridge type circular aluminum stubs 

with carbon electro-conductive adhesive tape (Electron Microscopy Science, 
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Hatfield, PA, USA). The starches on the stubs were spread evenly by viewing 

the granules through a stereoscopic microscope (Carl Zeiss, Stemi 2000-C, Wek 

Gottingen, Germany). Loosely bound granules were removed by a stream of low 

pressure dry air jet, and then the remaining granules were coated with gold (1 0 

nm) for 60s at 50 rnA using a EMS500 sputter coater (Electron Microscopy 

Science, Hatfield, PA, USA). The granules were then examined under the 

following conditions: accelerating voltage of 5.0 kV, emission current 100 j.JA, 

high vacuum mode (10-4 Pa), spot size 2 (range of 1-10), working distance 

10.5-10.7 mm, Mode 300 V. Granules within a horizontal field width of 54.08 j.Jm 

were photographed at a magnification of 5000x using an image integration mode 

of 128 frames (2 frames/sec or 50j.Jsec/pixel/frame) and the Everhart-Thornley 

detector (ETD} (Jayakody eta/. 2007c). 

3.2.3 Starch damage 

Damaged starch content was determined according to the method of Jayakody et 

a/., (2005). Starch samples (1.0 g, dry basis) in phosphate buffer (40 ml, 0.02M, 

pH 6.9) in a 125 ml Erlenmeyer flask was incubated with fungal a-amylase from 

Aspergillus oryzae (2500 Sigma units, 39.3 units/mg solid) in a water bath at 

37°C for 15 min. The enzyme action was terminated by the addition of 10 ml of 

anhydrous trichloroacetic acid (10%, w/v). The digests were allowed to stand for 

2 min and then centrifuged at 2000 rpm for 1 0 min. The supernatants were then 

neutralized to pH 7.0. The amount of reducing sugars in the supernatants (2.0 

ml) were determined using the Somogyi-Nelson method (Nelson (1944), 
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Somogyi (1952). Controls without starch, but subjected to the above 

experimental conditions, were run concurrently. 

The extent of starch damage was calculated using the equation shown below: 

Where: 

Starch damage = M x 1 00 
W X 1.05 

M = mg maltose equivalents in the total digest (50 ml) 

W= mg (dry basis) of native starch 

1.05 is the molecular weight conversion of starch to maltose 

3.2.3.1 Reducing sugar determination (Nelson (1944) & Somogyi, (1952)) 

Alkaline reagent: 

Anhydrous sodium carbonate (Na2C03, 25 g), Rochelle salt (NaKC4HOsAH20, 

25 g), sodium bicarbonate (NaHC03, 20 g), and anhydrous sodium sulfate 

(Na2S04, 200 g) were dissolved in 800 ml of deionized water, and made up to 

one liter. 

Copper reagent: 

Copper sulfate penta hydrate (CuS04.SH20, 15 g) was dissolved in 75 ml of 

deionized water with two drops of concentrated H2S04 and was made up to 100 

ml. 

Arsenomolybdate reagent: 

Ammonium molybdate [(NH4)6Mo7024.4H20, 25 g] was dissolved in deionized 

water (450 ml) and acidified with concentrated H2S04 (21 ml). Sodium arsenate 

(Na2HAs04. 7H20, 3 g) was dissolved separately in deionized water (25 ml) and 
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then added slowly to the molybdate solution and vigorously mixed. The whole 

mixture was diluted to 500 mL, the volumetric flask was then covered with 

aluminum foil and incubated in a water bath (PolyScience, Model 2L-M 

PolyScience Niles, IL, USA) at 37°C for 24h. 

Analytical procedure 

A freshly prepared 1 mL aliquot of alkaline copper reagent (mixture of 25 parts of 

alkaline reagent and one part of copper reagent) was added to 2 mL of the starch 

supernatant and heated for 20 min in a boiling water bath. At the end of 20 min 

tubes were cooled rapidly in an ice-water bath to a temperature of 20°C. 

Arsenomolybdate reagent (1 mL) was rapidly pipetted directly to the solution 

mixture and vortexed. The resulting solution was kept for 5 min at room 

temperature for color development. The solution was then diluted with deionized 

water (6 mL). Absorbance was measured at 510 nm using a UV-visible 

spectrophotometer (Milton Roy, Spectronic-601, Rochester, NY, USA). The 

reagent blank was carried out following the same procedure with 2 mL of 

deionized water. A standard curve was established in order to calculate the 

glucose (Y= 0.0044X, R2= 0.9999) and maltose (Y=0.0023X, R2=1) equivalents 

in the sample. 

3.2.4 Proximate analysis 

3.2.4.1 Moisture content 

Quantitative estimation of starch moisture content (native and annealed) was 

determined by the standard American Association of Cereal Chemists (AACC) 
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method (2000). The starch samples (5.00 ± 0.01 g, dry basis) were weighed into 

tight fitting lidded aluminum dishes and dried in an air forced oven (Fisher 

Scientific, model Fisher lsotemp® 615G, Pittsburgh, PA, USA) at 130 ± 1°C for 

1 h. The sample dishes were then removed and cooled in a desiccator. Four 

replicate were used in each determination. 

Moisture content was calculated as the percentage weight loss of the sample. 

Where: 

Moisture(%)= W1-W2 x 100 
W1-Wo 

W1 =weight of sample, dish and lid before drying (g) 

W2 =weight of sample, dish and lid after drying (g) 

W0 =weight of empty dish and lid (g) 

3.2.4.2 Ash content 

Ash content was determined by the standard AACC method (2000). Pre-weighed 

(5.00 ± 0.01 g) starch samples were transferred into clean, dry porcelain 

crucibles, and ignited over a Bunsen flame until thoroughly carbonized. The 

samples were then transferred to a pre-heated (550°C) muffle furnace (Lab Heat-

Blue M model M30A-1C, Blue M Electric Co., Blue Island, IL, USA) and left until 

the samples were free from carbonaceous matter (-12h). The samples were 

cooled to room temperature in a desiccator and weighed. Four replicates were 

used for each determination. 

The percentage ash was calculated from the following equation. 

Ash(%)= W1-W2 x 100 
W1-Wo 
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Where: W 1 = weight of sample, crucible and lid before ashing (g) 

W2 =weight of residue, crucible and lid after ashing (g) 

Wo =weight of empty crucible and lid (g) 

3.2.4.3 Phosphorous content 

Total starch phosphorous was determined according to the method of Jayakody 

eta/, (2005). Starch (5 mg db) was placed into screw-capped tubes (calibrated 

at the 5 ml level) and digested with concentrated H2S04 (0.3 ml) for 12h at 

room temperature before charring. The partially-digested samples were heated 

using a micro-Bunsen burner until charring was completed, and the film of acid 

on the walls of the tubes was no longer viscous at the end of the digestion 

process. After the contents of the tubes had slightly cooled, hydrogen peroxide 

(30 IJL, 30% [w/v]) was added ( 15 1-1L at a time) to hit the wall of the tube just 

above the digested mixture, and the tubes were well shaken. The tubes were 

then boiled for 1 min. Then allowed to cool to room temperature, and made up to 

a final volume of 3.6 ml with deionized water. For assay, anhydrous sodium 

sulfite [Na2S03] (0.1 ml, 2.62M) was added with stirring, followed by addition of 

ammonium molybdate [(NH4)6Mo7024.4H20] (1.0 ml, 0.0162M) and ascorbic 

acid (0.01 g). The contents of the tubes were vortex mixed and then heated for 

10 min in a boiling water bath. After cooling to room temperature, the volume in 

the tubes were adjusted to 5.0 ml with deionized water, and the absorbance 

read at 822 nm using a UV-visible spectrophotometer (Milton Roy, Spectronic-

601, Rochester, NY, USA). Four replicates and control samples were used for 

each determination. The phosphorous content was calculated from a standard 
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curve (Y=0.1784X, R2 =0.9992) made using sodium dihydrogen phosphate 

(NaH2P04. 2H20) standards. 

3.2.4.4 Nitrogen content 

Nitrogen content was determined by the classical micro-Kjeldahl method (AACC 

2000). Samples (0.3 g, dry basis) were weighed on nitrogen-free papers and 

placed in hard glass digestion tubes on a Buchi 430 digester (Buchi 

Laboratoriums- Technik AG, Flawiii/Schweiz, Switzerland). Two Kjeltabs M 

pellets (Buchi Laboratoriums- Technik AG, Flawiii/Schweiz, Switzerland) and 20 

ml of concentrated H2S04 acid were added to each digestion tube and the 

samples were digested until a clear solution was obtained. The digested 

samples were then cooled, diluted with 50 ml of nitrogen free water, 100 ml of 

40% (w/v) NaOH was then added, and the released ammonia was steam distilled 

into 50 ml of 4% (w/v) boric acid (H3803) containing 12 drops of end point 

indicator (N-point indicator, EM Science, NJ, USA) using a Buchi 321 distillation 

unit until 150 ml of distillate was accumulated in the receiving flask. The amount 

of ammonia in the distillate was determined by titrating it against 0.05N H2S04. 

Four replicates and control samples were used for each determination. 

The percentage nitrogen was calculated using the equation shown below: 

Nitrogen(%)= (Volume of H~S04- blank) x Normality of H2S04 x 14.0067 x 100 
Sample weight [db] (g) 
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3.2.4.5 Starch lipids 

3.2.4.5.1 Surface lipids 

Surface lipids were determined according to the procedure outlined by 

Vasanthan & Hoover (1992b). The lipids were extracted at ambient temperature 

(25-27°C) by mixing native starch (5g, dry basis) with 100 mL of chloroform

methanol 2:1 (v/v) in a wrist action mechanical shaker (Burrell, Model 75, Burrell 

Corporation, Pittsburg, PA, USA) for 1 h. The solution was then carefully filtered 

(Whatmann No. 4 filter paper) into a 250 mL round bottom flask and the residue 

was washed thoroughly with chloroform-methanol solution. The lipid-solvent 

mixture was then evaporated to dryness using a rotary evaporator (Rotavpor

R110, Buchi Laboratorimus-Technik AG, Flawiii/Schweiz, Switzerland). The 

crude lipid extracts were purified by the method of Bligh and Dyer (1959) before 

quantification. 

3.2.4.5.2 Bound lipids 

Bound lipids were determined according to the procedure described by 

Vasanthan and Hoover (1992b). The residues from the chloroform methanol 

extractions were refluxed with n-propanol water 3:1 (v/v) in a Soxhlet apparatus 

-85°C for ?h. The solvent was evaporated to dryness using a rotary evaporator 

(Rotavpor-R11 0, Buchi Laboratorimus-Technik AG, Flawiii/Schweiz, 

Switzerland). The crude lipid residue was purified using the method of Bligh and 

Dyer (1959) before quantification. 
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The lipid content was calculated using the following equation: 

Lipid (%) =(weight of flask and lipid after drying -weight of empty flask) x 100 
Sample weight [db] (g) 

3.2.4.5.3 Crude lipid purification (Bligh & Dyer 1959) 

The crude lipid extracts (surface and bound) were purified by extraction in a 

seperatory funnel with chloroform/methanol/water (1 :2:0.8, v/v/v) and forming a 

biphasic system at room temperature. Then the heavy chloroform layer was 

withdrawn into a pre-weighted 25 ml round bottom flask and evaporated to 

dryness in the rotary evaporator. The samples were then removed and dried at 

60°C in an air forced oven (Fisher Scientific, model Fisher lsotemp® 615G, 

Pittsburgh, PA, USA). The dried lipids were cooled to room temperature in a 

desiccator. 

3.2.4.6 Amylose 

Apparent and total amylose contents of native starches were determined as 

described by Jayakody eta/., (2005). 

3.2.4.6.1 Apparent amylose content 

Starch (20 mg, dry basis) was weighed into a boiling tube and suspended in 

deionized water (6 ml). The contents of the tubes were vortex mixed for 30 s. 

Sodium hydroxide (2 ml, 1M) was then added and the mixture was vortex mixed 

for 60 s. The mouth of the tubes were covered with a inner layer of Parafilm® 

and an outer layer of aluminum foil and then heated in a water bath (with 

intermittent vortexing) at 85°C for 15 min. Tubes were then cooled to room 
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temperature and the contents transferred to 25 ml volumetric flask and diluted 

with deionized water. A 2.0 ml aliquot of diluted solution was mixed with 

phosphate buffer (45 ml, 0.06M, pH 8.0) and 1 ml b/KI solution (0.005M b and 

0.018M Kl) in a 50 ml volumetric flask and then made up to the mark with the 

phosphate buffer. The contents were allowed to stand in the dark (30 min) at 

room temperature before taking absorbance measurements at 620 nm using a 

UV-visible spectrophotometer (Milton Roy, Spectronic-601, Rochester, NY, 

USA). 

3.2.4.6.2 Total amylose 

Total amylose content was also determined by the above procedure, but with 

prior defatting with hot n-propanol water (3:1 v/v) for 7 h. In order to correct for 

overestimation of apparent and total amylose content, amylose content was 

calculated from a standard curve (Y=0.0059X + 0.0921, R2 =0.9847) using 

mixtures of pure potato amylose and amylopectin (over the range 0-100% 

amylose). 

3.2.5 Starch structure analysis 

3.2.5.1 Amylopectin branch chain length distribution 

lsoamylase debranching of whole starch accompanied by high pressure anion 

exchange chromatography with pulsed amperometric detection (HPAEC-PAD) 

was used to determine the branch chain length distribution of native and 

annealed starches (Jayakody eta/., 2005). 
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Starch was dispersed in 2 ml of 90% (v/v) DMSO at a concentration of 5 mg/ml 

by stirring in a boiling water bath for 20 min. After cooling, methanol (99.8%, 6 

ml) was added with vortex mixing, and the tube placed in an ice bath for 30 min. 

The pellet, which was recovered by centrifugation (1 ,000 x g for 12 min), was 

dispersed in sodium acetate buffer (2 ml, 50 mM, pH 3.5) by stirring in a boiling 

water bath for 20 min. Following equilibration of the tube at 37°C, isoamylase (5 

IJL, 68,000 IJ/mg protein) was added. The sample was incubated at 37°C with 

slow stirring for 22 h. The enzyme was inactivated by boiling for 10 min. An 

aliquot (200 IJL) of the cooled debranched sample was diluted with NaOH (2 ml, 

150 mM). The sample was filtered (0.45 1-1m nylon syringe filter) and injected into 

the HPAEC-PAD system (50 1-1L sample loop). 

The HPAEC-PAD system consisted of a Dionex DX 600 equipped with an ED50 

electrochemical detector with a gold working electrode, GP50 gradient pump, 

LC30 chromatography oven, and an AS40 automated sampler (Dionex 

Corporation, Sunnyvale, CA, USA). The standard triple potential waveform was 

employed, with the following periods and pulse potentials: T1 = 0.40 s, with 0.20 s 

sampling time, E1 = 0.05 V; T 2 = 0.20 s, E2 = 0. 75 V; T 3 = 0.40 s, E3 = -0.15 V. 

Data were collected using Chromeleon software, version 6.50 (Dionex 

Corporation, Sunnyvale, CA, USA). Eluents were prepared in distilled deionized 

water with helium sparging; eluent A was 50 mM sodium acetate in 150 mM 

NaOH, and eluent 8 was 150 mM NaOH. Linear debranched were separated on 

a Dionex CarboPac™ PA1 analytical column with gradient elution (-5 min to 0 

min, 40% A; 5 min, 60% A; 45 min, 80% A) at a column temperature of 26°C and 
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a flow rate of 1 ml/min. A CarboPac TM PA 1 guard column was installed in front 

of the analytical column. 

3.2.5.2 X-ray diffractometry and crystallinity 

3.2.5.2.1 Powder X-ray diffraction 

Powder X-ray diffraction was carried out by the method proposed by Jayakody et 

a/., (2007a). Starches for X-ray diffraction measurements were kept in a 

desiccator (at 25°C) over saturated K2S04 (water activity (aw)= 0.98) up to 

sorption equilibrium (3 weeks). X-ray diffractograms were obtained with a Rigaku 

RPT 300 PC X-ray diffractometer (Rigaku-Denki CO, Tokyo, Japan). The 

hydrated samples (0.5 g dry basis) were packed tightly into an elliptical aluminum 

holder (Appendix- Figure 1 ). The operating conditions were: target voltage 40 

kV, target current 100 rnA, aging time 5 min; scanning range 3 to 35°, step scan 

size 0.03°, scan speed 2.000°/min; step time 0.9 sec, divergence slit width 1.0°; 

scatter slit width 1.0° and receiving slit width 0.6mm. The moisture content of the 

samples was determined before and after scanning. 

3.2.5.2.2 Starch crystallinity 

Crystallinity of the starches was quantitatively estimated following the method of 

Nara and Komiya (1983). A line connecting the peak baselines was computer

plotted on the diffractogram. The area above the smooth curve was considered 

as the crystalline portion and the lower area between the smooth curve and a 

linear baseline was taken as the amorphous portion. The crystalline and 

amorphous areas were measured by integration using a software package 
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(Origin® version 6.0 Microcallnc., Northampton MA, USA). The ratio of the upper 

area to the total diffraction area was calculated as the crystallinity [Appendix-

Figure 1]. 

The following equation was used to determine the percent crystallinity: 

Crystallinity (%) = ___.89._ x 1 00 
Ac+Aa 

Where: Ac and Aa are the crystalline and amorphous area of the X-ray 

diffractogram. 

3.2.6 Physicochemical properties 

3.2.6.1 Gelatinization parameters 

Gelatinization parameters of native starches were measured using a Seiko 

differential scanning calorimeter (DSC 21 0) (Seiko Instruments Inc, Chiba, 

Japan) equipped with a thermal analysis data station and data recording 

software. Heat flow and temperature calibrations were periodically performed 

using pure indium with a heat of fusion of 28.4 J/g and a melting temperature of 

Deionized water (11 ~L) was added with a micro-syringe (MICROLITER®, #702, 

Hamilton Co. Reno, NV, USA) to starch (3.00 ± 0.01 mg, db) in the DSC pans 

and the contents were stirred (with micro-needle) the pans were then sealed 

reweighed and kept inside a glass vial at room temperature for 12h (for moisture 

equilibration). Sealed pans were then reweighed prior to scanning. The 

temperature was scanned from 25-130°C at rate of 10°C/min, then held at 130°C 
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for 5 min. For all measurements, a thermogram was recorded with an empty 

aluminum pan as a reference. During the scans, the space surrounding the 

sample chamber was flushed with dry nitrogen at a rate of 100 mL/min to avoid 

condensation. For each thermogram, gelatinization transition temperatures 

[onset (T0 ), mid-point (Tp), and conclusion (Tc)] and enthalpy of gelatinization 

were measured using a DSC software (SSS 5300 Work Station, version 2. 71 U, 

1996). The enthalpy of gelatinization (~H) was estimated by integrating the area 

between the thermogram and a base line under the peak and was expressed in 

terms of joules per gram (J/g) of dry starch (Jayakody 2001 ). Four replicates per 

sample were analyzed. 

3.2.6.2 Granular swelling (SF) 

The swelling factor was determined by a slight modification of the method of 

Tester and Morrison (1990a). Starch samples (50 mg, dry basis) were weighed 

into 25 ml screw-capped tubes, deionized water (5 ml) was added and the 

mixture heated in a constant temperature water bath between 60-90°C for 30 min 

(the tubes were vortexed every 5 min to resuspend the starch slurry). The tubes 

were then cooled rapidly to 20°C in an ice-water bath, blue dextran (0.5 ml) 

[Pharmacia, average MW 2 x 106
, 5mg/ml] was added and the contents gently 

mixed. The tubes were then centrifuged at 1700xg/1 Om in (IEC, Centra MP4 

centrifuge, Madison, MA, USA). The absorbance of the supernatant was 

measured at 620 nm (Milton Roy, Spectronic-601, Rochester, NY, USA) against 

a reference without starch. The method measures only intra-granular water and 

hence the true swelling factor at the given temperature. The SF is reported as the 
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ratio of the volume of swollen starch granule to the volume of un-swollen starch 

granule (dry starch). At least four replicates and controls samples were used in 

this determination. 

Free water (FW) [inter-granular water+ supernatant water] is given by: 

FW = 5.5 (ARIAs)- 0.5 

Where AR and As are the absorbances of the reference and sample, respectively. 

The initial volume (Vo) of weight of W (in mg) of starch (dry basis) is: 

V0 = W/1 ,400 (assuming a density of the starch is 1,400 mg/ml) 

The intra-granular water content (V1) in the swollen starch granule is thus: 

V1 =(Total water- Free water) ml 

V1 = (5- FW) mL 

Hence the total volume of the swollen granule (V2) is: 

V2 = (Vo + V1) mL 

Swelling factor (SF) by definition is: 

SF= V2No 

SF= 1 + V1No 

This can also be simplified as follows: 

SF = 1 + {(7, 700/W) x [(As-AR)/As]} 

3.2.6.3 Amylose leaching 

Amylose content of the supernatant was determined according to the method 

(Jayakody eta/. 2005) as follows. Starches (20mg db) in water (10 ml) were 

heated at 60-90°C in volume calibrated sealed tubes for 30 min (the tubes were 

vortex mixed every 5 min to resuspend the starch slurry). The tubes were then 
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cooled to room temperature and centrifuged at 2000 rpm for 10 min (IEC-Model 

HN-SII, Centrifuge, Needhamhts, MA, USA). Supernatant was diluted to 25 mL 

in a volumetric flask with deionized water. The diluted solution (2.0 mL) was 

mixed with phosphate buffer (45 mL, 0.06M, pH 8.0) and 1 mL b/KI solution 

(0.005M b and 0.018M Kl) and then adjusted to a final volume of 50 mL in a 

volumetric flask with the above buffer. The contents were allowed to stand in the 

dark (30 min) at room temperature before absorbance measurements at 620 nm 

using a UV-visible spectrophotometer (Milton Roy, Spectronic-601, Rochester, 

NY, USA). Extent of amylose leaching was expressed as mg of amylose leached 

per 100 g of dry starch. Three replicate starch and control samples were used in 

this determination. 

3.2.6.4 Acid hydrolysis 

Acid hydrolysis was carried by modification of the method of Jayakody and 

Hoover (2002). Starches were hydrolyzed in triplicate with HCI (1 g dry basis, 

starch/40 mL acid, 2.2M) at 35°C in a water bath (New Brunswick Scientific, 

G76D, Edison, NJ, USA) for periods ranging from 0 to 15 days. The starch 

slurries were vortex mixed daily to resuspend the deposited starch granules. 

Aliquots taken at specific time intervals were neutralized with 2.2M NaOH and 

centrifuged at 2,000 rpm/10 min (IEC-Model HN-SII, Centrifuge, Needhamhts, 

MA, USA). The amount of total reducing sugar in the supernatant was 

determined by the Somogyi-Nelson method (Nelson, 1994, Somogyi, 1952). 
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The extent of hydrolysis was calculated as shown below: 

Hydrolysis(%)= Reducing sugar (as glucose) x 0.9 x 100 
Initial starch wt db (g) 

3.2.6.5 Enzyme digestibility 

Enzymatic digestibility studies on starches were conducted using a crystalline 

suspension of porcine pancreatic a-amylase in 2.9M sodium chloride containing 

3mM calcium chloride (Sigma Chemical Co., St. Louis, MO, USA) in which the 

concentration of a-amylase was 32 mg protein/ml and the specific activity was 

1,122 units/mg protein. 

Starch granules (20 mg, db) were suspended in phosphate buffer (10ml, 0.02M, 

pH 6.9) containing 0.006M NaCI. A 5.5 !JL of a-amylase suspension was added, 

the mixture gently mixed and digested at 37°C in a water bath (New Brunswick 

Scientific, G76D, Edison, NJ, USA) for periods ranging from 24 to 72h. The 

reaction mixtures were vortexed on a daily basis to resuspend the deposited 

granules. The digestion reaction was terminated by adding 5 ml of absolute 

ethanol to the digestion mixture. The hydrolysate was recovered by centrifugation 

(2000 rpm/5min, IEC HN-SII centrifuge, Madison, MA, USA) of the mixture. 

Aliquots of the supernatant were analyzed for reducing sugar content (Nelson, 

1944; Somogyi, 1952). Controls without enzyme but subjected to the above 

experimental conditions were run concurrently (Jayakody et a/., 2007c). The 

reported values are the means of four replicates. 
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The extent of hydrolysis was calculated as shown below: 

Hydrolysis(%)= Reducing sugar (maltose) x 0.95 x 100 
Initial starch weight db (g) 

3.2.6.6 Pasting properties 

A Rapid Visco™ Analyser RVA-4 (Newport Scientific Pty, Ltd, Warriewood, NSW, 

Australia) was employed to measure the pasting properties of starches (7% db, 

27 g total weight). Native and annealed starches were equilibrated at 50°C for 1 

min, heated at 6°C/min to 95°C, held at 95°C for 5 min, cooled at 6°C/min to 

50°C, and held at 50°C for 2 min. The spindle speed was 960 rpm for the first 10 

s (to disperse the sample) and then at 160 rpm for the remainder (-23min) of the 

experiment. The reported values are the means of duplicate measurements 

(AACC 2000). 

3.2.6. 7 Retrogradation 

Retrogradation characteristics of the starches were determined by DSC 

according to the method of Jayakody eta/, (2005). The samples were prepared 

with a starch to water ratio of 1:1. Starch was mixed with water using a micro-

needle in order to facilitate even distribution of water in the mix. The pan was 

then hermetically sealed, reweighed and kept in a glass vial at room temperature 

for 12h for moisture equilibration. Sealed pans were reweighed prior to scanning. 

After the initial DSC run, sample pans containing the gelatinized starch were 

covered in a single thin layer with Teflon® film and then with a double layer of 

Saran film®. The covered pans were first immersed in a water bath at 4°C for 

24 h and then immersed in a water bath at 40°C for periods ranging from 0 to 
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168 h (PolyScience, Model 2L-M PolyScience Niles, IL, USA). At the end of 

each time period, the covering films were carefully removed and the stored 

samples were equilibrated at 25°C for 1 h in a desiccator before reweighing and 

rescanning [Appendix - Figure 2]. The scanning temperature range and heating 

rate were identical to that used for the study of gelatinization parameters (section 

3.2.6.1 ). Four replicates per sample was analyzed. 

3.2. 7 Annealing treatment 

Starches were subjected to one step annealing. Native starch samples (30 g, dry 

basis) were weighed into 250 ml beakers. The samples were prepared with a 

starch to water ratio of 1:3. The slurry mixtures were covered and incubated at 

55°C (approximately 10°C below the onset temperature of gelatinization) for 72h 

in water bath (New Brunswick Scientific, G76D, Edison, NJ, USA). At end of the 

incubation period, the water surrounding the annealed starch (removed by 

decantation) showed the absence of amylose. This indicated that amylose 

leaching does not occur during annealing. The treated starches were mixed with 

excess amount of deionized water and filtered (Whatmann No. 4 filter paper). 

The annealed starches were air dried at room temperature (25°C) and then 

passed through a 250 1-1m test sieve (Fisher Scientific Company, Mentor, OH, 

USA) to obtain a free flowing powder. 

2.3.8 Statistical analysis 

Analysis of variance (two way ANOVA) was performed by Tukey's HSD test 

{P<0.05) using Statistical Software SPSS version 14.0 for Microsoft Windows 

(SSPS Inc. Chicago, IL, USA). 
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CHAPTER4 

Results and Discussion 

4.1 Granule morphology 

Light microscopy (LM) and scanning electron microscopy (SEM) of the Dioscorea 

starches (native and annealed) are presented in Figures 4-1 & 4-2, respectively. 

Starch granules of D. esculenta and D. a lata ranged in size from 3 to 1 0 IJm and 

30-50 1Jm, respectively [Table 4-1]. The prominent lamellation ('oyster-shell' 

striations) were clearly visible in both hingurala and raja-ala (D. alata) starches, 

but the rings were not distinct in the D. escu/enta starches. This may have been 

due to their smaller granular size. Starch granules of D. escu/enta were 

polygonal in shape [Figure 4-2-A, B, C], whereas those of D. alata were 

truncated spade shaped [Figure 4-2-D, E]. The granule surfaces of native and 

annealed starches appeared to be smooth and showed no evidence of fissures 

[Figure 4-2]. Starch granules of both, species exhibited a well defined 

birefringence pattern [Figure 4-3] under polarized light. This was indicative of a 

high degree of molecular orientation within the granule interior. Polarization 

crosses (hilum) were centric and eccentric for all D. esculenta and D. alata 

starches, respectively. 

The granule morphology of the Dioscorea starches did not change on annealing 

[Figures 4-1 (A-1, B-1, C-1) & 4-2 (D-1, E-1 )]. After annealing, the concentric 

growth rings [Figure 4-1] and birefringence [Figure 4-3] pattern remained 

unchanged. This is indicative that the granular and lamellar structure of the 

starches were not altered on annealing. 
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Figure 4-1 Light micrographs (500x) of Dioscorea starches 
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Figure 4-2 Scanning Electron Microscopy (5000x) of Dioscorea starches 

Native starches 
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(Scale bar represents 12 1Jm) 
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Figure 4-3 Birefringence (400x) of Dioscorea starches 

Native starches 
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(D) hingurala 

(E) raja-ala 

Annealed starches 
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(A-1) kukulala 
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(Scale bar represents 20 !Jm) 
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4.2 Chemical composition 

The data on yield and composition are presented in Table 4-1. The purity of the 

starches was judged on the basis of composition [low ash 0.17-0.32%) and low 

nitrogen content (<0.03%)] and microscopic examination (absence of cell 

fragments and debris). The yield of starch from varieties of D. esculenta and D. 

a lata ranged from 10.2 to 16.8% and 14.3 to 18.8%, respectively. This was 

within the range reported for most tuber starches (Moorthy 2002, Hoover 2001 ). 

The total phosphorus content of the starches from D. esculenta and D. a/ata 

ranged from 0.05 to 0.1% and 0.04 to 0.05%, respectively. The phosphorous 

content of all starches remained the same before and after defatting. This was 

indicative that phosphorus was present mainly in the form of monoester 

phosphate and/or inorganic phosphate. The total phosphorus content of 

Dioscorea starches were higher than those reported for sweet potato (0.023%), 

taro (0.021 %), cassava (0.01 %) kuzu (0.005%) and innala (0.02%) starches 

(Jayakody eta/., 2005, Srichuwong eta/., 2005c, Gunaratne & Hoover 2002, Lim 

et a/., 1994, Soni & Agarawal 1983). It was interesting to observe that the 

phosphorous content (0.1 0%) of one of the varieties (nattala) of D. esculenta was 

higher than that usually reported [Table 2-7] for tuber starches (0.006-0.091 %). 

The total starch lipids (surface and bound) in varieties of native D. esculenta and 

D. alata starches ranged from 0.36 to 0.47% and 0.28 to 0.30%, respectively. 

These values were generally higher than those reported [Table 2-6] for most 

other Dioscorea (0.01-0.5%) and tuber and root (0.01-0.36%) starches, but were 

comparable to that reported for D. alata (0.5%), D. ballophylla (1.08%), kuzu 

193 



Table 4-1 Chemical composition(%) and granule morphology of native Dioscorea starches 

Characteristics (%) D. esculenta D. alata 
Kukulala Java-ala Nattala Hingurala Raja-ala 

Starch yield (based on initial tuber weight) 16.81 10.21 12.22 14.25 18.80 

Ash 0.17 ± o.ooa 0.22 ± o.oob 0.32 ± o.ooc 0.13 ± o.ood 0.17 ± o.ooa 

Nitrogen 0.01 ± o.ooa o.o3 ± o.oob o.o1 ± o.oob 0.02 ± o.ooc o.o1 ± o.ood 

Phosphorous* 0.05 ± o.ooa o.o7 ± o.oob 0.10 ± o.ooc 0.05 ± o.ooa o.o4 ± o.ood 

Lipid: Solvent extracted 

Ch/oroform-methano/1 0.01 ± o.ooa 0.01 ± o.ooa o.o3 ± o.oob 0.05 ± o.ooc o.o8 ± o.ood 
........ 
co n-propanol-watef2 0.39 ± 0.01a o.35 ± o.oob 0.44 ± 0.03c 0.25 ± 0.02d 0.20 ± o.ooe 
.J:>o. 

Amylose content: 

Apparenf 20.38 ± 0.26a 16.19 ± 0.20b 15.58 ± 0.45c 24.73 ± o.ood 29.29 ± 0.24e 

Totaf 23.97 ± 0.12a 20.07 ± 0.12b 19.98 ± 0.23b 26.98 ± o.ooc 31.02 ± o.ood 

Amylose complexed with lipids5 14.98a 19.33b 22.02c 8.34d 5.58e 

Granule size range (!Jm) 8-10 4-5 3-4 30-40 35-45 

Granule morphology Polygonal Polygonal Polygonal Truncated oval Truncated spade 

All data reported on dry basis and represent the mean of at least four replicates. Values followed by the same superscript in each row are not significantly 
different (P<O.OS) by Tukey's HSD test. 
1 Lipids extracted by chloroform-methanol 2:1 (v/v) at 25°C (mainly unbound lipids) 
2 Lipids extracted by hot-n-propanol-water 3:1 (v/v) from the residue left after chloroform-methanol extraction (mainly bound lipids) 
3 Apparent amylose determined by iodine binding without removal of free and bound lipids 5 Total amylose-apparent amvlose x 100 
4 Total amylose determined by iodine binding after removal of free and bound lipids Total amylose 
Phosphorus*- Phosphorus content remained the same before and after defatting 
Starch damage was not detected for the native and annealed starches 



(0.46%), arrowroot (0.31%), new cocoyam (0.30%), and canna (0.19%) starches 

[Table 2-6] (Karam eta/., 2006, Peroni eta/., 2006, Gunaratne & Hoover 2001, 

Soni eta/., 1990, Soni & Agarawal1983). The total amylose content of native D. 

esculenta and D. alata varieties ranged from 19.98 to 23.97% and 26.98 to 

31.02%, respectively. The above values were within the range (-10-36%) 

reported for the amylose content of native Dioscorea starches and for other tuber 

starches [Table 2-2]. Similar differences in amylose content between native 

starches from D. escu/enta and D. a/ata have also been reported by other 

researchers (Karam eta/., 2006, Peroni eta/., 2006, Wang eta/., 2006, Amani et 

a/., 2004, Frietas et a/., 2004, Riley et a/., 2004, Farhat, et a/., 1999, Gallant et 

a/., 1982, Rasper & Coursey 1967). In tuber starches, the amount of lipid 

complexed amylose chains has been shown to range from 8.3 to 15.5% 

(Jayakody eta/., 2005, Gunaratne & Hoover 2002, Vasanthan & Hoover 1992). 

In this study, the lipid complexed amylose chains in varieties of native D. 

escu/enta and D. alata ranged from 14.98 to 22.02% and 5.58 to 8.34%, 

respectively. Among the varieties of D. esculenta, kukulala showed the lowest 

content of lipid complexed amylose (14.98%) chains, in spite of its higher total 

amylose (23.97%) and bound lipid (0.39%) content. This suggests that most of 

the bound lipid in kukulala is probably trapped between amylose helices and/or 

between amylose (AM) and amylopectin (AMP) chains. 
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4.3 Amylopectin unit chain length distribution and average chain length 

The chain length distribution and the average chain length ( CL) of amylopectins 

are presented in Table 4-2. Among the native D. esculenta starches, differences 

in DP 6-12, DP 13-24, DP 25-26 and CL 17.94-18.33% was marginal. However, 

the proportion of DP 37-50 was much higher in java-ala ( 4.16%) than in kukulala 

(3.17) and nattala [Table 4-2]. However, both D. esculenta and D. alata differed 

significantly from each other with respect to the proportion of short A chains (DP 

6-12), medium chains (DP 25-36) and CL [Table 4-2]. Varities of both species 

did not exhibit the amylopectin chain length distribution characteristics of tuber 

(B-type) starches. Tuber starches have been shown to have a higher proportion 

of chains with DP > 37, a smaller proportion of chains with DP 6-12, and a larger 

CL. For instance, in normal potato starch, DP > 37, DP 6-12 and CL have been 

reported to 28.6, 13.07 and 28.6%, respectively (McPherson & Jane 1999). 

However, in the native D. esculenta starches DP >37, DP 6-12 and CL ranged 

from 3.17 to 4.41, 24.57-25.85 and 17.93-18.33%, respectively. Whereas, the 

corresponding range for native D. alata starches were 4.46-4.87, 17.89-20.68 

and 19.29-19.61 %, respectively. There has been only one study (Srichuwong et 

a/., 2005a) on the amylopectin unit chain length distribution of Dioscorea 

starches. They showed that the proportion of unit chain length distribution of DP 

6-8, 9-12, 13-24, 25-30 for D. escu/enta were 11.6, 24.9, 56.2, and 7.3%, 

respectively. Whereas, the corresponding distributions for D. alata unit chain 

length were 3.9, 18.9, 67.5, 9. 7%, respectively, but the variety of the starches 

were not specified. Hence, no comparison is possible. 
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Table 4-2 Branch chain length distribution & average chain length ( CL) of native and annealed Dioscorea starches 

%Distribution (DPn)1 

Starch source 
6-12 13-24 25-36 37-50 ce 

D. esculenta 
Kukulala 

Native 25.85 ± 0.94 57.78 ± 0.02 13.19±0.76 3.17 ± 0.16 17.94 ± 0.20 
Annealed 26.16 ± 0.96 57.63 ± 0.46 13.17 ± 0.60 3.04 ± 0.10 17.87 ± 0.11 

Java-ala 
Native 25.46 ± 2.33 56.55 ± 1.55 13.58 ± 1.23 4.41 ± 0.44 18.33 ± 0.20 
Annealed 25.90 ± 2.52 56.19 ± 1.55 13.53 ± 1.02 4.38 ± 0.06 18.27 ± 0.31 

Nattala 
...... Native 24.57 ± 1.95 59.64 ± 0.10 12.61 ± 1.64 3.17 ± 0.22 17.93 ± 0.41 c.o 
........ Annealed 25.33 ± 1.34 59.66 ± 0.73 12.05 ± 0.68 2.96 ± 0.08 17.73 ± 0.18 

D. alata 
Hingurala 

Native 20.68 ± 2.45 57.40 ± 1.22 17.46 ± 1.01 4.46 ± 0.21 19.29 ± 0.39 
Annealed 20.97 ± 2.30 57.10±1.11 17.30 ± 1.26 4.63 ± 0.08 19.31 ± 0.31 

Raja-ala 
Native 17.89 ± 3.41 59.76 ± 1.55 17.47 ± 1.72 4.87 ± 0.14 19.61 ± 0.52 
Annealed 18.32 ± 3.12 59.66 ± 1.57 17.03 ± 1.55 5.00 ± 0.01 19.58 ± 0.45 

1 
DPn: Indicates degree of polymerization 

2 Average chain length ( CL) calculated by I(DPn x peak arean)/I (peak arean) 



4.3.1 Effect of annealing on branch chain length distribution 

The amylopectin branch chain length distribution remained unchanged in both 

Dioscorea species on annealing [Table 4-2]. This suggests that chain length 

elongation, hydrolysis or debranching of amylopectin chains did not occur on 

annealing. A similar finding was reported by Kohyama and Sasaki (2006) for 

potato, corn and wheat starches subjected to one step annealing at 20 and 50°C 

for 22h and by Tester et at., (2005) for starches extracted from potato tubers 

stored at 15, 25 and 55°C (in situ annealing) for 7 days. 

4.4 Powder X-ray diffraction and crystallinity 

Tuber starches have been shown to exhibit a 'B' type X-ray diffraction pattern 

with reflections centered at 5.5-5.6°, 14.1°, 15.0°, 17.0°, 19.7°, 22.2° and 24° 28 

angles. Whereas, 'A' type starches (mainly cereals) exhibit reflections at 15.3°, 

17.0°, 18.0°, 20.0° and 23.4° 28 angles (Hizukuri eta/., 1983, Zobel 1988). In 

this study, granule crystallinity was determined at their maximum water 

absorption capacity, which was significantly different for each species [D. 

escu/enta (30-35%) and D. alata (24-28%)] [Figure 4-4]. Starches of both 

species showed no significant change in moisture content during scanning. All 

three varieties of native D. esculenta starches, exhibited the 'B' type X-ray 

pattern [Figure 4-4]. 

Crystallinity of starches has been shown to increase with increase in hydration 

(Jayakody eta/., 2006, Buleon eta/., 1998, Cheetham & Tao 1998, Buleon eta/., 

1987). The percentage crystallinity in the native D. esculenta starches followed 
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Figure 4-4 Polymorphic patterns and crystallinity (%) of Dioscorea starches 
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the order: nattala > java-ala > kukulala. Starch crystallinity has been shown to 

be influenced by: (1) crystallite size, (2) orientation of the double helices (within 

the crystallites) to the X-ray beam, (3) the number of crystallites that are properly 

aligned to diffract the X-ray beam, (4) shape of the crystallites, (5) interaction 

between crystallites, (6) direction of crystal growth, (7) extent of packing of the 

double helices within the crystalline lamella, (8) average chain length of 

amylopectin, (9) ratio of short chain to long chain fraction of amylopectin, (1 0) 

amylose content, (11) extent of disruption of amylopectin crystallites by amylose, 

(12) starch moisture content, (13) botanical source, (14) pretreatments and (15) 

diffractometer settings (Jayakody eta/., 2006, Jayakody eta/., 2005, Gunaratne 

& Hoover 2002, Cheetham & Tao 1998, Hoover & Vasanthan 1994a, Stute 

1992). The higher degree of crystallinity exhibited by native nattala starch 

suggests interplay of the following factors: (1) presence of larger crystallites, (2) 

larger number of crystallites (3) a more highly ordered crystalline structure, and 

(4) better orientation of the crystallites to the X-ray beam. This seems plausible, 

since differences in equilibrated moisture content [Figure 4-4], amylose content 

[Table 4-1] and amylopectin average chain length [Table 4-2] between nattala, 

kukulala and java-ala (D. esculenta) are too small to make any significant impact 

on starch crystallinity. 

Mukrbeck et a/., (1991) have shown by studies on native potato starches 

containing different levels of total phosphate, that the degree of crystallinity is 

reduced by high phosphate levels. They postulated that this could be due to 

dislocations in the amylopectin clusters induced by the bulky phosphate groups 
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interfering with the build up of the structure during biosynthesis. On this basis, 

native nattala starch having the highest phosphate level among the native D. 

esculenta starches [Table 4-1] should have exhibited the lowest level of 

crystallinity. The results [Table 4-1] suggests that in nattala, the effect of 

phosphate on crystallinity may have been negated by the interplay of the factors 

such as number and size of the crystallites, a highly ordered crystalline structure 

and their orientation to the X-ray beam. 

In the native D. alata starches, only raja-ala exhibited a '8' type X-ray diffraction 

pattern. Whereas, hingurala exhibited a 'C'-type pattern. Hizukuri eta/. (1960) 

classified the 'C' -type spectrum into Ca, Cb and Cc based on the extent of their 

resemblance to 'A' and '8' type or between the two types, respectively (section 

2.3.6.1.2.2.1.1 ). On this basis, the X-ray spectra of hingurala could be classified 

as a 'Ca' type. Both native hingurala and raja-ala exhibited the same level (43%) 

of crystallinity [Figure 4-4]. 

All starches exhibited a peak at -28=19.4° [Figure 4-4] which has been shown to 

be indicative of the presence of crystalline V-amylose-lipid complexes (Biliaderis 

& Galloway 1989, Zobel1988, Hoover & Hadizyev 1981). It was interesting to 

observe, that the intensity of this peak in both D. esculenta and D. alata starches 

increased with increase in the amount of lipid complexed amylose chains [Table 

4-1]. However, it must be borne in mind, that differences in the intensity of the V

amylose-lipid complex peak among the starches may also reflect the extent to 

which the V-amylose-lipid complexes are organized into three dimensional 
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structures (long range order). It is difficult to compare the X-ray crystallinities of 

the Dioscorea starches [Figure 4-4] with those published in the literature for 

tuber starches (Shujun eta/., 2006a, Yusuph eta/., 2003, Vasanthan eta/., 1999, 

Buleon eta/., 1987, Nara & Komiya 1983, Nara et al., 1978) for the following 

reasons: (1) crystallinities have not been determined at the maximum water 

absorption capacities of the starches, (2) crystallinity data have been published 

without any mention of the moisture content at which measurements were 

performed, (3) crystallinity of many tuber starches have been determined by 

calculating the proportion of crystallinity within the starch granules using as 

reference, materials with zero and 1 00% crystallinity. '0%' reference representing 

fully amorphous material (example-freeze-dried gelatinized starch). Whereas, 

100% reference being generated by using quartz (Vasanthan 1994) or extensive 

acid hydrolysis of starch in which all the amorphous material has been eroded 

(Tester eta/., 2004). The crystallinity of some varieties of D. esculenta (kukulala, 

java-ala) and 0. alata (hingurala) starches remained unchanged on annealing 

[Figure 4-4]. However, crystallinity decreased in nattala but increased in raja-ala 

starches on annealing [Figure 4-4]. 

In potato starch, crystallinity has been shown to remain unchanged on annealing 

(Tester eta/., 2005, Hoover & Vasanthan 1994a). McPherson and Jane (1999) 

have shown by 31 P NMR, that phosphorous in tuber starches (potato, waxy 

potato, yam, sweet potato) are mainly in the form of phosphate monoesters with 

minor amounts (<0.001 %) as inorganic phosphate [Table 2-7]. Hizukuri (1996), 

Gracza (1965) and Schoch (1942) and have shown that phosphate monoesters 
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are found exclusively on amylopectin. Lim eta/., (1994) showed by 31 P NMR the 

absence of lipid phosphorous in several tuber and root starches [Table 2-7]. In 

the present study, the total phosphorus content remained unchanged on 

defatting [Table 4-1], implying that phosphorus in the Dioscorea starches are 

mainly in the form of phosphate monoesters esterified at the C-6 and C-3 

positions in amylopectin. Since crystallinity is due mainly to amylopectin, the 

decrease in crystallinity observed in nattala starch on annealing [Figure 4-4] 

could be attributed to its phosphate monoester content (0.1 0%) [Table 4-1] being 

higher than those of the other Dioscorea starches (0.04 to 0.07%) [Table 4-1]. 

Perfection of the double helices (forming the crystalline structure) during 

annealing of nattala starch may have caused reorientation of the bulky phosphate 

groups (located within the crystalline region), resulting in crystallites being 

oriented in a crystalline array that may have been different to that present in 

native starch [Figure 4-4]. This would then explain the decreased crystallinity 

observed in annealed nattala starch [Figure 4-4]. 

Amylose leaching studies [Table 4-4] showed that interactions involving AM-AM 

and/or AM-AMP chains on annealing were more extensive in raja-ala than in the 

other starches. This suggests that the increase in crystallinity in raja-ala on 

annealing is due to the formation of additional crystallites (resulting from 

interactions between AM-AM and/or AM-AMP chains). The unchanged 

crystallinity exhibited by java-ala, kukulala and hingurala starches on annealing 

[Figure 4-4] suggests that new crystallites may have formed on annealing, but 
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are either smaller in number and/or in size or are improperly oriented to make a 

significant impact on crystallinity. 

4.5 Gelatinization parameters 

The gelatinization temperatures, [onset (T 0 ), mid point (T p) and conclusion (T c)], 

gelatinization temperature range (T c-T 0 ) and gelatinization enthalpy (~H) are 

presented in Table 4-3. T 0 , T P• T c. T c-To and ~H of native D. esculenta starches 

were lower than those of native D. alata starches [Table 4-3]. Among native D. 

esculenta starches, java-ala and nattala exhibited only marginal differences in T 0 , 

Tp. Tc, Tc-To and ~H. In kukulala, T0 and Tp were similar to those of nattala and 

java-ala, however, Tc, Tc-To and ~H were slightly higher [Table 4-3]. In the D. 

alata starches, all of the above gelatinization parameters were higher in hingurala 

[Table 4-3]. It is not possible to compare the above results with published data, 

due to differences in starch: water ratio, heating rate and other differences in 

methodology [Table 2-8]. Complicating matters is the fact that in many studies 

the varieties have not been specified. Tester (1997) postulated that gelatinization 

parameters are controlled, in part, by the molecular structure of amylopectin, 

starch composition and granular architecture. Noda et a/. (1996) showed, by 

studies on wheat and sweet potato starches, that DSC parameters are influenced 

by the molecular architecture of the crystalline region, which corresponds to the 

distribution of amylopectin short chains (DP 6-11) and not by the proportion of 

crystalline region which corresponds to the amylose to amylopectin ratio. The 
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Table 4-3 Gelatinization parameters of native and annealed Dioscorea starches 

Gelatinization parameters 1 

Starch source 
To (oC)2 T[> (OC)2 Tc (oC)2 Tc-To (°C}3 ~H_ (J/g)4 

D. esculenta 

Kukulala 
Native 72.30 ± 0.20a 75.73 ± 0.15a 85.40 ± 0.5oa 13.10 18.07±0.10a 

Annealed 75.15 ± 0.06b 78.18 ± 0.17b 86.33 ± 0.1 ob 11.18 19.09 ± o.o5b 

Java-ala 
Native 72.55 ± 0.07a 75.00 ± o.ooc 82.00 ± o.ooc 9.45 17.32 ± o.ooc 

Annealed 74.50 ± 0.25c 77.11 ± 0. 15d 83.48 ± 0.38d 8.98 17.57 ± 0.04d 

I\) 
Nattala 

0 Native 72.45 ± 0.07a 75.60 ± 0.15a 82.25 ± 0.35c 9.80 17.90 ± 0.06e 
01 

Annealed 74.51 ± 0.25c 77.79 ± 0.47e 83.07 ± 0.32d 8.56 18.05 ± o.o5a 

D. alata 

Hingurala 
Native 78.17 ± 0.06d 85.13 ± 0.06f 92.70 ± 0.06e 14.53 18.98 ± 0.09f 

Annealed 80.50 ± 0.16e 85.58 ± 0.05g 93.00 ± o.o8e 12.50 19.45 ± 0. 19g 

Raja-ala 
18.60 ± o.ooh Native 75.45 ± 0.07b 78.40 ± 0.14b 85.70 ± 0.28a 10.25 

Annealed 78.55 ± 0.13f 80.68 ± 0.15h 87.25 ± 0.55f 8.70 18.74 ± o.o5i 

All data reported on dry basis & represent the mean of at least four replicates. Values followed by the same superscript in each column is not significantly different (P<0.05) by Tukey's HSD test. 
1Starch: water ratio = 1:3 (w/w dry basis). 2T0 , Tp. Tc, indicate the temperature of the onset, midpoint and end of gelatinization, respectively. 
1"c-To indicates the gelatinization temperature range. 4Enthalpy of gelatinization tlH (J/g) 



above authors showed that a low T0 , Tp, Tc and LlH values reflect the presence of 

abundant short amylopectin chains, this suggests that the higher proportion of 

DP 6-12 chains [Table 4-2] in the D. esculenta starches may have been mainly 

responsible for their gelatinization parameters being lower than those of the D. 

alata starches [Table 4-3]. This seems plausible, since the difference in 

gelatinization parameters (D. a/ata >D. esculenta) cannot be explained in terms 

of differences in the amount of: (1) lipid complexed amylose chains [Table 4-1], 

(2) amylose content [Table 4-1], (3) total phosphorus content [Table 4-1] or (4) 

granule crystallinity [Figure 4-4]. The influence of the proportion of DP 6-12 

chains on gelatinization parameters was also evident among varieties of native 

D. esculenta starches [Table 4-2]. For instance, the small difference in the 

gelatinization parameters [Table 4-3] could be attributed to the absence of 

significant differences in the proportion of DP 6-12 chains among the native D. 

esculenta starches [Table 4-2]. Whereas, in the native D. alata starches, the 

differences in To. Tp, Tc and LlH between native hingurala and raja-ala [Table 4-3] 

indicate that interactions between amylopectin chains are stronger in hingurala. 

This seems plausible, since differences in composition [Table 4-1], crystallinity 

[Figure 4-4] and proportion of DP 6-12 chains [Table 4-2] between these 

starches are significant. 

Annealing increased T 0 , T P• T c and decreased T c-To in all starches [Table 4-3]. 

Similar changes on annealing has also been observed in potato [Table 2-14] 

(Tester et a/. 2005, Genkina et a/. 2004a, Jacobs et a/. 1998a,b,c, Hoover & 

Vasanthan 1994a), sweet potato (Genkina eta/., 2004b) and cassava (Gomes et 
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a/., 2004) starches. Increase in T0 , Tp and Tc has been attributed to perfection of 

pre-existing crystallites. The increase in crystal perfection on annealing has been 

attributed to lengthening of amylopectin pre-existing double helices caused by 

coiling of previously uncoiled ends and (Tester et a/., 2005, Genkina et a/., 

2004a) to the improvement of their registration (Hoover & Vasanthan 1994a). In 

general, the extent of increase in T0 , Tp and Tc on annealing was nearly the same 

for all Dioscorea starches [Table 4-3]. T c-T 0 reflects variations in crystalline 

stability; annealing has been shown to minimize these variations (Hoover & 

Vasanthan 1994a). Annealing decreased Tc-To in all starches [Table 4-3]. The 

extent of this decrease followed the order: hingurala > kukulala > raja-ala > 

nattala > java-ala [Table 4-3]. This was not surprising, since the largest and 

smallest variations in crystalline stability were present in native hingurala and 

java-ala starches, respectively [Table 4-3]. The b.H of all Dioscorea starches 

increased slightly on annealing (kukulala > hingurala > java-ala > nattala > raja

ala) [Table 4-3]. The extent of this increase although marginal was significant (P 

< 0.05). Marginal increases in b.H have also been observed in annealed potato 

(Tester eta/., 2005, Genkina eta/., 2004a, Hoover & Vasanthan 1994a), sweet 

potato (Genkina eta/., 2004b) and cassava (Gomes eta/., 2004) starches. The 

increase in b.H could be attributed to crystal perfection and/or to melting of 

crystallites formed between AM-AM and/or AM-AMP chains during annealing. 
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4.6 Amylose leaching (AML) and swelling factor (SF) 

The extent of AML and SF in the temperature range 60-90°C are presented in 

Tables 4-4 & 4-5, respectively. AML has been shown to be influenced by total 

amylose content, extent of interaction between amylose-amylose (AM-AM) 

and/or amylose-amylopectin (AM-AMP) chains within the native granule and on 

the amount of lipid complexed amylose chains (Jayakody eta/., 2005, Nakazawa 

& Wang 2003, Gunaratne & Hoover 2002, Hoover & Vasanthan 1994a). In all 

native starches, AML increased with temperature. D. alata starches exhibited 

AML only at temperatures exceeding 80°C [Table 4-4]. Whereas, AML occurred 

at lower temperatures (<80°C) in the D. esculenta starches [Table 4-4]. This 

suggests that interactions between AM-AM and/or AM-AMP chains are stronger 

in the native D. alata starches. At temperatures beyond 85°C [Table 4-4], the 

extent of AML in native D. alata starches (raja-ala> hingurala) was much higher 

than in the native D. esculenta Uava-ala > kukulala > nattala) starches [Table 4-

4]. This is indicative of the lower amylose content [Table 4-1] in the latter. The 

results suggest that the extent of AML among the native D. esculenta and 

between native D. alata starches is influenced by the interplay of differences in: 

(1) percentage of lipid complexed amylose chains [Table 4-1], (2) total amylose 

content [Table 4-1] and (3) the extent of interaction between AM-AM and/or AM

AMP chains. The extent of AML in the Dioscorea starches was much lower than 

those reported for potato, true yam, taro and new cocoyam starches (Gunaratne 

& Hoover 2002). For instance, at 80°C, the extent of AML in the Dioscorea 

starches was in the range 0.55 to 2.16% [Table 4-4]. Whereas, at the same 
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Table 4-4 Amylose leaching(%) of native and annealed Dioscorea starches in the temperature range 60-90°C 

Variety 60°C 70°C 80°C 85°C 90°C 

D. esculenta 

Kukulala 
Native o.oo ± o.ooa 0.69 ± o.ooa 1.94 ± 0.03a 3.88 ± 0.02a 5.75 ± 0.07a 

Annealed 0.00 ± o.ooa o.oo ± o.oob o.oo ± o.oob 1.69 ± 0.05b 2.35 ± 0.09b 

Java-ala 
Native o.oo ± o.ooa 0.92 ± 0.02c 2.16 ± 0.06c 4.97 ± 0.01c 6.19 ± 0.05c 

Annealed o.oo ± o.ooa o.oo ± o.oob o.oo ± o.oob 2.29 ± o.ood 3.29 ± 0.02d 

1\.) Nattala 
0 Native 0.00 ± o.ooa 0.46 ± 0.04d 1.55 ± 0.08d 2.85 ± 0.02e 5.58 ± 0.01e <0 

Annealed o.oo ± o.ooa o.oo ± o.oob o.oo± o.oob 1.16±0.08f 2.05 ± 0.06f 

D. alata 

Hingurala 
Native 0.00 ± o.ooa o.oo ± o.oob o.oo ± o.oob 6.76 ± 0.049 13.20 ± 0.079 

Annealed 0.00 ± o.ooa o.oo ± o.oob o.oo ± o.oob 1.94 ± 0.03h 5.92 ± o.ooh 

Raja-ala 
Native o.oo ± o.ooa o.oo ± o.oob 0.55 ± 0.01e 8.63 ± 0.05i 13.60 ± 0.09i 

Annealed 0.00 ± o.ooa o.oo ± o.oob o.oo ± o.oob o.oo ± o.od 1.11 ± o.ooi 

All data reported on dry basis and represent the mean of three replicates. Values followed by the same superscript in each column 
are not significantly different (P<0.05) by Tukey's HSD test. 



temperature, the values reported for native potato, true yam, taro and new 

cocoyam starches were 22.0, 13.0, 22.1, and 2.9%, respectively (Gunaratne & 

Hoover 2002). The large difference in AML between Dioscorea and other tuber 

starches cannot be attributed total amylose content (TAC) or to the amount of 

lipid complexed (LCA) chains. For instance, raja-ala starch with a higher T AC 

(31.0%) [Table 4-1] and a lower LCA (5.6%) [Table 4-1] than potato, true yam, 

taro and new coco yam starches (TAC 26.4-28.1%, LCA, 10.4-15.5%) 

(Gunaratne & Hoover 2002) exhibited no AML at 80°C. This suggests that 

interaction between AM-AM and /or AM-AMP chains within native granules are 

much stronger in Dioscorea than in other tuber starches. 

In all starches, AML decreased on annealing [Table 4-4]. The decrease in AML 

on annealing has been attributed to: (1) interaction between amylose chains, (2) 

decrease in granular swelling, and (3) increase in V-amylose-lipid content {Tester 

eta/., 2000, Hoover & Vasanthan 1994a,b). The extent of decrease in AML at 

90°C on annealing was more pronounced in the D. alata (raja-ala > hingurala) 

than in the D. esculenta (nattala - kukulala >java-ala) starches. This indicates 

stronger interactions between AM-AM and/or AM/AMP chains during annealing of 

D. a/ata starches. It is likely, that due to their higher amylose content [Table 4-1], 

the amylose chains in native D. alata starches are more compactly packed than 

in the native D. esculenta starches. Consequently, interactions between AM-AM 

and/or AM-AMP chains on annealing will be more pronounced in the former. The 

extent of reduction in AML on annealing in the Dioscorea starches was much 

higher than that reported for potato starch (Hoover & Vasanthan 1994a). For 
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instance, at 80°C, AML was zero (decreased by 100%) in all annealed Dioscorea 

starches. Whereas, at the same temperature, the difference between native and 

annealed potato starch (Hoover & Vasanthan 1 994a) was 2.1 %. This large 

difference in AML reduction between the Dioscorea starches and potato starch 

was rather surprising, since the extent of interaction between AM-AM and/or AM

AMP chains during annealing should have been more pronounced in potato 

starch since its amylopectin average chain length ( CL =28.1, Gunaratne & 

Hoover 2002) and degree of polymerization (DP) of amylose (DP = 4850 

Gunaratne & Hoover 2002) is longer than those of the native Dioscorea starches 

( CL = 17.6 -1 9.5) [Table 4-2], DP 1800-2000 (Gunaratne & Hoover 2002, Suzuki 

eta/., 1 986). This suggests, that it is the arrangement of amylose chains (loose 

or compactly packed) rather than the CL and DP of amylopectin and amylose, 

respectively, that has the greatest influence on the extent of interaction between 

AM-AM and /or AM/AMP chains during annealing. The greater relative reduction 

in AML in the annealed Dioscorea starches is indicative of amylose chains in the 

native Dioscorea starches being more compactly packed than in native potato 

starch. 

Swelling factor (SF) also increased with increase in temperature [Table 4-5]. At 

all temperatures, SF was lower in native D. alata starches. SF has been shown 

to be influenced by: (1) phosphate monoester content (Jayakody et a/., 2005, 

Srichuwong et a/., 2005c, Noda et a/., 2004, Suzuki et a/., 1994, Galliard & 

Bowler 1987), (2) amount of lipid complexed amylose chains (Jayakody et a/., 

2005, Hoover & Manuel, 1995, Tester & Morrison 1990, Swinkels 1985a, Hoover 
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Table 4-5 Swelling factor of native and annealed Dioscorea starches in the temperature range 60-90°C 

Variety 60°C 70°C 80°C 85°C 90°C 

D. esculenta 

Kukulala 
Native 3.27 ± 0.20a 7.86 ± o.ooa 32.52 ± 0.42a 43.31 ± o.ooa 53.61 ± 0.11a 

Annealed o.oo ± o.oob 1.99 ± 0.34b 19.77 ± o.oob 24.88 ± 0.37b 31.97 ± 0.19b 

Java-ala 
Native 3.50 ± o.ooc 11.85 ± 0.22c 35.45 ± o.ooc 45.73 ± o.ooc 54.29 ± 0.33c 

Annealed o.oo ± o.oob 3.73 ± 0.54d 26.67 ± 0.75d 32.43 ± 0.47d 41.31 ± 0.30d 

"' Nattala .... 
"' Native 4.55 ± o.ood 18.22 ± o.ooe 39.00 ± o.ooe 51.69±0.12e 64.97 ± 0.42e 

Annealed o.oo± o.oob 8.59± 0.54f 29.62 ± 0.63f 32.20 ± 0.65f 44.87 ± 0. ?Ot 

D. alata 

Hingurala 
Native 2.45 ± 0.35e 3.13 ± 0.009 6.26 ± 0.199 16.27 ± 0.139 38.64 ± 0.009 

Annealed o.oo ± o.oob o.oo ± o.ooh 3.99 ± 0.36h 7.57 ± 0.35h 21.68 ± 0.44h 

Raja-ala 
Native 2.81 ± 0.50e 3.83 ± o.ooi 14.28 ± o.ooi 24.27 ± 0.13i 36.60 ± o.ooi 

Annealed o.oo ± o.oob o.oo ± o.ooh 6.16 ± o.ooi 11.65 ± 0.32j 20.55 ± 0.5oi 

All data reported on dry basis and represent the mean of at least four replicates. Values followed by the same superscript in 
each column are not significantly different (P<0.05) by Tukey's HSD test. 



& Hadziyev 1981) and (3) granule crystallinity (Jayakody et a/., 2005). 

Differences in SF between native D. alata (raja-ala>hingurala) [Table 4-5] 

starches in the range 60-85°C can be attributed to the higher content of lipid 

complexed amylose chains [Table 4-1] and to a greater interaction between 

amylopectin chains [Table 4-3] in hingurala. This seems plausible, since 

differences in crystallinity [Figure 4-4] and total phosphorus content [Table 4-1] 

between hingurala and raja-ala were marginal. The reversal in SF at 90°C 

(hingurala>raja-ala) indicates that the number of hydrogen bonds (between 

amylopectin chains) that are destroyed in the temperature range 85-90°C is 

higher in hingurala (due to stronger interactions between amylopectin chains) 

than in raja-ala. This would the explain the steeper SF increase exhibited by 

hingurala in the temperature range 85-90°C thus stands explained. 

The higher SF shown by native D. esculenta starches [Table 4-5] reflects the 

interplay of differences in: (1) crystallinity (D. escu/enta > D. alata [Figure 4-4]), 

(2) total phosphorus content (D. esculenta > D. alata [Table 4-1]) and (3) extent 

of interaction between AM-AM and/or AM-AMP chains (D. a/ata > D. escu/enta 

[Table 4-4]). SF differences among the native D. esculenta starches (kukulala, 

java-ala, nattala) reflects the interplay of differences in: (1) total phosphorus 

content (nattala >java-ala > kukulala [Table 4-1] (2) crystallinity (nattala >java

ala > kukulala [Figure 4-4] and (3) extent of interaction between AM-AMP and/or 

AM-AMP chains (nattala > kukulala >java-ala [Table 4-4]. The presence of lipid 

complexed amylose chains has been shown to be correlated to resistance to 

granular swelling (Tester & Morrison 1990a, Hoover & Hadziyev 1981 ), however, 
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it is unlikely that the observed differences in SF among the native D. escu/enta 

starches is due to solely differences in the amount of lipid complexed amylose 

chains [Table 4-1], since nattala, having the highest content of lipid complexed 

amylose chains [Table 4-1] exhibited the highest SF at all temperatures [Table 4-

5]. This suggests that the influence of amylose-lipid complexes on SF differences 

among the native D. esculenta starches is negated by crystallinity, total 

phosphorous content and glucan chain interactions. 

At all temperatures, the SFs of the native Dioscorea starches were lower [Table 

4-5] than that reported for potato starch (Hoover & Vasanthan 1994a) but were 

generally higher (with the exception of hingurala) than those reported for true 

yam, taro and new cocoyam starches (Gunaratne & Hoover 2002). For instance, 

at 80°C, the SFs of the all native Dioscorea starches ranged from 6.26 to 39.0 

[Table 4-5]. Whereas, at the same temperature, potato, true yam, taro and new 

cocoyam exhibited a SF of 60, 26, 36, 18, respectively (Gunaratne & Hoover 

2002). The difference in SF between potato and the Dioscorea starches could be 

attributed to the crystallinity of the native Dioscorea starches (43-53%) [Figure 4-

4] being higher than that of potato starch 24-30% (Gunaratne & Hoover 2002, 

Cooke & Gidley 1992, Zobel 1988), and to amylose chains being more compactly 

packed in the Dioscorea starches. 

In all starches, SF decreased on annealing [Table 4-5]. The extent of this 

decrease was more pronounced in the D. alata than in the D. escu/enta starches. 

The higher extent of SF reduction in the D. alata starches, suggests that the 
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higher extent of AML reduction observed in the D. alata starches on annealing 

[Table 4-4] is also influenced by their lower SF that results from annealing. The 

results showed that the decrease in SF on annealing is influenced to a large 

extent by the interplay between the extent of crystalline perfection (a decreased 

Tc-To on annealing reflects an increase in crystalline perfection) [Table 4-3] and 

on the extent of interaction involving AM-AM and/or AM-AMP chains [Table 4-4]. 

Both crystalline perfection and AM-AM and/or AMP interactions would decrease 

hydration of the amorphous regions, thereby decreasing granular swelling. 

Decreased granular swelling on annealing has also been observed in potato 

starch (Hoover & Vasanthan 1994a, Kuge & Kitamura 1985). However, the 

extent of this decrease in annealed potato starch (Hoover & Vasanthan 1994a) is 

much lower than that observed in the annealed Dioscorea starches. For 

instance, at 80°C, annealing decreased SF in potato starch by 24.7%. Whereas, 

the corresponding decrease for the Dioscorea starches was in the range 29-54% 

[Table 4-5]. This indicates that the degree of interaction between AM-AM and/or 

AM-AMP chains during annealing is less pronounced in potato starch. 

4. 7 Pasting characteristics 

The pasting properties of the Dioscorea starches measured using a rapid 

viscoanalyzer (RVA) are presented in Figure 4-5. Native D. escu/enta starches 

exhibited higher peak viscosities, lower pasting temperatures, a greater degree of 

viscosity breakdown and lower set-back values than D. a/ata starches [Figure 4-

5]. The native D. alata starches differed significantly from each other with 

respect to peak viscosity (raja-ala > hingurala), viscosity breakdown (hingurala 
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Figure 4-5 Pasting characteristics of Dioscorea starches 
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> raja-ala) set-back (raja-ala > hingurala) and pasting temperature (hingurala > 

raja-ala). Viscosity development during heating of starch granules in water has 

been attributed to the formation of tightly packed array of swollen deformable 

granules, to friction between swollen granules, and the amount of leached 

amylose (Singh eta/., 2006, Amani eta/., 2004, Gebre-Mariam & Schmidt 1998, 

Jacobs eta/. 1995, Hoover & Vasanthan 1994b, Zeigler eta/., 1993, Lineback & 

Rasper 1988, Doublier eta/., 1987, Evans & Haisman 1979, Miller 1973, Schoch 

& Maywald 1968). The viscosity rise during cooling of a heated starch 

suspension has been attributed to interactions between leached amylose chains 

which leads to the formation of a gel (Miles eta/., 1985, Bowler eta/., 1980). The 

increase in viscosity on cooling is a measure of the retrogradation tendency of 

the starch. In the D. alata starches, difference in pasting temperatures between 

native hingurala and raja-ala suggests that bonding forces between glucan 

chains are stronger in the former. The higher peak viscosity exhibited by raja-ala 

could be attributed to its higher degree of amylose leaching [Table 4-4], greater 

swelling factor [Table 4-5] and larger granule size [Table 4-1]. Singh et a/., 

(2006) and Srichuwong eta/., (2005c) have postulated that starches with larger 

granules might occupy more volume and thus enhance viscosity. The higher 

resistance of granules of native raja-ala starch to viscosity breakdown (due to 

granule fragmentation) during the holding cycle at 95°C, can be attributed to its 

larger granule size [Table 4-1] and more extensive amylose leaching [Table 4-4]. 

It is likely, that the highly swollen raja-ala granules may have become resistant to 

shear due to granules becoming embedded within the amylose network during 
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the holding cycle. The higher set-back (mainly due to amylose gelation) shown 

by raja-ala could be attributed to its greater degree of amylose leaching and/or to 

more rigid unfragmented granules embedded within the amylose network. 

The native D. escu/enta starches differed significantly with respect to peak 

viscosity (nattala > kukulala >java-ala), viscosity breakdown during the holding 

cycle (nattala >java-ala > kukulala) and degree of set-back (kukulala > nattala > 

java-ala) [Figure 4-5]. Amylose leaching [Table 4-4] and swelling factor [Table 

4-5] measurements showed that among the D. esculenta starches, interaction 

between glucan chains was stronger in nattala. This would then explain the 

ability of nattala starch to swell to a higher degree and attain a higher degree of 

viscosity during the heating cycle [Figure 4~5]. The extent of viscosity 

breakdown during the holding cycle (at 95°C) is more pronounced in nattala 

[Figure 4-5] due to susceptibility of the highly swollen granules [Table 4-5] to 

shear. Between native kukulala and java-ala starches, the extent of amylose 

leaching [Table 4-4] and granular swelling [Table 4-5] was more pronounced in 

the latter. Therefore, theoretically, the viscosity rise during the heating cycle 

[Figure 4-5] should have been higher in java-ala starch. It is likely, that the 

causative factor influencing the viscosity differences between java-ala and 

kukulala (kukulala >java-ala) starches may have been due to the large difference 

in granular size between the starches (kukulala > java-ala) [Table 4-1]. The 

viscosity rise during the heating cycle is higher in kukulala starch due to greater 

friction between swollen granules. The lower extent of viscosity breakdown and 

the high degree of set-back shown by kukulala starch can be attributed to its 
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larger granules becoming embedded in the leached amylose network. It is 

difficult to compare the RVA results obtained in this study with those reported for 

other tuber starches, due to differences in starch concentration and to the 

methodology (Brabender viscoamylogram, micro viscoanalyzer) used for 

determination of pasting characteristics. There are only two reports in the 

literature (Srichuwong eta/., 2005c, Amani eta/., 2004) where the RVA pasting 

characteristics of native D. alata and D. esculenta starches have been 

compared. However, the starch concentration used in the above studies were 

different 8% (Srichuwong eta/., 2005c), and 4% (Amani eta/., 2004) w/w [Table 

2·1 0] and only a few RVA parameters were reported by Amani et a/., (2004 ). 

These studies showed that pasting temperatures, peak viscosity and final 

viscosity (at 50°C) of D. alata starches were higher than those of D. esculenta 

starches, and that Dioscorea starches were more resistant to viscosity 

breakdown than potato or cassava starches. 

In the D. esculenta starches [Figure 4-5], peak viscosity decreased (kukulala > 

java-ala > nattala) on annealing. However, annealing increased peak time 

(kukulala > nattala >java-ala), pasting temperature (kukulala > nattala -java-ala) 

and thermal stability (kukulala-ala > nattala >java-ala). The set-back decreased 

on annealing in kukulala, but increased in both nattala and java-ala (nattala > 

java-ala) starches [Figure 4-5]. A similar trend was also exhibited by the D. alata 

starches [Figure 4-5], where annealing decreased peak viscosity (raja-ala > 

hingurala), but increased peak time (raja-ala > hingurala), pasting temperature 

(raja-ala > hingurala), and thermal stability (hingurala > raja-ala). Whereas, set-
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back decreased in raja-ala, but increased in hingurala on annealing [Figure 4-5]. 

The decrease in peak viscosity and the increase in thermal stability and pasting 

temperature on annealing was generally higher in the D. alata than in the D. 

esculenta starches [Figure 4-5]. However, a similar comparison cannot be made 

between the starch species with respect to changes in set-back on annealing, 

since set-back decreased in raja-ala (D. alata) and kukulala (D. esculenta), but 

increased in java-ala (D. esculenta), nattala (D. esculenta) and hingurala (D. 

alata) starches. Similar changes in pasting properties on annealing has also been 

observed (Jacobs eta/., 1995, Hoover & Vasanthan 1994a, Stute 1992) in potato 

starch. The magnitude of the changes in pasting properties on annealing 

between potato and the Dioscorea starches cannot be compared due to 

differences in concentrations and on the type of instrument used for viscosity 

measurements. 

In all the Dioscorea starches, the decrease in peak viscosity on annealing can be 

attributed to decreased swelling factor (SF) [Table 4-5] and amylose leaching 

(AML) [Table 4-4]. The effect of annealing on peak viscosity is more pronounced 

in the D. alata than in the D. esculenta starches [Figure 4-5] due to a greater 

reduction in SF [Table 4-5] and AML [Table 4-4] in the former. The increase in 

thermal stability exhibited by all the annealed Dioscorea starches [Figure 4-5] is 

mainly due to the decrease in SF [Table 4-5]. For instance, among the D. 

esculenta starches [Figure 4-5], the increase in thermal stability on annealing is 

more pronounced in kukulala starch, due to its greater decrease in SF [Table 4-

5]. The thermal stability increase on annealing in java-ala is lower than in nattala 
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starch [Figure 4-5] due to a less pronounced decrease in SF for java-ala [Table 

4-5]. The thermal stability increase on annealing is of nearly the same order of 

magnitude in raja-ala and hingurala, [Figure 4-5] due to a similarity in the extent 

of decrease in SF [Table 4-5] in both starches. The increased pasting 

temperatures exhibited by all Dioscorea starches on annealing is influenced by 

the decrease in SF [Table 4-5] and increased interaction between glucan chains 

(AM-AM, and/or AM-AMP) [Table 4-4]. This seems plausible, since the increase 

in pasting temperatures on annealing was more pronounced in the D. alata than 

in the D. esculenta starches. 

An increase in the amount of leached amylose, large granule size and rigid 

swollen granules have been shown to increase the amount of set-back (viscosity 

at the end of the cooling cycle- trough viscosity [Figure 4-5]) (Jacobs eta/., 1995, 

Hoover & Vasanthan 1994a, Loh 1992). As shown earlier, the extent of decrease 

in SF on annealing varied widely among the D. escu/enta starches, with a greater 

decrease in kukulala starch [Table 4-5]. On the other hand, variations in the 

extent of decrease in AML among these starches was less pronounced [Table 4· 

4]. In kukulala, the large decrease in SF [Table 4-5] combined with a minor 

decrease in AML [Table 4-4] may have mediated the effect of increased granule 

rigidity (increases set-back), thereby reducing net set-back in annealed kukulala 

[Figure 4-5]. The slight increase in set-back exhibited by annealed java-ala and 

nattala (nattala > java-ala) [Figure 4-5] starches, suggest that the extent of 

decrease in SF on annealing in the above starches was probably not large 

enough to negate the effect of increased granule rigidity on set-back. The extent 
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of increase in set-back is higher in nattala starch showed a higher decrease in SF 

than java-ala on annealing [Table 4-5]. In the D. alata starches, the extent of 

decrease in SF on annealing was nearly the same in both raja-ala and hingurala. 

However, the extent of decrease in AML was much higher in annealed raja-ala 

starch [Table 4-4]. This would then explain the decreased set-back in annealed 

raja-ala [Figure 4-5] starch. 

4.8 Acid hydrolysis 

The extent of hydrolysis (2.2M HCI, 35°C) of native and annealed D. esculenta 

and D. alata starches are presented in Figure 4-6. Starches from both of the 

above species did not exhibit the typical biphasic pattern (a faster rate of 

hydrolysis followed by a slower rate) during the time course (15 days) of 

hydrolysis [Figure 4-6]. The faster rate has been attributed to the hydrolysis of 

the amorphous domains (amorphous background and the thin amorphous 

lamella within the crystalline region) of the starch granule, whereas during the 

second stage, the crystalline regions are slowly degraded (Jayakody eta/., 2005, 

Jayakody & Hoover 2002, Hoover 2000, Billaderis et a/., 1981). Several 

researchers have shown that the time taken for the degradation of the crystalline 

region by H30+ can vary widely (9-25 days) depending on the starch source 

(Srichuwong et a/., 2005a, Jayakody 2001, Hoover 2000, McPherson & Jane 

1999). The data suggests that during the time course of hydrolysis, only the 

amorphous regions were degraded by H30+. This could be attributed to the high 

level of crystallinity (43-53%) in the Dioscorea starches [Table 4-5]. Unlike the 

Dioscorea starches, potato starch has been shown (Jacobs eta/., 1998a, Hoover 
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Figure 4-6 Acid hydrolysis (2.2M HCI, 35°C) of Dioscorea starches 
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& Vasanthan 1994a) to exhibit a biphasic pattern. This is not surprising since 

the crystallinity of native potato starch (24-28%) (Yusuph eta/., 2003, Zobel & 

Senti 1960) is much lower than that of the Dioscorea starches. The rate and 

extent of hydrolysis of native D. a/ata starches were lower than those of D. 

esculenta starches [Figure 4-6]. The extent of hydrolysis of native D .alata 

starches followed the order: raja-ala > hingurala. Whereas, the corresponding 

order for the native D. esculenta starches was: nattala > java-ala > kukulala 

[Figure 4-6]. 

Differences in the extent of acid hydrolysis among starches has been attributed 

to differences in: (1) granule size (Jayakody et a/., 2005, Jayakody & Hoover, 

2002, Jayakody 2001, Vasanthan & Bhatty 1996, Billiaderis et a/., 1981 ), (2) 

amount of lipid complexed amylose chains (Waduge eta/., 2006, Morrison eta/., 

1993a), (3) extent of interaction between glucan chains (Hoover & Manuel1996), 

(4) amylopectin chain length distribution (Srichuwong et a/., 2005c) and (5) 

phosphorus content (Jayakody eta/., 2005, Hoover 2000). The slower extent of 

hydrolysis of native D. alata starches [Figure 4-6] could be attributed to the 

interplay of the following factors: (1) stronger interaction between AM-AM and/or 

AM-AMP chains within the granule interior, (2) larger granule size [Table 4-1], (3) 

lower phosphorus content [Table 4-1] and (4) a lower proportion of DP 6-12 

chains [Table 4-2]. Amylose-lipid complexes have been shown to be resistant to 

acid hydrolysis (Waduge eta/., 2006, Morrison eta/., 1993a,b). However, in this 

study, the resistance of amylose-lipid complexes to acid hydrolysis was not 

evident [Figure 4-6], since D. esculenta starches having a much higher content 
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of amylose-lipid complexes (14.9-22.0%) were hydrolyzed to a greater extent 

than the 0. alata starches (5.6-8.3%) [Table 4-1]. It is likely, that the smaller 

granule size [Table 4-1] and higher proportion of DP 6-12 chains [Table 4-2] in 

the native 0. esculenta starches may have eclipsed the effect of amylose-lipid 

complexes on acid hydrolysis. The difference in the extent of hydrolysis between 

the native 0. alata starches (raja-ala > hingurala) [Figure 4-6] can be attributed 

to stronger interaction between AM-AM and/or AM-AMP chains [Table 4-4] and 

to a higher content of lipid complexed amylose chains in hingurala [Table 4-1]. 

This seems plausible, since the starches did not differ significantly with respect to 

granule size [Table 4-1] amylopectin chain length distribution [Table 4-2]. 

Difference in hydrolysis among the native 0. esculenta starches (nattala >java

ala > kukulala) [Figure 4-6] could be attributed to differences in: (1) granule size 

(kukulala > java-ala > nattala) [Table 4-1], (2) phosphorus content (nattala > 

java-ala > kukulala) [Table 4-1], (3) interaction between AM-AM and/or AM-AMP 

chains Uava-ala > kukulala > nattala) and (4) amount of lipid complexes amylose 

chains (nattala >java-ala > kukulala) [Table 4-1]. The observed difference in the 

extent of acid hydrolysis among the native 0. esculenta starches [Figure 4-6] 

suggest that the combined effect of factors 1 & 2 negates the effect of factors 3 & 

4. The extent of hydrolysis in the native Oioscorea starches [Figure 4-6] was 

much lower than that reported for native potato, cassava, yam (species not 

specified) and sweet potato (Gunaratne & Hoover 2002, McPherson & Jane 

1999). In these starches, hydrolysis exceeded 70% after 12 days. However, in 

the same time period, hydrolysis ranged from 25-40% in the Oioscorea starches 
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[Figure 4-6]. This could be attributed to the crystallinity of the native Dioscorea 

starches being much higher (43-53%) [Figure 4-4] than that reported for potato 

(24-28%), true yam (32%), cassava (38%) and sweet potato (38%) (Yusuph et 

a/., 2003, Gunaratne & Hoover 2002, Zobel & Senti 1960) starches. 

Annealed starches exhibited a similar hydrolysis pattern [Figure 4-6] as their 

native counterparts. There was no significant difference in the rate of hydrolysis 

between the native and annealed starches. However, annealing decreased the 

extent of hydrolysis in all starches. The extent of this decrease in the D. 

esculenta starches followed the order: java-ala (11.0%) > nattala (9.0%) > 

kukulala (8.0%). Whereas in the D. alata starches, the corresponding values 

were 9 and 10%, respectively in hingurala and raja-ala starches. A smaller 

decrease (-5%) in acid hydrolysis on annealing as also been reported for potato 

starch (Jacobs eta/., 1998a, Hoover & Vasanthan 1994a). The decrease in acid 

hydrolysis on annealing has been shown to be influenced by the following 

factors: (1) perfection of starch crystallites, (2) formation of V-amylose lipid 

complexes and (3) formation of amylose double helices (Waduge eta/., 2006, 

Jacobs eta/., 1998a Hoover & Vasanthan 1994a). However, X-ray diffraction 

studies [Figure 4-4] showed the absence of any increase in V-amylose-lipid 

complex formation on annealing. Furthermore, crystalline perfection (due to 

alignment of double helices of amylopectin) cannot be considered as a factor 

influencing acid hydrolysis of annealed starches, since crystallites were not 

attacked during the time course of hydrolysis. Amylose leaching studies [Table 

4-4] showed the interactions occur between amylose-amylose and/or amylose-
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amylopectin chains on annealing. These interactions may have led to the 

formation of double helices within the amorphous domains of the granule, thus 

decreasing the susceptibility of annealed starches towards H30+. 

4.9 Enzyme hydrolysis 

The susceptibilities of native Dioscorea starches towards hydrolysis by porcine 

pancreatic a-amylase are presented in Table 4-6. After 72h of hydrolysis, native 

D. esculenta and D. alata starches were hydrolyzed to the extent of 54.1-77.6% 

and 7.1-33.7%, respectively [Table 4-6]. Among native D. esculenta starches, 

the extent of hydrolysis followed the order: java-ala > kukulala > nattala. 

Whereas, in the D. alata starches, hingurala was hydrolyzed to a greater extent 

than raja-ala [Table 4-6]. Differences in the in-vitro digestibility of starches 

among and within species have been attributed to the interplay of many factors 

such as (1) botanical source (Srichuwong et a/., 2005a, Jacobs et a/., 1998c, 

Ring eta/., 1988, Gallant & Bouchet 1986, Snow & O'Dea 1981, Fuwa eta/., 

1979, Rasper et a/., 1974, Gallant et a/., 1972), (2) granular morphology 

(Valetudie eta/., 1993, Fujita eta/., 1989, Colonna eta/., 1988), (3) granular size 

(Noda eta/., 2005, Snow & Glover 1997, Valetudie eta/., 1993, Ring eta/., 1988, 

Snow & O'Dea 1981, Leach & Schoch 1961 ), (4) surface area (Kong eta/., 2003, 

Guraya et a/., 2001, Leloup et a/., 1992, Knutson et a/., 1982), (5) 

amylose/amylopectin ratio (Hoover & Sosulski 1985), (6) extent of molecular 

association between glucan chains (Dreher et a/., 1984), (7) degree of 

crystallinity (Hoover & Sosulski 1985), (8) amylose-lipid complexes (Holm et a/., 

1983; Hoover & Manuel1995), and (9) unit cell structure (Jane 2006, Jane eta/., 
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Table 4-6 Hydrolysis (%)1 of native and annealed Dioscorea starches by porcine pancreatic a-amylase 

%Hydrolysis 
Species 

Variety Day-1 Day-2 Day-3 
Kukulala 

Native 43.20 ± o.ooa 59.63 ± o.ooa 67.66 ± o.ooa 

Annealed 35.78 ± 0.33b 51.62 ± 0.34b 59.67± 0.53b 

D. esculenta Java-ala 
Native 41.75 ± 0.28c 64.64 ± 0.22c 77.63 ± o.ooc 

Annealed 34.27± 0.17d 52.53± 0.30d 64.59 ± 0.13d 
1\.) 
1\.) 
(X) 

Nattala 
Native 32.41 ± 0.33e 46.47± 0.43e 54.11 ± 0.46e 

Annealed 35.01 ± 0.54f 50.03 ± 0.21 f 57.93 ± 0.78f 

Hingurala 
Native 19.28 ± 0.449 28.62 ± 0.289 33.69 ± 0.339 

Annealed 14.76 ± 0.05h 22.10 ± o.ooh 25.75 ± 0.13h 
D. alata 

Raja-ala 
Native 3.87 ± o.ooi 5.92 ± 0.46i 7.11 ± 0.28i 

Annealed 2.71 ± 0.33j 4.14 ± o.o6i 4.82 ± 0.12j 

1 
All data reported on dry basis and represent the mean of four replicates. Values followed by the same superscript in each 
column are not significantly different (P<0.05) by Tukey's HSD test. 



1992). Several researchers (Lauro et a/., 1999, Colonna et at., 1988, Leach & 

Schoch 1961) have shown that a-amylase can simultaneously solubilize both 

amorphous and crystalline regions of starch granules. The difference in 

hydrolysis between D. esculenta and D. alata starches is mainly influenced by 

the smaller granular size [Table 4-1], lower amylose content [Table 4-1] and 

weaker interaction between AM-AM and/or AM-AMP chains [Table 4-4] in the 

former. The combined effect of these three factors may have negated the effect 

of crystallinity (D. escu/enta >D. a/ata) and content of lipid complexed amylose 

chains (D. esculenta > D. alata) on hydrolysis. In the D. alata starches, the 

higher susceptibility of hingurala starch towards a-amylase reflects its smaller 

granular size [Table 4-1] and lower amylose content [Table 4-1]. It is likely, that 

the combined effect of those two factors culminate the effect of lipid complexed 

amylose chains (hingurala > raja-ala) on the extent of hydrolysis. Among the 

native D. esculenta starches, the lower susceptibility of nattala towards a

amylase can be attributed to its higher crystallinity [Figure 4-4] and more 

extensive interaction between AM-AM and/or AM-AMP chains [Table 4-4]. 

Whereas, the difference in susceptibility between kukulala and java-ala starches 

can be attributed to the smaller granule size [Table 4-1] and to a lower degree of 

interaction between glucan chains in the latter. A meaningful comparison of 

variations in the extent of hydrolysis between the Dioscorea and other tuber 

starches cannot be made due to differences in a-amylase source, reaction times 

and quantity of enzyme used. 
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Annealing decreased the susceptibility of kukulala, java-ala, hingurala and raja

ala towards a-amylolysis [Table 4-6]. The extent of this decrease was more 

pronounced in the D. alata (raja-ala > hingurala) than in the D. escu/enta Oava

ala > kukulala) starches. However, annealing increased the susceptibility of 

nattala starch towards a-amylolysis [Table 4-6]. Decreased a-amylase 

susceptibility on annealing has also been reported for potato starch (Jacobs et 

a/., 1998c, Hoover & Vasanthan 1994a). The decrease in a-amylase 

susceptibility seen in some of the Dioscorea starches on annealing [Table 4-6] 

can be attributed to interaction between AM-AM and/or AM-AMP chains on 

annealing. These interactions would decrease the accessibility of the a-D-(1-4) 

glycosidic bonds to a-amylase. Amylose leaching [Table 4-4] studies showed 

that on annealing, the extent of interaction between AM-AM and/or AM-AMP 

chains of the D. escu/enta starches followed the order: nattala - kukulala > java

ala [Table 4-4]. On this basis, nattala should also have shown a decreased 

susceptibility towards a-amylolysis on annealing. Zhang et a/., (2006) and 

Planchet eta/., (1997a) have postulated that the crystalline region of the starch 

granule has a major influence in defining the rate and extent of a-amylolysis. 

The latter authors have shown by linternerization studies on potato, wheat and 

maize starches that susceptibility towards a-amylase increases with the extent of 

crystalline perfection. X-ray diffraction data [Figure 4-4] showed that among the 

Dioscorea starches, crystallinity decreased in nattala on annealing. This was 

attributed to a change in crystallite orientation rather than to crystallite disruption. 

This suggests that the increased hydrolysis exhibited by nattala starch [Table 
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4.4] on annealing, may have been due to crystallite reorientation. Crystallite 

reorientation may have rendered the a-D-(1 ~4) glycosidic bonds that are buried 

with the crystalline domains more accessible to a-amylase. The results indicate 

that the hydrolysis of annealed nattala starch is influenced to a greater extent by 

crystallite reorientation rather than by glucan chain interactions (AM-AM, and/or 

AM-AMP). As shown earlier, AM-AM and/or AM-AMP interactions [Table 4.4] 

and the extent of crystallite perfection [Table 4.3] was of a higher order of 

magnitude in kukulala than in java-ala starch. Therefore, it was surprising to note 

that the decrease in a-amylolysis on annealing was less pronounced in kukulala 

starch. It must be borne in mind, that crystalline perfection on annealing can lead 

to the creation of void areas within the crystalline lamella that can lead to 

susceptibility to attack (Nakazawa & Wang 2004). DSC data [Table 4-3] showed 

that the amount of crystallites being perfected on annealing was more 

pronounced in kukulala than in java-ala starch, consequently, more void areas 

may have been created within the crystalline lamella of kukulala, resulting in 

starch crystallites being more accessible to a-amylase in annealed kukulala than 

in annealed java-ala starch. 

The extent of decrease in a-amylolysis on annealing is more pronounced in the 

D. alata (raja-ala > hingurala) than in the D. esculenta starches (java-ala > 

kukulala) [Table 4-6] due to stronger interactions between AM-AM and/or AM

AMP chains in the D. alata starches [Table 4-4]. In the D. alata starches, the 

extent of decrease in a-amylolysis on annealing is more pronounced in raja-ala 

[Table 4-6] due to increased crystallinity [Table 4-5] and stronger interactions 
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between AM-AM and/or AM-AMP chains on annealing [Table 4-4]. Scanning 

electron microscopy [Figure 4-3] showed that the granule surface and granule 

size of all Dioscorea starches remained unchanged on annealing. Thus, the 

observed changes to a-amylolysis on annealing can be attributed solely to 

structural changes within the granule interior. 

4.1 0 Retrogradation 

DSC of retrograded native starches have been shown to exhibit: (1) a broad peak 

in the range 55-85°C, which has been assigned to crystallization arising from 

associations between the outer A chains of amylopectin (Srichuwong et a/., 

2005a, Fredriksson eta/., 1998, Zobel & Stephen 1995, Kalichevsky eta/., 1990, 

Ring eta/., 1987, Russel1987), (2) a sharp peak in the range 98-104°C due to 

melting of the amylose-lipid complex (Russell1987, Kugimiya & Donovan 1981), 

and (3) a broad peak due to melting of crystallized amylose chains formed by 

extensive interactions between amylose chains with DP - 50. This peak has 

normally been observed only at temperatures exceeding 140°C (Roulet et a/., 

1988). Since bound lipids were present only in trace quantities, the endotherm 

due to melting of the amylose-lipid complex was not also, and the one associated 

with the melting of crystallized amylose chains was not detected due [Table 4-1] 

to pan failure at temperatures exceeding 130°C. Thus, the enthalpy of 

retrogradation ~HR mainly represents the unravelling and melting of the double 

helices formed by associations between the outer A chains of amylopectin during 

storage (40°C for 7 days) of the gelatinized starch gels. 
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Figure 4-7 Enthalpy of retrogradation (6HR) of Dioscorea starches 
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The ~HR of native D. esculenta Uava-ala > kukulala > nattala) starches were 

higher than those of the D. alata (hingurala > raja-ala) starches. In all starches, 

~HR increased rapidly during the first 3 days of storage [Figure 4-7]. Thereafter, 

the increase was gradual. Differences in ~HR among starches have been 

explained on the basis of amylopectin unit chain length distribution (Lai et a/., 

2000, Ward eta/., 1994, Shi & Seib, 1992, Kalichevsky eta/., 1990, Fredriksson 

eta/., 1988), and phosphate monoester content (Jane eta/., 1996). The main 

difference in amylopectin unit chain length distribution between native D. 

esculenta and D. alata starches was in the proportion of short (DP 6-12) chains 

(D. esculenta >D. alata) [Table 4-2]. Ward eta/., (1994) and Wursch and Gumy 

( 1994) postulated that an increase in molar proportion of short chains with DP 6-9 

inhibits retrogradation. Whereas, an increased molar proportion of unit chains 

with DP 14-24 increases the extent of retrogradation. On this basis, the D. alata 

starches should have shown a higher ~HR than the D. esculenta starches. Thus 

the observed differences in the extent of retrogradation (~HR) between the two 

Dioscorea species cannot be attributed to amylopectin unit chain length 

distribution. 

Studies have shown that in tuber and root starches, phosphorus is primarily in 

the form of starch phosphate monoester derivatives (Lim et a/., 1994, Lim & Seib 

1993, Hizukuri eta/., 1983), mainly found on amylopectin. Jane eta/., (1996) 

have shown that starch phosphate monoesters slow retrogradation due to 

repulsion between negative charges. On this basis, the ~HR (enthalpy of 

retrogradation) of native D. escu/enta starches should have been lower than that 
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of the D. alata starches, since the phosphate monoester content of the D. 

esculenta starches (0.05-0.1 0%) are higher than those of the D. alata (0.04-

0.05%) [Table 4-1] starches. The results [~HR D. esculenta > ~HR D. a/ata)] 

indicate that the higher amylopectin content of the D. escu/enta starches [Table 

4-1] negates the effect of phosphorous content [Table 4-1] on ~HR . Among the 

D. escu/enta starches differences in ~HR between nattala and java-ala [Figure 4-

7] is mainly due to differences in phosphorous content (nattala >java-ala [Table 

4-1]), since there was no significant difference in amylopectin content between 

nattala and java-ala starches [Table 4-1]. In kukulala, the amount of phosphorus 

and amylopectin are lower than in nattala and java-ala [Table 4-1]. Therefore, 

theoretically, kukulala should have either exhibited a higher ~HR (if phosphorus 

content had been the main causative factor influencing ~HR) or a lower ~HR (if 

amylopectin content had been the main causative factor influencing ~HR) than 

nattala and java-ala. The observed order of retrogradation in the D. escu/enta 

starches (~HR java-ala> ~HR nattala) suggests that differences in ~HR between 

nattala and kukulala is due to the lower phosphate monoester content of kukulala 

[Table 4-1] negating the influence of amylopectin content (nattala>kukulala) 

[Table 4-1] on ~HR. Whereas the difference in ~HR between java-ala and 

kukulala is due to the higher amylopectin content of java-ala negating the 

influence of differences in phosphate monoester content [Table 4-1] between the 

two starches Uava-ala>nattala). The difference in ~HR between the native D. 

alata starches (hingurala > raja-ala) can be attributed to the variation in 
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amylopectin content (hingurala > raja-ala) and phosphorus content (hingurala > 

raja-ala). 

There are no reports in the literature comparative studies on the rate and extent 

of retrogradation of native and annealed cereal, legumes, tuber and root 

starches. Annealing decreased the extent of retrogradation in all starches 

[Figure 4-7]. For instance, during the storage period (40°C for 7 days) the ~HR 

of native kukulala, java-ala, nattala, hingurala and raja-ala starches. Increased 

by 2. 76, 3.1 0, 2.69, 2.45 and 2.39 J/g, respectively. However, in annealed 

kukulala, java-ala, nattala, hingurala and raja-ala starches the increase in ~HR 

was 2.1 0, 2.51, 1.94, 1.88 and 1.68 J/g respectively. The difference in the 

magnitude of ~HR between native and annealed starches (native > annealed) 

indicate that annealing decreases the number of double helices formed between 

the outer chains of amylopectin during retrogradation. Amylose leaching studies 

[Table 4-4] showed that interaction between amylose chains (AM) and the outer 

chains of amylopectin (AMP) are possible during annealing. It is likely that these 

interactions are of a higher order of magnitude than those between AMP-AMP 

chains, and are, hence, not destroyed during gelatinization. Consequently, 

during gel storage, AM-AMP interactions (formed during annealing) could restrict 

the ability of adjacent AMP chains to form double helices by lowering the extent 

of interaction during retrogradation by steric hindrance and/or by reducing AMP 

chain mobility. The extent of reduction in ~HR on annealing is higher in the D. 

esculenta than in the D. alata starches due to their higher AMP content in the 

former [Table 4-1]. 
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Advancement of knowledge & significance of the present study 

1. In this study, many of the techniques that have been used to study starch 

structure and functional properties were extensively modified. 

2. This is the first time that a detailed study has been made on the structure

property relationships between different varieties of Dioscorea species, and on 

the effect of annealing on their morphology, structure and functional properties. 

3. Research on annealing has been mainly carried out on a single species. This 

study showed how differences in composition and structure among different 

varieties of a particular species can influence changes to physicochemical 

properties on annealing. 

4. The study has significantly advanced the state of knowledge on the impact of 

annealing on: (i) crystallinity, (ii) starch polymorphism (iii) pasting properties 

and (iv) enzyme and acid susceptibility. 

5. The study showed for the first time how variations in phosphate monoester 

content influence changes within the crystalline domain on annealing. 

6. The results from this investigation could be used by food processors to tailor 

the properties of annealed Dioscorea starches (by different moisture/ 

temperature/ time combinations) to a level that is presently met by chemical 

modification. 
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7. The thesis reports the first study on the impact of annealing on starch 

retrogradation. Many researchers had assumed that native and annealed 

starches may exhibit nearly the same extent of retrogradation, since all 

interactions formed on annealing are disrupted during gelatinization. However, 

this study showed that this assumption was erroneous, as some interactions 

(amylose-amylopectin) do survive gelatinization and have a major impact in 

modifying the retrogradation properties of annealed starches. 

8. This study showed that comparison of X-ray diffraction patterns and 

crystallinities of native annealed starches is more meaningful, only at their 

maximum water absorption capacities. 
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Summary and Conclusion 

The main thrust of this thesis was to gain a deep insight into the impact of one 

step annealing on the granule morphology, composition, physicochemical 

properties and molecular structure of Dioscorea starches with varying 

composition and molecular structure. Suggestions for new avenues of research 

are also given. 

The first part of thesis involved a detailed study of the surface characteristics, 

granule size distribution, proximate composition, molecular structure and 

properties of starches from varieties of Dioscorea escu/enta (kukulala, java-ala, 

nattala) and Dioscorea a/ata (hingurala, raja-ala) tubers grown under the same 

environmental conditions in Sri Lanka. The study showed that the granule 

surface of all starches appeared to be smooth and showed no evidence of 

fissures. The granule size ranged from 3 to 10 J,Jm and 30-50 J,Jm, respectively, 

in the D. esculenta and D. alata starches. Starch granules of both species 

exhibited well-defined birefringence patterns under polarized light. Polarization 

crosses (hilum) were centric for D. esculenta and eccentric for D. alata starches. 

There was considerable variation in total amylose, phosphorous, bound lipid, lipid 

complexed amylose chains, amylose leaching, granule swelling, gelatinization 

parameters, pasting characteristics, extent of retrogradation, susceptibility 

towards acid, enzyme hydrolysis, amylopectin unit chain length distribution, X-ray 

diffraction pattern and crystallinity among the starches belonging to the two 

species. The unit chain length distribution of debranched amylopectin of the 

starches showed that the proportion of short branched chain (DP 6-12), medium 

239 



chains (DP 25-36) and average chain length of amylopectin were higher in the D. 

esculenta starches. However, variations in amylopectin structure among 

varieties of both species were marginal. D. esculenta starches exhibited a B

type X-ray diffraction pattern, though, both B- and C-type patterns were observed 

in the D. a/ata starches. The results indicated that the variations in 

physicochemical properties between the two species and among varieties were 

influenced by the interplay of factors such as granule size, crystallinity, 

magnitude of interaction between glucan chains (within the native granule), 

phosphorous content, amylopectin unit chain length distribution, 

amylose/amylopectin ratio and the number of branch points in close proximity to 

amylopectin clusters. Some of the Dioscorea starches exhibited high thermal 

stability (e.g. raja-ala) and low retrogradation rates (e.g. nattala). Thus, these 

starches can be used in foods with minimal modification. 

The second part of thesis was to determine the impact of one step annealing on 

the composition, morphology, structure and physicochemical properties of 

starches from different varieties of D. escu/enta and D. alata starches. The 

granule composition, morphology, birefringence, concentric granule growth rings, 

amylopectin chain length distribution and X-ray patterns remained unchanged on 

annealing in all starches. However, though crystallinity remained the same in 

kukulala, java-ala (D. esculenta), and hingurala (D. a/ata) starches, in nattala (D. 

esculenta) crystallinity decreased and in raja-ala (D. a/ata) starches crystallinity 

increased on annealing. In all starches, annealing increased the gelatinization 

transition (To. T P• T c) temperatures, decreased the gelatinization temperatures 
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range (T c-T 0 ) and increased gelatinization enthalpy (~H). The magnitude of 

increase in T 0 , T P• and T c was nearly the same in all starches, but the extent of 

decrease in Tc-To (which reflects the extent of crystallites perfection) varied 

among the starches. The increase in ~H was a reflection of increased crystalline 

perfection and/or glucan chain interactions during annealing. Annealing 

decreased swelling factor (SF) and amylose leaching (AML) in all starches (D. 

alata>D. esculenta). The decrease in SF was influenced by crystalline perfection 

and extent of interaction between glucan chains on annealing, which in turn lead 

to a decrease in AML on annealing. 

In both D. a/ata and D. esculenta starches, annealing decreased peak viscosity 

and increased pasting temperature, peak time and thermal stability, however, 

set-back decreased in some varieties (e.g. raja-ala), but increased (e.g. nattala) 

in others. The changes in viscosity parameters was more pronounced in the D. 

alata starches. The decrease in peak viscosity was influenced by the decrease 

in SF and AML. Whereas, the increase in pasting temperatures and thermal 

stability was influenced by the decrease in SF and increased interaction between 

glucan chains on annealing. The variations in the extent of set-back on 

annealing was influenced by SF and AML, and by granule rigidity. Annealing 

decreased the extent of acid hydrolysis in both D. alata and D. esculenta 

starches. The extent of this decrease was nearly similar in the varieties of both 

species. This decrease was the result of formation of double helices (resistant to 

acid hydrolysis) resulting from glucan chain interactions during annealing. With 

the exception of one variety (nattala), all varieties of D. alata and D. esculenta 
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starches exhibited decreased susceptibility (D. alata>D. esculenta) towards a

amylase hydrolysis on annealing. This was attributed to glucan chain 

interactions and increased crystalline perfection. The increased a-amylolysis 

exhibited by nattala starch on annealing, was attributed to changes in crystalline 

orientation (resulting from its higher phosphate monoester content in that 

variety). The extent of retrogradation of all starches decreased on annealing, 

differing for each of the varieties. The decreased retrogradation on annealing 

was attributed to amylose-amylopectin interactions (formed during annealing) 

restricting (by steric hindrance and/or by reducing chain mobility) the ability of the 

outer chains of amylopectin to form double helical associations. The results 

showed that changes to physicochemical properties in the Dioscorea starches on 

annealing is influenced by: (1) native starch structure (amylopectin chain length 

distribution, arrangement of amylose chains in the granule interior), (2) native 

starch composition (phosphate monoester content, amylose/amylopectin ratio) 

and (3) structural changes on annealing (crystallite perfection, crystallite 

reorientation interaction between amylose-amylose and/or amylose-amylopectin 

chains). 
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Directions for future research 

1. This study showed that structural changes occur within the amorphous and 

crystalline domains of the granule on annealing. These changes could alter the 

reactivity of the granule (either increase or decrease) towards reagents that are 

used in the food industry to improve starch functionality. For instance, acetic 

anhydride in an alkaline medium is used to decrease retrogradation, whereas 

phosphorous oxychloride in an alkaline medium is used to impart thermal and 

shear stability. Furthermore, the reordering and self association of the starch 

components on annealing could also alter the location of the reaction site for 

acetic anhydride and phosphorous oxychloride. Changes in reactivity and 

location site could alter starch functionality. Thus, annealing before chemical 

modification may result in novel starch properties. Research geared to physical 

modification is important, since it is unlikely that any new chemical modification 

or genetic modifications of existing commercially based starches will be allowed. 

2. The rate of starch digestion in food is altered by factors that are extrinsic and 

intrinsic to food. The extrinsic factors include the food particle size, viscosity of 

the digest, a-amylase inhibitors, and the level of a-amylase in an individual 

starch. Whereas, intrinsic factors include swelling and solubilization of starch 

granules, extent of amylopectin branching and the physical association of glucan 

chains. Starch has been classified into rapidly digestible (RDS), slowly digestible 

(SDS), and resistant starch (RS). RDS is rapidly and completely digested in the 

small intestine, while SDS is slowly but completely digested in the small intestine. 
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Presently, RS is produced mainly by cross-linking using mixtures of sodium 

trimetaphosphate/sodium tripolyphosphate. It is likely that annealing may 

increase RS levels in high amylose starches by (i) growth of perfection of existing 

crystallites (ii) interaction between amylose-amylose and/or amylose

amylopectin. It is hypothesized, that SDS levels could also be increased 

somewhat by annealing, whereas, RS levels could be increased substantially, if 

starches are annealed prior to cross-linking. This approach may decrease the 

amount of cross-linking reagent needed for modification (a desirable feature). A 

study geared to understanding the effect of annealing and/or chemical 

modification on SDS & RS formation is needed to improve the nutritional profiles 

of grain-based foods. 

3. A comparison of the structure and physical properties of starches extracted 

from Dioscorea tubers (used in this study) stored at different storage 

temperatures (could trigger in vivo annealing) with those of starches extracted 

from freshly harvested tubers, and then subjected to in vitro annealing, may 

provide an excellent opportunity to further understand temperature induced 

structural transformations. This study is important, since thermal energy is the 

major variable cost of annealing. Thus, more research should be focused 

towards in situ annealing under natural conditions. 
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Figure 1- Protocol for X-ray analysis 

1. Weigh (0.5 g, db) starch into a moisture pan 

2. Moisture equilibrate the pans over saturated K2S04/3 weeks at room 

temperature 

3. Reweigh the moisture equilibrated pan 

4. Note sample appearances before and after moisture equilibration: 

(A) Before moisture equilibration (free flowing powder form) 

(B) Moisture absorbed sample (lumpy appearance) 

5. Pack the starch into an elliptical aluminium holder (exposure area 289 mm2
) 

6. Quickly press the starch into the holder 

7. Well pack the sample into the holder (starch thickness 3 mm) 

8. Scotch tape the back of the holder 

9. Front side of the holder (note sample is pressed against glass pad) 

10. Smoothen surface of the pressed sample (exposure side) 

11. Scan the starch under the given X-ray diffraction settings 

12. Calculate crystallinity by drawing a base line and connecting the base of the 

major peaks 





Figure 2- Protocol for determination of retrogradation 

1. Mix starch with distilled water in side a DSC pan using a micro-needle 

2. Stretch a piece of Teflon® 

3. Wrap the pan containing gelatinized starch with the stretched Teflon® 

4. Label the wrapped gelatinized pans 

5. Wrap of the individual samples with a Saran film® 

6-8. Remove the excess wrapper (note all sequential steps) 

9. Wrap sample replicates in a large piece of Saran film® 

10. Attach wrapped samples to a glass rod (each set for daily analysis) 

11. Nucleation step: immerse samples in water at 4°C/24h 

12. Propagation step: store nucleated samples at 40°C for various time periods 

13. Remove Saran film® 

14-15. Carefully remove the Teflon® cover 

16. DSC pan is ready for rescanning (note non corroded DSC pan) 
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