
TOTAL OF 10 PACES ONLY
MA V 8£ XEROXED

'' -~ Ill

DESIGN OF A FLEXIBLE CRYPTOGRAPHIC HARDWARE MODULE

BY

St. John's

@ ANDREW W. H. HOUSE

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Engineering

FACULTY OF ENGINEERING AND APPLIED SCIENCE

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

September 2004

Newfoundland

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 0-494-02346-5
Our file Notre reference
ISBN: 0-494-02346-5

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I' Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits meraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Abstract

The research presented in this thesis focuses on the design of a flexible cryptographic

hardware module capable of implementing a variety of private-key cryptographic al

gorithms and their modes of operation using different implementation methodologies

such as iteration and pipelining. The design of the SHERIF cryptographic hardware

module was motivated by the difficulties inherent in implementing cryptographic al

gorithms: software implementation is easy and flexible, but offers low performance,

whereas hardware implementations offer high performance but are difficult to design

and are generally inflexible.

The design of the SHERIF architecture was driven by an analysis of several lead

ing block ciphers and hash functions which identified six basic operations that could

be used to implement most block ciphers and hash functions. Configurable compo

nents were developed to implement each of those operations, and these components

were arranged into processing elements capable of implementing a single round of

most of the algorithms under consideration. These processing elements were then

integrated into a top-level system with complex data control mechanisms to provide

added flexibility.

A sample pipelined implementation of the AES algorithm Rijndael has been suc

cessfully simulated. Synthesis results in 0.18 f-Lm CMOS technology suggest the device

would have an area of approximately 10 million gates and have a clock speed of 4. 78

MHz, leading to a throughput of 611.84 Mbps for the sample implementation of

Rijndael. These results demonstrate the flexibility and performance of the system.

The current SHERIF architecture offers greater flexibility and ease of use than

existing cryptographic hardware modules, but there are still many areas in which it

can be improved through future research. A number of avenues of future research

have been identified that will improve system speed, integration, and flexibility.

ii

Acknowledgments

This thesis owes its existence to the encouragement, support and inspiration of many

people, and I would like to acknowledge them here.

I would like to thank my supervisor, Dr. Howard Heys, for his support, guidance,

and boundless patience during my research over the past few years. Also, the funding

he provided, along with Memorial University's School of Graduate Studies, was vital

in allowing me to pursue this research.

I would also like to thank all of the instructors of the graduate courses I've taken

during my Masters program, from whom I've learned a lot, some of which was even

directly applicable to my research. Also, I would like to thank Nolan White of the

Department of Computer Science for maintaining the CAD tools provided by the

CMC and solving all my problems in short order.

Lastly, I would like to thank my fellow graduate student colleagues, both those

in the CERL lab and without, for the support, advice, and friendship that made my

graduate studies so enjoyable, and thanks to my friends and family for their support

in school and life.

iii

Contents

Abstract i

Acknowledgments iii

Table of Contents iv

List of Tables x

List of Figures xi

List of Abbreviations and Symbols xiv

1 Introduction 1

1.1 Communication Networks 2

1.2 Security Concerns 5

1.3 Types of Information Security 7

1.3.1 Block Ciphers, Stream Ciphers, and Public-Key Ciphers 8

1.3.2 Block Cipher Modes of Operation 12

1.3.3 Hash Functions and Signatures 14

1.4 Applications of Cryptography . . . 17

1.5 Motivation and Proposed Solution . 18

2 Current Cryptographic Hardware

2.1 Standard Algorithm Implementations

IV

21

21

2.1.1 Software Implementations 21

2.1.2 Dedicated Hardware Implementations . 23

2.2 Commercial Cryptographic Co-Processors 26

2.2.1 Motorola's Sl Family 27

2.2.2 The IBM 4 758 Secure Coprocessor 28

2.2.3 Harris Corporation Sierra 29

2.2.4 Cavium Networks 30

2.2.5 Other Commercial Solutions 31

2.3 Implementation on Reconfigurable Platforms . 33

2.4 Generalized Cryptographic Hardware 35

2.4.1 Crypto-CPU . . 36

2.4.2 CryptoManiac . 36

2.4.3 Programmable Processor for Cryptography . 38

2.4.4 Reconfigurable Public Key Architecture .. 39

2.5 Summary of Cryptographic Hardware Architectures 40

3 Algorithm Survey and Analysis 42

3.1 Algorithms Under Consideration . 43

3.1.1 Notation . 44

3.1.2 AES 45

3.1.3 DES 47

3.1.4 Camellia . 49

3.1.5 SAFER++12s 51

3.1.6 RC6 54

3.1.7 SHA-1 58

3.2 Algorithm Analysis 61

3.3 Summary of Algorithm Analysis . 64

v

4 Component Implementation 65

4.1 Basic Operational Components 66

4.1.1 Boolean Logic Component 66

4.1.2 Shifter Component 69

4.1.3 Add/Subtract Component 71

4.1.4 Multiplier Component 74

4.1.5 L UT Component .. 77

4.1.6 XORnet Component 80

4.2 Data Routing and Selection 84

4.2.1 Input Switch .. 85

4.2.2 Byte Reordering 87

4.3 Configurability 91

4.4 Basic Operational Building Block 93

4.5 Configuration Formats of Basic SLABs 95

4.5.1 Boolean SLAB 97

4.5.2 Shifter SLAB 97

4.5.3 Add/Sub SLAB . 97

4.5.4 Multiplier SLAB 98

4.5.5 LUT SLAB .. 98

4.5.6 XORnet SLAB 98

4.6 Summary of Component Implementation 100

5 System Architecture 101

5.1 Processing Element • 0 0 • 0 ••••• 103

5.1.1 Organization of Components . 105

5.1.2 Key Memory Design and Operation . 107

5.2 Processing Fabric . . . 111

5.2.1 Routing Nodes 112

VI

5.3 Overall System Architecture and Control 122

5.3.1 Address Decoder 124

5.3.2 Dataflow Control 125

5.3.3 Output Control . 125

5.3.4 Designing for Expandability 126

5.4 Summary of System Architecture 127

6 System Configuration 128

6.1 Software Configuration Utility 130

6.2 PE-FUNC Configuration Form . 133

6.2.1 Key Memory Configuration Form 135

6.3 SLAB Configuration Forms 136

6.3.1 Boolean SLAB Configuration Form 139

6.3.2 Shifter SLAB Configuration Form . 139

6.3.3 Add/Sub SLAB Configuration Form 140

6.3.4 Multiplier SLAB Configuration Form 141

6.3.5 L UT SLAB Configuration Form . . 142

6.3.6 XORnet SLAB Configuration Form 144

6.4 Routing Node Configuration Form . 146

6.5 Summary of System Configuration 148

7 Functional Testing and Synthesis Results 149

7.1 Functional Testing 150

7.1.1 Pipelined Implementation of AES 150

7.1.2 Simulation of Pipelined AES . 162

7.2 Synthesis Results 164

7.2.1 Area .. 168

7.2.2 Timing. 171

vii

7.2.3 Synthesis Analysis

7.3 Summary of Testing and Results

8 Future Directions and Conclusions

8.1 Conclusion

8.2 Future Research Possibilities .

8.2.1 Further Functional Testing .

8.2.2

8.2.3

8.2.4

8.2.5

Pipelining

Reducing Device Area

Elimination of Redundancy

Basic Component Optimization

8.2.6 Allowing Partial Configurations

8.2.7 Dynamic Configurations

8.2.8 Different Dataflow Approaches .

8.2.9 Subkey Generation

8.2.10 Support for Other Cryptographic Operations .

8.2.11 Improved Configuration Software

8.3 Final Remarks

List of References

A VHDL Code for Basic Components

A.1 Boolean Component

A.2 Shifter Component

A.3 Add/Sub Component .

A.3.1 Sample Code for 8-bit Adder Block

A.3.2 Sample Code for part of 64-bit Adder Block

A.4 Configuration Register Components

viii

174

175

177

177

179

179

179

180

180

181

182

183

183

184

185

185

186

188

196

196

197

198

198

198

199

B Configuration Formats 200

B.l Boolean SLAB Configuration Format 200

B.2 Shifter SLAB Configuration Format . 200

B.3 Add/Sub SLAB Configuration Format 201

B.4 Multiplier SLAB Configuration Format 202

B.5 L UT SLAB Configuration Format . . 202

B.6 XORnet SLAB Configuration Format 203

B.7 Key Memory Configuration Format 204

B.8 PE-FUNC Configuration Format 204

B.9 Routing Node Configuration Format 204

B.lO System Configuration Format • 0 •• 206

lX

List of Tables

2.1 Software Implementation Results from AES Development and NESSIE 22

2.2 Hardware Implementation Results from AES Development and NESSIE 25

2.3 Block Cipher and Hash Function Estimated Throughput (in Mbps)

from Motorola MPC185 Security Processor Technical Summary ... 28

2.4 Peak bandwidth of Cavium Internet Protocol Security (IPsec) /SSL

processor at 500 MHz 30

3.1 Basic Operations of Block Ciphers and Hash Functions 62

5.1 Algorithm Round Breakdown into Sequence of Basic Operations 104

5.2 Algorithm Subkey Requirements 109

7.1 Configuration Register Synthesis Results (Area) 169

7.2 Component Stub Synthesis Results (Area) 170

7.3 Synthesis Results (Timing) 173

X

List of Figures

1.1 Telephone and Cellular Network .

1.2 The Internet

1.3 Encrypted Communication .

1.4 Public Key Cryptography

1.5 Private Key Cryptography

1.6 Comparison of Block Ciphers and Stream Ciphers

1. 7 Block Cipher Modes of Operation

4.1 8-bit Boolean Logic Component

4.2 Full Boolean Logic Component

4.3 32-bit Shift/Rotate Component

4.4 Full Shift/Rotate Component

4.5 8-bit Add/Subtract Block

4.6 One Add/Subtract Bank .

4.7 Core Add/Subtract Component

4.8 32-bit x 32-bit Wallace Tree Multiplier

4.9 Partial Product Generation

4.10 Full Multiplier Component .

4.11 Single 8 x 8 LUT ...

4.12 Core LUT Component

4.13 Logic to generate single output bit for XORnet.

4.14 Building an 8-bit XORnet from 4 4-bit XORnets.

xi

3

4

9

10

11

11

13

67

68

69

70

72

73

74

76

77

78

79

80

81

83

4.15 Core XORnet Component

4.16 Single 8-bit Input Switch Datapath Multiplexer

4.17 Single 8-bit Input Switch Scratch Path Multiplexer

4.18 Overall Input Switch

4.19 8-bit 16-to-1 Multiplexer for Byte Reordering

4.20 Overall Byte Reordering Component .

4.21 General Configuration Register Circuit

4.22 Configuration Register Block Diagram

4.23 Binary Operation Sub-Layered Architectural Block (SLAB) .

4.24 Unary Operation SLAB ..

4.25 Lookup Table (LUT) SLAB

5.1 Processing Element Component Organization

5.2 Processing Element Input/Output Signals

5.3 Key Memory Architecture

5.4 SHERIF Processing Fabric

5.5 Routing Node I/0 Interface

5.6 Top Level Routing Node Implementation

5. 7 Routing Node Configuration Register Detail

5.8 Routing Node Input Registers

5.9 Routing Node Output Signal Generation

5.10 System Output Generation and Control.

5.11 Datapath and Feedback Output Control

5.12 Generation of Start Signals in Routing Node

5.13 SHERIF System Diagram

6.1 SHERIF Device Configuration I/0

6.2 SHERIF Configuration Utility Main Form

6.3 Top-level PE-FUNC Configuration Form .

xii

84

86

86

88

89

90

92

93

94

96

99

106

107

109

111

113

114

115

116

117

119

121

123

124

129

131

133

6.4 Key Memory Configuration Form

6.5 Input Switch Configuration Form

6.6 Byte Reordering Configuration Form

6. 7 Boolean SLAB Configuration Form

6.8 Shifter SLAB Configuration Form .

6.9 Add/Sub SLAB Configuration Form

6.10 Configuration Form for Bank of 8 Adders .

6.11 Multiplier SLAB Configuration Form

6.12 LUT SLAB Configuration Form

6.13 8 x 8 LUT Configuration Form

6.14 XORnet SLAB Configuration Form

6.15 32-Bit XORnet Configuration Form

135

137

138

139

140

140

141

142

143

143

144

145

6.16 Routing Node Configuration Form . 146

7.1 SLABs used in a normal Advanced Encryption Standard (AES) round. 151

7.2 Setting the LUTs to active . 152

7.3 Filling out the LUT 152

7.4 Byte Reordering implementing ShiftRows() .

7.5 Top-level XORnet SLAB selection

7.6 XORnet configuration for MixColumns()

7. 7 Round key addition input switch configuration .

7.8 Boolean SLAB configured for AES round key addition

7.9 Initial routing node for AES .

7.10 Middle routing nodes for AES

7.11 Final routing node for AES .

7.12 Waveform for Simulation of AES Round 1

B.1 PE-FUNC Configuration Format

xiii

153

158

158

159

160

161

161

162

165

205

List of Abbreviations and Symbols

3DES Triple DES

3GPP 3rd Generation Partnership Project

ABM Automated Banking Machine

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

CBC Cipher-Block Chaining

CFB Cipher Feedback

CLA Carry Look-Ahead Adder

CLB Configurable Logic Block

CLU Control Logic Unit

CMOS Complementary Metal-Oxide Semiconductor

CRA Carry-Ripple Adder

CSA Carry-Save Adder

DES Data Encryption Standard

DPU Data Path Unit

xiv

ECB Electronic Codebook

FPGA Field Programmable Gate Array

FSM Finite State Machine

Gbps gigabits per second

HDL Hardware Description Language

IPsec Internet Protocol Security

IV Initialization Vector

LFSR Linear Feedback Shift Register

LRU Least Recently Used

LSB Least Significant Bit

L UT Lookup Table

Mbps megabits per second

MUL Multiplier Unit

MSB Most Significant Bit

NESSIE New European Schemes for Signatures, Integrity, and Encryption

NIST United States National Institute of Standards and Technology

NSA United States National Security Agency

OFB Output Feedback

PE Processing Element

PE-FUNC Processing Element with Functional Units and Networked Connections

PIO Programmable I/0

PLA Programmable Logic Array

PROM Programmable Read-Only Memory

XV

QoS Quality of Service

RISC Reduced Instruction Set Computer

RN Routing Node

SAGE Security Algorithms Experts Group

SLAB Sub-Layered Architectural Block

SoC System On Chip

SIMD Single Instruction Multiple Data

SSL Secure Sockets Layer

SHERIF Security Hardware Enhanced for Rapid Implementation and Flexibility

VLIW Very Long Instruction Word

VPN Virtual Private Network

XV!

Chapter 1

Introduction

Modern telecommunications technology forms the foundation of today's global soci

ety. Evidence supporting this bold statement can be seen in the rapid pace of cultural

and technological development since the introduction of modern communication tech

nology.

The first communication technology that might be considered modern was the

telegraph. Once a telegraph network was in place, it allowed the transmission of

text messages over long distances with minimal human effort. This was followed

by telephones, to allow transmission of voice messages, and then radio, television,

satellite communication, early computer networks, cellular phones, and the Internet.

Each new technology opened new avenues of communication between disparate people

and groups, helping build a global society and adding yet more complexity to human

social interaction.

Today, the world is awash with communication technology. Cellular phones can

now frequently connect to the Internet and provide e-mail and web browsing, and

have long provided text-messaging and paging capabilities. E-mail and instant mes

saging have replaced the postal system for personal written communication. High

speed Internet access is becoming more common. Overall, the various communica

tion technologies are starting to converge, so that voice, video, text, image, and other

1

data may be communicated over the same network.

Modern communication technology makes it easy and cheap to communicate

across great distances, including national boundaries. The effect this has on society

is profound, though not everyone is convinced that it is a good effect. Konetheless,

modern telecommunications has become an important part of many people's lives,

integrated into their daily routine, and this introduces a host of new problems to deal

with.

First, let us consider the kinds of communication networks people frequently deal

with in the developed world.

1.1 Communication Networks

The most ubiquitous modern communication network is the telephone network. Ini

tially designed to carry analog voice data, it has evolved into an elaborate computer

controlled network to manage hundreds of millions of calls around the world on a

daily basis [1]. In the core of the network, at least, the voice data is converted from

analog to digital to facilitate easier processing and transmission.

The telephone network is more an interconnection of different networks, run by

different organizations. Regional companies build local phone networks to service the

end user, and these smaller networks are connected into larger and larger systems

that allow national and international telephone communication. As such, telephone

networks are built on a set of international standards to ensure interoperability.

The typical visualization of the telephone network consists of the end-user, who

has a telephone handset or end-system. The end-user's telephone is connected to a

central office (frequently called an exchange). Other end-users, typically from the

same geographic region, would be connected to this same central office. The central

office can connect calls between its end-users, or to other nearby central offices for calls

2

that are between more distant end-users. For long distance calls, the central office will

connect to the long-haul network (or backbone), which interconnects different groups

of central offices over long distances [1].

Cellular phone systems are integrated into the traditional telephone network as

shown in Figure 1.1, but the end-system is quite different. End-users have wireless

handsets which communicate with a base station responsible for providing service

to a particular area of coverage (called a cell). The base station essentially has the

role of a small central office, serving only cellular users in its area, and connects to

a central office of the wired network. Base stations must not only handle regular

telephone services, but also work together to track the location of users (to allow

proper routing of incoming calls) and to transfer service between each other as users

move into different areas of coverage [1].

systems

Central
offices

Cellular
base station (((r !obile

Long-haul
network

end system

systems
Central
offices

Figure 1.1: Telephone and Cellular Network

The telephone system is an example of a circuit-switched network. In essence,

when a call is made, a dedicated path through the network is reserved for that call,

3

and is guaranteed to be available for the duration of the call. Thus, the telephone

network provides Quality of Service (QoS) with respect to voice communication [1].

Consequently, the telephone network is substantially different from the other rna-

jor computer network that has become dominant in people's day-to-day lives- the

Internet.

The Internet, illustrated in Figure 1.2, is a computer network primarily used for

the transfer of data traffic. :'viore accurately, it is a network of networks, hierarchically

arranged into larger and larger systems [1]. Because of the flexibility of the end-

systems - easily programmed computers - the data transmitted over the Internet can

be for a variety of purposes: text messages on bulleting boards, web pages, e-mail,

file transfer, video and audio streaming, and even real-time voice communication.

Internet
backbone

Figure 1.2: The Internet

The Internet is a packet-switched network- it breaks up the data to be transmitted

into smaller chunks (called packets), and those chunks are transmitted individually [1].

Furthermore, the Internet is not centrally controlled. It has a distributed architecture,

4

so routers in each member network simply know neighbouring network nodes and

which neighbour is likely to be on the best path to a given destination. This data is

constantly updated based on actual network conditions, and so packets traveling from

one destination to another may not all follow the same route through the network [1 J.

The Internet does not guarantee QoS. Rather, it promises best effort. The store

and-forward routing approach means that delay through the network is unknown,

and that packets can be lost if the network is subject to a lot of traffic [1 J. However,

even with this unreliability, the Internet architecture is useful for many applications,

and consequently has seen widespread adoption [1 J.

Of course, other networks invade people's daily lives "below the radar", in such a

way that they do not even realize they are using them. Automated Banking Machines

(ABMs) communicate over a private network with the the bank's central servers, and

via the Interac network with other financial institutions to provide banking services

and debit purchasing at retailers. Modern credit card authorization systems work

in much the same way. Satellite television, phone, and Internet are newer entries

into the list of ubiquitous networks. New network architectures that seek to combine

voice, video, and data (such as Asynchronous Transfer Mode (ATM) networks) are

constantly in development, as well [1]. As a society, people have become used to the

presence of communication devices and networks, and incorporate them into nearly

every aspect of their daily lives. This has serious implications.

1.2 Security Concerns

People have always been concerned about the secrecy of their communications, though

not in an obvious way. Whispered conversation and personal diaries have been the

primary means of private thought. Governments and other organizations often have

a more pressing need for secrecy- even Julius Caesar was said to use a basic cipher

5

to protect his messages [2]. Military, diplomatic, and economic/financial information

have all been candidates for secrecy at an organizational level, resulting in secret

codes like Caesar's shift cipher [2] or the well-known rotor-based Enigma machine

used by the German military in World War II [3]. The general populace, however,

has had little need to be concerned with telecommunications security until recently.

The latter part of the Twentieth century has seen an explosion in the use of com

puting and telecommunications. From what was initially just the public telephone

network (which was difficult to eavesdrop on due to physical access barriers and its

central control), telecommunications has grown to encompass: computer databases

full of personal information; banking done via automated machines, the phone, or In

ternet; cellular phones; e-commerce; interactive television services; and more besides.

This is problematic in several ways.

The control of some of these newer forms of communication (such as the Internet)

is decentralized by the very nature of their design. This has some advantages in terms

of reliability, since a failure at a single point does not bring down the whole network,

but it does mean that every computer through which communication passes might

not be trustworthy. For most types of communication, this is not a concern, but

when using the Internet for operations like banking, shopping, or even file transfer, it

poses a security risk. Other technologies such as cellular phones and wireless Internet

access have no physical access restrictions, since anyone with the appropriate receiving

equipment can read the messages out of the air. Depending on the nature of the

conversation or Internet use, this can pose a security risk.

Each of the different technologies has their own respective security risks. Those

risks, however, are more important than ever before due to the way people are in

tegrating them into their lives. Telecommunications technology has an effect on the

day-to-day routine of many people; it has become a part of how people function in

society. As such, it is relied upon more than ever before. The more it is used, the

6

greater the need for security becomes. Cellular phones are now commonly used to

conduct business deals and conversations, by law enforcement, and by individuals

doing banking. The Internet is used for everything from personal e-mail and instant

messaging to banking, tax submission, shopping, university registration, and busi

ness networking. When handling monetary transactions, personal information, and

business secrets, security of communications becomes a major concern.

This begs the question, "What exactly is security?"

1.3 Types of Information Security

Information security is an extremely broad field that is difficult to define. It includes

such things as virus protection, access control, user identification, privacy, control of

data, and much more besides. In terms of communications, the definition is generally

more specific: communication security should keep transmitted data private from

everyone but the intended recipient, prevent the data from being altered in transit,

and make sure that the sender and receiver are who they say they are. Cryptography

is the main means by which this kind of security is provided [3].

Cryptography concerns itself with the study of several aspects of information

security, namely privacy or confidentiality, data integrity, entity authentication, and

data origin authentication [3]. Even though it is a subset of information security,

cryptography is still a broad field. Cryptography has four primary goals [3].

1. Confidentiality involves keeping the content of information secret except to those

authorized to view it [3].

2. Data integrity ensures that the information has not been altered by an unau

thorized party, including insertion of additional information, deletion of existing

information, or substitution of new information over the original [3].

7

3. Authentication relates to identification- it verifies that two parties involved in

a communication are who they say they are (entity authentication) and that

the source of the data is what it is supposed to be (data origin authentication)

[3].

4. Non-repudiation essentially provides a guarantee that neither party can deny

involvement in a communication (also called a transaction) that has already

occurred. This frequently involves a trusted third party [3].

There are a number of tools (or cryptographic primitives [3]) that can be used to

meet these goals, which can be broadly classified as unkeyed, private-key, or public

key primitives [3]. A key in this context is a value used to control access to protected

information, just like a physical key controls access to locations or storage areas. In

either case, only authorized parties- who are given access to a key- can fully access

the secured information or location, and so much of the security of the scheme relies

on protecting the key.

The four cryptographic goals described above are commonly met using a combi

nation of cryptographic primitives. Ciphers are used to provide confidentiality, and

hash functions and digital signatures can be used to provide data integrity, authenti

cation, and non-repudiation services [3]. Modern cryptography has been designed to

work with digital data, and the discussion here is in the digital context.

1.3.1 Block Ciphers, Stream Ciphers, and Public-Key Ci

phers

Ciphers are mathematical algorithms that transform the original data (called a plain

text) into a different set of data (called a ciphertext) that has no obvious relation to

the original plaintext. This process of transformation, called encryption, is performed

at the originating end of a communication channel and uses a key as described above.

8

The ciphertext is then transmitted over the channel. At the receiving end, a key is

used to decrypt the ciphertext and recover the original plaintext. If a good cipher

is used, only the people with keys - that is, only authorized entities - can view the

content of the information. Should any malicious party intercept the transmission, it

would be useless to them since they would only intercept the ciphertext, and without

the key they cannot recover the original message. This is illustrated in Figure 1.3,

where E represents encryption and D represents decryption.

t--c-ip_h_e_rt_ex_t_c __ >~l D
unsecured

channel

Figure 1.3: Encrypted Communication

plaintext
1---+) p

There are two basic classes of ciphers: public-key ciphers and symmetric-key ci-

phers. Public-key ciphers have two keys, a public key and a private key. The public

key is used to encrypt the plaintext into ciphertext, and the private key to decrypt

and recover the original plaintext [3]. Thus, an entity will generate a public key

and private key pair, and make the public key freely available. Anyone wishing to

securely communicate with that entity simply encrypts the message with its public

key, and then only that entity can use the corresponding private key to decrypt the

message [3]. (Some public-key ciphers work in such a way that either key may be

used to encrypt, and the other decrypt. This is more relevant to authentication than

confidentiality). The security of public-key ciphers depends on the keys - it should be

infeasible to determine the private key from knowledge of the public key [3]. Public

key cryptography is illustrated in Figure 1.4.

Symmetric-key ciphers (also called private-key ciphers) use a single key for both

9

Unsecured Channel
key

public key kp source

private ,, key ks,~

Ekp
...

Dks
,

plltext P

ciphertext C

plaint±t P

Sender Receiver

Figure 1.4: Public Key Cryptography

encryption and decryption. A message encrypted with a particular key must be

decrypted with the same key. Thus, the key must be kept secret from all parties

except the sender and receiver in order to maintain security [3]. This is illustrated in

Figure 1.5.

Symmetric-key ciphers further break down into two sub-categories: stream ciphers

and block ciphers (shown in Figure 1.6). They are basically similar, but stream ciphers

operate on one plaintext symbol at a time, whereas block ciphers operate on groups

of plaintext symbols, or blocks [3]. Stream ciphers typically consist of a mathematical

function that generates a stream of bits that gets mixed with the plaintext stream,

one bit at a time, via the exclusive-OR (XOR) operation [3]. Block ciphers transform

blocks of plaintext (say, 64- or 128-bits at a time) into an output block of ciphertext

of the same size [3].

If a single input bit to a stream cipher changes, only a single output bit will change.

However, if a single input bit to a block cipher changes, many of the output bits should

10

key
source

secret
, 1key k

Ek

pl1text P

Sender

Block Cipher

n-bit
plaintext

n

E

n

n-bit
ciphertext

Secure Channel
secret
key k

'' Unsecured Channel , Dk
ciphertext C

plaint±t P

Receiver

Figure 1.5: Private Key Cryptography

Stream Cipher

1 bit of
plaintext

E

1 bit of
ciphertext

OR

k

keystream
generator

1 bit of
ciphertext

Figure 1.6: Comparison of Block Ciphers and Stream Ciphers

11

change [3]. These differing properties suggest that stream ciphers and block ciphers

each have their own strengths and weaknesses, depending on their application. It

should also be noted that block ciphers can be converted into stream ciphers quite

easily [3]. Block ciphers will be discussed in more detail in Section 1.3.2.

1.3.2 Block Cipher Modes of Operation

An unfortunate characteristic of block ciphers is that identical blocks of data, en

crypted with the same key, will produce identical ciphertext blocks [3]. Since data

that repeats might be commonly encrypted (such as in communication protocol head

ers, for example), it might provide statistical information to attackers or reveal other

information about the plaintext. Thus, several different modes of operation of block

ciphers are used [3]. These modes are illustrated in Figure 1. 7 for both encryption

and decryption.

The normal mode of operation is Electronic Codebook (ECB) mode [3]. This

is how most block ciphers are defined, and has the problem described above. The

alternate modes of operation seek to avoid the disadvantages of ECB mode, and have

their own properties related to error propagation and chaining dependencies that

makes them appropriate in different situations.

Cipher-Block Chaining (CBC) mode alters the input plaintext to the cipher by

XORing it with the ciphertext of the previous block encrypted by the cipher [3]. The

first block of data to be encrypted is XORed with an Initialization Vector (IV). Thus,

identical plaintext blocks will be modified to appear different via the XOR operation,

and thus the ciphertext produced by the identical plaintexts will be different [3]. This

mode is appropriate for streams of related data that are encrypted and decrypted

together.

Cipher Feedback (CFB) mode essentially turns a block cipher into a stream cipher,

using the cipher as a generating function for a random-seeming stream of bits [3]. It

12

ECB Mode CFB Mode

OFB Mode

Figure 1.7: Block Cipher Modes of Operation

13

uses an IV as the input into the cipher, and the output (or some part of it) is XORed

with the message plaintext to produce a ciphertext for transmission. The transmitted

ciphertext (or some part thereof) is then used as the input to the cipher for the next

block of data [3]. Output Feedback (OFB) mode is similar, but rather than using

the ciphertext as the input to the cipher for the next block of data, it uses the block

cipher output directly [3].

These modes of operation are important, and are specified in many common pro

tocols. Thus, support of these block cipher modes of operation is crucial for any block

cipher implementation.

1.3.3 Hash Functions and Signatures

Entity authentication (or identification) can be provided in several ways. Its goal is to

verify the identify of parties involved in a transaction [3]. This service can be provided

along with confidentiality, but also in its absence. Certain types of confidentiality

provide entity authentication automatically - for example, in a communication which

uses a symmetric-key cipher, entity authentication is implicit because only the sender

and authorized receiver should have access to the secret key. Public-key cryptosystems

provide a degree of entity authentication as well - only the intended recipient can

recover the encrypted message, though the recipient cannot be sure of the identity

of the sender [3]. However, in situations where entity authentication is desired in

the absence of confidentiality, other primitives such as hash functions and digital

signatures can be used.

Hash functions are efficient algorithms that convert a message of any length into a

fixed-length value called a hash-value [3]. Typically, the length of the message is much

greater than the length of the hash. They essentially create shortened representations

of the entire message, although the message is not recoverable from the hash-value

since the function maps from an infinite set of messages onto a finite set of hash-values.

14

Useful hash functions have properties such that it is computationally infeasible to find

two messages that produce the same hash-value [3], and as a result, small changes in

the input to the hash function leads to significant changes in the hash-value.

Hash functions can be keyed or unkeyed. Unkeyed hash functions will always

produce the same output given the same input, whereas keyed hash functions mix

the key information into the hash-value, so keyed hash functions will produce different

hash-values when using different keys [3].

As stated above, hash functions can be used to provide authentication services, as

well as data integrity services. The sender of a message calculates its hash-value, and

appends this value to the message when it is sent. The receiver calculates the hash of

the received message, and compares it to the transmitted hash-value to authenticate.

Unkeyed hash functions are thus primarily useful in providing data integrity with

respect to channel errors rather than a malicious attacker, since an attacker could

alter the message and replace the original hash-value with a new one matching the

new message.

Keyed hash functions, on the other hand, provide data integrity (since any modi

fication to the message will cause the receiver to calculate a different hash-value and

thus reject the message) and both data origin authentication and entity authentica

tion (since the sender and receiver must share a secret key used by the hash function,

and thus the identity of the sender and origin of the data is known) [3]. The assertion

of the shared secret key is the basis of the security of the authentication services

provided by keyed hash functions.

Digital signatures are used similarly to hash functions, but do not require shared

secret knowledge in order to authenticate. A digital signature is essentially a process

that allows an entity to bind its identity to a piece of information [3]. The entity uses

a signing function that transforms the message as well as some private information

held by the entity into a tag or signature that is much like a hash-value [3]. The

15

signing function might also include temporal or other supplementary information.

The signature is transmitted along with the message. The receiver can verify the

identity of the sender by running a publicly-known verification function on the signa

ture, which will either verify or deny the identity of the sender. The verification will

fail if either the message has been altered from what was originally signed, or if the

signature has been altered [3]. In this way, it ensures the authenticity of the sender,

the integrity of the data, and consequently the origin of the data.

The private information incorporated into the signature might be considered to be

a type of private key, and the verification function might be considered to make use

of public information about the entity, such as a public key. Digital signatures only

provide one-way verification - they identify the signing entity and the origin of the

data, but the sender knows nothing of the receiver. Nevertheless, digital signatures

are another tool used to provide entity authentication, data origin authentication,

and data integrity.

Non-repudiation services are provided implicitly as part of all of the preceding

cryptographic tools. Confidentiality and authentication using shared secret keys en

sure that all parties involved in a transaction are known, and that no malicious parties

could impersonate them. Even in the absence of confidentiality, authentication and

digital signatures provide data integrity and entity identification which disallows the

possibility of denying a transaction.

Thus, it can be seen that the main cryptographic goals can be met with just a

small set of cryptographic primitives. Unfortunately, theory often has difficulty being

applied to the real world, and there are a host of issues which make implementing

information security a truly daunting task.

16

1.4 Applications of Cryptography

Cryptography has long been relevant to military communications, to the extent that

modern military communications must support a variety of cryptographic systems and

thus programmable encryption systems are desired [4]. In recent years, the need for

cryptography in business and private communication has become equally important

as communication moves from "secure" channels such as letter mail or the wired

telephone system, which are both operated by trusted agencies, to more accessible

mediums such as the Internet or cellular telephony. Cryptography is needed not

just to preserve privacy, but also to verify business transactions and protect financial

information and trade secrets.

Cryptography is used in everything from digital cell phones and ABMs to Virtual

Private Networks (VPNs) and Secure Sockets Layer (SSL) transactions over the In

ternet. These different systems all have different protocols, and often use different

cryptographic algorithms to provide security. This introduces some interesting issues.

The primary issue with respect to cryptography is the distribution of the keys.

Block ciphers require the sender and receiver to have the same secret key. Public

key cryptography, which is much slower than private-key, can be used to exchange

secret keys, and then private-key ciphers can be used for the bulk of communication.

There are a number of key exchange protocols designed for this [3, 2, 5], and to allow

interoperability, a number of standard security protocols have been defined. For

example, secure Internet transactions typically use SSL, whereas VPN applications

(which use the Internet) generally use the IPsec protocol [5].

Unfortunately, cryptographic systems are difficult to implement properly [5]. Soft

ware implementations of cryptography are easy, and offer flexibility, but are often

open to attack from other malicious software. Additionally, software implementa

tions are too slow for many applications, since they only offer throughput on the

order of tens to low hundreds of megabits per second (Mbps) [6], which is insufficient

17

for high-bandwidth communications applications.

Hardware implementations of cryptography offer much greater speed, ranging from

the mid hundreds of Mbps to several gigabits per second (Gbps) [7], as well as offering

a degree of physical security that software lacks. Such implementations, whether in

the form of a cryptographic Application Specific Integrated Circuit (ASIC) or an

algorithm implemented in an Field Programmable Gate Array (FPGA), are difficult

and time-consuming to develop, requiring specialized hardware design skills. ASIC

implementations tend to lack flexibility as well, in that they generally cannot be

changed once manufactured, whereas with some degree of effort, FPGAs can be.

In today's communication landscape, with new applications being developed all

the time that must exist alongside legacy applications and different systems and

protocols, the need for a flexible cryptographic solutions is obvious. Flexible systems

capable of dealing with different algorithms and protocols are highly desirable, and

such a hardware system would have a wide range of applications.

1.5 Motivation and Proposed Solution

As can be seen, common methods of implementing cryptographic algorithms each

have their respective good and bad points. Software implementations are easy and

flexible, but result in low throughput. Hardware implementations, such as in ASICs or

FPGAs, provide high throughput, but require a lengthy and difficult design process.

The purpose of this research is to develop a middle-ground, something that com

bines the best features of both common forms of implementation: the ease of software

implementation and the speed of hardware. Unfortunately, to achieve this, compro

mises will have to be made.

The rationale for such a project is two-fold. Firstly, such a system will lighten the

workload of developers, allowing them to integrate relatively fast security hardware

18

into their products more easily than doing their own FPGA designs, and with more

flexibility than an pre-packaged ASIC implementation, thus allowing changes and

fixes after production has begun. This will save time and money. Secondly, use of

such a system benefits the end-users since if a weakness is found in the currently

implemented security algorithm, the system could be reconfigured more easily that

implementing a new FPGA implementation. This combination of the ease of use

and flexibility of software with the speed of hardware might in many instances be a

desirable combination.

Thus, the goal of this research is to design a cryptographic hardware module

that can be configured for a variety of different algorithms, which provides greater

throughput than software implementation, and requires less design time than stan

dard hardware implementation. It should also support standard block cipher modes

of operation, and different algorithm implementation methodologies such as pipelin

ing and iteration. The cryptographic hardware module, entitled Security Hardware

Enhanced for Rapid Implementation and Flexibility (SHERIF), is intended for use

in high-throughput communications systems, and thus must be able to implement

several different algorithms and provide a significant degree of throughput to be con

sidered a successful prototype.

The discussion of this research is presented in the subsequent chapters, as outlined

below.

• Chapter 2 provides a concise but thorough review of existing cryptographic

implementations, with particular attention paid to reconfigurable hardware ar

chitectures and special-purpose cryptographic modules.

• Chapter 3 introduces and analyzes the six major cryptographic algorithms

around which the subsequent design was based.

19

• Chapter 4 details the design and implementation of the basic operational com

ponents and data control components that were used to build our higher-level

system.

• Chapter 5 describes the overall system architecture of our cryptographic hard

ware module, showing how it is constructed from the components detailed in

Chapter 4 and demonstrating the reasoning behind the architecture and control

scheme.

• Chapter 6 describes the design and use of the software configuration utility

written to aid the end-user in configuring the cryptographic hardware module

to implement specific algorithms.

• Chapter 7 details the functional testing of the device, focusing on the implemen

tation and validation of a pipelined version of the AES cryptographic algorithm,

and also discusses synthesis results.

• Chapter 8 investigates possible directions for further research related to the

cryptographic hardware module, and draws conclusions about the existing de

sign.

The appendices contain samples the VHDL code for the SHERIF cryptographic hard

ware module, Java code for the software configuration utility, and overall configuration

details.

20

Chapter 2

Current Cryptographic Hardware

Before designing a new cryptographic hardware module, it is necessary to consider

existing implementations and platforms, from pure software to dedicated ASICs,

FPGAs, and special-purpose cryptographic hardware modules. Knowledge of such

implementations guided design efforts for the SHERIF cryptographic hardware mod

ule under development.

2.1 Standard Algorithm Implementations

Note that the following analysis is focused on performance as measured by through

put, where throughput is defined as the number of bits per second (bps) that the

algorithm implementation can process. Sometimes throughput is also reported in

bytes per second. Other considerations such as code size (for software), power con

sumption, area (for hardware), and latency are not considered.

2.1.1 Software Implementations

The easiest means of implementing cryptographic algorithms is in software. Software

implementations are flexible, and general-purpose microprocessors can run software

21

to implement any cryptographic algorithm. The key drawback to software implemen-

tation is that it is comparatively slow, meaning it is too slow for certain applications.

For example, a 600 MHz processor is incapable of encrypting data fast enough to

saturate a T3 communication line using Triple DES (3DES) encryption [8]. Further-

more, speed of operations is clearly dependent on the speed of the processor, and

certain operations such as permutations are very slow to implement in software.

Still, software implementation is viable and cost-effective in many applications,

and thus is well-studied. In particular, during the AES selection process sponsored

by United States National Institute of Standards and Technology (NIST) [9] and

the NESSIE standardization process [10], software implementations of the candidate

algorithms were extensively developed and tested. Table 2.1 summarizes software

speeds for several interesting algorithms from the two standardization efforts. Note

that the AES candidate numbers were converted from average cycle counts per block

when encrypting 128 blocks [6] to get the throughput.

Algorithm Platform Throughput
Rijndael ANSI C (450 MHz Pentium II) 98.3 Mbps
RC6 ANSI C (450 MHz Pentium II) 122 Mbps
Serpent ANSI C (450 MHz Pentium II) 21.1 Mbps
Twofish ANSI C (450 MHz Pentium II) 101.6 Mbps
MARS ANSI C (450 MHz Pentium II) 72.18 Mbps
Camellia assembly (700 MHz Pentium III) 290.9 Mbps
Camellia Java (1 GHz Pentium III) 161.4 Mbps

Table 2.1: Software Implementation Results from AES Development and NESSIE

More recent software implementations have in many cases improved upon these

performance figures, due to increasing microprocessor speeds and better understand-

ing of the algorithms themselves. For example, recent software implementation speeds

ofthe AES are listed in [11]. Highly optimized software on very high end microproces

sors (such as Intel's Pentium 4 running at 3.2 GHz) can achieve impressive speeds,

22

as high as 1537.9 Mbps, and other high end microprocessors range in performance

from the mid-to-high hundreds of Mbps. The key downside to such software im

plementations is that they achieve such performance by running on expensive and

power-hungry high end microprocessors, and thus even if such a software implemen

tation on a high end processor could satisfy the requirements of a communication

system, it might not be cost-effective to do so, especially in systems where space or

power consumption are important.

Despite the ever-increasing speed capabilities of software implementation, dedi

cated hardware will still be needed for the foreseeable future to support new applica

tions requiring higher and higher data rates, such as high definition real-time video.

Perhaps more importantly, while software implementations may offer sufficient speed

for end-users in whatever applications they may need, such capabilities do not scale

to large networks and the vast amounts of data that they must transport. Thus, the

need for hardware implementations to offer greater speed than software is apparent.

These software numbers are provided primarily as a point of comparison for hardware

implementations.

2.1.2 Dedicated Hardware Implementations

Hardware implementations of cryptographic algorithms are widely varied, and en

compass both ASIC and FPGA technology. Both types of hardware typically provide

much greater speeds than capable in software, but share (to an extent) the same

lengthy and complex development cycles.

There are other advantages to hardware implementation as well. In [12] and [13]

the need for encryption algorithm agility in ATM networks is discussed. Algorithm

agility means that a system must be able to handle multiple algorithms, since there

are several defined in the ATM security standard. While software running on a micro

processor inherently offers such flexibility, it would likely be incapable of supporting

23

the high data rates needed for an ATM switch. The architecture presented in [12]

proposes a number of encryption hardware pipelines in parallel to support the differ

ent algorithms in the specification. The various pipelines are fed by an input sorting

queue. This approach avoids software or reconfigurable logic overhead, and achieves

aggregate speeds of up to 21.2 Gbps when running at 100 MHz [12], far beyond the

performance available at that clock speed for a software implementation.

ASICs such as the above tend to provide the greatest performance, but once

manufactured, they cannot be fixed, altered, or updated. They are totally inflexible,

and have a longer and more costly development process than FPGAs. Only when

manufactured in large quantities do ASICs become cost-effective [14].

FPGAs typically provide lower performance than ASICs, but have the advantage

of shorter and less costly development cycles since less work is needed before the design

can be mapped into a standard FPGA part. Also, since FPGAs are programmable, it

is possible for FPG A implementations of cryptographic algorithms to be updated or

replaced if the final system is designed to accommodate this, which offers much greater

flexibility than ASICs. This flexibility also means that, as hardware technologies

improve, it is easier to re-implement an algorithm in a newer FPGA than it is to

produce a new ASIC.

Both ASICs and FPGAs have their benefits and drawbacks. Cryptographic algo

rithm implementations in both have been studied extensively. The five finalist algo

rithms for the AES were implemented in hardware by the National Security Agency

in the United States [7] in both iterative and pipelined implementations. Similarly,

New European Schemes for Signatures, Integrity, and Encryption (NESSIE) candi

dates such as Camellia [15] included extensive hardware performance results in their

submission. Table 2.2 shows several hardware performance values for a number of

algorithms that were AES and NESSIE candidates. Most of the devices are im

plemented in various sizes of Complementary Metal-Oxide Semiconductor (CMOS)

24

technology.

Algorithm Implementation Details Throughput
Rijndael pipelined (0.5p CMOS) 5163 Mbps
Rijndael iterative (0.5p CMOS) 443.2 Mbps
RC6 pipelined (0.5p CMOS) 2171 Mbps
RC6 iterative (0.5p CMOS) 103.8 Mbps
Serpent pipelined (0.5p CMOS) 8030 Mbps
Serpent iterative (0.5p CMOS) 202.3 Mbps
Two fish pipelined (0.5p CMOS) 2278 Mbps
Two fish iterative (0.5p CMOS) 104.6 Mbps
MARS pipelined (0.5p CMOS) 2189 Mbps
MARS iterative (0.5p CMOS) 56.7 Mbps
Camellia unrolled (0.18p Mitsubishi) 3200 Mbps
Camellia iterative (0.18p Mitsubishi) 1881.25 Mbps
Camellia pipelined (Xilinx VirtexE FPGA) 6749.99 Mbps

Table 2.2: Hardware Implementation Results from AES Development and NESSIE

A unified hardware implementation of Camellia [16] and AES [17] is presented

in [18]. The unified implementation used structural similarities between the two al

gorithms to reduce hardware where possible, and algorithm-specific hardware where

necessary. It provided throughput for AES of 469.22 Mbps and 794.05 Mbps when

optimized for area and speed respectively, and 661.18 Mbps and 1118.89 Mbps for

Camellia [18]. In comparisons to separate implementations cited in that paper, the

unified architecture was slightly slower than independent implementations of the al-

gorithms, but had a lower overall area. The independent implementation of AES was

listed as having a throughput of 548.68 Mbps when optimized for area, and 875.28

Mbps when optimized for speed, whereas the independent implementation of Camel

lia had throughput of 1094.04 Mbps when optimized for area, and 1616.14 Mbps when

optimized for speed [18]. All implementations were in 0.13 pm CMOS technology.

The results presented here are in no means considered to be comprehensive.

Rather, they are given to provide a general context for the performance of the system

under design.

25

2.2 Commercial Cryptographic Co-Processors

There are a number of commercial products available that generally refer to them

selves as cryptographic co-processors. They generally focus on increasing the speed

of public-key cryptography, whether it is RSA encryption or digital signatures. Al

though architectural details are scarce on many of the products, they mostly seem

to be system-level products (rather than single-chip solutions) that are used to off

load the processing from the main processor in the system. Most of them seem to

be based around a general microprocessor with special hardware to implement the

cryptographic algorithms. Also, all of the commercial products are very application

specific - most are designed to accelerate the IPsec or SSL security protocols.

There are three general types of security chips or devices [19].

1. Coprocessors exist as part of a larger system, and off-load the cryptographic du

ties from the main processor, freeing it for other tasks. This sort of arrangement

is limited by the communication between the main processor and coprocessor

[19].

2. Inline security processors are used directly in the communications path, and thus

are forced to take on additional processing tasks beyond security. However, they

allow a significant improvement in speed and throughput [19].

3. Network processors with integrated/embedded security functions are the third

class of devices and can basically be seen as a combination of coprocessor and

inline processor, or a consolidation of an inline security processor with the other

communication components. Such integrated processors bring all the network

and security functionality into a single device to allow line-rate operation [19].

These different approaches can be seen in the many varied commercial devices cur

rently on the market.

26

2.2.1 Motorola's Sl Family

Motorola [20] has a family of security processors, the S1 family, consisting of the

MPC180, MPC184, MPC185, and MPC190 [21]. The processors are targeted toward

edge routers, wireless base stations, e-commerce servers, broadband access equipment,

and more [22], and are designed to support standard internet security protocols such

as IPsec, IKE, WTLS/WAP and SSL/TLS [23]. The MPC185 also supports 3rd

Generation Partnership Project (3GPP) protocols [24].

To support these protocols, the processors must support algorithms such as public

key cryptography (RSA, Diffie-Hellman, and elliptic curve), various modes of DES

(and AES in later processors), and message digests (including SHA-1, MD4, and

MD5) [25]. While the specific features of each processor differ, their general architec

ture is the same.

Rather than provide a general architecture optimized for cryptography, the S1

family processors incorporated dedicated hardware for the supported algorithms onto

a single chip. The architecture of the MPC185 provides a good example of this [24].

It has 10 execution units plus a random number generator. There are two public key

execution units, which offer programmable support of RSA and Diffie-Hellman as well

as elliptic curve cryptography [2], and several modes of each. Likewise, there are two

DES execution units offering DES and 3DES in a variety of modes and configurations.

Two AES execution units provide support for various modes of Rijndael, and the two

message digest execution units support various modes of SHA-1 as well as MD4 and

MD5. It even provides stream cipher support in the form of a single ARC4 execution

unit (compatible with the RC4 algorithm), and support for the 3GPP algorithm

Kasumi (for both encryption and authentication) via a dedicated execution unit.

The estimated performance numbers for the MPC185-supported block ciphers, as

shown in [24], are included in Table 2.3. Note that overall performance improves

as the amount of data being processed increases. This is due to the memory access

27

required by the processors operating within a larger system.

Data Size DES-CBC 3DES-CBC AES MD5 SHA-1
64 byte 204 168 180 177 162
128 byte 355 260 281 311 279
256 byte 562 358 391 472 411
512 byte 815 449 489 636 540
1024 byte 1051 513 557 770 639
1536 byte 1164 538 585 828 681

Table 2.3: Block Cipher and Hash Function Estimated Throughput (in Mbps) from
Motorola MPC185 Security Processor Technical Summary

2.2.2 The IBM 4758 Secure Coprocessor

IBM [26] produces the 4758 secure coprocessor, described in [27, 28]. The 4758 has a

two-fold purpose: to accelerate cryptographic functions and always operate correctly

despite physical attack [28]. Thus, much of the design effort for the 4758 went into

the physical tamper-resistance of the device, rather than an innovative cryptographic

architecture.

The 4758 secure coprocessor incorporates a Data Encryption Standard (DES)

acceleration unit (the device predates AES selection), a modular math unit, and

a general-purpose 486 microprocessor to provide cryptographic support [28]. Later

revisions of the device offer SHA-1 and Triple-DES execution units as well [29].

Given that the focus of the device is on providing a secure operating environment

rather than high cryptographic performance, it might be expected that the perfor

mance will not be optimal. In [30], the latest models are described as supporting up

to 175 1024-bit key RSA operations per second, which is quite good, but the DES

encryption throughput is 15.3 MBytes/section (approximately 122.4 Mbps), which

is slow compared to many other DES implementations [31]. The performance may

be partly limited by the PCI interface of the device, which has limited bandwidth,

28

but the focus of the device on protecting the secret/private keys, authenticating op

erations, and providing a secure execution environment (not just for cryptography

[28, 32]) likely contributes to its comparatively lackluster performance.

2.2.3 Harris Corporation Sierra

The RF Communications Division of the Harris Corporation has produced a program

mable cryptographic device to meet military and law enforcement needs as described

in [4]. The Sierra device is aimed at providing Type 1, Type 3, and Type 4 encryption

for wireless devices [33], and thus is designed to maximize flexibility while providing

sufficient performance.

Wireless applications typically have lower bandwidth requirements than wired net

works, though modern wireless systems can have throughput of several megabits per

second [4]. The Sierra module provides both flexibility and sufficient speed through

use of a dedicated ASIC called Palisades [33] which incorporates a variety of func

tionality (including cryptography).

The Palisades ASIC is based around an ARM7T Reduced Instruction Set

Computer (RISC) processor core, which provides most of the device's flexibility and

functionality. However, the processor is supplemented by several cryptographic blocks

to accelerate cryptographic operations: two Type 1 encryption hardware blocks (for

military encryption support), a DES encryptor, a 128-bit multiplier, a randomizer

function, and even Linear Feedback Shift Registers (LFSRs) for stream cipher sup

port. These blocks are tightly coupled to the processor core, allowing great flexibility,

performance, and support for many different modes and algorithms [33].

This sort of architecture is fairly common in terms of programmable cryptographic

hardware; most programmable solutions rely on general microprocessors with exten

sions to speed cryptographic operations. Several further examples of this will be seen

in subsequent sections.

29

2.2.4 Cavium Networks

Cavium Networks [34] offers a series of security processors supporting the IPsec and

SSL protocols, as described in [35]. This device runs at 500 MHz and has high

bandwidth I/0 which contribute to its ability to achieve very high peak throughput,

as shown in Table 2.4 [35].

Operation Peak Bandwidth
3DES 70 Gb/s
AES (with 256-bit key) 61 Gb/s
ARC4 28 Gb/s
MD5 56 Gb/s
SHA-1 89 Gb/s

Table 2.4: Peak bandwidth of Cavium IPsec/SSL processor at 500 MHz

These very high throughput numbers are primarily due to the somewhat unique

architecture of the device. It consists of 28 execution units, each of which is pro-

grammable [35]. Each execution unit consists of a 16-bit microcode processor engine

with 12 kB of code storage, which controls the 64-bit Arithmetic Logic Unit (ALU)

and the cryptographic units and provides high level protocol processing. Hardware

support is provided for 3DES, AES, and ARC4, MD5, and SHA-1. A hardware mod-

ular multiplier is also included to support public-key operations via the microcode

processor [35]. The large number of execution units, and the large bus connecting

them all, combined with fast chip I/0, leads to some very impressive performance

figures. However, the microcode processors are limited, and thus, while this device

provides excellent support for IPsec and SSL algorithms, it is not easily expandable

to new applications.

30

2.2.5 Other Commercial Solutions

There are many other cryptographic hardware products commercially available, a

number of which are discussed in [19] and [36].

Many commercial cryptographic accelerators focus on accelerating public-key op

erations, since they are more computationally intensive than the block ciphers which

are used for bulk encryption. As such, they are often packaged as add-in boards for

larger systems. Such cryptographic accelerators from nCipher and Rainbow Tech

nologies are discussed in [36]. The nCipher product is an add-in or a larger computer

system, whereas the Rainbow product is attached to the same network as other sys

tems, allowing different forms of acceleration. Both are targeted at improving the

speed of SSL transactions, primarily in terms of the public-key setup, although that

includes some block cipher components as well [36].

Broadcom's CryptoNetX line of security processor devices work with host proces

sors, although the company provides them on fully realized add-in boards as well. Like

most commercial security hardware vendors, their chips such as the BCM5840/5841,

BCM5850, and BCM5851 support the standard protocols such as IPsec and SSL [19].

The BCM5840/5841 devices are meant to support IPsec for VPNs, and thus they

support DES, 3DES, AES, MD5, and SHA-1 in hardware, allowing 2.4 Gbps and 4.8

Gbps data rates, respectively [19]. The BCM5850 and BCM5821 support the pro

tocols and public key cryptography needed for SSL, with the BCM5821 accelerating

the RSA public-key cryptography (allowing 4000 1024-bit transactions per second)

as well as providing hardware support for DES, 3DES, ARC4, MD5, and SHA-1 [19].

Corrent has a series of security chips and boards as well, including the CR7020 and

CR7120. These devices accelerate SSL or IPsec operations using special hardware for

DES, 3DES, AES, ARC4, MD5, and SHA-1, as well as having on-chip exponentiator

circuits for public-key algorithms. The CR7020 runs at 1.5 Gbps, while the CR7120

runs at 3 Gbps [19].

31

HiFN has a variety of cryptographic devices available. Their coprocessors range

from the 7855, which supports IPsec protocols and algorithms at rates up to 650 Mbps,

up to the 7955 processor, which supports a greater degree of public-key cryptography

as well as supporting the IPsec algorithms at speeds of up to 756 Mbps [19]. They also

have several in-line security processors, the 8300 and 8350 FlowThrough processors,

which are meant to be used directly in a communication system datapath, rather

than as a coprocessor. They support IPsec applications with public-key operations

and standard private-key encryption and authentication, as well as an IKE stack.

The 8300 runs at 600 Mbps, while the 8350 operates up to 4 Gbps [19].

Layer N Networks is a relatively new company that has developed a fast SSL

chip, using a simplified mathematical algorithms to speed up public-key cryptogra

phy. Their UltraLock chip is an in-line processor, and thus incorporates protocol

processing hardware for TCP /IP along with the security hardware [19]. It has a

control unit to handle the SSL and TLS protocols (using RSA encryption), and a

separate cryptography controller which interfaces to a hardware execution unit sup

porting SHA-1, MD5, DES, 3DES, RC4, and AES. This architecture allows it to

implement security at the a rate of 1 Gbps [19].

Intel's IPX2850 network processor is primarily intended to support network

processing, but incorporates security features as well, such as 3DES, AES, and SHA-

1, and allows speeds of up to 10 Gbps [19]. Software support allows the device to

implement either IPsec or SSL/TLS, and makes this processor somewhat more flexi

ble in terms of the applications it supports than most of the other devices considered

here, but the cryptographic algorithms themselves are fixed [19].

Overall, the commercial solutions overwhelmingly tend to offer flexibility through

incorporation of a general processor supplemented by additional cryptographic hard

ware for specific algorithms. Thus, while excellent performance may be achieved in

current applications, expandability to new algorithms, protocols, or applications is

32

limited.

2.3 Implementation on Reconfigurable Platforms

While dedicated hardware implementations provide high speed, they lack the flex

ibility of software implementations. Straightforward FPGA-based hardware imple

mentations offer almost as much speed as ASIC implementations, but with the added

benefit of being reprogrammable, and yet the development effort is similar in many

respects. Also, once operating, an FPGA tends to be static, although newer FPGAs

allow dynamic reconfiguring of themselves (or parts thereof). A number of crypto

graphic hardware systems have been proposed to take advantage of this.

In [37], a reconfigurable computing system based on an FPGA is described, and

implementation of the DES algorithm is used as an example of its operation. While

their configuration management scheme (in which FPGA configurations are multi

plexed from ROMs into the FPGA) provides good support for an algorithm-agile

cryptography, it is still just a general reconfigurable system that could be used for

virtually any application.

The PipeRench architecture described in [38] is also a general reconfigurable sys

tem used to implement cryptographic algorithms. It supports the concept of virtual

hardware, in which parts of its configuration may be swapped for others to effectively

support a design larger than the resources of the device. This degree of flexibility

makes implementation of a variety of cryptographic algorithms feasible, and allows

them to share the same execution platform.

An extension to the PipeRench architecture optimized for cryptographic oper

ations, called PipeRench+, is also described in [38]. The PipeRench+ system is

identical to the baseline PipeRench architecture except for the addition of a small

memory accessible from each of the computational stripes, in order to support larger

33

table lookups than the standard PipeRench. However, PipeRench is not fully config

urable; some algorithms cannot be mapped onto the device, although they can still be

accelerated by it if custom instructions are implemented in a co-processing situation

[38].

The CryptoBooster is a cryptographic coprocessor described in [39]. It is opti

mized for implementation with FPGAs, and meant to work within a host system. It

incorporates a number of session control features to handle the details of each task it

is asked to perform. However, the core functionality lies in the hardware implemen

tation of the ciphers in the FPGA part of the system. CryptoBooster supports the

partial reconfiguration capabilities of the FPGA, and allows the session controller and

adapter to configure the FPGA as required by the session setup. Though designed

to support cryptographic operations, it is still based around general reconfigurable

hardware.

Another FPGA-based algorithm-agile cryptographic coprocessor is presented in

[40]. The FPGA in this system houses the cryptographic processor, which is config

ured with data from a non-volatile memory block called the algorithm library. Thus,

a number of algorithm configurations can be stored in the algorithm library, and de

pending on how the system is controlled, different algorithm configurations can be

loaded into the FPGA. This provides a flexible platform and allows algorithm agility.

However, there is still the difficulty in designing such FPGA configurations.

Overall, the use of FPGA-based reconfigurable computing may be an effective

solution to the problem of flexibility and good performance. However, they are typ

ically board-level solutions, rather than single-chip, and apart from providing an

FPGA platform, are not optimized for cryptographic processing.

34

2.4 Generalized Cryptographic Hardware

While much study has been performed on implementation of individual cryptographic

operations, such as ROMs for use as s-boxes [41], there has also been some acad

emic effort toward the development of generalized cryptographic hardware capable of

implementing a variety of algorithms, apart from those implementing cryptography

in general reconfigurable systems. Many of these architectures propose extensions

of general microprocessor architectures, adding instructions that accelerate crypto

graphic operations in order to speed up software implementations of algorithms using

optimized hardware.

An example of this in its most basic form is shown in [42], which proposes the addi

tion of a bit permutation instruction to a general microprocessor. Such an instruction

would enable significant speedup over a normal processor when implementing cryp

tographic operations that require bitwise permutations, such as DES [43].

A more extreme example of this microprocessor-supplemental approach is pre

sented in [44], which adds an instruction to the user-customizable ARC processor

that implements an entire round of the DES algorithm. This single instruction vastly

increases the speed of DES and 3DES encryption by providing custom hardware and

reducing the number of needed memory reads/writes, allowing an speedup of 47 for

DES and a speedup of 92 for 3DES [44]. The new DES round instruction also al

lowed a dramatic reduction in code size. For a processor speed of 200 MHz, 3DES

performance was estimated to be 337 Mbps [44].

These sorts of processor extensions have their limitations. Adding a bit permuta

tion instruction is only useful at accelerating algorithms that use bit permutations,

and does nothing to address the word-size disparity between the microprocessor (most

of which are 32-bit or less) and modern block ciphers (most of which are 128-bit or

more). In the case of the specialized DES instruction, it certainly allows speedup

of DES, but has no flexibility advantage over a dedicated hardware implementation.

35

However, a number of different architectures have been proposed that extend this

concept even further.

2.4.1 Crypto-CPU

The Crypto-CPU is presented [45] and [46]. It is designed as a processor for low-power

communications, and as such much of the design effort went into minimizing power

consumption. However, it does offer specialized hardware to speed cryptography.

Based around the MIPS architecture, is uses several modern computer architecture

techniques such as superscalar execution and explicit parallelism. In addition to

providing a good general-purpose RISC processor, it provides a substitution unit (in

the form of SRAM memories) for implementing s-boxes, as well as a programmable

bit expansion/permutation unit [45].

The presence of general purpose AL U operations along with the specialized cryp

tography extensions gives the Crypto-CPU a significant performance boost in crypto

graphic operation in comparison to other low-power processors. Running at a speed

of 100 MHz, the Crypto-CPU offers approximately five times the throughput of the

other devices (running at 120 MHz and 133 MHz respectively); at 200 MHz, the

performance gap widens to almost a factor of ten. The Crypto-CPU even compares

favourably to a general-purpose microprocessor such as an Intel Celeron running at

850 MHz [45].

2.4.2 CryptoManiac

In [8] a number of additions are proposed to a basic microprocessor instruction set

to support symmetric-key ciphers. In addition to the standard ALU operations, the

extensions include rotation instructions, instructions for constant rotations followed

by an XOR operation, modular multiplication instructions, substitution instructions

accessing a 256-entry by 32-bit lookup table, and an instruction to implement a

36

partial 64-bit permutation capable of generating 8 bits of the permutation output

each time it is executed. These additional instructions improved encryption operation

performance over a baseline processor by 59% for processors which already have rotate

instructions, and 74% for processors without [8].

The CryptoManiac architecture [47] is partially derived from the instruction set

operations presented in [8]. It is a processor based around a 4-wide 32-bit Very Long

Instruction Word (VLIW) processor optimized for cryptographic operation, meaning

it has no cache and only simple branch prediction. To integrate more easily into

communication systems, the device is session oriented, meaning that it can operate

for multiple channels of data in parallel or sequence.

Compared to many of the architectures seen so far, the CryptoManiac has a some

what unique design. It interfaces with a host processor via an input queue which

buffers requests for the services of the device (create private key session, delete pri

vate key session, and encrypt/decrypt data). There are a number of CryptoManiac

Processing Elements (PEs) in parallel, and the requests are sent to them by a sched

uler. The scheduler maintains sessions where possible, and uses a Least Recently

Used (LRU) allocation scheme to send new sessions to the PEs. The outputs of the

PEs are sent to an output queue. The system also has a storage element called the

keystore which is used to hold key and substitution data, and is shared between all

of the PEs to allow context switching [47].

Naturally, the CryptoManiac PEs are the core to the functionality of the system.

Each processing element is a 4-wide 4-stage VLIW processor which has a local in

struction memory to store the instructions for the algorithms the PE is implementing.

Instructions are fetched and branches predicted in the first stage, decoded and regis

ters accessed in the second stage, processed through the four parallel 32-bit functional

units in the third stage (which also may access data memory), and then results are

written to the appropriate places in the final stage [47].

37

The functional units can execute a limited number of instructions, derived from

those in [8], and consisting of Boolean AND and XOR, addition, subtraction, rotation,

s-box lookups, and multiplication (regular or modular). The instructions are classified

into three types: tiny, short, and long. Tiny and short instructions can be executed

simultaneously in various combinations, whereas the long instructions (multiplication)

can only be executed by themselves [47].

The four 32-bit functional units are nearly identical, each consisting of a logical

unit (providing XOR and AND logic) followed by a 32-bit adder, 32-bit rotator, and

1 kB s-box cache in parallel, all of which are followed by another logical unit. Two of

the four functional units also have a pipelined 32-bit multiplier in parallel to all the

rest [47]. Clearly, such a system offers great flexibility.

The estimated speed of the CryptoManiac is 360 MHz, and performance numbers

suggest a speed improvement of anywhere from 32% to 290% over a 600 MHz Alpha

21264 microprocessor, depending on the algorithm. For example, an implementa

tion of Rijndael on the CryptoManiac can achieve an encryption rate of up to 64

megabytes per second, more than 2.25 times faster than the corresponding software

implementation [47]. This is a significant performance boost, and the architecture

has the flexibility to support other algorithms as well.

2.4.3 Programmable Processor for Cryptography

In [48], the design of a high speed programmable architecture to handle a variety

of cryptographic algorithms is presented. The architecture is based around several

functional units controlled by a control unit ROM. Hardware units for addition/sub

traction and XOR are provided, as well as an EPROM to implement substitutions

and permutations. These operations primarily support private-key ciphers.

A modular multiplication and exponentiation unit is also provided to support

public-key ciphers such as RSA. The unit implements a loop-unrolled version of the

38

Montgomery multiplication algorithm to achieve higher throughput [48].

The different functional units are controlled by a control unit which receives in

structions, bit lengths, and round numbers as inputs from a master processor. The

control unit has a ROM which stores processing cycle counts for the different in

structions and different bit lengths. The control unit takes over from the master

processor sending control signals to the various functional units, and then writes the

valid output after the necessary number of clock cycles [48]. This processor is thus

very much like a microprogrammed controller - a very small, limited, task-specific

microprocessor -rather than an extended general microprocessor.

The processor was fabricated in 2 micron technology, and managed to achieve a

speed of 77 MHz. This allowed it to achieve a DES throughput of 44 megabytes per

second and a throughput of 300 kilobits per second for RSA encryption. The authors

suggest that if the design were fabricated in submicron technology (for example, 0.18

Jlm CMOS technology) much higher clock speeds and throughputs could be achieved

[48].

2.4.4 Reconfigurable Public Key Architecture

Though beyond the scope of this thesis, which focuses on the design of an archi

tecture to support private-key functionality, [49] offers an interesting reconfigurable

processor for public-key cryptography. Despite the technical difficulties of implement

ing public-key cryptography in hardware, in some respects the implementation of a

reconfigurable general-purpose public-key cryptographic architecture is easier than a

private-key system simply because the class of base operations is much more limited.

The design in [49] is based around implementing those few basic problems, defined

in the IEEE P1363 public key cryptography standard: integer factorization, discrete

logarithms, and elliptic curves.

39

This Domain-Specific Reconfigurable Cryptographic Processor (DSRCP) is de

signed around a microcode controller that interfaces with a 32 by 32-bit reconfigurable

datapath. There is also dedicated SHA-1 hardware to satisfy the requirements of the

IEEE P1363 standard. The DSRCP receives instructions from an external controller,

which it then decodes in the controller. This is because some of the instructions use

others in their implementation. Thus, when an instruction is decoded, the necessary

microcode is fetched from a ROM and used to control the datapath [49].

The reconfigurable datapath has a local register file, a fast adder unit, a compara

tor unit, and reconfigurable unit. The reconfigurable unit can be reconfigure on the

fly to one of three operations: Montgomery multiplication/reduction, multiplication

in GF(2n), and GF(2n) inversion. The system is also accommodating to different

bit widths (though larger bit sizes naturally require more iterations in the hardware)

[49]. It can be used to implement elliptic curve computations, mathematics of finite

fields, and exponentiation of large numbers - all basic operations of various forms of

public-key cryptography. This smaller set of basic operations makes such a reconfig

urable processor much easier to develop for public-key cryptography than the widely

varied private-key cryptographic algorithms.

2.5 Summary of Cryptographic Hardware Archi

tectures

A variety of cryptographic hardware architectures have been surveyed in this chap

ter. Dedicated hardware implementations tend to achieve speed through brute force,

efficiency, and parallelism, with fully loop-unrolled and pipelined implementations

offering the greatest performance but least flexibility, since they cannot even be used

in different modes of operation without a performance hit.

Implementations in programmable hardware such as FPGAs are similar, offering

40

high speeds but little flexibility other than the ability to reprogram with a different

algorithm. However, a number of FPGA-based reconfigurable platforms offer a much

greater degree of flexibility, whether specifically meant for cryptography or not.

Non-FPGA-based programmable solutions mostly take the form of extended

microprocessors. Either extra instructions are added to a general microprocessor

to accelerate cryptographic operations, or else smaller processors supporting only

cryptography-oriented instructions are proposed. Such systems offer a high degree

of flexibility and a significant speedup over pure software implementations, but often

cannot approach the throughput levels of dedicated hardware.

The SHERIF cryptographic hardware module will take a somewhat novel approach

to implementing a flexible cryptographic platform. Its design will be developed in the

following chapters.

41

Chapter 3

Algorithm Survey and Analysis

To design a hardware architecture optimized for cryptographic operations, it is nec

essary to determine what capabilities need to be provided and optimized so as to give

such a cryptographic hardware module an advantage over a general-purpose micro

processor. This can only be determined by study of the algorithms the device must

implement.

There are a multitude of cryptographic algorithms in existence; many are detailed

in [3] and [50]. New algorithms are also being developed on an ongoing basis. Analysis

of all such cryptographic algorithms would prove impossible, so it is necessary to limit

the scope of the algorithms that must be considered.

It is possible to remove algorithms from consideration by applying several broad

criteria. Algorithms that are outdated, or that have been shown to have severe

weakness to specialized attacks, will be discounted immediately. Likewise, algorithms

that are not widely used will be discounted, since a cryptographic hardware module

to implement such algorithms would likely be economically infeasible.

This leaves algorithms that are widely used and/ or standardized to be considered.

Standardized algorithms are selected by government institutions such as NIST [51] or

through open processes such as NESSIE [10]. Thus, the analysis will focus on a small

set of algorithms that have received much public study and have been standardized

42

or were viable candidates in a standardization process. Furthermore, the algorithms

are all symmetric-key block ciphers or hash functions.

3.1 Algorithms Under Consideration

NIST has long been responsible for setting security standards for the U.S. Govern

ment. The current standard for data confidentiality, known as the AES, is the al

gorithm Rijndael [17]. It replaces the older DES [43], although DES is still used in

many applications. NIST also specifies the hash function SHA-1 [52] which is based on

the older hash function MD5 [3]. These standardized algorithms are natural choices

for consideration. MD5 will be excluded from consideration since SHA-1 is a close

derivative of it.

The NESSIE selection process was in progress at the start of this research, and

thus a number of algorithms considered to be strong contenders were selected for

consideration: Camellia [16], RC6 [53], SAFER++128 [54], and SHACAL (which is

based on the SHA-1 hash function) [55].

At the conclusion of the NESSIE project, Camellia, AES, and a version of SHA

CAL were recommended algorithms [56]. No attacks against or weaknesses of RC6

or SAFER++128 were discovered, but they were not recommended due to intellectual

property concerns in the case of RC6, and concerns about certain structural elements

and low security margins in SAFER++128 [56]. Nevertheless, they are included in

this analysis as representatives of modern cipher design, rather than standardized

algorithms.

The following sections examine these algorithms in detail. However, the algorithms

as depicted are only meant to describe the general structure of the algorithms, and

do not necessarily provide all the specific details needed for implementation. For

example, details on the S-boxes or bit permutations and expansions will be glossed

43

over.

3.1.1 Notation

In the following algorithm descriptions, some specialized notations are used to ensure

uniformity among the descriptions.

• SBOX() is used to represent a table lookup. Different-valued s-boxes will be

differentiated by unique numbers or subscripts (SBOXl, SBOX2, and so on).

• E9 is the XOR operation.

• & is used to concatenate bit strings.

• Ncx) represents byte X of bit string N, where the least significant byte is byte

0.

• Ncx ... Y) represents bytes X toY of bit string N, where the least significant byte

is byte 0.

• +- represents assignment.

• 1\, V, and-, represent bitwise Boolean AND, OR, and NOT respectively.

• N < < < X represents a left rotation of bit string N by X bits. N > > > X is a

right rotation by X bits.

• +, -, and x represent addition, subtraction, and multiplication, respectively.

The notation can be used in various combinations. Other unique notations are de

scribed in the algorithms in which they appear.

44

3.1.2 AES

The AES algorithm, Rijndael, is relatively simple as described in [17]. Like most

block ciphers, it iterates through a number of identical rounds, applying different

round keys each time. It is somewhat unique in the way the specification describes it,

since it organizes the input data into a two-dimensional 4 x 4 array of bytes. The four

main operations- SubBytes(), ShiftRows(), MixColumns(), and AddRoundKey() -

operate on this array.

The SubBytes() operation is a non-linear byte substitution on each byte of the

input [17]. This sort of structure is commonly known as an S-box or substitution

table, although it can be implemented with boolean logic as well.

The ShiftRows() operation is a fixed permutation of the bytes of the input data.

The input bytes are rearranged into a different order.

The AddRoundKey() operation is a simple bitwise exclusive-or (XOR) of the input

data and the current round key.

The MixColumns() operation is perhaps the most complex. Each 32 bit word

of the input is considered a polynomial over GF(28) and multiplied modulo x 4 + 1

with a(x) = {03} x 3 + {01} x 2 + {01} x + {02}. This can also be viewed as a matrix

multiplication, and there are a number of ways of implementing this operation. This

operation produces a result in which each output but is the XOR of a subset of the

input bits.

AES has a variable key size. The version described in this analysis has a 128-bit

key size and 10 rounds. Other key sizes simply require a greater number of rounds

and a different key schedule.

As mentioned above, the standard description of Rijndael organizes the plaintext

into an array. To make comparisons to other algorithms easier, it was necessary to

write the algorithm in terms of operations on a 128-bit vector. This is shown in

Algorithm 3.1.1.

45

Algorithm 3.1.1 AES (Rijndael) Encryption

Input: 128-bit plaintext M.
Input: 11 128-bit round keys w0 to w10 •

N +-- M EEl Wo

for i = 1 to 9 do
N +-- SBOX(Nc15)) & SBOX(Nc14)) & ... & SBOX(Nco))

N +-- NC15) & Nc10) & NC5) & Nco) & Ncn) & NC6) & Ncl) & Nc12)
& NC7) & Nc2) & Nc1a) & Ncs) & Nca) & NC14) & NC9) & NC4)

N +-- Nc15 ... 12) x [{03} x 3 + {01} x2 + {01} x + {02}] modulo x4 + 1
& Ncn ... s) x [{03} x 3 + {01} x2 + {01} x + {02}} modulo x4 + 1
& Nc7 ... 4) x [{03} x3 + {01} x2 + {01} x + {02}] modulo x4 + 1
& Nc3 ... o) x [{03} x3 + {01} x2 + {01} x + {02}] modulo x4 + 1

N f- N EEl Wi

end for

N +-- SBOX(Nc15)) & SBOX(Nc14)) & ... & SBOX(Nco))

N +-- NCI5) & Nc10) & Nc5) & Nco) & Ncu) & Nc6) & Ncl) & Nc12)
& NC7) & Nc2) & NC13) & Ncs) & Nca) & NCI4) & NC9) & NC4)

Output: 128-bit ciphertext C +-- N EEl w10

46

The AES decryption algorithm, given in Algorithm 3.1.2, is similar.

Algorithm 3.1.2 AES (Rijndael) Decryption

Input: 128-bit ciphertext C.
Input: 11 128-bit round keys w0 to w10 .

N +-- c EB WlQ

for i = 9 down to 1 do
N +-- N(15) & N(2) & N(5) & Ncs) & Ncn) & N(14) & Ncl) & N(4)

& N(7) & N(IO) & N(l3) & Nco) & N(3) & N(6) & N(9) & Nc12)

N +-- SBOX-1(N(15)) & SBOX-1(N(l4)) & ... & SBOX-1(N(o))

N +-- Nc15 ... 12) x [{Ob} x3 + {Od} x2 + {09} x + {Oe}] modulo x4 + 1
& Ncn ... s) [x {Ob} x 3 + {Od} x2 + {09} x + {Oe}] modulo x4 + 1
& Nc7 ... 4) [x {Ob} x3 + {Od} x2 + {09} x + {Oe}] modulo x4 + 1
& Nc3 ... o) [x {Ob} x3 + {Od} x2 + {09} x + {Oe}] modulo x4 + 1

end for

N +-- N(15) & N(2) & N(5) & Ncs) & Ncn) & N(l4) & N(l) & N(4)

& N(7) & N(IO) & N(l3) & Nco) & N(3) & N(6) & N(9) & Nc12)

N +-- SBOX(Nc15)) & SBOX(Nc14)) & ... & SBOX(N(o))

Output: 128-bit plaintext M +-- NEB w0

The key schedule of AES, which takes the initial 128-bit key and expands it into

the 11 round keys used in encryption and decryption, is shown in Algorithm 3.1.3.

3.1.3 DES

DES is the old NIST standard [43], which has been officially replaced by the AES.

However, it is certain that DES is still in use in existing systems, or in modified

versions such as Triple-DES [3]. DES is a Feistel cipher structure, with a 64-bit block

size and a 56-bit key size, and 16 rounds. The DES encryption algorithm is given in

Algorithm 3.1.4. Note that the details of the bitwise permutations and expansions are

not given. Also, note that the S-boxes in DES take a 6-bit input and produce a 4-bit

47

Algorithm 3.1.3 AES (Rijndael) Key Expansion

Input: 128-bit key K.
Input: 32-bit round constants Ri = [xi-1 , {00}, {00}, {00} J over GF(28).

Output: 11 128-bit round keys w0 to w 10 •

Comments: Let temp be a 32-bit variable.

w0 f- K

for i = 1 to 10 do
temp f- (wi-1)(3 ... 0)

temp f- temp(2 ... o) & temp(3)

temp f- SBOX (temp(3)) & SBOX (temp(2))

& SBOX (temp(1)) & SBOX (temp(o))

temp f- temp E9 Ri

(wi)(15 ... 12) f- temp E9 (wi-1)(15 ... 12)

(wi)(n ... s) f- (wi)(15 ... 12) E9 (wi-1)(11...8)

(wi)(7 .. .4) f- (wi)(n ... s) E9 (wi-1)(7 ... 4)

(wi)(3 ... o) f- (wi)(7 ... 4) E9 (wi-1)(3 ... 0)

end for

48

output, which will account for the apparent size mismatch in the given description.

Algorithm 3.1.4 DES Encryption

Input: 64-bit plaintext M.
Input: 16 48-bit round keys k1 to k16

Comment: Let L and R be 32-bit variables.
Comment: Let X be a 48-bit variable.

N +--- IP(M) (initial permutation)
L +--- N(7 ... 4), R +--- N(3 ... o)

for i = 1 to 16 do
temp+--- R
X +--- E(R) (bit expansion of R to 48 bits)
X+--- X EB ki
R +--- SBOX1(X(Bits 47 to 42)) & SBOX2(X(Bits 41 to 36)) & SBOX3(X(Bits 35 to 3o))

& SBOX4(X(Bits 29 to 24)) & SBOX5(X(Bits 23 to 18)) & SBOX6(X(Bits 17 to 12))
& SBOX7(X(Bits n to 6)) & SBOX8(X(Bits 5 too))

R +--- P(R) (bit permutation P)
L +---temp

end for

Output: 64-bit ciphertext C +--- IP-1(R & L) (inverse permutation)

Decryption with DES is identical, since this is a Feistel cipher, and thus simply

requires that the keys be applied in the reverse order. This is shown in Algorithm

3.1.5.

The 16 48-bit subkeys are determined from the 56-bit key using the key schedule

described in Algorithm 3.1.6. Note that it is also possible to generate the round keys

within each round of computation, rather than doing all computations up front. The

56-bit key is actually represented with 64 bits, where the extra bits are odd parity

bits.

3.1.4 Camellia

The version of Camellia [16] under consideration has a 128-bit block size, a 128-bit key

size, and 18 rounds. The key schedule converts the 128-bit key into 26 64-bit subkeys.

49

Algorithm 3.1.5 DES Decryption

Input: 64-bit ciphertext C.
Input: 16 48-bit round keys k1 to k16

Comment: Let L and R be 32-bit variables.
Comment: Let X be a 48-bit variable.

N +--- IP(M) (initial permutation)

L +--- N(7 ... 4), R +--- N(3 ... o)

fori= 16 down to 1 do
temp+--- R
X+--- E(R) (bit expansion of R to 48 bits)
X+--- X EB ki
R +--- SBOX1(X(Bits 47 to 42)) & SBOX2(X(Bits 41 to 36)) & SBOX3(X(Bits 35 to 3o))

& SBOX4(X(Bits 29 to 24)) & SBOX5(X(Bits 23 to 18)) & SBOX6(X(Bits 17 to 12))
& SBOX7(X(Bits u to 6)) & SBOX8(X(Bits 5 too))

R +--- P(R) (bit permutation P)
L +---temp

end for

Output: 64-bit plaintext M +--- IP-1(R & L) (inverse permutation)

Algorithm 3.1.6 DES Key Schedule

Input: 64-bit key K including 8 odd parity bits.
Output: 16 48-bit round keys k1 to k16
Comment: Let T be a 56-bit variable.
Comment: Let L and R be 28-bit variables.
Comment: Let vi = 1 when i E [1, 2, 9, 16], else vi = 2.

T +--- PC1(K) (permuted choice 1, selects the 56 key bits and permutes them)

L +--- T(Bits 55 to 28)
R +--- T(Bits 27 to 0)

for i = 1 to 16 do
L f- L <<<Vi
R f- R <<<Vi
ki +--- PC2(L & R) (permuted choice 2, selects and permutes 48 bits for subkey)

end for

50

The specification for Camellia uses a series of nested function calls to describe the

algorithm, but to allow easy comparison to other algorithms, it was necessary to

rewrite the description as is shown in Algorithm 3.1.7.

The decryption operation of Camellia is identical to encryption, since it is a Feistel

cipher [3]. Thus, the same algorithm is used, but the keys are applied in the reverse

order. The subkeys are determined by a key schedule based on the cipher, which is

shown in Algorithm 3.1.8.

3.1.5 SAFER++12s

SAFER++128 is a specific variation of the SAFER++ algorithm which has a block

size of 128-bits, a key size of 128-bits, and 7 rounds [54]. SAFER++128 has some

interesting operations, making it rather different from most of the other algorithms

considered. There are several operations in particular that bear mentioning in terms

of how the are actually implemented.

There is a nonlinear layer in which certain bytes are are used to compute an expo

nential value which replaces them, and other bytes are used to compute logarithmic

values. The exponential computation replaces byte x with 45xmod257 with the con

vention that when x has a value of 128, then 45128mod257 = 256 is represented by 0.

The logarithmic computation replaces a byte y with log45 y with the convention that

when y = 0, then log45 0 is represented by 128.

However, such computations are complex. We can replace them by pre-computing

the results for possible values of x and y and using 8-boxes to implement these oper

ations. This 8-box representation of these operations will be used in the description

of SAFER++128 given the algorithm descriptions below.

The other unique operation in SAFER++128 is called the 4-PHT in the specifi

cation [54]. This operation is an invertible linear transformation that operates on 32

51

Algorithm 3.1.7 Camellia Encryption

Input: 128-bit plaintext M.
Input: 4 64-bit subkeys kwt fort E (1, 2, 3, 4).
Input: 18 64-bit subkeys kr for r E (1, 2, 3, ... , 18).
Input: 4 64-bit subkeys klv for v E (1, 2, 3, 4).

Comment: Let L, R, LN, Ltemp, Rtemp, and temp be 64-bit variables.
Comment: Let LH and RH be 32-bit variables.

N <c- M EEl (kw1 & kw2)

L <c- N(15 ... s)

R <c- N(7 ... o)

for r = 1 to 18 do
temp <c- L
L <c- L EEl kr
L <c- SBOX1(L(7)) & SBOX2(L(6J) & SBOX3(L(5J) & SBOX4(L(4J)

& SBOX2(L(3J) & SBOX3(L(z)) & SBOX4(L(l)) & SBOX1(L(o))
LN(7) <c- L(7) EEl L(5) EB L(4) EEl L(z) EB L(l) EEl L(o)
LN(6) <c- L(7) EEl L(6) EEl L(4) EEl L(3) EB L(l) EEl L(o)
LN(5) <c- L(7) EB L(6) EB L(5) EEl L(3) EB L(z) EEl L(o)
LN(4) <c- L(6) EEl L(5) EB L(4) EEl L(3) EB L(z) EEl L(l)
LN(3) <c- L(7) EB L(6) EB L(z) EEl L(l) EB L(o)
LN(z) <c- L(6) EB L(5) EB L(3) EEl L(l) EB L(o)
LN(l) <c- L(5) EB L(4J EB L(3) EEl L(z) EB L(o)
LN(o) <c- L(7) EB L(4) EEl L(3) EB L(z) EB L(l)
L <c-REEl LN
R <c- temp

if r = 6 orr= 12 then
Ltemp <c- L, Rtemp <c- R
k1 <c- klzr/6-1, kz <c- klzr/6
RH <c- (((Ltemp)(7 .. .4) 1\ (k1)(7 ... 4)) <<< 1) EEl (Ltemp)(3 ... 0)

LH <c- (RH V (ki)(3 ... o)) EEl (Ltemp)(7 .. .4)

L <c- LH & RH
LH <c- ((Rtemp)(3 ... 0) V (kz)(3 ... o)) EEl (Rtemp)(7 ... 4)
RH <c- ((LH 1\ (k2)(7 .. .4J) <<< 1) EB (Rtemp)(3 ... o)
R<c- LH & RH

end if
end for

Output: 128-bit ciphertext C <c- (R & L) EB (kw3 & kw4)

52

Algorithm 3.1.8 Camellia Key Schedule

Input: 128-bit key K.
Input: 64-bit key constants kc1 ... kc4 = [a09e667f3bcc908b, b67ae8584caa73b2,
c6ef372fe94f82be, 54ff53a5fld36flc].
Output: 4 64-bit subkeys kwt for t E (1, 2, 3, 4), 18 64-bit subkeys kr for r E
(1, 2, 3, ... , 18), and 4 64-bit subkeys klv for v E (1, 2, 3, 4).
Comment: Let L, R, LN, and temp be 64-bit variables, and let K L and K A be
128-bit variables.

KL~K

L ~ K(15 ... s)

R ~ K(7 ... o)

for r = 1 to 4 do
temp~ L
L ~ L EEl kcr
L ~ SBOX1(L(7)) & SBOX2(L(6)) & SBOX3(L(5)) & SBOX4(L(4))

& SBOX2(L(3)) & SBOX3(L(2)) & SBOX4(L(l)) & SBOX1(L(o))
LN(7) ~ L(7) EEl L(5) EB L(4) EB L(2) EB L(l) EB L(o)
LN(6) ~ L(7) EB L(6) EB L(4) EB L(3) EB L(l) EB L(o)
LN(5) ~ L(7) EB L(6) EB L(5) EEl L(3) EB L(2) 8 L(o)
LN(4) ~ L(6) EEl L(5) EEl L(4) EEl L(3) EB L(2) 8 L(l)
LN(3) ~ L(7) EEl L(6) EEl L(2) EEl L(l) EB L(o)
LN(2) ~ L(6) EEl L(5) EEl L(3) EEl L(1) EB L(o)
LN(l) ~ L(5) EB L(4) EEl L(3) EB L(2) EEl L(o)
LN(o) ~ L(7) EEl L(4) EEl L(3) EEl L(2) EEl L(l)
L ~ REBLN
R ~temp

if r = 2 then
L ~ K L(l5 ... 8) EB L
R ~ KL(7 ... o) EB R

end if
end for

KA~(L&R)

kw1 ~ (KL <<< 0)(7 .. .4), kw2 ~ (KL <<< 0)(3 ... o), kw3 ~ (KA <<< 111)(7 .. .4),

kw4 ~ (KA <<< 111)(3 ... o)
kl1 ~ (KA <<< 30)(7 .. .4), kl2 ~ (KA <<< 30)(3 ... o), kl3 ~ (KL <<< 77)(7 .. .4),

kl4 ~ (KL <<< 77)(3 ... o)

k1 ~ (KA <<< 0)(7 .. .4), k2 ~ (KA <<< 0)(3 ... o), k3 ~ (KL <<< 15)(7 ... 4),
k4 ~ (KL <<< 15)(3 ... o), k5 ~ (KA <<< 15)(7 .. .4), k6 ~ (KA <<< 15)(3 ... o),
k1 ~ (KL <<< 45)(7 .. .4), ks ~ (KL <<< 45)(3 ... o), kg ~ (KA <<< 45)(7 .. .4),

k10 ~ (KL <<< 60)(3 ... o), kn ~ (KA <<< 60)(7 .. .4), k12 ~ (KA <<< 60)(3 ... o),
k13 ~ (KL <<< 94)(7 .. .4), k14 ~ (KL <<< 94)(3 ... o), k15 ~ (KA <<< 94)(7 .. .4),

k16 ~ (KA <<< 94)(3 ... o), k11 ~ (KL <<< 111)(7 .. .4), k1s ~ (KL <<< 111)(3 ... o)

53

bits. It is given as a matrix multiplication, but the specification also provides an al

ternate implementation using 6 8-bit additions modulo 28 . In the specification below,

the term 4-PHT is used for brevity, but can be replaced with the implementation

shown in Algorithm 3.1.9.

Algorithm 3.1.9 4-PHT

Input: 32-bit input X composed of individual bytes [a, b, c, d].
Comment: Let A, B, C, D be intermediate 8-bit variables.
D <--- d + a + b + c modulo 256
C <--- c + D modulo 256
B <--- b + D modulo 256
A <--- a + D modulo 256
Output: 32-bit Y <--- A & B & C & D

Note that there is also an inverse of the 4-PHT, which is referred to as 4-IPHT,

which is implemented similarly [54].

The encryption operation of SAFER++128 is shown in Algorithm 3.1.10. In this

description, 4-PHT is abbreviated as a function called PHT.

Decryption is similar to encryption, but requires the same operations in a different

order, as shown in Algorithm 3.1.11. IPHT is used to represent the inverse of the

4-PHT transform.

Each round uses 2 128-bit subkeys giving 14 round keys, plus one additional subkey

is used at the end. The subkeys are generated via Algorithm 3.1.12.

3.1.6 RC6

The RC6 algorithm is fully parameterizable [53], but the version illustrated here is

known as RC6-32/20/16, meaning that the algorithm operates on 128-bit blocks, uses

a 128-bit key, and has 20 rounds. RC6 is something of a software-oriented algorithm

- inclusion of operations like multiplication and addition play to the strengths of

general-purpose microprocessors, while they prove quite costly to custom hardware

implementations. RC6 encryption is described in Algorithm 3.1.13.

54

Algorithm 3.1.10 SAFER++128 Encryption

Input: 128-bit input plaintext M.
Input: 15 128-bit subkeys, k1 to k15 .

N~M.

for i = 1 to 7 do
N ~ (N(15) EB (kzi-1)(15)) & (N(14) + (kzi-1)(14)) & (N(13) + (kzi-1)(13))

& (N(12) E8 (kzi-1)(12)) & (N(n) EB (kzi-1)(n)) & (N(lo) + (kzi-l)(lo))
& (N(9) + (kzi-1)(9)) & (N(s) CD (kzi-l)(s)) & (N(7) (B (kzi-1)(7);
& (N(6) + (kzi-1)(6)) & (N(5) + (kzi-1)(5)) & (N(4) 8 (kzi-1)(4)
& (N(3) EB (kzi-1)(3)) & (N(2) + (kzi-1)(z)) & (N(l) + (kzi-1)(1)
& (N(o) E8 (kzi-1)(o))

N ~ SBOXexp (N(15)) & SBOXza9 (N(14)) & SBOXta9 (N(13))
& SBOXexp (N(12)) & SBOXexp (N(n)) & SBOXza9 (N(lo))
& SBOXtag (N(9)) & SBOXexp (N(s)) & SBOXexp (N(7))
& SBOXza9 (N(6)) & SBOXza9 (N(5)) & SBOXexp (N(4))
& SBOXexp (N(3)) & SBOXtag (N(z)) & SBOXtag (N(l))
& SBOXexp (N(o))

N ~ (N(15) + (kzi)(15)) & (N(14) EEl (kzi)(14)) & (N(13) EB (kzi)(13))
& N(12) + (kzi)(12)) & (N(ll) + (kzi)(ll)) & (N(lo) EB (kzi)(lo))
& N(9) E8 (kzi)(9)) & (N(s) + (kzi)(s)) & (N(7) + (kzi)(7))
& N(6) EB (kzi)(6)) & (N(5) EEl (kzi)(5)) & (N(4) + (kzi)(4))
& N(3) + (kzi-1)(3)) & (N(2) E8 (kzi)(z)) & (N(l) EB (kzi)(l))
& (N(o) + (kzi)(o))

N ~ N(7) & N(1o) & N(13) & N(o) & N(15) & N(2) & N(5) & N(s)
& N(n) & N(14) & N(l) & N(4) & N(3) & N(6) & N(9) & N(12)

N ~ PHT (N(15 ... 1z)) & PHT (N(n ... s)) & 4PHT (N(7 .. .4)) & PHT (N(3 ... o))

N ~ N(7) & N(1o) & N(13) & N(o) & N(15) & N(z) & N(5) & N(s)
& N(ll) & N(14) & N(l) & N(4) & N(3) & N(6) & N(9) & N(lz)

N ~ PHT (N(15 ... 12)) & PHT (N(ll ... s)) & PHT (N(7 ... 4)) & PHT (N(3 ... o))
end for

55

Algorithm 3.1.11 SAFER++12s Decryption

Input: 128-bit ciphertext C.
Input: 15 128-bit subkeys, k1 to k15 .

for i = 7 down to 1 do
N +--- IPHT (N(15 ... 12)) & IPHT (N(n ... s)) & IPHT (N(7 .. .4)) & IPHT (N(3 ... o))

N +--- N(n) & N(6) & N(13) & N(o) & N(7) & N(14) & N(l) & N(5)

& N(15) & N(2) & N(9) & N(4) & N(3) & N(lo) & N(5) & N(12)

N +--- IPHT (N(15 ... 12)) & IPHT (N(n ... s)) & IPHT (N(7 .. .4)) & IPHT (N(3 ... o))

N +--- N(n) & N(6) & N(13) & N(o) & N(7) & N(14) & N(l) & N(5)
& N(15) & N(2) & N(9) & N(4) & N(3) & N(1o) & N(5) & N(l2)

N +--- (N(15)- (k2i)(15)) & (N(14) EB (k2i)(14)) & (N(l3) EB (k2i)u3))
& (N(12)- (k2i)(12)) & (N(n)- (k2i)(ll)) & (N(lo) EB (k2i)(Io))
& (N(9) EB (k2i)(9)) & (N(s)- (k2i)(s)) & (N(7)- (k2i)(7))
& (N(6) EEl (k2i)(6)) & (N(5) EB (k2i)(5)) & (N(4)- (k2i)(4))
& (N(3)- (k2i-1)(3)) & (N(2) EB (k2i)(2)) & (N(l) EB (k2i)(l))
& (N(o)- (k2i)(o))

N +--- SBOXza9 (N(15)) & SBOXexp (N(14)) & SBOXexp (N(13))
& SBOXza9 (N(12)) & SBOXza9 (N(n)) & SBOXexp (N(lo))
& SBOXexp (N(9)) & SBOXzo9 (N(s)) & SBOXza9 (N(7))
& SBOXexp (N(6)) & SBOXexp (N(5)) & SB0Xza9 (N(4))
& SBOXza9 (N(3)) & SBOXexp (N(2)) & SBOXexp (N(1))
& SBOXza9 (N(o))

N +--- (N(15) EB (k2i-1)(15)) & (N(14)- (k2i-1)(14)) & (N(13)- (k2i-1)(13))
& N(12) EB (k2i-1)(12)) & (N(n) EB (k2i-d(u)) & (N(lo)- (k2i-l)(Io))
& N(9)- (kzi-1)(9) & 1N(s) EB (kzi-l)(s)l & (N(7) EB (kzi-1)(7))
& N(6)- (k2i-1)(6) & N(5) - (k2i-1)(5) & (N(4) EB (kzi-1)(4))
& N(3) EB (k2i-1)(3) & N(z) - (k2i-1)(2) & (N(l) - (kzi-1)(1))
& (N(o) EB (kzi-1)(o)

end for

Output: 128-bit plaintext M +--- N

56

Algorithm 3.1.12 SAFER++128 Key Schedule

Input: 128-bit key K
Input: 128-bit constants B2 to B15.
Output: 15 128-bit sub keys k0 to k15.
Comment: X E, XO be 136-bit (17-byte) variables.

Comment: Let P be parity byte of K and concatenate:
XE f.- XO f.- (K & P)

for i = 1 to 7 do
Rotate each individual byte of XO 6 bits to the left.
Let temp f.- bytes 18 - 2i to 3 - 2i mod 17 from XO (allowing wraparound).
k2i+l f.- temp+ B2i+1 (addition is done byte-by-byte modulo 256)

Rotate each individual byte of XE 3 bits to the left.
Let temp f.- bytes 17- 2i to 2- 2i mod 17 from XE (allowing wraparound).
k2i f.- temp+ B2i (addition is done byte-by-byte modulo 256)

end for

Algorithm 3.1.13 RC6 Encryption

Input: 128-bit input plaintext M.
Input: 44 32-bit round keys So ... S43 .
Comment: Let W, X, Y, Z be 32-bit variables.
Comment: Lett, u be temporary 32-bit variables.
W f.- M(15 ... 12)

X f.- M(ll...S)

Y f.- M(7 .. .4)

z f.- M(3 ... o)

X f.- X +So
z f.- z + s1
for i = 1 to 20 do

t f.- (X X (2X + 1)) < < < 5
u f.- (Z X (2Z + 1)) <<< 5
W f.- ((WEB t) <<< u) + S2i

Y f.- ((Y EB u) <<< t) + S2i+l

(W, X, Y, Z) f.- (X, Y, Z, W)
end for
w f.- w +S42

y f.- y + s43
Output: 128-bit ciphertext C f.- W & X & Y & Z

57

RC6 decryption, shown in Algorithm 3.1.14, is similar to encryption, but not

identical.

Algorithm 3.1.14 RC6 Decryption

Input: 128-bit ciphertext C.
Input 44 32-bit round keys S0 ... S43 .

Comment: Let W, X, Y, Z be 32-bit variables.
Comment: Lett, u be temporary 32-bit variables.
w *- c(15 ... 12)

x *- c(u ... s)

Y *- c(7 ... 4)

z *- c(3 ... o)

Y *- Y- s43

w *- w- S42
for i = 20 down to 1 do

(W, X, Y, Z) *- (Z, W, X, Y)
u *- (Z X (2Z + 1)) <<< 5
t *- (X X (2X + 1)) < < < 5
Y *- ((Y- S2i+l) >>> t) EB u
W *- ((W- S2i) >>> u) EB y

end for
z *- z- s1
X*- X- So
Output: 128-bit plaintext M *- W & X & Y & Z

The large number of round keys are generated by a rather involved key schedule,

shown in Algorithm 3.1.15.

3.1.7 SHA-1

The secure hash algorithm SHA-1 is a NIST standard [52] derived from the older

MD4 and MD5 algorithms [3]. There are other standardized variations as well, such

as SHA-384 and SHA-512, but this analysis focuses on basic SHA-1.

SHA-1 uses word-oriented operations- that is, it works on input data in groups

of 32 bits. It takes an arbitrary length message (so long as the length is < 264 - 1) in

512-bit blocks and produces a final 160-bit hash value. Should the message size not

be a multiple of 512 bits, it is padded according to a scheme described in [52] and [2].

58

Algorithm 3.1.15 RC6 Key Schedule

Input: 128-bit key K.
Output: 44 32-bit round keys S0 ... S43 .

Lo +- K(l5 ... 12)

£1 +- K(n ... s)
L2 +- K(7 ... 4)

£3 +- K(3 ... o)

S0 +- b7e15163
for k = 1 down to 43 do

sk +- sk-l + 9e3779b9
end for
A+-B+-j+-i+-0
for s = 1 to 132 do

A+- Si +- (Si +A+ B)<<< 3
B +- Lj +- (Lj +A+ B)<<< (A+ B)
i +- (i + 1)mod44
j +- (j + 1)mod4

end for

Each block is processed in sequence, the result of the hash function's operation on

earlier blocks being incorporated into the processing of later blocks. This is shown in

Algorithm 3.1.16, which is similar to the description in [2].

SHACAL

SHACAL is something of a unique algorithm in that it is an encryption algorithm

based on the hash function SHA-1 [55]. It makes use of the fact that the compression

function of SHA-1 (the function that is iterated 80 times) is invertible. Thus, SHA-1

can be used for encryption if a secret key is input to the algorithm as the message,

the plaintext is used as the initial value, and the final addition with the initial values

is skipped [55]. Thus, SHACAL is a block cipher that has a 160-bit block and a key

size of up to 512 bits.

59

Algorithm 3.1.16 SHA-1 Hash Function

Input: properly padded message y = M1 & M2 & ... & Mn, where each Mi is a
512-bit block.
Comment: Let A, B, C, D, E be 32-bit variables.

Comment: Let H0 <--- 67452301, H1 <--- EFCDAB89, H2 <--- 98BADCFE,
H3 <--- 10325476, H4 <--- C3D2E1FO

for i = 1 to n do
Comment: Let Mi be defined as a concatenation of 16 32-bit words,
Mi = Wo & W1 & . . . & W15

for t = 16 to 79 do
Comment: Create additional words for subsequent use,
Wt <--- (Wt-3 EEl Wt-s EEl Wt-14 EEl Wt-16) < < < 1

end for
A<--- Ho, B <--- H1, C <--- H2, D <--- H3, E <--- H4

for t = 0 to 79 do
if 0 ~ t ~ 19 then

Comment: Let K = 5A827999.
temp<--- (A<<< 5) + ((B 1\ C) V ((•B) 1\ D))+ E + Wt + K

else if 20 ~ t ~ 39 then
Comment: Let K = 6ED9EBAl.
temp<--- (A<<< 5) + (B EB C EEl D)+ E + Wt + K

else if 40 ~ t ~ 59 then
Comment: Let K = 8F1BBCDC.
temp<--- (A<<< 5) + ((B 1\ C) V (B 1\ D) V (C 1\ D))+ E + wt + K

else if 60 ~ t ~ 79 then
Comment: Let K = CA62C1D6.
temp <--- (A < < < 5) + (B EB C EEl D) + E + Wt + K

end if
E<-D
D<-C
C <--- B <<< 30
B<-A
A<--- temp

end for

Ho <--- Ho +A, H1 <--- H1 + B, H2 <--- H2 + C,
H3 <--- H3 + D, H4 <--- H4 + E

end for

Output: 160-bit hash value HASH <--- H0 & H1 & H2 & H3 & H4

60

3.2 Algorithm Analysis

A cursory examination of the preceding algorithms indicates a few common traits

characteristic to block ciphers and hash functions. Chief among these similarities

is the fact that all of the algorithms are round-oriented, iterating through the same

structure multiple times to improve security. This type of iterative behaviour is

present in most (if not all) block ciphers not included in this study as well, and is an

important aspect on which to build. Within each round, the operations are usually

sequential, occurring in a distinct order. This, too, can be exploited.

All of the modern block ciphers operate on 128-bit blocks, with the legacy cipher

DES the only one operating on 64-bit blocks. The hash function SHA-1 operates

on 512-bit blocks and produces 160-bit output hash values, although its predecessors

MD4 and MD5 produce 128-bit hash values. Thus, a standard block size of 128 bits

seems to be a reasonable choice.

The specifics of each algorithm under consideration are drastically different. Each

algorithm was analyzed to identify the basic primitive operations on which it is built,

noting the type of operation, size and type of operands, and frequency of occur

rence. Any operations with special implementation techniques, such as the 4-PHT

in SAFER++128 [54] were interpreted in terms of their implementation details. The

results of this analysis are shown in Table 3.1. The values in this table are for the

whole algorithm, not just a single round.

As can be seen in Table 3.1, there is only a relatively small set of operations used

in these widely varying algorithms. This suggests that a reconfigurable cryptographic

hardware module is feasible, since it need only support this set of operations. How

ever, it should be noted that the different algorithms have different operand sizes in

some cases, so this needs to be accounted for in any reconfigurable design.

• All of the algorithms studies use bitwise Boolean operations, usually the

61

AES Camellia RC6 SAFER++12s SHA-1 DES
(10-round) (18-round) (20-round) (7-round) (80-round) (16-round)

XOR Bit Size 128 128, 64, 32 32 8 32 48, 32
ops. 11 2, 36, 8 40 112 272 16, 16

AND Bit Size 32 32
ops. 4 100

OR Bit Size 32 32
ops. 4 60

NOT Bit Size 32
ops. 20

Rotation/ Bit Size 32 32 32
Shift # ops. 4 120 160
Addition/ Bit Size 32 8 32
Subtraction # ops. 84 448 325
Multiplication Bit Size 32

ops. 40
S-boxes/ Bit Size 8x8 8x8 8x8 6x4
LUTs # ops. 160 144 112 128
Byte Bit Size 16-byte 16-byte 16-byte 16-byte 20-byte 8-byte
Permutations # ops. 10 18 20 14 80 16
Bit Bit Size 64, 32
Permutations # ops. 2, 16
Linear Bit Size 32 64
Transformation # ops. 36 18
Bit Bit Size 32-to-48
Expansion # ops. 16

Table 3.1: Basic Operations of Block Ciphers and Hash Functions

exclusive-or (XOR), but some also using AND, OR, and NOT. Operand sizes

range from 8 bits to 128 bits.

• Several algorithms use rotations, which are usually called circular shifts. In all

cases, the shifts work on 32 bits at a time.

• Addition or subtraction modulo 2n where n is the bit size of the operands is

also common. In most instances, the operands are 32-bit, but 8-bit operands

are also used.

• Multiplication is only present in RC6, in the form of 32-bit x 32-bit multipli

cation modulo 232 .

• Substitutions in the form of S-boxes are also common, appearing mostly as 8-

bit x 8-bit substitutions. These substitutions are also frequently referred to as

LUTs.

• Permutation of data bytes is also common, although often it is 32-bit words

that are reordered, not the bytes directly. This operation is something of a data

routing issue, and will be considered as such.

• Bitwise permutations of the data appear only in DES, since it is an inefficient

operation for software. Nevertheless, it must be considered.

• Linear transformations such as the MixColumns() operation in AES [17] or

the P() function in Camellia [16] are becoming more common in modern block

ciphers. In these operations, each output bit is produced from the XOR of a

subset of the input bits.

• DES also uses bitwise expansions, taking a 32-bit string and expanding it to a

48-bit string by duplicating certain bit values.

63

To support the algorithms considered in this study, a reconfigurable cryptographic

hardware module would have to support all of the above operations.

3.3 Summary of Algorithm Analysis

This chapter has detailed the analysis of a number of cryptographic algorithms. This

analysis identified a small number of core operations necessary to implement the

algorithms under consideration. These basic operations included bitwise Boolean op

erations, rotations and shifts, addition and subtraction, multiplication, substitutions

and permutations, and linear transformations. These operations form the basis of the

system designed in the following chapters.

64

Chapter 4

Component Implementation

Having identified the set of operations desired in a flexible cryptographic hardware

module, it was then necessary to design hardware components to implement these

operations. Since the most common block size of the studied algorithms was 128 bits,

that size will be used as the input size to the hardware components. Some components

such as Boolean operations, addition/subtraction, multiplication, and shifting will

have two 128-bit inputs, whereas other components such as the substitutions and

linear transforms will have only a single 128-bit input.

The algorithm survey also showed that the Boolean operations, addition/subtrac

tion, and LUTs all operated on 8-bit operands at some point. Thus, it was decided

to make those components configurable and usable at the byte-level, and if larger

operand sizes are needed, they must be accommodated by combining byte-level op

erations. Thus, component of this type will have 16 8-bit operations available, which

can be combined to allow processing of larger operands.

Multiplication, shifting/rotation, linear transformations, bit permutations, and

bit expansions all operate on 32-bit or larger operands. Thus, these components will

be configurable and usable at the word-level, providing 4 32-bit operations which can

be combined to allow processing of larger operands.

65

Configuration of the components is accomplished via control signals. Setting val

ues on the control lines will set a particular configuration of the component. Discus

sion of the source of those values can be found in Section 4.3. The components must

also be able to be disabled or bypassed, since not every component will be used in

every algorithm implementation.

4.1 Basic Operational Components

There are s1x basic components which can be implemented to provide all of the

functionality specified in the algorithm survey.

• The Boolean component handles XOR, AND, OR, and NOT operations.

• The Shifter component handles shifts and rotations.

• The Add/Sub component handles addition and subtraction.

• The Multiplier component handles multiplication.

• The LUT component handles substitutions/S-boxes.

• The XORnet component handles bit permutations, bit expansions, and linear

transformations.

Note that byte permutations are considered to be a part of data routing, and are

discussed in Section 4.2.2.

The following sections discuss each of the components in detail.

4.1.1 Boolean Logic Component

The basic Boolean operations- XOR, AND, OR, and NOT- are trivial to implement

in hardware, as they are the basic gates on which most hardware is built. However,

66

it is desirable to have a Boolean component that can be configured for any of the

four specified operations. This can be achieved by using a 4-to-1 multiplexer to select

which operation is desired, as shown in Figure 4.1. There is also a 2-to-1 multiplexer

shown to allow all the Boolean logic to be bypassed if desired. The values of the

control signals to the multiplexers are part of the component's configuration.

A
B

A

Inputs/outputs
are all 8-bit.

Contro lines from
configuration data.

Figure 4.1: 8-bit Boolean Logic Component

Since they are always used as bitwise operations, the Boolean operations scale

easily- two 8-bit XORs in parallel are equivalent to a 16-bit XOR. Note that when

referring to an n-bit Boolean operation, it is implicitly understood that it means n

2-input gates in parallel. Thus 16 8-bit operations in parallel will be sufficient to

meet the needs specified by the algorithm analysis and earlier in this chapter, and

this is shown in Figure 4.2. Note that the control lines for all 16 are separate, so each

byte can be configured for a different operation. Thus the overall component takes

67

A input byte 15

A input byte 14

A input byte 13

A input byte 1

A input byte 0

Inputs/outputs
are all 8-bit.

Output byte 15

Output byte 14

Output byte 13

-~ • •
Note: Control lines come
from configuration data .

Output byte 1

Output byte 0

Figure 4.2: Full Boolean Logic Component

68

two 16-byte inputs and produces one 16-byte output which is the result of each byte

being subjected to a bitwise Boolean operation.

A sample of the VHDL code implementing the core Boolean logic component

described here can be found in Appendix A, Section A.1, on page 196.

4.1.2 Shifter Component

The shifter component is built around a 32-bit rotation/shift component that can be

configured either for rotation (circular shift) or shifting operation, as well as shift /ro

tate left or right. All shifts are logical - that is, they shift in 0 values. The control

signals of the shifter are provided by the configuration, but the amount of the shift/ro-

tation is controlled by a 5-bit input that comes from the datapath.

The 32-bit rotation/shift takes place in a single clock cycle because it is imple-

mented as a series of layers of multiplexers, as shown in Figure 4.3. Each layer's

multiplexers are controlled by a single bit of the 5-bit shift amount. If the controlling

bit is 0, no shift occurs. If the controlling bit is 1, a shift occurs of size 2n where n

is the bit position of the controlling bit: the most significant bit of the amount is in

position 4, the least significant is in position 0.

data in
(32-blt)

amount(4)

amount(4)

amount(3) amount(2) amount(1)

amount(3) amount(2) amount(1)

Figure 4.3: 32-bit Shift/Rotate Component

amount(O)

amount(O) right/
leftb

Four such 32-bit shifter components are used in parallel to service a 128-bit data-

path block. This can be seen in Figure 4.4. Thus, the overall component takes 4

69

32-bit data input and 4 5-bit shift amounts and produces 4 32-bit outputs. Note that

bypass functionality is also included.

8(127 .. 96) bypass_b

8(95 .. 64) bypass_b

8(63 .. 32) bypass_b

8(31 .. 0) bypass_b

Control signals come
from configuration register.

Figure 4.4: Full Shift/Rotate Component

This general shifter architecture is generalizable. Ann-bit shifter requires log2 (n)

layers of multiplexers for shifting (in each shift direction), plus an extra multiplexer

to select direction. If we consider each 1-bit 2-to-1 multiplexer to be 3 gates, then,

accounting for the multiplexers and the necessary AND gates, the implementation of

ann-bit bidirectional rotation/shift-in-0 unit requires 6nlog2 (n) + 5n- 2 gates and

log2 (n) + 2 memory elements to store control data.

A barrel shifter could also be used for the shifter component. This would have the

added benefit of supporting general bitwise permutations, but would require a signif-

icantly larger number of control bits. However, since bitwise permutations are now

70

rarely used in modern algorithms, and because they can be implemented by another

basic component, it was decided to use the shifter described above for the prototype

proof-of-concept implementation. Future revisions to this design may incorporate a

barrel shifter into the system in order to benefit from its greater functionality.

Sample VHDL code used in implementing the core shifter component described

here can be found in Appendix A, Section A.2, starting on page 197.

4.1.3 Add/Subtract Component

This component proved most difficult to design even though addition and subtrac

tion are well-studied algorithms, since a variety of operand sizes was required. The

natural inclination to use adders of the largest size needed - which can naturally per

form smaller additions - was problematic due to the quantity of additions required.

SAFER++128 [54] requires over 400 8-bit additions, and providing that many 32-bit

adders (which is the size required by RC6 [53]) would be prohibitive.

Thus, the add/subtract component must be designed around fast 8-bit adders

(which can also be used to perform 2's complement subtraction). The basic 8-bit

adders can be cascaded together to form larger adders. Whether the adders are

cascaded or not is determined by the values of control lines from the configuration.

Thus each 8-bit adder component can be configured for addition or subtraction, and

cascaded or not cascaded, which affects how the carry-in to each adder is handled.

This setup is illustrated in Figure 4.5. Note that the specific implementation of the

adder circuit is unimportant, and can be left to the synthesis tool. If the synthesis

timing constraints are aggressive enough, it will likely be synthesized as a Carry

Look-Ahead Adder (CLA).

It would seem natural to directly cascade these blocks together to allow larger

operand sizes, but the structure of SAFER++128 requires additions in sequence to

compute the 4-PHT [54]. That is, the output of one 8-bit adder is the input to the

71

connect--~--------~

add_subb -+----r--,

CIN -+-----+---!

Fast 8-bit
Adder

CIN
SUM

A-~----+-----~ A

SUM

s:

B COUTt-----7---:-c-=-ouT

Figure 4.5: 8-bit Add/Subtract Block

next. Rather than require the use of multiple add/subtract components to support

this, a further architectural change can be made. A multiplexer can be placed on the

input of each adder in the cascade sequence after the first, which selects one of the

adder inputs between the current data input and the outputs of the preceding adder.

Note that this requires multiplexers of increasing size the further down the cascade

it is placed. This scheme is illustrated in Figure 4.6. A maximum of 8 adders can

be cascaded together, as shown. Note that the control signals to each of the 8-bit

adders and to the various multiplexers are not shown in the figure, but are driven by

the configuration data register.

The add/subtract component consists of 16 8-bit adders (to process a 128-bit

block), arranged in two banks of 8 adders each. The adders in each bank may be

cascaded together to form up to one 64-bit adder, two 32-bit adders, and so on. Fur-

thermore, in each adder bank, every adder after the first can either use the datapath

input as one of its inputs, or else use the output of any preceding adder in the same

bank. Subtraction is configured in the same way. This overall system can be seen

in Figure 4. 7. Note that each individual byte out output from the adders can be

72

I
M CIN SUMO

A SUM

+
Bi)SCOUT

~)~IN A1
SUM1

A SUM

+
81 SCOUT

)I A2 CIN SUM2
'--- A +UIVI

82 SCOUT -

• • •
• SUMO • SUM1

• SUM2
SUM3
SUM4
SUMS

A7 SUM6

87

Figure 4.6: One Add/Subtract Bank

73

bypassed using a layer of multiplexers at the output.

A(12 7 .. 64)
Adder Bank
(eight 8-bit

8(12 7 .. 64) adders)

A(63 .. 0)
Adder Bank
(eight 8-bit

8(63 .. 0) adders)

Control and conf1gurat1on s1gnals come
from the configuration register.

SUM(127 .. 64)

SUM(63 .. 0)

~ SUM Byte 15
SUM Byte 14

• • •
SUM Byte 8

~ B Byte 15

B Byte 8

~ SUM Byte 7
SUM Byte 6

• • •
SUM Byte 0

~ B Byte 7

• • •
B Byte 0

Figure 4. 7: Core Add/Subtract Component

SUMB~
B Byte 15 O

bypass_b15

SUMB~
B Byte 14 O

bypass_b14

• • •

SUMB~
B Byte 0 O

bypass_bO

Sample VHDL code used in implementing the 8-bit add/subtract component and

the 64-bit adder bank described here can be found in Appendix A, Section A.3,

starting on page 198.

4.1.4 Multiplier Component

Of the algorithms considered, only RC6 [53] uses multiplication. However, since

it is a fairly fundamental operation, it is conjectured that new algorithms might

also incorporate multiplication, and so a multiplier component is included despite its

current limited use.

The basic operation is 32-bit x 32-bit multiplication modulo 232 , meaning that

the output is only 32 bits, not 64. Multiplication is a costly component to implement,

74

especially when required to compute the product in a single clock cycle. Thus, a 32-

bit Wallace tree multiplier was used since it provides a good balance between speed

and complexity, and, as shown in [57], more than half of its hardware complexity can

be removed since the operation is modulo 232 .

Wallace tree multiplication works by using 32-bit Carry-Save Adders (CSAs) to

add the partial products of the multiplicand and multiplier through a tree of CSAs

until there are only two values are left, which are then added normally [58, 59] (modulo

232 for RC6). CSAs are much like Carry-Ripple Adders (CRAs) except that, rather

than connecting the carries from one full adder to the next, the carry is sent directly

to the output [58]. Thus, a 32-bit CSA has 3 32-bit inputs (say a, b and carry-in

vector) and 2 32-bit outputs (sum and carry-out vectors). This allows all the full

adders to process the input in parallel and improve speed, rather than waiting for the

carry to ripple. In the Wallace tree multiplier, the carry values eventually get added

in by a later layer of CSAs.

The structure of the Wallace tree used in this multiplier component is shown in

Figure 4.8. It takes two 32-bit inputs and produces one 32-bit output.

The partial products for the multiplication Ax B are generated as shown in Figure

4.9. Note that in this figure, the boxes labeled "A<< N" (where N is some number)

represent a left shift-in-0 operation. The partial products are the result of a logical

AND of these shifted versions of the multiplicand A and the corresponding bits in

the multiplier B (that is, each of the 32 bits of the shifted A value are ANDed with

the same bit of B). Only the least significant 32 partial products are generated since

this is an implementation of modulo 232 multiplication.

Four such multipliers are used in parallel to allow processing of a 128-bit block.

This structure is shown in Figure 4.10. Note that the bypass functionality is still

provided, albeit at the word-level. This overall component takes two 4-word inputs

and produces a single 4-word output, where each output word is the product of the

75

'1"'"0
MM
Q. Q. •••
Q.Q.

32-bit Partial Product Inputs

+ Fast 32-bit adder

32-bit Product

Figure 4.8: 32-bit x 32-bit Wallace Tree Multiplier

76

N'I"'"O
••• Q.Q.Q.

Q.Q.Q.

A

32 32

A

•••

A

•••

• ••

Figure 4.9: Partial Product Generation

corresponding two input words (modulo 232).

4.1.5 LUT Component

A A

32

This component performs substitution operations. While many modern algorithms

may define their substitutions mathematically as Boolean functions, in the general

case it is easiest to implement such substitutions (or 8-boxes) as a look-up table

(LUT). For our LUT component, an array of sixteen 8 x 8 LUTs is used, which is

sufficient for any of the algorithms under consideration. Each LUT takes an 8-bit

input and produces the corresponding 8-bit substitution value as output.

Normally, LUTs would be implemented as memory. The standard forms of mem

ory produced by memory compiler tools introduce a degree of latency - for example,

one clock cycle may be required to latch and decode the memory address, and an

other clock cycle to fetch the data from memory. To avoid this latency, the L UTs have

been implemented as banks of flip-flops which are selected via a large multiplexer.

The input data controls the multiplexer, which selects 8 bits of output data from the

77

A(127 .. 96)
32-bit

Wallace 1------~ OUT(127 .. 96)
Tree

.;....;..;;.;~~ Multiplier

A(95 .. 64
32-bit

bypass_b

Wallace 1------~ OUT(95 .. 64)
8(95 .. 64)

Tree
Multiplier

32-bit

bypass_b

Wallace 1------~
Tree

~..;;-=..~ Multiplier

A(31 .. 0
32-bit

bypass_b

Wallace 1------~
Tree

".....:....:..:-T-1-~ Multiplier

bypass_b

Control signals come
from configuration register.

Figure 4.10: Full Multiplier Component

78

flip-flops. This scheme is highly inefficient in terms of area, but is sufficient for proto-

typing purposes. The substitution values are stored in the flip-flops, which allows the

component to be configured to support the different S-boxes required by the various

different algorithms. The currently implemented form of the LUT is shown in Figure

4.11.

8-bit Registers
8

~ 7 0

15 8 /

23 16 / 2

• • ~:
• • Substitution • • Value Out

32759 327521--r/-----!254
1---------1
._3_27_67 __ 3_27_6_,0 / ~

8

Data In

Figure 4.11: Single 8 x 8 L UT

As stated above, each LUT has an 8-bit input which therefore allows it to select

one of 256 possible 8-bit outputs. This means that a single LUT stores a total of

256 x 8 = 2048 bits. Thus, the overall LUT component stores 16 times this amount,

which is 32768 bits or 4 kB. That is a significant amount of data, which must be

set by the configuration. Having 32768 control lines available to set the flip-flops of

the LUT would be infeasible, so instead the data is shifted in to the flip-flops one

bit at a time during configuration. In essence, the registers of the LUT components

are configuration registers, and are part of the configuration chain. This is discussed

more completely in Section 4.3.

79

The overall representation of the component is shown in Figure 4.12. Note that

there is only one data input, and that multiplexers can be used to bypass each LUT.

Input byte 15 8x8
LUT t------1

bypass_b15

Input byte 14 8x8 t------1
LUT

• • • • • • • • •

Input byte 0 I ~~~ I ~o Output byte 0

I ·~
bypass_bO

Bypass control data comes from configuration.

Figure 4.12: Core LUT Component

4.1.6 XORnet Component

The final component, called the XORnet, is perhaps the most general of all the

components in the system. It serves to implement a variety of operations, such as the

Galois field multiplication by a constant (the MixColumns() operation of AES [17]),

bitwise permutations and bit expansions in DES [43], and other bitwise manipulations

and linear transformations (such as Camellia's P() function [16]).

The XORnet component operates such that each output bit is generated from the

XOR of any number of the input bits. The logic to generate a single output bit is

a tree of 2-input XOR gates, with an initial layer of AND gates to allow selection of

80

the desired inputs. This is shown in Figure 4.13. The structure is simply repeated in

parallel to produce the output for each desired output bit, so a 32-bit XORnet would

repeat the structure in Figure 4.13 32 times.

• • •

Figure 4.13: Logic to generate single output bit for XORnet.

It is shown in [60] that multiplication by a constant in a Galois field can be

implemented in the above fashion. Such operation also mirrors the definition of

Camellia's P() function [16]. With respect to bitwise permutations and expansions,

it is trivial to see that the XORnet can implement these by having the output bits

consist of the XOR of only the desired input bit to be permuted/expanded to that

output. Likewise, the XORnet can also implement fixed shifts and rotations, though

such operations are more efficiently done in the shifter component.

81

The maJor difficulty introduced by this component is that it requires a large

amount of configuration data (the enable signals seen in Figure 4.13) - each output

bit requires a number of configuration bits equal to the number of input bits to allow

potential selection of any of the inputs. Thus, the memory requirement for storing

configuration data for the XORnet becomes a major problem -- a 32-bit XORnet

(which has a 32-bit input and 32-bit output) requires 1024 bits of configuration data.

The hardware cost of the XORnet, in terms of gate count and memory bits, is

quite easy to quantify. An n-bit XORnet requires n x (2n - 1) gates and n 2 bits of

memory. Thus, a 32-bit XORnet (the minimum size we need) requires 2016 gates and

1024 bits of control data, and a 64-bit XORnet requires 8128 gates and 4096 bits of

control data.

Several approaches involving implementing larger XORnets out of smaller ones

were tried. For example, an 8-bit XORnet can be implemented as a monolithic block,

or else it can be implemented from 4 4-bit XORnets. This is illustrated in Figure

4.14. The inputs to the smaller XORnets must be set appropriately, and the outputs

of each group of XORnets XORed together, but it is feasible.

It was found that the gate count and memory requirements for, say, a 32-bit

XORnet implemented out of 8-bit XORnets were exactly the same (note that the

32-bit XORnet requires 16 8-bit XORnets to implement it). Thus, neither monolithic

nor compartmentalized designs give any size advantage. However, implementing large

XORnets out of smaller ones gives the bonus of greater flexibility- with a monolithic

32-bit XORnet, 4 8-bit XORnets can be emulated, but with the compartmentalized

design, in which the 32-bit XORnet is realized from 16 8-bit XORnets, there are

4 times as many 8-bit XORnets available. The only added hardware cost to this

approach is the addition of some extra control logic.

AES requires 32-bit XORnets [17], whereas Camellia requires a 64-bit XORnet

[16]. DES requires at most a 64-bit XORnet. Thus, it makes the most sense to base

82

.

4-bit
ENi,j_3 XORnet

4-bit
ENi,j_2 XORnet

4-bit
ENi,j_1 XORnet

4-bit
ENi,j_O XORnet

.

8

....

Figure 4.14: Building an 8-bit XORnet from 4 4-bit XORnets.

83

"

the implementation of the component around 32-bit XORnets.

The XORnet component consists of 4 32-bit XORnets in parallel. To meet the

requirements of Camellia and DES, the option of combining the 4 32-bit XORnets

into a single 64-bit XORnet exists by repeating the 64-bit input across the second two

XORnets and then running the outputs of all four through an XOR tree to produce a

single 64-bit output. This overall arrangement is shown in Figure 4.15. The XORnet

is a unary operation, so there is only one 4-word input that produces a 4-word output.

Note that the bypass multiplexers operate at the word-level, as well.

........ ··················
Mode Control Multiplexers

\

32-bit
XORnet

32-bit
XORnet

IN(63_ .. 3_2.c.e) --+---1 32-bit
XORnet

IN(31-'-' .. 0::..!.)_-4----l 32-bit
XORnet

Configuration and control signals not shown.

\
OUT(127 .. 96)

OUT(63 .. 32)

OUT(31..0)

IN(31 .. 0)

Bypass
Multiplexers

Figure 4.15: Core XORnet Component

4.2 Data Routing and Selection

With the basic operational components designed, it is necessary to consider data

routing to those components. While the general form of data processing in block

84

ciphers and hash functions is sequential, not all data is necessarily processed at the

same time. For example, in DES [43] and Camellia [16], which are Feistel ciphers,

half of the input data is processed and used to update the other half, while that half

is swapped into a new position. Thus, it is necessary to have some sort of temporary

data storage, to allow input data to be held until needed.

Rather than use an actual memory element, which would require complex ad

dressing and decoding, the concept of the scratch path is introduced (named after

a scratch pad of paper often used to hold temporary workings). It is a set of data

lines parallel to the datapath, onto which the datapath values may be switched. The

scratch path bypasses all computational components completely. When the values

on the scratch path are needed, they can be switched back into the datapath on a

byte-by-byte basis.

Also, the basic operations often need input other than the data being enciphered.

For example, almost every block cipher mixes a round key with the data being enci

phered via an XOR operation. Thus, data from two different sources (data path and

key) must be routed to the inputs of a Boolean component. Similarly, several algo

rithms use shifts by a constant value. Since the Shifter component has an input to

allow control of the shift amount, it is clearly necessary for the constant value (stores

in some configuration memory) to be routed to the shifter control inputs. These are

only two simple examples of how data other than message data may be used by the

basic components. Thus, there needs to be a way to switch key data and constant

data onto the datapath as well so that the components can operate on data from

these different sources. All of this functionality is encapsulated in the input switch.

4.2.1 Input Switch

The input switch is designed to switch the needed data into the operational compo

nent and scratch path. An instance of this switch is meant to precede each basic

85

component, to allow each to be have its inputs fully configurable.

The data inputs to the basic operations are selected at the byte level by 4-to-1

multiplexers, selecting between the current datapath input, the scratch path input,

a constant value specific to the configuration of the component being switched into,

and a key value from the key memory (this is discussed further in Section 5.1.2). This

multiplexer arrangement is shown in Figure 4.16.

Datapath Byte 8
0

Scratchpath BY.te 8 1 8 Output Byte A
Constant Byte 8

2
(to core logic)

Key Byte 8

2

Figure 4.16: Single 8-bit Input Switch Datapath Multiplexer

The new scratch path values are selected at the byte level by 2-to-1 multiplexers,

selecting between current datapath inputs and current scratch path inputs. Thus,

data on the scratch path can be kept there or replaced with new datapath data. The

scratch multiplexer is shown in Figure 4.17.

8
1--T-- Scratch Byte

Figure 4.17: Single 8-bit Input Switch Scratch Path Multiplexer

The overall input switch requires 16 8-bit 4-to-1 multiplexers to switch the data

path, and 16 8-bit 2-to-1 multiplexers to switch the scratch path. Thus, overall, it

86

takes four 128-bit inputs (datapath, scratch path, constant value, and key value)

and produces two 128-bit outputs (datapath and scratch path) where each datapath

output byte is selected between corresponding bytes of the four inputs, and where

each scratch path output byte is selected between corresponding bytes of the datapath

and scratch inputs. This is shown in Figure 4.18. Note that the control lines to the

multiplexers are naturally driven by the configuration data.

4.2.2 Byte Reordering

In the algorithm survey, byte permutations were identified as a common operation

among many of the algorithms. Such an operation can be considered a simple rerout

ing of data, and as such its implementation is considered here. Note that byte re

ordering is not just useful for explicit byte permutation operations, but also for when

portions of the input data need to by processed by other parts of the datapath hard-

ware.

Byte reordering is implemented using an 8-bit 16-to-1 multiplexer to select which

byte of the 128-bit input gets switched onto a particular byte of the output. This is

illustrated in Figure 4.19.

The overall byte reordering component consists of 16 such multiplexers in parallel,

as shown in Figure 4.20. Note that this arrangement allows duplication of output

bytes, since more than one of the multiplexers may select the same input byte to

switch to the output. That is why this component is referred to as a byte reordering

component rather than strictly as a byte permutation component.

This component is meant to be instanced at each of the basic component outputs,

to allow reordering of the datapath values before data reaches the next input switch.

The multiplexer control lines are driven by the configuration data.

A conceptual flaw exists in the design of the byte reordering multiplexer, in that

the 4-bit control signal for the multiplexer selects the input byte corresponding to

87

Datapath Byte 15 ;: :p 8£::
))

Scratch Byte 15 Scratch Out
Byte 15

Datapath Byte 14 ;: :p 8£::
))

Scratch Byte 14 Scratch Out
Byte 14

• • • • • • • • •

Datapath Byte 0 ;: 0 8£::
7)

Scratch Byte 0 Scratch Out
Byte 0

Datapath Byte 15

Scratch Byte 15 8

Constant Byte 15 Data path

Key Byte 15 Out Byte 15

Datapath Byte 14 8

Scratch Byte 14 8
8

Constant Byte 14 8 Data path

Key Byte 14 8 Out Byte 14

• • • • • • • • •
Datapath Byte 0

Scratch Byte 0

Constant Byte 0 Data path

Key Byte 0 Out Byte 0

Figure 4.18: Overall Input Switch

88

Byte 0 8

Byte 1 8
1

Byte 2 8
2

Byte 3 8
3

Byte 4 8
4

Byte 5 8
5

Byte 6 8
6

Byte 7 8
7 8

Byte 8 8
8 Output

Byte 9 8
9 Byte

Byte 10 8 10
Byte 11 8 11
Byte 12 8

12
Byte 13 8 13
Byte 14 8 14
Byte 15 8

Figure 4.19: 8-bit 16-to-1 Multiplexer for Byte Reordering

89

16x1
MUX

16x1
MUX

Data path
Input/ • •

128 •

16x1
, MUX

8/
/

8/
,

8/ ,

__...

,

Data path
Output
Byte 15

Data path
Output
Byte 14

• • •

Data path
Output
Byte 0

Figure 4.20: Overall Byte Reordering Component

90

its value. That means that, in the default mode, when all configuration values are

zero, all sixteen of the byte reordering multiplexers will select input byte 0 onto

their outputs, rather than each multiplexer passing through its corresponding input.

This negates the desired bypass functionality for the zero configuration. However,

since there was no logical mapping of the input bytes to the multiplexer ports that

made sense other than each byte going into its correspondingly-numbered port, it was

decided to leave the multiplexers as they are and enforce bypass configuration of the

byte reordering component in the software configuration utility.

4.3 Configurability

The fact that each component is configurable has been mentioned frequently. Most

of the configuration of the components mentioned in preceding sections is the result

of using multiplexers to select and control routing of data to the components. The

control lines for these multiplexers are driven by configuration data.

Also, the L UTs can be configured to hold arbitrary data, and arbitrary constant

values can be provided to every component for selection by the input switch. These

kinds of data are part of the configuration data as well.

Thus, the configuration data for a component is a bit sequence containing control

signals and data values. All values of the configuration data are needed at all times,

so storing them in memory is infeasible. Thus, the configuration data must be stored

in a flip-flop or register.

The configuration register is a generic construct of n bits, where n is the num

ber of bits of configuration data required. It is essentially a shift register. Before

system operation, when the system is in configuration mode, the configuration bits

are shifted into the system serially, until the entire configuration register is filled.

Once configuration is complete, the values are held in the register, and are available

91

thereafter unless the system is reset or goes back into configuration mode.

An example of a configuration register is shown in Figure 4.21. It outputs all of its

data in parallel, but only loads data serially, on the positive edge of the configuration

clock signal, and only when the configuration mode control signal is asserted.

Configuration Data Outputs to Components

•••
shift_data_in

config_enable---.._+----l-----.._+----l-------+-~f----

config_clk---------1--------~------...._~f----

rstb -----~>---------~>-------------4>-------

Figure 4.21: General Configuration Register Circuit

• ••

The configuration register will be cascadeable, so that the configuration register

for one component will connect to the next component, and so on, so that the en-

tire system configuration can be viewed as a concatenation of individual component

configurations.

Note that the clock signal driving the configuration register is not the same as the

overall system clock. That is because when in configuration mode, the only relevant

behaviour or the system is the shifting of configuration data, which can be done at a

much higher clock rate than regular operation due to the close proximity of flip-flop

elements. Thus, we can use a faster configuration clock and configure the device more

quickly. When not in configuration mode, the value is held on the flip-flop output,

so the disparity between the configuration clock and the system clock is irrelevant.

This is very similar to the concept of a scan chain for production testing of ASICs.

Depending on what component is being configured, the configuration register will

92

be of different sizes. In subsequent diagrams, configuration registers will be repre-

sented as shown in Figure 4.22, with the bit size specified.

shift_data_in

Configuration Data Outputs
to Components

•••
n-1 n-2 n-3 1 0

n-bit Configuration Register

rstb config_clk config_enable

shift_data_out

Figure 4.22: Configuration Register Block Diagram

Sample VHDL code implementing a 256-bit configuration register can be found

m Appendix A, Section A.4, on page 199. Other configuration register sizes are

discussed in the following section.

Note that the flip-flops in the LUT component implementation are connected

to each other like a configuration register. Thus, the LUT component acts as its

own configuration register, and the LUT data is shifted in as part of the system

configuration.

4.4 Basic Operational Building Block

As mentioned in preceding sections, the input switch is meant to be instanced before

every computational component, and the byte reordering after. It makes sense, then,

to group the input switch, specific component, byte reordering, and their correspond-

ing configuration register into a SLAB. This will make higher level system design

much easier.

Naturally, there will be six different SLABs, one for each basic component. Thus,

93

each SLAB will have a different size of configuration register. For the Boolean, Add/

Sub, Shifter, and Multiplier SLABs, the general structure will be as shown in Figure

4.23. Note that any bit signal not labeled is assumed to be 128 bits, and clock, reset,

and enable signals are not shown.

KEY
INPUT

CONSTANT
INPUT .-----~

1-J:
::::>(.)
a.!::

SCRATCH --t---~ Z ~
DATAINPUT -w

DATA -+---.._--+1
INPUT

48...,
/

I

Output selected
. between scratch
and data inputs.

Each byte selected
between the four
corresponding
input bytes.

•
A

~

(.)I--z (!)w
Oz
...JQ
wa..
0:::~ oo
0(.)

v / n-240
64...,
/

SCRATCH
DATA
OUTPUT

DATA
OUTPUT

Output bytes
reordered or
duplicated
version of
input bytes.

shift data in --::},c-1/-~ n-bit Configuration Register 1/

~----------~shift_ data_ out

Figure 4.23: Binary Operation SLAB

The SLAB has two primary 128-bit inputs (datapath and scratch data) plus con

figuration register I/0 and a 128-bit key input, and two 128-bit outputs (again,

datapath and scratch data). Internally, note that the input switch takes four 128-bit

94

inputs (data path, scratch path, constant data from the configuration register, and

key data) plus control signals from the configuration register, and it generates two

128-bit outputs, the scratch output (which goes directly to the SLAB scratch output)

and the data output (which feeds into the primary input of the core operation).

The second input to the core operation is directly connected from the datapath

input of the SLAB. Thus, only one of the two operands of these operations is switched

by the input switch. This still allows sufficient flexibility to meet the design require

ments.

The core operations have two 128-bit inputs plus control signal inputs driven by

the configuration register. Details of these core operations have been discussed in

prior sections. The core operation produces a single 128-bit output which is fed into

the byte reordering component (which is controlled by the configuration register).

The 128-bit output of the byte reordering component is connected directly to the

SLAB output.

The LUT and XORnet SLABs are slightly different in that they are unary op

erations, only having a single 128-bit input. Thus, there is no second input to the

core operation, and so the only input is fully switched by the input switch. This

arrangement is shown in Figure 4.24. Note that any bit signal not labeled is assumed

to be 128 bits, and clock, reset, and enable signals are not shown.

4.5 Configuration Formats of Basic SLABs

Each of the basic SLABs will have different sizes of configuration register since each

operation works different. However, there are some commonalities.

It was previously mentioned that each component has a constant value associated

with it, that is selected by the input switch. This 128-bit constant value is stored

in the configuration register as the 128 Most Significant Bits (MSBs). Immediately

95

KEY
INPUT

CONSTANT
INPUT r-----+1~

..,_::~::
::l(J
a..t:::

SCRATCH -+----+1 Z ~
DATAINPUT -~

DATA --+----+~ ~
INPUT

48.,
/

l

Output selected
.. between scratch

and data inputs.

Each byte selected
between the four
corresponding
input bytes .

lv n-240
64.,
/

SCRATCH
DATA
OUTPUT

Output bytes
reordered or
duplicated
version of
input bytes.

shift data_in -.....,,"'1
/-+1 n-bit Configuration Register 1/

~----------~shift_ data_ out

Figure 4.24: Unary Operation SLAB

96

after the constant value, the 48 control bits for the input switch are stored. After the

input switch control bits, the 64 control bits for the byte reordering are stored. Then,

finally, the specific control bits for the core component are stored. Thus, the 240

MSBs of each configuration register hold the same function, whereas the remaining

Least Significant Bits (LSBs) vary according to the specific operation.

4.5.1 Boolean SLAB

The Boolean SLAB configuration register is 288 bits in size, meaning the 48 LSBs

control the core Boolean component. Those bits are split into 16 groups of three,

the groups corresponding to each of the 16 byte-operations. Two of the 3 bits in

each group select the operation; the third bit controls bypass. This format is more

accurately described in Appendix B, Section B.1 on page 200.

4.5.2 Shifter SLAB

The Shifter SLAB configuration register is 252 bits in size, meaning the 12 LSBs

control the core Shifter component. Those bits are split into 4 groups of 3 bits each,

the groups corresponding to each of the 32-bit shifters. Those bits control left/right,

rotate/shift, and bypass operation. This format is more accurately described in Ap

pendix B, Section B.2 on page 200.

4.5.3 Add/Sub SLAB

The Add/Sub SLAB configuration register is 324 bits in size, meaning the 84 LSBs

control the core Add/Sub component. The 84 bits are cut in half, each controlling

one of the adder banks. In each 42 bit control vector, 2 bits are set aside for each

of the 8 adders to control add/subtract and connect/not connect, and the remaining

bits control the input multiplexers on the adders. This format is more accurately

97

described in Appendix B, Section B.3 on page 201.

4.5.4 Multiplier SLAB

The Multiplier SLAB configuration register is 244 bits in size, meaning the 4 LSBs

control the core Multiplier component. Each of the 4 bits controls the bypass func

tionality of one of the four 32-bit multipliers. This format is more accurately described

in Appendix B, Section B.4 on page 202.

4.5.5 LUT SLAB

The L UT SLAB is somewhat different from the others, because a large part of its

configuration is stored within the flip-flops of the LUT components themselves, which

can function as configuration registers. Thus, the SLAB structure for the LUT does

not quite match that in Figure 4.24, since the configuration register, rather than

connect directly to the configuration output of the SLAB, must connect to the con

figuration input of the LUT core, and the core's configuration output connects to the

configuration output of the SLAB. This is illustrated in Figure 4.25.

The configuration register in this SLAB is 256 bits in size, but the overall configu

ration for this component is 33024 bits in size. In the configuration register itself, the

16 LSBs control the core LUT component, each of the 16 bits controlling the bypass

functionality of one of the 8 x 8 L UTs. The other 32768 bits of configuration data

are stored directly into the flip-flops of the LUT.

This format is more accurately described in Appendix B, Section B.5 on page 202.

4.5.6 XORnet SLAB

The XORnet SLAB configuration register is 4341 bits in size, meaning the 4101

LSBs control the core XORnet component. Of those 4101 bits, 4096 are the enable

98

KEY
INPUT

CONSTANT
INPUT ,.....---~

~:I:
:)(..)
a.!::

_..z~
-t/)

SCRATCH -+-----+t
DATA INPUT

DATA_+---~
INPUT

l

_..
~

A ~z
:lW
..JZ
wo
~0.
o:E
CJO

(..)

16 v
~;

f--.-+

SCRATCH
DATA
OUTPUT

W(!)
~z >- DATA
m~

OUTPUT ~w
:lc
0.~
~0
:lW
0~

s~j ,

1v
;

ft d t · 1/ 256-bit Configuration Register t--
shi - a a_m-~,'--~------------'shift data out

Figure 4.25: L UT SLAB

99

signals for the four 32-bit XORnets, with 1024 bits controlling each XORnet. Of the

remaining 5 control bits, 1 bit selects whether the XORnet component is operating

in 32-bit mode or 64-bit mode, and the other 4 bits control the bypass for each of

the four 32-bit XORnets. This format is more accurately described in Appendix B,

Section B.6 on page 203.

4.6 Summary of Component Implementation

This chapter has discussed the design of hardware components to implement the ba

sic operations identified by the algorithm survey in the previous chapter. The six

components described in this chapter- the Boolean SLAB, Shifter SLAB, Add/Sub

SLAB, Multiplier SLAB, LUT SLAB, and XORnet SLAB - not only the desired

operations, but also are configurable to handle different operand sizes and dataflow

options, thanks to the incorporation of the input switch and byte reordering compo

nents. These basic components form the basis of the overall cryptographic hardware

system described in the next chapter.

100

Chapter 5

System Architecture

In the previous chapter, designs for configurable cryptographic hardware operations

were presented, providing a basis from which to build a reconfigurable cryptographic

hardware module. The arrangement of those components into a working, flexible

system is a non-trivial problem.

The design of the overall system architecture is influenced by the structure of

the algorithms under consideration. Those algorithms, despite having vastly differ

ent organization, are all round-oriented, iterating through the same operations over

and over again to provide security. Furthermore, within each round, operations are

generally sequential. The system architecture must be built with this in mind.

Thus, it was decided to use a coarse-grained reconfigurable solution, with each

processing element (PE) designed to be able to implement a single round of most of

the algorithms considered. Since AES would likely be the most common algorithm

implemented, the proof-of-concept system presented here will have ten PEs in order

to implement a fully-pipelined, loop-unrolled version of AES. Algorithms requiring

more rounds will therefore require iterative implementation, and thus the system

architecture must accommodate that as well.

This general architecture depends almost entirely on the flexibility of the PE,

which must be able to implement one round of almost all of the algorithms desired.

101

The arrangement of the PEs is also a factor in system flexibility. In any real applica

tion, block ciphers are often used in modes other than ECB mode, and thus providing

system support for different modes of operation is highly desirable. Since pipelining

provides no benefit to most block cipher modes other than ECB, even algorithms that

could be pipelined might be better suited to iterative implementation.

The key advantage to iterative implementation is that it improves resource usage,

especially when block ciphers are used in CBC, OFB, and CFB modes. In each of

those modes, encryption (or decryption) of a block of data is dependent upon the

result of the encryption of the preceding block. In other words, one block must be

completely processed for the next block can be processed. In pipelined implementa

tions, this means that the pipeline must be stalled until the first block is encrypted,

and then the result can be used to start processing the next block. This leads to most

of the active hardware in the pipeline processing invalid data most of the time.

A more efficient use of resources in such scenarios is to iterate the data through

the same round hardware (in our case, the PE). There will be little difference in

performance since subsequent blocks must wait for the current block to finish in any

case, but much less hardware will be used. For the particular system under design,

that means that the other PEs are free to use in other ways, such as implementing

other algorithms in parallel which will allow an increase in overall system through

put. Parallel implementation will be supported through the addressing scheme, so

that data can be written to one PE, and while that data is being iteratively processed,

a separate, unrelated block of data (perhaps from a separate communication chan

nel) could be written to a different PE for processing. Thus, support for iteration

allows maximal use of hardware resources and greater aggregate throughput, though

individual messages will see little speedup.

Consequently, the proof-of-concept system developed in the rest of this chapter

has been designed with two primary goals in mind.

102

• The processing elements must be capable of implementing a single round of

most algorithms.

• The system must offer support for pipelining and iteration, as well as different

modes of operation.

These design goals raise several issues, which are explored throughout the rest of the

chapter.

5.1 Processing Element

The processing element that forms the basis of the overall system is called the Process

ing Element with Functional Units and Networked Connections (PE-FUNC), or more

commonly, just the PE. It is intended to be built from from the SLABs described

in Section 4.4, and to be able to implement a single round of most of the algorithms

under consideration. Thus, the design of the PE-FUNC must be guided by the nature

of the algorithms themselves.

Table 5.1 shows the rounds of each algorithm broken down into a sequential list of

the basic operations that are used. From this table, several important characteristics

become evident.

First and foremost, Boolean operations are used frequently in many different or

ders within the rounds of almost all of the algorithms. Their high rate of occurrence

and extremely variable positioning with the rounds suggests that there must be a

large number of Boolean SLABs spread throughout the PE.

Secondly, add/subtract and shifter operations are also used often, albeit with

less frequency than basic Boolean operations. They are sometimes used in sequence,

with the shift preceding the addition/subtraction. Thus, it is necessary to provide

a number of shifter and add/subtract components, spread throughout the PE. The

number of add/subtract and shifter components would be significantly less than the

103

AES Camellia RC6 SAFER++12s SHA-1 DES
LUTs Boolean Shifter Boolean during initialization XORnet
Byte Reorder LUTs Add/Sub Add/Sub Boolean (x 3) Boolean
XORnet XORnet Multiply LUTs Shifter LUTs
Boolean Boolean Shifter Boolean during 80 rounds XORnet

and on every 6th round Boolean Add/Sub Shifter
Boolean Shifter Byte Reorder Boolean (3 to 5 times)
Shifter Add/Sub Add/Sub Add/Sub (x2)
Boolean (x 6) Byte Reorder Byte Reorder
Shifter Add/Sub
Boolean

Table 5.1: Algorithm Round Breakdown into Sequence of Basic Operations

number of Boolean components due to their relatively less common occurrence and

variability of positioning.

Lastly, the three "big" operations (multiplication, LUT, and XORnet) are used

infrequently, generally only once in a given round. Thus, if the rest of the PE is

sufficiently flexible, providing a single component for each of these operations should

be sufficient to meet the needs of the system.

5.1.1 Organization of Components

A sequence of 29 SLABs was determined to be sufficient to meet the needs of most

of the algorithms under consideration, while still providing flexibility to implement

other algorithms. Note that the use of 29 SLABs results in extensive overprovision

of basic components since most algorithms need only four to six basic operations in

a given round. This overprovision provides great flexibility and avoids the need for

any complex data switching within the PE.

Each PE-FUNC has one LUT SLAB, one Multiplier SLAB, one XORnet SLAB,

four Shifter SLABs, four Add/Sub SLABs, and 18 Boolean SLABs, arranged as shown

in Figure 5.1. Clocks, enable signals, and input/output registers are not shown.

In Section 4.2, the scratch path was introduced to the SLAB in parallel to the

datapath. Both can be clearly seen in Figure 5.1. The datapath values obviously come

from the datapath input of the PE-FUNC itself, but the scratch path value must be

initially introduced into the first SLAB in the PE. Thus, a 4-to-1 multiplexer allows

the user to configure the initial scratch path data between a copy of the datapath, a

constant value from the PE-FUNC configuration register, or one of two possible key

values. The key values come from the key memory, which is discussed in the following

section.

The inputs and outputs of the PE-FUNC are registered, but in the proof-of

concept implementation there is no pipelining inside the PE-FUNC. It has a 129-bit

105

key_start ------,

key_write -----,

datapath_in
(128 bits)

shift_data_ln

Figure 5.1: Processing Element Component Organization

datapath input (the 129th bit is asserted when valid data is being input), key memory

write and key memory start control signals, configuration register inputs and outputs

that are connected directly to the configuration registers internal to the PE-FUNC,

and a 129-bit datapath output. This I/0 layout is illustrated in Figure 5.2. Note

that the valid bit is directly passed from the input register to the output register,

rather than through the processing logic, which is why it does not appear in Figure

5.1.

datapath_in
(129 bits)

key_write_enable

start_keymem

elk

rstb

shift_data_in

config_clk

config_enable

PE-FUNC

datapath_out
(129 bits)

shift_ data_ out

Figure 5.2: Processing Element Input/Output Signals

This arrangement of SLABs, in conjunction with the key memory discussed in the

next section, allows great flexibility.

5.1.2 Key Memory Design and Operation

Management of the subkeys of a cryptographic is a major concern. As seen in Chapter

3, the key schedules of cryptographic algorithms can frequently be more complex that

the algorithms themselves. This is usually mitigated by the fact that a single key is

usually used to encrypt many blocks of data, and thus the computational costs of

107

computing the subkeys is amortized over many encryptions. In other words, it can

be done up front, and once finished, does not slow processing down any further.

In keeping with this ideology, and to simplify technical matters, the SHERIF cryp

tographic hardware module will not readily support implementation of key schedules.

Rather, it requires that the key schedules be pre-computed by an external processor,

and the resulting subkeys must then be loaded in to the PEs. These subkeys are

loaded into a special component in each PE-FUNC called the key memory.

Some of the algorithms use 32-bit subkeys; others full 128-bit subkeys. Many of

the algorithms require multiple subkeys in each round. Thus, the key memory must

be capable of providing at least two different 128-bit keys to the SLABs. Therefore

the key memory has an independent output to connect to each SLAB's key input.

Each of those outputs can be configured to provide one of the two key values. The

key memory also provides those two key values to the scratch path input multiplexer

mentioned above.

Such a component would be straightforward in design, if not for the fact that the

overall system is intended to support both pipelined, loop-unrolled implementations

of cryptographic algorithms, as well as iterative implementations. Thus, the key

memory must be capable of providing different subkey values during different clock

cycles (but still no more than two 128-bit values at a time).

A comparison of the the subkey requirements of the algorithms under considera

tion is shown in Table 5.2. Note that SHA-1 [52] is excluded since it is not a keyed

hash function. A key memory size of 1664 bits is selected, allowing up to 13 128-bit

subkeys to be available to a given PE. This means that algorithms like SAFER++128

[54] cannot be implemented in a single PE, but in the case of SAFER++128 , a single

round would likely require two PEs anyway, due to the sequence in which the adders

are used.

This problem is solved by implementing the key memory as a large shift register,

108

Algorithms Number/Size of Keys Approx. Freq. of Keys Total Bits
AES 11 128-bit round keys 1 per round 1408

Camellia 26 64-bit round keys 1 per round (sometimes 3) 1664

RC6 44 32-bit round keys 2 per round

SAFER++12s 15 128-bit round keys 2 per round

DES 16 48-bit round keys 1 per round

Table 5.2: Algorithm Subkey Requirements

as shown in Figure 5.3.

1~8

key_bus
(data path)

ey_write_en

start -keymem

Key Memory Register
(1664-bit shift/reload register)

SHIFT I I RELOAD
128

Key Memory
FSM Controller

~11 ffi ~~ ~11ffi ~~
Shift Reload

Counter Counter

I I
shift_max reload_max shlft_amount

shift_max reload_max shift_amount

128

key1

output mux
select lines

keyO

1408
1920

768

key1=D-
keyO

key1=D-
keyO

• • •

key1=D-
keyO

keyO_out

key1_out

key27_out

29
key1=D-key28_out
keyO

shift_data_ou1
config_enable 47-bit Configuration Register

shift_data_]iinl-'i_ ________________ _j

Figure 5.3: Key Memory Architecture

When the key memory write signal is asserted, the key memory assumes the

datapath input to the PE-FUNC is subkey data, and writes that 128-bits into the

MSB end of the shift register after shifting the current contents down by 128-bits.

Thus, 13 clock cycles are needed to fill the key memory. Also, note that the output

109

of the key memory is taken from the LSB end of the shift register. That means that

even if only one 128-bit key is needed in the key memory, it still takes 13 clock cycles

to shift it into the right position.

The two key values available at any given time come from the least significant 256-

bits of the key memory register. Each of the 29 SLAB outputs multiplexes between

the two, according to the configuration set in the configuration register.

To support iterative implementations, the key memory must be able to shift new

values into the output position during operation. This shifting is controlled by a

state machine. When in the idle state, the state machine prevents the key memory

from shifting. However, if it receives a key memory start signal assertion, the state

machine begins operation and waits a number of clock cycles set by the user (up to

127), then shifts the register values right (by some multiple of 32-bit words, up to 8,

with the shift amount being configured by the user), allowing new subkey values to

enter the output range of the shift register. The number of clock cycles between shifts

is determined by a shift counter that resets at each shift. Another counter increments

every time a shift occurs, essentially counting the rounds of the algorithm, and when

it reaches its limit as configured by the user, the state machine reverts to idle mode

and resets the contents of the shift register. The instant reset is possible through

the use of a non-shifting 1664-bit register in parallel with the shifting register, that

simply holds the original value of the key memory for use in resets.

The counters are used to account for the latency introduced by the registers at

the input and output of the PE. The presence of those registers means that, in an

iterative algorithm implementation, each iteration takes multiple clock cycles, and

thus the subkey data for each iteration must be synchronized with its proper round.

This design of the key memory allows the user to configure its operation to ac

commodate pipelined algorithm implementations (which generally require no shifting

behaviour of the key memory), single-PE iterative implementations (which require

110

new subkeys every round), and multiple-PE iterative implementations, where the al

gorithm is implemented in two or more PEs, and must iterate through them. In this

last case, each PE's key memory only needs to hold part of the key schedule.

5.2 Processing Fabric

The arrangement of PEs into a processing fabric was also a point of concern. Sev

eral different approaches were considered, including a 2D array as discussed in [61].

The array structure was abandoned due to difficulties in coordinating data transfers

between adjacent PEs. A linear, sequential arrangement of PEs was selected since it

mimics the linear ordering of the rounds of the algorithms being considered. The key

drawback to this arrangement is that the system can only handle data blocks of 128

bits, so implementations of most hash functions like SHA-1 are infeasible.

As described in previous sections, the PEs have very simple I/0, and while the

key memories of each PE are capable of handling iterative algorithm implementations,

nothing else about the PEs themselves handles feedback or iteration. Thus, Routing

Nodes (RNs) are implemented between all of the PEs, as shown in Figure 5.4.

control
! signals

... ;
i

.
128 LSBs. : •

•••

Figure 5.4: SHERIF Processing Fabric

shift data out
(unconnected)

The routing nodes control the flow of data within the system, routing data from

111

the system input to the PEs, and from the PEs to the system output or to other PEs

via the datapath or feedback signals. The routing nodes are key to completing the

functionality of the SHERIF system, since they handle all of the data routing and

storage needs that the PE-FUNCs do not.

5.2.1 Routing Nodes

The routing nodes would seem to have a simple task in routing the data between the

various PEs, but it turned out that coordinating the data flow was a very difficult

task. The design of the PE-FUNC was kept simple, but that off-loaded responsibility

for control and other complex tasks to the routing node.

The basic responsibility of the routing node is to switch or route data between

the PEs, the system input, and the system output. However, it must be sufficiently

configurable to handle both pipelined and iterative implementations. Furthermore,

if the SHERIF system is to support different modes of operation (see Section 1.3.2)

for its block cipher implementations, then the routing nodes must handle this as

well, since all of the modes are defined as being external to the ciphers themselves

[3]. Other functionality off-loaded from the PE-FUNC includes selection of the key

memory start signal, and controlling key writes.

Design and Operation of the Routing Node

Figure 5.5 shows the basic interface of the routing node. It has three inputs (data

path in, feedback in, and system in) and three corresponding outputs (datapath out,

feedback out, and system out). The three outputs are switched independently of each

other. It has a number of control signal inputs to indicate the type of the current

system input data: key write assertion means that a key value is being written to the

key memory of the following PE, IV write means that an IV is being written into the

routing node, and stream write means that the data is part of an ongoing encryption.

112

The implications of these signals will be discussed later.

There is also an 11-bit start vector input, driven by the address decoder at the

system level. The individual bits of this correspond to the individual start signals

generated by the address decoder when data is addressed to particular routing nodes.

Those signals are used at the top level to set the valid bit (MSB) of the system

input for each routing node, but all of the signals are available to each routing node

to allow the internal state machines to start when data is addressed to any of the

routing nodes, if so desired.

datapath_in

feedback_in

system_in

key_write

iv_write

stream_write

op_start

elk

rstb

config_clk

config_enable

shift_data_in

129/ ,
129/ ,
129/ ,

1} ,

129/

Routing 129/ ,
Node 129/

Figure 5.5: Routing Node I/0 Interface

datapath_out

feedback_out

system_out

keymem_write

keymem_start

shift_data_out

The routing node is configurable, so it has the same standard configuration register

interface as well. Also, apart from the data output described above, there are two

output control signals (key write and key start) which connect to the key memory

control signals in the following PE-FUNC. At this point, many of the top level

routing node control signals seem extraneous. Their function will become apparent

as the implementation of the routing node is discussed in detail.

113

Figure 5.6 shows the architectural details of the routing node. Note that the

external I/0 in this figure has been rearranged so that all the inputs are on the left

and all the output are on the right, in order to make the diagram more understandable.

Also, many of the control and configuration signals are not shown to preserve clarity.

Details of the routing node configuration register are given in Figure 5. 7.

data_in (129 bits) lri}M······
~to rage

a:!tijisters ·
_sy_s_te_m ___ in_(_1_29_b_i_ts_) -+I f~~\.: ·

feedback_in (128 bits) .'~f
--------+lit

op_start (11 bits)

key_write
--~

iv_write
--~

stream_write

config_enable --~

Figure 5.6: Top Level Routing Node Implementation

datapath_out
1---~(129 bits)

feedback out
1---~(129 bits)

system_ out
1---~(129 bits)

keymem_start

keymem_write

shift_data_out

The data inputs to the routing node are registered immediately, although there

are two extra registers for storing special data as well. This is illustrated in Figure

5.8, and discussed in detail later.

Each of the routing node's data outputs (datapath, feedback, and system) are

selected independently by 8-to-1 multiplexers, meaning each output can be one of

eight possible options despite the fact that there are only three data inputs. These

extra values are available to support different modes of operation; beyond outputting

the three data inputs directly, the routing node can also output the XOR of any of

114

'C
Ql

:c
Ill -a; -a; c 'C
Ql Ql (/)I -a; -a; (/)I -a; -a; -a; I :c -a; -a; -a;
Ql >< >< E (/)I !Ill E !Ill Ill' ~I

-a; -a; !Ill 'C Ill Ill Ill >< >< :I
!Ill Ill -a;

0 c E Ill N N
~I ~I t:

E :I
E Ill Ill Ql c c Ql E c c !Ill _, _I E e, :§

... :a - ::l ::l Ill Ill
I - ::l ::l Ill - - -_I !Ill """I

...
:I

::l
!Ill

Ill Ill !Ill Cl c c I I -"I ""' ""' 0 -c Ill C.) C.) c c .c .c .c .c !Ill Ill' .c _, I C.) u, C.) C.) C.) C.) I E ·e Ill - - E -I E I Ill I'CI I'CI Ill I'CI Ill Ill I'CI Q) E - I'CI ::l N Q. Q. Q. Q. ..Q ..Q ..Q ..Q Ql E ::l Q. I'CI Ql 0 Ill I'CI 0 Ql E E I'CI I'CI I'CI I'CI I'CI Ill 'C 'C 'C 'C - E I'CI ... Ill - - - - - - Ql Ql Ql Ql Ill ;., Ill -- .c ;., - I'CI Ill I'CI I'CI I'CI Ill .2! .2! .2! .2!
;., Ql - ;., I'CI

Ill - Ill Ill 'C 'C 'C 'C 'C 'C Ill "" Ill Ill 'C

73-bit Control Register

config_ enable
shift_ data_ out

Figure 5. 7: Routing Node Configuration Register Detail

the inputs with each other or an IV (in certain combinations). The possible output

values for the system output, datapath output, and feedback output are as follows.

1. System Input

2. Feedback Input

3. Datapath Input

4. Datapath Input XOR IV

5. Datapath Input XOR Feedback Input

6. Datapath Input XOR System Input

7. System Input XOR Feedback Input

8. System Input XOR IV

Note that the IV value in the above XOR operations comes from either the IV register

or the stream register, depending on whether the stream write signal is asserted. This

115

data_in "' ~I
data_reg

"tl

system_in system_reg

feedback_in feedback_reg

iv_write

Figure 5.8: Routing Node Input Registers

116

data_reg

feedback_reg
data_ reg

system_reg

.... ~ .. ~ ~ din_xor_iv

IV_ v
feedback_ reg

doto_ .. ~~ din_xor_fin

feedback_reg v
reg dot•-'··~~ din_xor_sin

system_reg v system_

system_,eg~ ~ sin_xor_fin

iv_i
feedback_reg v

system_..,~~ sin_xor_iv

iv_i v

Figure 5.9: Routing Node Output Signal Generation

is the first example of where the routing node operation gets complex. This values

are generated as shown in Figure 5.9.

Stream Controller

The IV register can be written to by asserting the IV write signal, which causes the

data on the system input to be stored into the register. This action also invalidates the

system input value stored in the system input register. Thus, an IV can be set and

changed on-the-fly. When implementing an algorithm in CBC mode, for example,

117

the user can write the IV and set the datapath output to the system input XOR

IV option, to perform the XOR on the plaintext. The next plaintext block to be

encrypted, however, must be XORed with the ciphertext produced by the encryption

of the previous plaintext block. That ciphertext can be sent via the feedback path

when the encryption is done: so that it may be used in the XOR with the next

plaintext. Rather than require the external controlling processor to keep precise

track of how many clock cycles are needed to encrypt one block through whatever

algorithm is implemented, and then ensure that the next plaintext is written into the

routing node just as the previous ciphertext arrives at its feedback input, a simple

state machine controller is used.

This state machine controller: called the stream controller, uses a 7-bit counter.

When the state machine receives a start signal (selected from one of the 11 possible

signals by a multiplexer controlled by values in the configuration register), it starts

counting clock cycles. When it reaches the maximum value, as set by the user in the

configuration register, it takes the current feedback input value and writes it into the

stream register before returning to an idle state. Thus, the stream controller can be

configured to know how many clock cycles until the valid ciphertext will return to the

feedback input, so that it can be stored, and when the external processor writes the

next plaintext block in the same encryption process (at some point coincident with or

after this), it can assert the stream write signal to ensure that the datapath output

will be the datapath input XORed with the stored ciphertext in the stream register,

rather than the still-stored value in the IV register. The stream controller is shown

in Figure 5.8.

System Output Controller

The system output also requires a little management. While it is only necessary to

select one of the eight values for the system output, it is also necessary to specify

118

system_reg
feedback_reg

data _reg
din xor iv

din xor fin
din.=-xor.=-sin
sin_xor_fln
sin_xor_iv

sysout start

sysout cnt max

system_out(127 .. 0) system_out
1--..---------.---· (129 bits)

sysout_valld

System Output
Controller

z
w

System
Counter

w
z
0
Q

Figure 5.10: System Output Generation and Control

when that value is valid. Relying on the MSB of the signal, the valid bit, will not

always work, since in an iterative implementation, the same block of valid data will

pass through a routing node several times before the algorithm is complete.

Thus, it is necessary to use a state machine controller, similar to the stream

controller, to validate the output data. This system output controller uses a 7-bit

counter. Once triggered by a start signal or valid input data (selected by a multiplexer

controlled by configuration register values), it counts until it reaches the configured

maximum value and outputs a validation pulse that is ANDed with the valid bit

of the selected output signal value. The counter should be configured to count the

number of clocks from the start signal until the output value will be available, and

this ensures only valid data is sent to the system output, and only at the appropriate

times. This system is illustrated in Figure 5.10.

The operation of the system output controller should make apparent the necessity

of having every start signal available to each routing node. The routing node that

actually sends data to the system output will usually be a different node from the one

119

where the data is entered into the system, and thus, if each routing node only knew

its own start signal value, the system output controller would never get a start signal.

By making all start signals available to each routing node, a great deal of flexibility is

facilitated. Also, the output controller start signal can be configured to use any valid

data coming into the node, and if the count is set to 0, it allows data to pass directly

to the system output. This is useful for pipelined algorithm implementations.

Datapath and Feedback Output Controller

It has already been stated that the datapath and feedback outputs are selected by

8-to-1 multiplexers. Unfortunately, they cannot be used as simply as the system

output. For example, in an iterative implementation of an algorithm would require

the datapath input to come from the system input on the first iteration, but on

subsequent iterations, the datapath output would have to come from the feedback

input. Thus, depending on how an algorithm is implemented, a single configuration

of the datapath output value will be insufficient. Similar examples can be shown for

the feedback output.

To solve this problem, a state machine controller is used to control the output

multiplexers for the datapath and feedback outputs. This controller, called the data

path controller, is rather more complex than the system output or stream controller.

It uses two 7-bit counters as well.

The datapath controller can be configured to operate in either 2-state mode or

3-state mode. In 2-state mode, it transitions from an idle state to a running state

upon receiving a start signal (which is selected from the 11 possible start signals), and

stays in the running state until the first counter reaches its set maximum, at which

time it will return to the idle state. If the 3-state mode is enabled, it will transition

from idle to the first running state as in 2-state mode, and then to a second running

state, where it will stay until the second counter reaches its configured maximum, at

120

data1_cnt_max

.s::. -"' c..

~
~I
~

data2_cnt_max

Data path
Controller

system_reg
feedback_reg

data_reg
din_xor_iv

din_xor_fin
din_xor_sin
sin_xor_fin

datapath_idle_sel
datapath_stream_sel

datapath_run1_sel
datapath_run2_sel

feedback idle sel
feedback stream-sel

feedback run1-sel
feedback=run2=sel

system_reg
feedback_reg

data_reg
din_xor_iv

din_xor _fin
din_xor_sin
sin_xor_fin
sin_xor_iv

datapath_out
(129 bits)

data_mode_sel_i

feedback_mode_sel_i

feedback_ out
(129 bits)

Figure 5.11: Datapath and Feedback Output Control

which time it will return to idle.

In each of these states, both the datapath output and feedback output may have

different output values selected. Furthermore, if streaming is enabled in the configu-

ration, then in the idle state, a different output value again may be selected for each

output (which is used via the XOR with IV when a stream write occurs). Thus, the

datapath output may have up to four different values over the course of the controller's

operation, as might the feedback output. The output values for each state are set in

the configuration register. The datapath and output feedback control architecture is

shown in Figure 5.11.

121

This setup allows the previously mentioned iterative example to be implemented.

For an iterative algorithm, the datapath output for the idle state would be the system

input, and in the running state, the datapath output would be the feedback input. It

would stay in the running state for a number of clock cycles as set in the configuration

register, counted by the counter, until the algorithm is done, at which time it would

return to the idle state to wait for the next input.

Key Memory Control

As previously mentioned, to keep the key memory and PE-FUNC design simple, some

of its required complexity was off-loaded to the routing node. In particular, generation

of the key memory start signal is performed in the routing node. The routing node

also passes the key memory write enable signal along to the PE-FUNC.

The key memory start signal is selected via a large multiplexer controlled by the

routing node configuration register. The start signal can be selected from any of the

11 routing node start signals, no start signal at all can be selected (for non-iterative

implementations), or the valid bit of the data path output can be used as the key

memory start signal.

The key memory start signal, as well as other internal start signals, are generated

as shown in Figure 5.12.

5.3 Overall System Architecture and Control

The overall system architecture for the SHERIF cryptographic hardware module is

shown in Figure 5.13. Note that the top level inputs and outputs are registered, as

is each of the inputs to the output controller and routing nodes, and both the inputs

and outputs of all of the PE-FUNCs are registered as well.

At this level, the system architecture is quite simplistic. The processing fabric

122

data_reg(128)

system_reg(128)

key_write_i

0
op_start_i(O)

op_start_i(1 0)
datapath_out(128)

keymem_start_sel-----'

op_start_i(O)

op_start_i(1)

op_start_i(9)
op_start_i(10)

datapath_start_sel ------'

op_start_i(O)

op_start_i(1)

op_start_i(9)
op_start_i(10)

stream_start_sel ----....J

op_start_i(O)
op_start_i(1)

op_start_i(1 0)

sysout_start_sel -----'

keymem_write

keymem_start

t--st_a_,rt_datapath

1--st_a....;rt_streaming

1-___;;s.;.;;ta;;.;rt-sysout

Figure 5.12: Generation of Start Signals in Routing Node

123

data in
(128-bit)

address
(5-bit)

valid_ out

Figure 5.13: SHERIF System Diagram

has been discussed in detail in prior sections; the address decoder and system output

arbiter are covered in the following sections. In brief, the address decoder handles

generation of control signals to the routing nodes, whereas the system output ar-

biter manages switching all of the routing node system output signals onto the single

SHERIF output bus. All the configuration and data processing occurs in the process-

ing fabric- the other top-level components are merely to support the routing nodes

and PE-FUNCs.

5.3.1 Address Decoder

The address decoder module is relatively straightforward in terms of its role. It

processes the address values from the system input, as well as the write control

signals, in order to drive the control signals going to each of the routing nodes. Thus,

it takes the 5-bit address, as well as the key write, IV write, stream write, and valid

bit as inputs, and generates start signals, key write signals, IV write signals, and

stream write signals to each of the routing nodes. All of the start signals are sent to

each routing node, as mentioned above, but at the top level, individual start signals

124

are used to to set the valid bit of the data going into each routing node.

The address decoder works on a priority system. If the key write signal is asserted,

it takes highest priority, so any other valid write inputs are ignored. Next in priority

is the IV write signal, followed by the stream write signal, and then regular writes.

The address decoder also has a rudimentary multicast decode mode: if the address

"11111" is input, it is interpreted as being a simultaneous write to all the routing

nodes, and so the appropriate control signals are sent to all routing nodes.

5.3.2 Dataflow Control

Once the data has entered the processing fabric, all dataflow control is entirely de

pendent on the routing nodes. Because the routing nodes are all independent, it is up

to the user configuring the entire system to ensure that the data flows properly based

on the configurations of the independent routing nodes and processing elements.

Pipelined/loop-unrolled implementations are easiest to implement with respect

to controlling the dataflow; each routing node is simply set to a fixed configuration,

and the system output controller just counts until data has made it from the input

routing node to the final routing node. Iterative implementations are more difficult,

requiring accurate timing of iterations and processing to ensure that everything works

together properly. Ideally, a means of abstracting the overall dataflow control would

be desirable.

5.3.3 Output Control

The system output is governed by an output bus arbiter. Since it is theoretically

possible to have multiple algorithms running in parallel on different groups of PEs, it

might happen that two algorithms finish at the same time, and thus both algorithms

have to output their respective results to the system output. The output bus arbiter

resolves contention for the single system output in such cases.

125

The output bus arbiter stores valid output signals from the PEs, and selects

which valid output is switched onto the system output in a round-robin fashion. It

can switch one value to the output every clock cycle, so as long as the average number

of valid outputs is not greater than one per cycle, the output bus arbiter can keep

up. It is the responsibility of the algorithm implementation to ensure that particular

implementations do not generate valid outputs too frequently, to ensure that a prior

output value is not overwritten before it has a chance to be switched to the output

bus.

The selection algorithm works by checking the storage registers for each routing

node input into the arbiter, in order, from 0 to 10. The first register that it finds

with valid data in it, it switches to the system output. On the next clock cycle, it

continues its check of the registers, starting from the register just after the register

previously output, to ensure equal opportunity for data from all routing nodes. Note

that the register checking is a combinational process, done within the switching clock

cycle, which allows the system's high throughput.

5.3.4 Designing for Expandability

The architecture described in this section has been in reference to the proof-of-concept

design that was implemented, using only ten processing elements (to allow pipelined

implementation of the AES algorithm) and having no pipeline registers internal to

the PEs. It should be noted, however, that the system components were designed

and implemented with expandability in mind.

The address decoder decodes a 5-bit address to access the routing nodes, with the

address "11111" accessing all of the nodes simultaneously. Thus, the address space

has room for up to 31 routing nodes, which means 30 processing elements. Thus,

the processing fabric can easily be expanded by up to a factor of three by logically

extending the existing address decoder and processing fabric.

126

Similarly, since all the routing node and key memory state machine timing is based

on counter values set by the system configuration, adding pipeline registers inside the

PE-FUNC will only require algorithm implementations to change by increasing the

set counter values to account for the added latency. Thus, further refinements and

variations of the design in the future will be easily implemented, with simple redesign

of only the address decoder and output arbiter.

5.4 Summary of System Architecture

This chapter has described the organization of the basic operational components de

veloped in the previous chapter into a processing element capable of being configured

to implement a single round of a variety of algorithms. These processing elements

were then integrated into a sample system which allowed support for different modes

of operation, as well as different implementation styles such as pipelining and itera

tion.

The proof-of-concept SHERIF system designed in this chapter is oriented toward

supporting implementation of a pipelined version of the AES algorithm Rijndael [17],

and thus has 10 PEs integrated into the system, with dataflow between them con

trolled by 11 routing nodes. The routing nodes are very complex, and responsible for

the system's ability to support pipelining, iteration, and different modes of operation.

The next chapter details a software configuration utility designed to help manage the

complexity of the design and allow easy implementation of cryptographic algorithms

on the proof-of-concept SHERIF system.

127

Chapter 6

System Configuration

The hardware design of the SHERIF cryptographic hardware module has been de

scribed in detail in the preceding chapters. The stated goal of this device is to provide

superior performance to software implementation of cryptographic algorithms with

greater ease of implementation than custom hardware implementations. While the

device architecture has clearly been designed to fulfill the speed requirements, no

mention has been made of how the SHERIF module is to be configured; that is,

issues related to ease of implementation have not been dealt with until now.

In discussion of the SLABs in Section 4.4 and in Appendix B, the bit strings

needed to to configure each component were outlined in detail. Thus, implementation

of an algorithm on the SHERIF cryptographic hardware module entails creating a

bit string to configure all of the components in the whole system. Hence, ease of

implementation of cryptographic algorithms will depend on the ease of creation of

the configuration bit strings.

The SHERIF cryptographic hardware module is configured much like an FPGA,

in that the configuration is loaded in upon system start-up via the configuration

I/0 interface as shown in Figure 6.1. Either a dedicated start-up circuit or an ex

ternal processor must assert the config_enable input, and then, on each clock cycle

of the configuration clock, a single bit of the system configuration is shifted in to

128

the shift_data_in input from a serial memory device such as a serial Programmable

Read-Only Memory (PROM). The configuration bit string is shifted in from LSB to

MSB.

datapath_in

valid_ln

address

key _write_enable

iv_write_enable

stream_enable

elk

rstb

... · · i:onfig_clk
Configuration .. · · · .
Interface ·.. conf1g_enable

· .. shift_data_in

121!-,

5/

SHERIF
Cryptographic

Hardware
Module

Figure 6.1: SHERIF Device Configuration I/0

1~

data pat h_out

out valid_

Note that the configuration clock is separate from the main system clock. That

is because the simplicity of the configuration logic and the close proximity of each

configuration register means that the configuration register can run much faster than

the entire system. Thus, by clocking the configuration logic separately, a much faster

clock can be used to allow for faster configuration times. However, the same clock

can be used for both system clock and configuration clock if so desired.

The proof-of-concept system described in this thesis contains 10 PEs and 11 rout-

ing nodes. The PEs require 4527 4 configuration bits each, and the routing nodes

require 73 bits each. Thus, the total configuration size for the SHERIF cryptographic

hardware module is 453543 bits. To generate such a configuration by hand would

arguably be more difficult than designing a hardware implementation, and certainly

more error-prone. The solution to this problem is to develop a software configuration

129

utility to allow users to configure the SHERIF cryptographic hardware module.

6.1 Software Configuration Utility

The purpose of the SHERIF Configuration Utility is to provide a graphical front end to

the configuration process, providing a more human-readable interface than strings of

O's and 1 's and restricting users to valid configuration string choices. Most computer

systems with windowing user interfaces share common interface components, such

as combo boxes (whereby users select options from a drop-down list), check boxes,

and text boxes. These standard interface components can allow users to implement

algorithms on the SHERIF device more easily than custom hardware, and possibly

more easily than software.

The SHERIF Configuration Utility was written in the Java programming language

[62] using the free NetBeans 3.6 Integrated Development Environment [63]. The Java

language was selected due to its ease of use and cross-platform capabilities, as well

as the comprehensive Swing windowing library which provides all the desired user in

terface controls. The NetBeans IDE made graphical user interface development easy,

allowing the creation of user interface forms with virtually no coding. The only pro

gramming directly required was the underlying reading, validation, and manipulation

of the data represented by the components.

The configuration utility was designed in a modular fashion, with separate user

interface forms implemented for each of the components to be configured. A Con

figurationString class was implemented to encapsulate the behaviour needed by the

configuration forms: it had to store the strings, overwrite the string or parts of them,

and allow them to be read as a whole, in part, or one bit at a time for saving to a

file.

The forms for each component are accessed hierarchically. Each of the forms was

130

implemented as a modal form, meaning that when it is active, the user cannot switch

to a different form directly, but has to close the existing form or cause it to launch a

new one. This was done to ensure the user is able to keep track of what is currently

being configured.

The main form of the configuration utility is shown in Figure 6.2. It consists

of buttons representing each of the PEs and routing nodes, each of which launches

a new configuration form to configure that particular component. Configuration of

individual components is covered in the following sections. This form could be further

refined by offering combo boxes instead of buttons to allow selection between the

different routing nodes and PEs. Such a modification would simplify the interface,

and at the same time make it scalable to systems with different numbers of PEs.

Figure 6.2: SHERIF Configuration Utility Main Form

131

The main form also includes basic functionality such as the ability to save the

configuration to a text file, or to read in an existing configuration.

The system configuration is saved as a standard text file. The first line contains

the text "SHERIFCONFIG", and the last line the text "END SHERIFCONFIG". In

between these lines are the 453543 configuration bits, all stored in a single line, from

the LSB at the beginning of the line to the MSB at the end. This is so that the

text file, when used in functional simulation of the SHERIF cryptographic hardware

module, can be read with a single line read and then shifted in to the configuration

one bit at a time. Should the SHERIF device be fabricated, the configuration utility

would have to be extended to support generation of a binary configuration file that

could be programmed into a PROM.

Overall the system is designed so that each form generates a small configuration

based on its controls. When the user accepts the configuration of the component,

the configuration is validated and then passed back to a parent form, where the

configuration string is integrated into the larger configuration (which might itself

then be accepted and passed to another parent and integrated to its configuration).

Following this strictly hierarchical design process greatly simplified implementation,

allowing easy use of the forms for the different components as needed and ensuring

that reading values from the user interface was kept as simple as possible.

Thus, the main form in Figure 6.2 has 10 ConfigurationString objects representing

the PEs, and 11 representing the routing nodes. When one of the buttons is clicked

to launch the configuration form for a PE or routing node, the main form passes a

reference to the configuration string it holds to that newly created form, and that

form, once its configuration is accepted, writes the new configuration values back into

the string held by its parent. When saving the overall configuration to a text file, the

21 different strings are combined into one temporary ConfigurationString object that

is then written to the file.

132

The operation of the software is more obvious when the individual forms are

considered, in the following sections.

6.2 PE-FUNC Configuration Form

When the PE-FUNC configuration form is launched from the main form by clicking

one of the PE buttons, a new form as shown in Figure 6.3 is displayed.

Figure 6.3: Top-level PE-FUNC Configuration Form

It contains 29 buttons to launch configuration forms for the individual SLABs, a

button to launch the key memory configuration form, and some standard buttons at

the top of the form. The only items configurable at this level are the scratch path

input selection and the top-level PE-FUNC constant value.

A combo box is used to select the input to the scratch path between two key

values, the aforementioned constant value, or the datapath value. A simple text

box is provided to allow the user to enter the desired constant value in hexadecimal

notation. The software verifies the length and format of the user-entered values to

ensure they are valid.

The standard control buttons that appear on every component configuration form

133

are "Accept Configuration", "Clear Configuration", "Copy Configuration", "Paste

Configuration", and "Cancel Configuration".

"Accept Configuration" allows the user to accept and store the changes they

have made to the configuration. It reads the data from the components into the

configuration string (after validating it, of course), then writes the configuration string

back into the parent configuration and closes the form, returning window focus to the

parent form.

"Clear Configuration" sets the configuration string to the default, all zeros. "Can

cel Configuration" discards any changes that have not been accepted and closes the

form, returning focus to the parent. It does provide a warning before doing so, how

ever.

"Copy Configuration" and "Paste Configuration" work together. Copying stores

the current configuration to a component-specific clipboard held by the parent. Then,

whenever in a form of the same type, the value can be pasted in to quickly configure

the new, different form, or overwrite its existing configuration.

For example, in the PE-FUNC configuration form for PEO, the user might set a

configuration, and click "Copy". Then, the user might accept the configuration, and

from the main window, open the PEl form, and click "Paste" to give PEl the same

configuration as PEO. Note that the copied configuration includes the configuration

of all the sub-forms, as well. If the user tried to paste into a routing node form,

however, nothing would happen. The clipboards are form-specific, and only copy and

paste between forms of the same type.

The PE-FUNC configuration form has an additional control button, allowing the

PE-FUNC configuration to be saved to a file. This ability to save just a single PE

FUNC configuration was included for testing and debugging purposes.

The key memory configuration form is detailed in the following section. Configu

ration forms of the individual SLABs are covered in Section 6.3.

134

6.2.1 Key Memory Configuration Form

The key memory configuration form, which is launched from the PE-FUNC config

uration form, is shown in Figure 6.4. It is a relatively straightforward form, having

the standard control buttons at top.

Figure 6.4: Key Memory Configuration Form

There are 29 combo boxes allowing the user to select whether Key 0 (the least

significant 128 bits of the key memory register) or Key 1 (bits 255 down to 128 of the

key memory register) is sent to their respective SLABs.

There are also 3 spinner components, which allow selection of integer values within

a specified range. Here, the first spinner allows the user to set the maximum value

of the shift counter (which counts the clock cycles between shifts of the key memory

register) to a value in the range of 0 to 127. The next spinner allows the user to set

the maximum value of the reload counter (which counts the number of shifts until key

memory reset) in the same range. The third spinner ranges from 0 to 8, and controls

the size of the key memory shift, with the value representing the number of 32-bit

135

words by which the key memory register will shift when the shift counter reaches its

maximum.

6.3 SLAB Configuration Forms

Each of the six SLABs has its own configuration form. However, since all SLABs

incorporate input switch and byte reordering components, they all use identical forms

to configure those parts of the SLAB. Each of the six forms has buttons to launch

configuration forms for the input switch and byte reordering.

The input switch configuration form is shown in Figure 6.5. It has the standard

controls at the top, and 32 combo boxes. The 16 combo boxes on the left control the

multiplexers on the datapath of the input switch, allowing the user to select for each

of the 16 datapath bytes whether a datapath byte, scratch data byte, constant byte,

or key byte gets passed to the core component. The rightmost 16 combo boxes select

the data to be sent to the scratch path output, either the current scratch input, or

else the current datapath input.

The byte reordering configuration form shown in Figure 6.6 is somewhat similar,

having the standard controls across the top. It has only 16 combo boxes, which allow

the user to configured the multiplexers of the byte reorder component. Each combo

box represents an output byte, and any of the 16 input bytes can be selected for each

output.

The following sections discuss the individual SLAB configuration forms, which

incorporate the two forms discussed above as sub-forms.

136

Figure 6.5: Input Switch Configuration Form

137

Figure 6.6: Byte Reordering Configuration Form

138

6.3.1 Boolean SLAB Configuration Form

The Boolean SLAB configuration form, shown in Figure 6. 7, is relatively straightfor

ward. It has the standard control buttons at the top, and buttons to launch configu

ration of the input switch and byte reordering forms. The core logic is configured by

the 16 combo boxes, which allows each output byte to be selected between the default

bypass mode, or the boolean operations AND, OR, and XOR of the datapath and

input switch values, or the inverse of the input switch values. The SLAB constant

can be entered via the text box in hexadecimal notation.

Figure 6. 7: Boolean SLAB Configuration Form

6.3.2 Shifter SLAB Configuration Form

The Shifter SLAB configuration form is shown in Figure 6.8. It has the standard

controls across the top, as well as the SLAB-standard text box for entry of the constant

value in hexadecimal notation and buttons to launch input switch and byte reordering

forms. Since the shifter is based around 32-bit shift components, only 4 combo boxes

are needed to configure the component. Each combo box selects between bypass,

139

Figure 6.8: Shifter SLAB Configuration Form

left/right shift, and left/right rotation for its corresponding 32-bit input.

6.3.3 Add/Sub SLAB Configuration Form

The Add/Sub SLAB configuration form, shown in Figure 6.9, is a bit more complex

than the previous two SLABs. It does, however, have the same standard controls,

constant value text box, and input switch and byte reordering buttons.

Figure 6.9: Add/Sub SLAB Configuration Form

The configuration of the adders themselves is rather extensive, since there are a

number of options. Including that many components on the SLAB form would be

unwieldy, so a separate sub-form was designed to configure the two banks of 8 adders

each. This form is shown in Figure 6.10.

The adder bank configuration form is fairly complex. It has the standard controls

at the top, and then is broken into eight panels, one to configure each of the adders.

140

Figure 6.10: Configuration Form for Bank of 8 Adders

Each of the panels has check boxes to allow the user to select whether the adder is

active or not, and whether is is connected to the preceding adder (that is, whether

is uses the carry-in). Each panel also has a combo box allowing the component to

be switched from addition to subtraction. The remaining combo box differs slightly

between the panels.

In the first panel, the topmost combo box allows selection of the carry-in to the

first adder. In the rest of the panels, however, the topmost combo box allows selection

of one of the adder inputs between the direct input and t~e outputs of the preceding

adders. Thus, the combo box for each adder gets more and more options. The full

flexibility of the add/sub component is made available through this form.

6.3.4 Multiplier SLAB Configuration Form

The Multiplier SLAB configuration form, shown in Figure 6.11, is quite simple. It has

the standard controls, constant value input text box, and input switch/byte reorder

141

buttons. It then has four combo boxes to configure the four 32-bit multipliers by

either bypassing them or using them.

Figure 6.11: Multiplier SLAB Configuration Form

6.3.5 LUT SLAB Configuration Form

The LUT SLAB configuration form is shown in Figure 6.12. It has the standard

controls, constant value input text box, and input switch/byte reorder buttons, as

well as 16 buttons and 16 check boxes. The check boxes select which LUTs are in

use, and the buttons configure the L UTs.

The configuration interface of the actual LUTs themselves is complex, and so was

relegated to a sub-form to avoid cluttering the screen. A sub-form to configure the

individual 8 x 8 L UTs was implemented, as shown in Figure 6.13.

The form is built around a 16 x 16 table of two-digit hexadecimal values. Concep

tually, an 8-bit input selects a row and column from the table, and the value in the

cell at the intersection of the row and column is the output value. The first 4 bits of

the 8-bit input select the row; the last 4 bits select the column.

To configure the LUT, the user simply enters the desired values into the table in

hexadecimal notation. The software validates the length and value of the user inputs.

This form has the standard controls at the top, plus one extra, "Load From CSV

File". Since entering 256 table values can be tedious, and since many algorithm

142

Figure 6.12: LUT SLAB Configuration Form

Figure 6.13: 8 x 8 LUT Configuration Form

143

specifications provide some sort of representation of L UT values in a format that can

be converted into a text file, an additional piece of functionality was provided to the

8 x 8 L UT form to allow it to read in such text files, in CSV (comma separated values)

format. The data can be read from a text file, saving the user time and removing

the possibility of transcription error. The text file, however, must have a specific

format: 256 values, each value being 2 hexadecimal characters, arranged in 16 lines

of 16 values each, where the values are separated by commas.

6.3.6 XORnet SLAB Configuration Form

The XORnet SLAB configuration form is shown in Figure 6.14. It is relatively simple,

with standard controls at the top, buttons for the input switch and byte reorder

configuration forms, and a text box for constant value input.

Figure 6.14: XORnet SLAB Configuration Form

The form also provides a combo box to select the mode of operation of the XORnet

component. There are two possible modes, "32-bit Mode" and "64-bit Mode". "32-bit

Mode" allows the XORnet component to operate as 4 independent 32-bit XORnets.

"64-bit Mode" uses all four 32-bit XORnets to operate as a single 64-bit XORnet.

There are four buttons which launch forms to configure the individual 32-bit

XORnets themselves, and four check boxes to select which XORnets are to be active.

The configuration form for a single 32-bit XORnet is shown in Figure 6.15.

144

Figure 6.15: 32-Bit XORnet Configuration Form

This single XORnet configuration form has standard controls and 32 text boxes.

The 32 text boxes correspond to the 32 output bits of the component. The component

is configured by typing values into the text boxes (separated by commas). The values

must be decimal values in the range of 0 to 31, and represent which input bits are

XORed together to produce an output for that bit. Thus, if the text box labeled

"Output Bit 1" had the values "31, 17, 4" in it, it would mean that output bit 1 is

generated by input bit 31 XORed with input bit 17 XORed with input bit 4. Each of

the output bits is independent of the others. An empty text box means the output

for that bit will be zero.

This type of interface is the simplest way to provide the flexibility needed for the

XORnet. Each output bit can be the XOR of any of the input bits, but this text box

based interface avoids the tedium of switching 32 bits on and off for each output bit,

and allows only the desired ones to be typed in.

145

6.4 Routing Node Configuration Form

The routing node configuration form is shown in Figure 6.16. Though the opera

tion of the routing node is very complex to understand, configuring it is relatively

straightforward. It just requires selection of a large number of unrelated options.

Figure 6.16: Routing Node Configuration Form

The combo boxes for datapath output and feedback output allow the user to

select what values will be output during each state of the main operation. Note

that the four options presented do not match the actual states the controller goes

through. The four actual states are RESET, IDLE, RUNNING!, and RUNNING2.

However, the combo boxes present IDLE, STREAM, RUNNING!, and RUNNING2.

The routing node behaviour for the actual RESET and default (non-streaming) IDLE

states are selected by the IDLE State combo box. The STREAM State combo box

selects the behaviour of the actual IDLE state when data is input in streaming mode.

The RUNNING! and RUNNING2 state combo boxes select the behaviour of the

corresponding actual states.

The system output if fixed for every state, but has the same eight options as the

datapath output and feedback output. The outputs can be selected from the system

146

input, feedback input, datapath input, datapath input XORed with the IV, datapath

input XORed with feedback input, datapath input XORed with the system input,

system input XORed with the feedback input, or the system input XORed with the

IV. Note that when in streaming mode, the IV is replaced with the feedback storage

register value.

There are two check boxes used to enable streaming operation and three-state

operation of the main datapath controller. Three-state operation means that both

RUNNING1 and RUNNING2 states will be used, whereas normally only RUNNING1

will be used.

There are four combo boxes to select the various start signals. The system-level

address decoder generates start signals when it writes to a particular routing node.

However, all ofthe start signals are available to all the routing nodes. Thus, the start

signals that trigger the operation of the various controlling state machines (streaming

controller, datapath controller, and system output controller) can be selected from

any of the system's 11 possible start signals. Also, the signal that is sent to the

PE-FUNC to start the key memory operation can also be selected, though it has an

extra option whereby no start signal may be selected, thus preventing the key memory

from shifting at all (which would be used in non-iterative implementations). The key

memory may also be started by the input of valid data.

Lastly, there are four spinner controls to set the maximum value of the state

machine counters. The stream counter selects how many clock cycles the stream

controller waits before storing the feedback input into the feedback storage register.

The system output counter selects how many clock cycles the controller waits after

its start signal before validating the system output. The two datapath counters count

the number of clock cycles the system remains in states RUNNING1 and RUNNING2.

All the counters are limited to the range 0 to 127 (7-bit counters).

The routing node configuration form has standard controls at the top, as well as

147

an additional control button, allowing the routing node configuration to be saved to

a file. This ability to save just a single routing node configuration was included for

testing and debugging purposes.

6.5 Summary of System Configuration

This chapter has presented the design, implementation, and operation of the SHERIF

software configuration utility. This configuration software is vital to the ease-of-use

of the SHERIF system, and is responsible for managing, validating, and compart

mentalizing the configurations input by the user, as well as abstracting away from

the actual hardware (to a limited extent). By providing a graphical user interface

to represent the various hardware structures and limiting user options to only valid

choices, the software configuration utility makes algorithm implementation relatively

quick and simple. This will be seen in the next chapter, which shows the software

configuration utility in use to create a sample implementation of the AES algorithm

Rijndael [17].

148

Chapter 7

Functional Testing and Synthesis Results

Having designed a flexible cryptographic hardware platform and its associated con

figuration software, it is naturally desirable to test whether the prototype proof-of

concept implementation works. Ideally, with sufficient time, each of the algorithms

considered in Chapter 3 would be implemented on the SHERIF cryptographic hard

ware module, but time and resource constraints precluded that possibility. Only a

minimal amount of testing could be carried out, but such simple tests were very

informative in identifying problems with system design and organization.

As will be seen in subsequent sections, the proof-of-concept implementation of

the SHERIF cryptographic architecture is very large in terms of silicon area and the

number of signals in the system. This made complete synthesis infeasible on the

available workstations, and also made functional simulation difficult, since there were

so many signals and so much logic to simulate. Thus, it was not possible to perform

system-level functional testing, nor to provide the most optimized, accurate synthesis

results. However, individual components of the system have been functionally tested

independently of each other, a sample pipelined functional implementation of the AES

algorithm Rijndael [17] has been simulated one round at a time, and synthesis has

been performed on individual components, allowing conclusions to be drawn about

overall system flexibility, area, and performance.

149

7.1 Functional Testing

In general, functional testing of the system proved difficult because of the large num

ber of signals in the system. This is not always a crippling problem, but in the

SHERIF system, configuration must be performed before operational simulation.

Simulating the configuration process is very time-consuming, requiring more than

450 000 clock cycles of simulation before any valid operational simulation can be

done. Such a simulation would require more than 12 hours of real-time simulation in

a non-interactive mode.

Fortunately, the individual PE-FUNCs and routing nodes can be simulated inde

pendently from the entire system in reasonable amounts of time. This means that an

algorithm implementation on the SHERIF architecture can be tested by simulating

each routing node and PEs independently, in sequence, verifying that each component

works properly and forwards the correct data to the next component.

The AES algorithm Rijndael was chosen as the target for functional testing since

it is a recent standard that will see frequent use. A pipelined implementation was

chosen for its simplicity and greater throughput. The details of implementation and

simulation are in the following subsections.

7.1.1 Pipelined Implementation of AES

The AES algorithm Rijndael [17] is an ideal candidate for implementation on the

SHERIF architecture because its basic operations directly map onto the SLABs within

the PE-FUNC. Round key addition is done via the XOR mode of the Boolean SLABs,

substitutions by the LUT SLAB, and the XORnet implements the MixColumns()

operation.

The first step in creating the pipelinecl AES implementation was to create a single

round implementation in one of the PEs. A normal round of AES uses the SLABs

150

Figure 7.1: SLABs used in a normal AES round.

highlighted in Figure 7.1. Before implementing any of the algorithm's operations, all

of the byte reorder components had to be manually set to pass through data directly,

due to the slight design error discussed in Section 4.2.2.

The S-boxes are implemented directly in the LUT SLAB, in which all of the LUTs

are used as shown in Figure 7.2. Each LUT has identical values, loaded in from a

text file copied directly from the AES specification [17]. This is shown in Figure 7.3.

The ShiftRows() operation from the specification is just a byte reordering. Thus,

the byte reordering component of the L UT SLAB can be used to implement this. The

implementation is shown in Figure 7.4.

Unfortunately, the MixColumns() operation, defined as multiplication by a con

stant in a Galois field, is not so easy to implement. It is known from [60] and other

sources that such operations can be implemented with a series of XORs, but the

details of implementation are still needed before the XORnet SLAB can be used.

The columns in the AES specification match up the each of the 32-bit words in the

algorithm representation in Chapter 3.

The operation is defined as follows, noting that the numbers inside curly braces

151

Figure 7.2: Setting the LUTs to active

Figure 7.3: Filling out the LUT

152

Figure 7.4: Byte Reordering implementing ShiftRows()

153

are hexadecimal values,

R = D x [{03}x3 + {01}x2 + {01}x + {02}] mod x4 + 1 (7.1)

where D and R are 32-bit values representing the data input to the MixColumns()

operation and the result of the MixColumns() operation, respectively.

This can also be expressed as the following matrix operation [17], where r3 to r0

are the most significant to least significant bytes of R above, and d3 to do are the

most significant to least significant bytes of D above:

r3 02 03 01 01 d3

rz 01 02 03 01 dz
(7.2)

rl 01 01 02 03 dl

ro 03 01 01 02 do

This can be multiplied out as per a normal matrix operation, at least insofar as

multiplying rows by columns. However, it is also possible to take advantage of the

fact that in the defined field, {03} · d = {02} · d E9 d. This gives expressions for each

byte of output for this operation:

r3 {02} · d3 EB {02} · dz EB dz EB d1 EB do

rz d3 EB {02} · dz E9 {02} · d1 EB d1 EB do

r1 d3 E9 dz EB {02} · d1 EB {02} ·do EB do

ro {02} · d3 EB d3 EB dz EB d1 EB {02} ·do .

In [64], a simple means of solving the {02} · d operation is described which is

154

dependent on the value of d:

{02}. d = { (d(6 .. o) & o)
(d(6 .. o) & 0) EB {1B}

if d < {80}

if d?::: {80}

where d(6 .. o) represents the seven least significant bits of the input byte d.

Thus, if the byte value is less than {80}, the operation is a simple left shift-in-

0. If the byte value is greater than or equal to {80}, the result is the same shift,

but then XORed with the value {1B}. Although this solution is defined in terms of

bytes, the XORnet component can easily be used to compute the fixed shift required.

Furthermore, noting that d?::: {80} means that d = 1XXXXXXX, so the MSB of the

byte can be used to determine whether or not the XOR with {1B} is needed, and

can in fact be used directly to implement it in the XORnet by XORing the MSB with

the appropriate bits so that it forms the value {1B} when the MSB is 1. Thus, the

four equations can be written out bitwise as follows, where d(i) represents bit position

i of input data word D from Equation 7.1, rj(k) represents bit position k in byte rj

of result R from Equation 7.1, and R(n) represents bit position n of output result R

from Equation 7.1:

155

R(31) = r3(7)

R(3o) = r3(6)

R(29) = r3(5)

R(28) = r3(4)

R(27) = r3(3)

R(26) = r3(2)

R(25) = r3(1)

R(24) = r3(0)

R(23) = r2(7)

R(22) = r2(6)

R(21) = r2(5)

R(20) = r2(4)

R(19) = r2(3)

R(ls) = r2(2)

R(17) = r2(1)

R(16) = r2(o)

d(23) EB d(15) EB d(7) EB d(3o) EB d(22)

d(22) EB d(14) EB d(6) EB d(29) EB d(21)

d(21) EB d(13) EB d(5) EB d(28) EB d(2o)

d(2o) EB d(12) EB d(4) EB d(27) EB d(19) EB d(31) EB d(23)

d(l9) EB d(n) EB d(3) EB d(26) EB d(ls) EB d(31) EB d(23)

d(ls) EB d(lo) EB d(2) EB d(25) EB d(l7)

d(l7) EB d(9) EB d(l) EB d(24) EB d(16) EB d(31) EB d(23)

d(l6) EB d(s) EB d(o) EB d(31) EB d(23)

d(31) EB d(l5) EB d(7) EB d(22) EB d(l4)

d(3o) EB d(l4) EB d(6) EB d(21) EB d(13)

d(29) EB d(l3) EB d(5) EB d(2o) EB d(l2)

d(28) EG d(l2) EB d(4) EB d(19) EB d(n) EB d(23) EB d(l5)

d(27) EB d(ll) EB d(3) EB d(ls) EB d(lo) EB d(23) EB d(15)

d(26) EB d(lo) EB d(2) EB d(17) EB d(9)

d(25) EB d(9) EB d(l) EB d(16) EB d(s) EB d(23) EB d(15)

d(24) EB d(s) EB d(o) EB d(23) EB d(15)

156

R(ls) = r1(7)

R(14) = r1(6)

R(13) = r1(5)

R(12) = r1(4)

R(n) = r1(3)

R(lo) = r1(2)

R(9) = r1(1)

R(s) = r1(0)

R(7) = ro(7)

R(6) = ro(6)

R(s) = ro(s)

R(4) = ro(4)

R(3) = ro(3)

R(2) = ro(2)

R(l) = ro(l)

R(o) = ro(o)

d(31) EB d(23) EB d(7) EB d(14) EB d(6)

d(3o) EB d(22) EB d(6) EB d(13) EB d(s)

d(29) EB d(21) EB d(s) EB d(12) EB d(4)

d(28) EB d(2o) EB d(4) EB d(n) EB d(3) EB d(ls) EB d(7)

d(27) EB d(19) EB d(3) EB d(lo) EB d(2) EB d(ls) EB d(7)

d(26) EB d(ls) EB d(2) EB d(9) EB d(l)

d(25) EB d(17) EB d(l) EB d(s) EB d(o) EB d(15) EB d(7)

d(24) EB d(16) EB d(o) EB d(15) EB d(7)

d(31) EB d(23) EB d(ls) EB d(3o) EB d(6)

d(3o) EB d(22) EB d(14) EB d(29) EB d(s)

d(29) EB d(21) EB d(13) EB d(28) EB d(4)

d(28) EB d(2o) EB d(12) EB d(27) EB d(3) EB d(31) EB d(7)

d(27) EB d(19) EB d(n) EB d(26) EB d(2) EB d(31) EB d(7)

d(26) EB d(ls) EB d(lo) EB d(25) EB d(l)

d(2s) EB d(17) EB d(9) EB d(24) EB d(o) EB d(31) EB d(7)

d(24) EB d(16) EB d(s) EB d(31) EB d(7) .

The top level configuration of the XORnet SLAB is shown in Figure 7.5, whereas

the implementation of the MixColumns() operation itself is shown in Figure 7.6.

The round key addition is quite straightforward. The input switch of a Boolean

157

Figure 7.5: Top-level XORnet SLAB selection

Figure 7.6: XORnet configuration for MixColumns()

158

Figure 7. 7: Round key addition input switch configuration

SLAB is configured to select all key bytes, and then all of the gates are set to the

XOR operation. Thus, the key bytes are XORed with the incoming datapath bytes.

The configuration of the input switch is shown in Figure 7. 7, and the configuration

of the Boolean logic itself in Figure 7.8. This finishes the implementation of a single

round of Rijndael.

The above round implementation is copied and pasted into each of the other

PEs. Once that was done, to account for the initial key addition and the lack of

MixColumns() in the final round, slight changes were made to the configurations of

the first PE and the last PE. In the first PE, to handle the initial key addition,

another Boolean SLAB (SLAB 0) was used to add in the first round key. This also

required changing the key memory output to that SLAB from key 0 to key 1, and

159

Figure 7.8: Boolean SLAB configured for AES round key addition

thus also requires the external system responsible for generating the subkeys to write

the initial key after the regular round key. In the final round PE, the XORnet was

disabled to bypass the final MixColumns().

With the rounds implemented, all that remains is to configure the routing nodes.

Routing node configuration is fairly straightforward for pipelined implementations,

as they do not have to handle any iterative data. Thus, the first routing node must

simply be configured to put the system input onto the datapath for all possible states,

to ensure the data written into the system gets processed. This is shown in Figure

7.9.

Routing nodes 1 through 9 are all configured identically, and share the simple task

of passing the datapath input to the datapath output in all modes of operation. This

configuration is shown in Figure 7.10.

The final routing node is responsible for sending the encrypted data to the system

output. The system output controller is responsible for ensuring only valid, com

pletely processed data gets sent to the system output. As such, it is based on a state

machine and counter that counts the number of cycles from the start of processing,

160

Figure 7.9: Initial routing node for AES

Figure 7.10: Middle routing nodes for AES

161

Figure 7.11: Final routing node for AES

and then passes any valid data in the routing node to the system output at the end

of that time. This behaviour of the system output controller is not desirable for a

pipelined implementation, however, since it can only be counting from the start of

one block of data being processed. To support the high throughput of pipelined im

plementation, the start signal for the system output controller must be selected as

any valid data input, and the maximum count set to 0 to ensure that the controller

will validate any valid data that comes into the routing node that is destined for the

system output. This configuration is shown in Figure 7.11.

The configurations of each PE and routing node were saved to separate files for

piecewise simulation. The entire configuration was also saved for future simulation.

7.1.2 Simulation of Pipelined AES

Once the configuration files for each PE and routing node were generated, they

could be simulated independently of each other, using test vectors provided in

Appendix C of the AES specification [17]. The provided test vectors are es

pecially useful since they show the result of every operation performed dur

ing encryption, and thus subkey values and the data values after each round

162

are available. The given test vector for encryption takes a plaintext block

Ox00112233445566778899AABBCCDDEEFF (the "Ox" prefix denotes hexadecimal

notation) and a key Ox000102030405060708090AOBOCODOEOF to produce a cipher

text Ox69C4EOD86A 7B0430D8CD B78070B4C55A.

To verify the pipelined implementation of AES, first each of the routing nodes was

simulated independently to verify the correct operation. In a pipelined implementa

tion, the operation of the routing nodes is trivial, and it was easily verified that the

data is routed correctly by each of the routing node configurations. Verification of

the PEs themselves would be a much more difficult task.

Simulation of the PEs first required the PE to be configured from the prepared

configuration files. Configuration was a slower process to simulate for the AES config

uration than for earlier component tests since the greater variety of the configuration

data caused a lot more signal switching to be simulated, thus slowing down execution

time. In fact, more than 99% of the simulation time was for configuration.

Once configuration was completed, the test vectors were applied. First, subkey

values were written in to the PE's key memory. This required thirteen clock cycles.

After that, valid test vectors could be applied, with valid output data appearing once

clock cycle later due to latency introduced by registers at the inputs and outputs of

the PE-FUNC.

For example, to simulate the first round of the pipelined AES implemen

tation, a PE was configured using the data saved from the PEO configura

tion form in the software configuration utility. Then, the VHDL testbench

applied key values: OxD6AA74FDD2AF72FADAA678FlD6AB76FE, followed by

Ox000102030405060708090AOBOCODOEOF twelve times. Only the first of those twelve

repeated values are actually used; the rest are needed to shift the valid key data into

the proper location in the key memory register, and could just as easily be all zeros.

However, if simulating the entire SHERIF system, using the same second key value

163

(which is actually the first subkey applied) as padding allows some slight efficiency

since the same padding value can be written to the other key memories at once, even

though they only require one subkey value. Thus, each PE's key memory would have

a unique subkey value written in, and then all PEs would have the padding/first key

value written twelve times.

Once the key data has been configured, the input test vector can be applied as valid

data. Thus Ox00112233445566778899AABBCCDDEEFF is input to the system with

an extra valid bit prepended to it, and one clock cycle later the output value should

be Ox89D810E8855ACE682D1843D8CB128FE4 (also with a valid bit prepended). As

can be seen in the simulation waveform results in Figure 7.12, the configuration for

the first round of the AES algorithm simulates successfully.

Subsequent rounds of the pipelined implementation were simulated in a similar

fashion, using the subkey values and intermediate values from the example vectors

in [17]. They were simulated in non-interactive mode to speed up the simulation

time, and stored their results in text files to allow verification of correct operation.

For each of the remaining nine rounds, operation was verified against the expected

results from the example vectors in [17], with the output of the final round simulation

being Ox69C4EOD86A7B0430D8CDB78070B4C55A (with a valid bit prepended).

Thus, even though it was not possible to simulate the operation of the whole

system, it is still possible to consider the PE datapath verified for a pipelined imple

mentation of the AES algorithm Rijndael.

7.2 Synthesis Results

While functional simulation proved difficult on the available computing resources,

complete synthesis proved virtually impossible. Early attempts at synthesizing a PE

FUNC ran for nearly two weeks with no result, and ultimately the synthesis process

164

165

was killed to free resources for other tasks. The synthesis attempt took so long because

the PE-FUNC is primarily an extremely large pool of combinational logic (estimated

at more than 800 layers of logic gates), with only the inputs and outputs registered.

Synthesis tools typically have difficulty synthesizing such large designs.

The normal route to synthesizing large designs is to synthesize smaller components

first, then use those as building blocks for synthesizing the total design. Unfortu

nately, the PE-FUNC is the smallest element with registered I/0, and so synthesis of

its component SLABs individually would be sub-optimal since there would be no way

to constrain the speed of the components without having any sequential logic. Adding

more pipelining to the internal stages of the PE-FUNC and thereby breaking it into

several components might allow successful synthesis of the entire PE-FUNC, but that

does not help synthesis of the proof-of-concept design currently implemented.

While more powerful computing resources could potentially complete synthesis

of the existing PE-FUNC, the difficulty of doing so suggests the design is extremely

large and inefficient in terms of area, and that improvements in this respect would

be desirable. Still, it is necessary to at least find area and speed estimates for the

existing design, so a compromise is made.

Each of the basic components of the system was synthesized individually, but

with their inputs and outputs registered to allow for constraining the timing of each

component. A set of registers only was also synthesized, so that the area of the

registers can be subtracted out of the area results for each component to give an

approximate area of the unregistered components as they would appear in the actual

PE-FUNC.

To facilitate this synthesis, VHDL code was written to instantiate each component

of interest as a registered component. These "stub" components were then synthe

sized. To make the synthesis of these stubs easier, all of the configuration registers

(which are already easily-constrained sequential logic) were synthesized first, as was

166

the 8 x 8 L UT, which is primarily configuration register logic with a large combina

tional multiplexer on the outputs.

The following components were synthesized. The stub components are registered

versions of the SLABs in the case of the basic operation components, and thus encap

sulate the configuration register of the component, the core logic, the input switch,

and the byte reordering. The other stubs are just registered versions of the named

components. The input switch and byte reordering were also synthesized as stubs to

allow an idea of how much area they consume overall.

• register_stub (to allow subtracting out of register area)

• config_register _4 7bit

• config_register _73bit

• config_register _130bit

• config_register _244bit

• config_register _252bit

• config_register _256bit

• config_register _288bit

• config_register _324bit

• config_register _4341 bit

• luL8x8

• address_decoder_stub

• outpuLscheduler _stub

• routing_node_stub

167

• key _memory _stub

• boolean_stub

• shifter _stub

• adder_stub

• multiplier_stub

• xorneLstub

• lut_stub

• inpuLswitch_stub

• byte_reorder_stub

Results and analysis of this test synthesis are presented in the following subsections.

7.2.1 Area

All synthesis was performed using 0.18 J.-lm CMOS technology. All area values are

given in square microns (Mm2
). Approximate gate counts are determined by dividing

the total area by 12.97 (Mm2), which is an experimentally determined value for the

area of a 2-input NAND gate in the target technology.

First, a set of input/output registers was synthesized to provide reference values.

The synthesized register_stub component had three 128-bit input registers and two

128-bit output registers, and synthesized with a total cell area of 54121 (approxi

mately 4172 gates), which suggests a single 128-bit register would have an area of

approximately 10825 J.-lm2 (approximately 835 gates) and a single 1-bit register would

have an area of approximately 85 J.-lm2 (roughly 7 gates). These values can be used

to subtract out the area of the registers from the other synthesized stub components.

168

Configuration Register: Area (fkm'2): Gates:
config_register _4 7bit 15022 1158
config_register _73bit 25003 1927

config_register _130bit 40485 3121
config_register _244bit 75949 5855
config_register _252bit 78555 6056
config_register _256bit 79921 6162
config_register _288bit 89044 6865
config_register _324bit 100582 7755

config_register _4341 bit 1374537 105978
luL8x8 234537 18083

Table 7.1: Configuration Register Synthesis Results (Area)

Next, the configuration registers were synthesized independently. The area re-

suits of this synthesis are given in Table 7.1. Note that synthesis results for the

independently-synthesized 8 x 8 LUT are also included here, since the LUT is essen-

tially a configuration register.

The area synthesis results for each of the component stubs are shown in Table 7.2.

The table also shows estimated areas for the core logic by subtracting out the area

of the input and output registers added to the stub components.

The area for a single PE-FUNC can be estimated from the component areas.

Each PE-FUNC contains a 130-bit configuration register, a key memory, 18 Boolean

SLABs, 4 Add/Subtract SLABs, 4 Shifter SLABs, 1 Multiplier SLAB, 1 LUT SLAB,

and 1 XORnet SLAB, 2 129-bit input/output registers, plus an input multiplexer on

the scratch path. The scratch path input multiplexer will be smaller than the input

switch with each SLAB, but for the sake estimating the area it contributes to the

169

Component Stub: Total Area (fLm 2): Register Area: Core Area: Core Gates:
inpuLswitch_stub 96273 69004 27268 2102
byte_reorder _stub 79490 27060 52430 4042

address_decoder _stub 6988 4397 2591 199
outpuLscheduler_stub 332465 130906 201559 15540

routing_node_stub 442203 66806 375397 28943
key _memory _stub 1519422 324897 1194524 92099

boolean_stub 319784 54121 265662 20482
shifter_stu b 319641 54121 265520 20471
adder_stub 353601 54121 299480 23090

multiplier _stub 619822 54121 565700 43616
xorneLstub 1778557 54121 1724436 132955

lut_stub 4039512 54121 3985391 307277

Table 7.2: Component Stub Synthesis Results (Area)

overall PE-FUNC, the input switch area will be used.

Total PE-FUNC Area (18 X 265662) + (4 X 265520)

+(4 X 299480) + (565700)

+(1724436) + (3985391)

+(40485) + (27268) + (21817)

13407036 ~Jm2

approximately 1, 033, 696 gates

With an estimation of the total PE-FUNC area, it is possible to estimate the size

of the entire system (designed to be capable of implementing a pipelined version of

AES), based on 10 PEs, 11 routing nodes, the address decoder, output arbiter, and

the need for registering 137 bits at the inputs and 129 bits at the outputs. The values

for the routing nodes, address decoder, and output arbiter were shown in Table 7.2

along with the areas of the basic components used to calculate the PE-FUNC area.

Total SHERIF Area (10 X 13407036) + (11 X 375397)

+(2591) + (201559) + (22494)

138426378 ~Jm2

approximately 10, 672, 813 gates

Thus, each PE-FUNC is approximately one million gates in size, and the whole

system would be on the order of ten million gates.

7.2.2 Timing

Since it was not possible to synthesize the entire system, performance of the SHERIF

cryptographic hardware module can only be estimated based on the timing analysis

171

of the individually-synthesized components.

When synthesizing the stub components, the configuration clock was constrained

to a 2 ns period, whereas the main clock was constrained to a 7 ns clock period. While

synthesis was not always able to meet these requirements, reports on the slack (either

positive or negative) allow estimation of the clock speed at which each component

could successfully run.

Table 7.3 shows each synthesized component and its largest usable slack for both

the configuration clock and main clock. A negative slack indicates that the timing

requirement could not be met, and is exceeded by the given value. A positive slack

indicates that the timing requirements were easily met, with the given value to spare.

Thus, the latency of a component is given by the clock period minus the slack. Note

that most of the configuration registers are incorporated into the larger components

in the table, and thus their timing is given as part of their parent component.

The critical path for the entire system will be the PE-FUNC datapath, since it

is essentially one large pool of combinational logic. The latency of the PE-FUNC

datapath can be estimated from the component latencies in Table 7.3.

172

Component: Clock Period (ns): Slack (ns): Latency (ns):
address_decoder _stub 7 0.57 6.43

outpuLscheduler _stub 7 -3.64 10.64
routing_node_stub 7 -0.48 7.48

2 -4.23 6.23
key _memory _stub 7 0.61 6.39

2 -4.16 6.16
boolean_stub 7 0.61 6.39

2 -4.28 6.28
shifter _stub 7 0.57 6.43

2 -4.30 6.30
adder_stub 7 -4.25 11.25

2 -4.31 6.31
multiplier _stub 7 -3.36 10.36

2 -4.29 6.29
xornet_stub 7 0.57 6.43

2 -4.63 6.63
luLstub 7 0.61 6.39

2 -8.24 10.24

Table 7.3: Synthesis Results (Timing)

173

PE-FUNC latency - (18 x Boolean latency)

+ (4 x Shifter latency)

+(4 x Add/Sub latency)

+Multiplier latency

+ L UT latency

+XORnet latency

- (18 X 6.39) + (4 X 6.43)

+(4 X 11.25) + 10.36 + 6.39 + 6.43

208.92 ns

A latency of 208.92 ns suggests a that a datapath clock frequency of approximately

4. 78 MHz would be the upper limit of the clock speed. Any other components running

on the main clock will have more than enough time to complete operation with such

a long clock period being used.

The configuration registers have a worst-case latency of just over 10 ns, so running

the configuration clock with a period of 15 or 20 ns should be acceptable. Note that

this means the configuration clock can run more than 10 times faster than the main

clock, if so desired.

7.2.3 Synthesis Analysis

The implementation of the PE-FUNC is clearly the focus of this system, as it con

strains the rest of the system to operate at its speed and consumes most of the area on

the device. Most of the PE-FUNC area, however, comes not from the data processing

174

hardware, but rather from configuration registers and data routing hardware.

The configuration registers alone make up approximately 20% of the total PE

FUNC area; if the LUTs are included in the count, the amount jumps to almost 59%

of the area. The input switches and byte reorder components account for almost 17%

of the PE-FUNC area. Thus, almost 76% of the device area is not directly used for

data computation, but is necessary to offer the desired level of flexibility.

Using an estimated clock speed of 4. 78 MHz, the pipelined implementation of

the AES algorithm should achieve a throughput of 128 bits/cycle x 4.78 MHz =

611.84 Mbps. This offers speed comparable to many software implementations, and

certainly superior to software running on processors of equivalent speed, but is a

little slow compared to some dedicated ASIC implementations or software running

on high-end microprocessors.

7.3 Summary of Testing and Results

This chapter has discussed the simulation and synthesis results for the SHERIF cryp

tographic hardware architecture. While the vast size and complexity of the current

architecture made it infeasible to do system-level functional simulation or synthesis,

it was possible to simulate and synthesize the major components of the design in

order to determine the feasibility of the overall design.

A sample implementation of a pipelined version of the AES algorithm Rijndael was

used to demonstrate the operation of the SHERIF hardware architecture and some of

its flexibility. While implementation of other algorithms would be desirable to fully

verify the flexibility of the system, time constraints forced them to be relegated to

future work.

The basic components of the SHERIF architecture were synthesized in 0.18 J-Lm

175

CMOS technology, and based on component synthesis, the total area of the proof-of

concept SHERIF cryptographic hardware module is estimated to be 138426378 f-lm 2

or approximately 10.7 million gates for a system implemented to allow a fully pipelined

implementation of the AES algorithm. By far the largest contributors to the area

of the device are the PE-FUNCs, each of which has an area of 13407036 pm2 or

1, 033,696 gates. The large size of the PE-FUNC constrains the speed of operation,

limiting the system to running at approximately 4. 78 MHz.

Overall, while the SHERIF architecture seems to offer the desired degree of flexi

bility in terms of its PEs, this flexibility comes at the cost of large area and low speed

of operation. Future research efforts may find ways to overcome these problems.

176

Chapter 8

Future Directions and Conclusions

The design of the SHERIF cryptographic hardware module has been a challenging,

but ultimately rewarding, project. While the SHERIF architecture has been designed

to provide great flexibility in implementing cryptographic algorithms, it provides that

flexibility at the expense of area and speed. Nevertheless, the current version of

the SHERIF architecture provides a basis on which future, more powerful and more

efficient versions may be built, and has suggested several directions in which such

research may go.

8.1 Conclusion

The primary focus of this research has been on the design of a flexible cryptographic

hardware module. Implementation of the SHERIF cryptographic hardware module

has been done solely as a proof-of-concept for the design ideas presented, and as such

its performance in terms of area and speed is sub-optimal.

Careful analysis of several leading block cipher and hash function algorithms led

to the identification of six basic operations that are sufficient to implement a wide

variety of algorithms. Functional components were designed and implemented to

allow these operations to be configured to support the necessary variety of operand

177

sizes. These were then arranged into a PE capable of being configured to implement

a single round of most of the considered algorithms. The PE-FUNC proved to be a

success in terms of flexibility, but its size was also responsible for the overall system's

less-than-desirable performance.

Most of the design difficulties arose from the flexibility that was designed into the

system: the large amounts of configuration data, the complexity and amount of data

routing, and the extreme redundancy which lead to the large device area and slow

speed of operation. Despite these drawbacks, the SHERIF system offers a great deal of

flexibility, not only in terms of the variety of algorithms that can be implemented, but

also in the fact that it supports different kinds of implementations, such as pipelined

and iterative, as well as multiple implementations in parallel. This degree of flexibility

is far greater than that offered by any other cryptographic hardware platform, and

superior to many software platforms as well.

The large area of the SHERIF device (roughly 138426378 Jtm2 or 10,672,813

gates) and its slow clock speed of 4.78 MHz leads to somewhat disappointing per

formance compared to custom hardware, but its throughput of 611.84 Mbps for a

pipelined implementation of Rijndael is on par with or superior to all but the fastest

software implementations on the most modern microprocessors. Thus, even this sub

optimal system implementation offers some performance benefits, and with further

research, the SHERIF architecture could achieve higher speeds and smaller area.

Thus, the design of the SHERIF system and the PE-FUNC can be considered

a success, offering a significant degree of flexibility in hardware implementation of

cryptographic operations. While current performance levels are somewhat low, there

are many possibilities for future that may overcome this drawback and add even

greater power and flexibility to the SHERIF architecture.

178

8.2 Future Research Possibilities

The key drawbacks to the current SHERIF architecture are its large size and low

estimated speed. While the device would significantly outperform general-purpose

microprocessors running at the same clock speed, the low estimated speed means that

microprocessors anywhere from 10 to 100 times faster could be used, to potentially

give equivalent (if not greater) performance. The large area of the device means that

it would be costly to fabricate, and thus a much faster microprocessor may be the

more cost-effective option. Consequently, most of the future research possibilities

revolve around reducing the device area and improving the speed, but some also offer

suggestions for improving the flexibility of the system.

8.2.1 Further Functional Testing

Further functional testing of the current SHERIF architecture would provide greater

insight into the operation of the PEs and the system as a whole. Verifying the applica

bility of the current architecture in implementing the different algorithms discussed

in Chapter 3 would identify any dataflow issues in the current architecture and thus

could guide future revisions of the SHERIF device. Furthermore, testing the applica

bility of the SHERIF architecture against algorithms not considered in the initial

survey would be valuable in determining how flexible the system can be.

8.2.2 Pipelining

Increasing the degree of pipelining within the PE-FUNC would greatly improve the

clock speed and throughput for loop-unrolled, pipelined implementations of algo

rithms. The routing nodes and key memory were designed to handle future pipelin

ing via their counters, which have a configurable maximum value (up to 127). The

drawback is that latency - the number of clock cycles between data being applied

179

and a result becoming available - would increase. Thus, iterative implementations

would see little overall improvement, since they require more of the faster clock cycles

before completion.

The added benefit to further pipelining is that it would allow smaller parts of the

PE-FUNC to be synthesized independently, thus allowing greater optimization and

reducing area somewhat. Whether this would offset the additional area required for

the pipeline registers is unknown.

Careful placement of pipelining registers after the first Add/Sub SLAB, just before

the L UT SLAB, and just before the third Add/Sub SLAB would allow a clock speed

of approximately 18 MHz with a latency of 4 clock cycles (as opposed to the current

1 cycle latency). For the pipelined implementation of AES discussed in Chapter 7,

this would boost throughput to 2304 Mbps, which would be a significant performance

enhancement.

8.2.3 Reducing Device Area

This recommendation is perhaps trivial, but anything that could be done to reduce

the device area would make the architecture more cost-effective, synthesizeable, and

amenable to higher clock speeds. Migrating synthesis to 0.13 J.lm CMOS technology

would help somewhat, but the key to reducing area will be in optimizing the design

of the components.

8.2.4 Elimination of Redundancy

There is a large degree of redundancy in the current SHERIF architecture, as could

be seen in the AES implementation in which 26 out of the 29 SLABs were unused

in a normal round. In that case, almost 90% of the PE-FUNC resources (comprising

roughly 50% of the area) were not being used.

Unfortunately, the flexibility offered by the SHERIF architecture comes from its

180

redundancy, since it offers relatively simplistic routing within the PE-FUNC itself.

The overprovision of resources - especially the Boolean SLABs - could be reduced

with a more complex and flexible data routing scheme. Also, the large number of

input switched and byte reorder components could be reduced by pulling them out

of the SLABs and treating them as separate components. Any such changes would

require careful analysis to ensure that flexibility is preserved.

8.2.5 Basic Component Optimization

There is a lot of room for optimization of individual components. For example, the

LUTs could be implemented with embedded memory, which offers a smaller area

than the current fiip-fiop based implementation but introduces access latency. This

latency could be mitigated by or subsumed into any pipelining that is done, thus

hiding its effect somewhat. Implementing the LUTs as an SRAM would require a dif

ferent configuration methodology, since it would no longer function as a configuration

register.

The adder component might be improved by using only four banks of 4 adders

each that cascade together, rather than two banks of 8. This would reduce the

longest-path delay through the device without posing a problem to most algorithms,

as well as reducing control logic (since only 3 prior outputs would be multiplexed into

the fourth adder) and the number of needed configuration bits. Furthermore, in the

basic 8-bit adder component, replacing the multiplexer that switches between b and

NOT b with an array of XOR gates each controlled by the inverse of the add_subb

control signal would allow a reduction in the total logic, as would replacing the carry

in multiplexer with the inverse of the add_subb control signal. These would provide

minor improvements in area and speed, but in aggregate such minor improvements

may be significant.

The Boolean logic component also has room for optimization. For example, the

181

NOT gate could be removed, since the XOR gate can be used with a constant value

of all ones to provide an inverting effect. Without the NOT gate taking up one of

the 4-to-1 multiplexer inputs, the bypass functionality can be incorporated into that

multiplexer, thus saving a configuration bit and eliminating the need for the 2-to-1

bypass multiplexer. While this is a minimal improvement, given the large number of

Boolean SLABs in the device, it may prove beneficial.

Components such as the multiplier, XORnet, shifter, and adder components might

also benefit from internal pipelining to reduce the depth of the combinational logic.

Again, this introduces potentially undesirable latency. Further optimizations are not

obvious, but are certainly possible.

8.2.6 Allowing Partial Configurations

In simulation, most of the time is spent configuring the device. In reality, even if

configuration takes a long time, once configured, the device can then operate until

powered down. This is an acceptable constraint, but could be improved.

In any algorithm implementation, most of the configuration bits will be zero.

In fact, there will be very large portions of the configuration that are zero-valued.

Configuration could be much faster if parts of the device could be configured inde

pendently, rather than via shifting bits in one at a time through the configuration

registers. If each configuration register could be written directly, then after system

reset, the configuring circuit or processor would only need to write values to the

configuration registers that have non-zero values, with the result of needing to write

fewer bits than the shifting configuration scheme.

The added benefit of allowing partial configuration beyond shortening the config

uration time is that a controlling processor could configure one part of the SHERIF

device while another is processing data. Thus, it would allow a degree of dynamic

reconfigurability, since the configuration could be changed on-the-fly.

182

Adding such a capability would be costly in terms of area and complexity, how

ever, and would require a significant degree of modification to the existing SHERIF

architecture.

8.2. 7 Dynamic Configurations

While performing preliminary investigation of iterative implementations of several

algorithms, a design problem became apparent that had initially been overlooked.

Almost every algorithm considered has a few operations at the very beginning and/or

very end that do not fall within their standard round structure. Thus, a single round

implemented in a PE-FUNC would not be able to perform those extra operations,

and consequently any iterative implementation would also require the use of PE

FUNCs before and/or after the iterative round PE-FUNC to implement those extra

operations. This is wasteful of system resources, since two or three PEs are needed

to do what should be implementable by one.

If the PE-FUNC configurations could change while still running, it would be pos

sible to create iterative implementations that incorporated any additional operations

into the first round, then while the data was being fed back to the input, it could

change configuration to a regular round. This regular round configuration could be

held for the middle rounds, and then for the final round a third configuration could

be loaded to handle any extra final operations. This capability might be tied to the

partial configurability described above, or it could be implemented with an entirely

different system. It would increase the effectiveness of iterative implementations, as

well as offer an ever greater amount of flexibility in general.

8.2.8 Different Dataflow Approaches

The slowness of the current SHERIF architecture is inherent to its design - despite

any pipelining or other optimizations, it will always be relatively slow due to the large

183

amount of logic in its datapath. Thus, future versions of the SHERIF architecture

should investigate alternate dataflow approaches.

For example, using non-regular PEs might be beneficial. In this scenario, each

PE is smaller and more specialized than the PE-FUNC, supporting a small set of

the overall operations. The processing fabric would have a large number of highly

interconnected PEs of this type, moving closer to a fine-grained reconfigurable solu

tion. Such an architecture may help reduce the redundancy of the design, and could

potentially allow different paths through the system to allow for different degrees of

throughput. It would likely have its own currently-unforeseen problems, however.

Another alternate approach that bears consideration is to implement the basic

components as functional units in a small microcontroller-style architecture. This

would allow a much higher clock speed, and would allow greater flexibility since

the algorithms themselves will be written as microcode instructions. While such a

microprocessor-oriented architecture would have lower throughput (since pipelining

would be impossible), there would be virtually no redundancy, and allowing partial

configurations would be easier. Thus, the overall area of such an architecture would

be quite small- likely smaller than the estimated area of the PE-FUNC in the cur

rent design - and so many could be instantiated in parallel on a chip and increase

throughput through parallelism. The added benefit of adapting the SHERIF archi

tecture to a microprocessor-like structure in comparison to other processor-oriented

cryptographic hardware is that the SHERIF architecture would maintain the large

datapath size (128-bit) and configurability, allowing a greater degree of flexibility and

speed.

8.2.9 Subkey Generation

In the future, it would be desirable for the SHERIF architecture to support generation

of subkeys directly within the device itself, rather than requiring an external processor

184

to pre-compute them. This could be supported in a System On Chip (SoC) fashion,

in which a general-purpose microprocessor core is incorporated into the design, or via

a more specialized processing element such as described in the preceding section. The

subkey generation unit would have to interface directly with the key memory compo

nents in the current architecture, but could be interfaced with alternate architectures

in different ways.

8.2.10 Support for Other Cryptographic Operations

Once a version of the SHERIF architecture exists that offers reasonable area and

performance, it may be worthwhile to extend support from block ciphers and hash

functions to stream ciphers and public key cryptography. This would require develop

ment of additional processing elements such as LFSRs to support stream ciphers, and

modular multiplication and exponentiation to support public key operations. These

components would likely have separate datapaths from the block cipher support, since

they require very different models of computation. Integrating such components, how

ever, would make the SHERIF architecture truly flexible.

8.2.11 Improved Configuration Software

While the existing configuration software serves its purpose well, it is very closely tied

to the current SHERIF proof-of-concept implementation and thus does now easily

allow modifications to the SHERIF architecture without redesigning parts of the

software. Thus, a more easily expandable version of the configuration software would

be desirable.

The configuration software could also be modified to generate VHDL code for

configuration registers with initial values set to the desired configuration values. Such

VHDL code would have to be compiled and integrated with the system whenever

configuration changes were made. When simulating, they would initialize the SHERIF

185

system to the set configuration, and therefore allow functional testing of the algorithm

implementation much more easily, since system configuration would not have to be

simulated. This would save hundreds of thousands of clock cycles of simulation time,

and might allow simulation of the entire system to be simulated, rather than just

individual PEs and routing nodes.

Furthermore, while it handles all the bit-flipping and setting, it still puts all the

responsibility for timing on the person implementing the algorithm, which is tricky to

handle, especially for iterative implementations. If the configuration software could

provide a means of implementation that abstracted away from the specific architec

tural details and timing, without having to provide high-level language support, it

would make the algorithm designer's task much easier.

In fact, abstracting further away from the SHERIF hardware would open up the

possibility of using the configuration software with other reconfigurable hardware de

vices. For example, if the configuration software allowed specification of algorithms

in a general sense, it might then generate synthesizable VHDL code that could be run

through an FPGA synthesis tool, allowing easy creation of FPGA implementations

and providing greater efficiency and flexibility than the existing SHERIF system.

Such a software system would clearly move away from being a simple configuration

utility and into the realm of being a cryptographic hardware development environ

ment, which could be the topic of much further research.

8.3 Final Remarks

This thesis has investigated the design and implementation of a flexible cryptographic

hardware module. While the estimated performance of the prototype SHERIF ar

chitecture is poor in terms of area and speed, this research has been valuable in

uncovering a number of problems that must be overcome before such a cryptographic

186

hardware module could be feasible for production. Some of these problems are specific

to cryptographic hardware; others are general problems of reconfigurable computing.

Despite all the difficulties and drawbacks, however, the SHERIF architecture looks

promising, and with further research could one day provide flexibility, ease-of-use, and

sufficient speed to make it a viable alternative to conventional hardware or software

implementation of cryptographic algorithms.

187

References

[1] S. Keshav, An Engineering Approach to Computer Networking: ATM Networks,

the Internet, and the Telephone Network. Don Mills, Ontario: Addison-Wesley,

1997.

[2] D. R. Stinson, Cryptography: Theory and Practice. New York: Chapman &

Hall/CRC, seconded., 2002.

[3] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography. New York: CRC Press, 1997.

[4] J. M. Trinidad, "Programmable encryption for wireles and network applications,"

in MILCOM 2002 Proceedings, vol. 2, October 7- 10 2002.

[5] N. Ferguson and B. Schneier, Practical Cryptography. Indianapolis: Wiley Pub

lishing, Inc., 2003.

[6] L. E. B. III, "Efficiency testing of ANSI C implmentations of round 1 candi

date algorithms for the advanced encryption standard." Online at http: I I csrc.

nist. gov ICryptoToolki tl aeslround1lr1-ansic. pdf, October 13 1999.

[7] B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke, "Hardware performance

simulations of round 2 advanced encryption standard algorithms," tech. rep.,

National Security Agency, May 15 2000. Online at http:llcsrc.nist.govl

CryptoToolkitlaeslround2INSA-AESfinalreport.pdf.

188

[8] J. Burke, J. McDonald, and T. Austin, "Architectural support for fast

symmetric-key cryptography," in Proceedings of the 9th International Conference

on Architectural Support for Programming Languages and Operations Systems,

2000.

[9] "Advanced encryption standard (aes) development effort." Online at http: I I

csrc .nist. goviCryptoToolki tlaeslindex2. html., February 2001.

[10] "New european schemes for signatures, integrity, and encryption (NESSIE)."

Online at http: I lwww. cryptonessie. org.

[11] H. Lipmaa, "Aes/rijndael: speed." Online at http: I lwww. tcs. hut. f il

~helgerlaeslrijndael.html, 2004.

[12] A. G. Wassal and M. A. Hasan, "A vlsi architecture for atm algorithm-agile en

cryption," in Proceedings, Ninth Great Lakes Symposium on VLSI (R. J. Lomax

and P. Mazumder, eds.), (Ann Arbor, Michigan, USA), IEEE Computer Society,

March 4 - 6 1999.

[13] T. D. Tarman, R. L. Hutchinson, L. G. Pierson, P. E. Sholander, and E. L.

Witzke, "Algorithm-agile encryption in atm networks," IEEE Computer, vol. 31,

pp. 57- 64, September 1998.

[14} M. J. S. Smith, Application-Specific Integrated Circuits. Toronto: Addison

Wesley, 1997.

[15] "Performance of camellia." Online at https: I lwww. co sic. esat. kuleuven. ac.

belnessielupdatedPhase2Specslcamellialcamelliaperformance.pdf, Au

gust 31 2001.

[16] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima,

189

and T. Tokita, "NESSIE submission: Camellia." Online at http: I lwww.

cryptonessie.orglworkshoplsubmissionslcamellia.zip, September 2000.

[17] NIST, "Federal information processing standards publication 197 - Advanced

Encryption Standard." Online at http: I /csrc. nist. govlpublicationslfipsl

fips197 lfips-197. pdf, November 2001.

[18] A. Satoh and S. Morioka, "Unified hardware architecture for 128-bit block ciphers

aes and camellia," in Cryptograhic Hardware and Embedded Systems - CHES

2003, vol. 2779 of LNCS, Springer-Verlag Heidelberg, 2003.

[19] L. E. Frenzel, "Cryptochips help eliminate the security bottleneck," Electronic

Design, March 17 2003.

[20] Motorola, Inc. Online at http: I lwww. motorola. com.

[21] Motorola, Inc., "S1 family." Online at http:lle-www.motorola.comlwebappl

spslsiteltaxonomy.jsp?nodeid=03DnXM13ZGSbK47721.

[22] Motorola, Inc., "MPC185 product summary page." Online at http:

lle-www.motorola.comlwebapplspslsitelprod_summary.jsp?code=

MPC185&node!d=01DFTQ42497721.

[23] Motorola, Inc., "MPC190 product summary page." Online at http:

lle-www.motorola.comlwebapplspslsitelprod_summary.jsp?code=

MPC190&nodeid=03DnXM13ZGSbK47721.

[24] Motorola, Inc., "MPC185 security processor technical summary." Online at

http:lle-www.motorola.comlfilesl32bitldocldata_sheet1MPC185TS.pdf.,

February 2003.

[25] Motorola, Inc., "MPC190 security processor technical summary." Online at

190

http://e-www.motorola.com/files/32bit/doc/data_sheet/MPC190TS.pdf.,

February 2003.

[26] IBM. Online at http: I /www. ibm. com.

[27] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith,

and S. Weingart, "Building the ibm 4758 secure coprocessor," IEEE Computer,

vol. 34, pp. 57-66, October 2001.

[28] S. W. Smith and S. Weingart, "Building a high-performance, programmable

secure processor," Computer Networks, vol. 31, pp. 831- 860, 1999.

[29] IBM, "Ibm hardware - IBM PCI cryptographic processor." Online at http:

//www-306.ibm.com/security/cryptocards/html/overhardware.shtml.

[30] IBM, "Product summary - IBM PCI cryptographic coprocessor." Online

at http://www-306.ibm.com/security/cryptocards/html/overproduct.

shtml.

[31] A. W. H. House and H. M. Heys, "FPGA implementation of ATM encryption

algorithms," in Proceedings of NECEC 2000, the Tenth Newfoundland Electrical

and Computer Engineering Conference, (St. John's, Newfoundland, Canada),

Memorial University of Newfoundland, November 2000.

[32] S. W. Smith, E. R. Palmer, and S. Weingart, "Using a high-performance, pro

grammable secure coprocessor," in Proceedings, Financial Cryptography, Second

International Conference FC'98 (R. Hirschfeld, ed.), vol. 1465 of LNCS, (An

guilla, British West Indies), Springer, February 23- 25 1998.

191

[33] K. S. Spring, "High grade communications security: Reprogrammable technolo

gies for commercial wireless devices," in Proceedings of SPIE Conference on En

forcement and Security Technologies (A. T. D. Persia and J. J. Pennella, eds.),

vol. 3575, (Boston, Massachusetts), November 1998.

[34] Cavium Networks. Online at http: I /www. cavium. com/.

[35] D. Carlson, D. Brasili, A. Hughes, A. Jain, T. Kiszely, P. Kodandapani, A. V. adn

T. Xanthopoulos, and V. Yalala, "A high performance ssl ipsec protocol aware

security processor," in Digest of Technical Papers: 2003 IEEE International

Solid-State Circuits Conference, (San Francisco, California), February 9 - 13

2003.

[36] K. Deats, "Hardware focus - cryptographic accelerators," HP Professional,

vol. 13, pp. 10- 11, February 1999.

[37] T. Yamaguchi, T. Hashiyama, and S. Okuma, "A study on reconfigurable com

puting system for cryptography," in Proceedings, 2000 IEEE International Con

ferency on Systems, Man and Cybernetics, (Nashville, Tennessee, USA), October

8- 11 2000.

[38] R. R. Taylor and S. C. Goldstein, "A high-performance flexible architecture for

cryptography," in Cryptographic Hardware and Embedded Systems - CHES'99

CC. K. Ko_J:: and C. Paar, eds.), vol. 1717 of LNCS, Springer-Verlag, 1999.

[39] E. Mosanya, C. Teuscher, H. F. Restrepo, P. Galley, and E. Sanchez, "Crypto

booster: A reconfigurable and modular cryptographic coprocessor," in Crypto

graphic Hardware and Embedded Systems - CHES'99 CC. K. Ko_J:: and C. Paar,

eds.), vol. 1717 of LNCS, Springer-Verlag, 1999.

[40] C. Paar, B. Chetwynd, T. Connor, S. Y. Deng, and S. Marchant, "An algorithm

agile cryptographic co-processor based on fpgas," in Proceedings of teh SPIE

192

Conference on Reconfigurable Technology: FPGAs for Computing and Applica

tions, (Boston, Massachusetts), September 1999.

[41] M. Hileeto and S. J. Simmons, "A low-power reduced-area rom architecture

for cryptographic algorithms," in 2000 Canadian Conference on Electrical and

Computer Engineering, vol. 1, IEEE, May 7- 10 2000.

[42] Z. Shi and R. B. Lee, "Bit permutation instructions for accelerating software

cryptography," in Proceedings, IEEE International Conference on Application

Specific Systems, Architectures, and Processors (E. E. Swartzlander, G. A. Jul

lien, and M. J. Schulte, eds.), (Boston, Massachusetts), IEEE Computer Society,

July 10 - 12 2000.

[43] NIST, "Federal information processing standards publication 46-3 - Data En

cryption Standard." Online at http://csrc.nist.gov/publications/fips/

fips46-3/fips46-3.pdf, October 1999.

[44] P. Davies and S. Robsky, "Customized processor extension speeds network cryp

tology," Electronic Design, pp. 83- 88, September 16 2002.

[45] M. Lewis and S. Simmons, "A VLSI implementation of a cryptographic proces

sor," in CCECE 2003- CCGEI 2003, (Montreal), IEEE, May 2003.

[46] M. D. T. Lewis, "A comparative study of ciphers and their vlsi implementation

for low power communications," Master's thesis, Queen's University, Kingston,

Ontario, Canada, December 2001.

[47] L. Wu, C. Weaver, and T. Austin, "Cryptomaniac: A fast flexible architecture for

secure communication," in Proceedings, 28th Annual International Symposium

on Computer Architecture, 2001.

193

[48] S. S. Raghuram and C. Chakrabarti, "A programmable processor for cryptogra

phy," in Proceedings, ISCAS 2000 - IEEE International Symposium on Circuits

and Systems, (Geneva, Switzerland), IEEE, May 28- 31 2000.

[49] J. Goodman and A. Chandrakasan, "An energy efficient reconfigurable public

key cryptography processor architecture," in Cryptographic Hardware and Em

bedded Systems- CHES 2000 CC. K. Ko,c and C. Paar, eds.), vol. 1965 of LNCS,

Springer-Verlag, 2000.

[50] B. Schneier, Applied Cryptography. John Wiley and Sons, Inc., 1996.

[51] "National institute of standards and technology." Online at http: I /www. nist.

gov., 2004.

[52] NIST, "Federal information processmg standards publication 180-2 - Se

cure Hash Standard." Online at http://csrc.nist.gov/publications/fips/

fips180-2/fips180-2. pdf, August 2002.

[53] J. Jonsson and B. Kaliski, "NESSIE submission: RC6." Online at http: I /www.

cryptonessie. org/workshop/submissions/rc6. zip, September 2000.

[54] J. L. Massey, G. H. Khachatrian, and M. K. Kuregian, "NESSIE sub

mission: SAFER++." Online at http: I /www. cryptonessie. erg/workshop/

submissions/safer++. zip, September 2000.

[55] H. Handschuh and D. Naccache, "NESSIE submission: SHACAL." Online

at http://www.cryptonessie.org/workshop/submissions/shacal.zip, Sep

tember 2000.

[56] NESSIE Consortium, "Portfolio of recommended cryptographic primitives." On

line at http: I /www. cryptonessie. org/deli verables/decision-final. pdf.

194

[57] M. Riaz, "The hardware implementation of private-key block ciphers," Master's

thesis, Memorial University of Newfoundland, St. John's, Newfoundland and

Labrador, Canada, 2000.

[58] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Oxford

University Press, 2000.

[59] J. E. Earl E. Swartzlander, Computer Arithmetic, vol. 1. IEEE Computer Society

Press, seconded., 1990.

[60] L. Xiao and H. M. Heys, "Hardware design and analysis of block cipher compo

nents," in Information Security and Cryptology - ICISC 2002, Lecture Notes in

Computer Science 2587, pp. 164-181, Springer-Verlag, 2002.

[61] A. W. H. House and H. M. Heys, "Preliminary design of a flexible cryptographic

hardware module," in Proceedings of the Twelfth Newfoundland Electrical and

Computer Engineering Conference, (St. John's, Newfoundland, Canada), Memo

rial University of Newfoundland, November 2002.

[62] Sun Microsystems, "J2SE 1.4.2 Documentation." Online at http: I I java. sun.

comlj2sel1. 4. 2lreferenceldocs/index .html., July 2004.

[63] "NetBeans." Online at http: I lwww. net beans. org., 2004.

[64] J. McCaffrey, "Keep your data secure with the new advanced encryption stan

dard." Online at http: I lmsdn.microsoft. comlmsdnmag/issuesl03l111 AESI

default. aspx, November 2003.

195

Appendix A

VHDL Code for Basic Components

A. I Boolean Component

-- Drive Data Outputs
drive_datapath_out15:

PROCESS (a_in15, b_in15, dcon15)
BIOCaN

CASE dcon15 IS
"\Vli!N , 100" =>

-- a AND b
datapath_out (127 IXMNIO 120) <= a_in15 AND b_in15;

"\Vli!N, 101" =>
-- a OR b
datapath_out (127 IXMNIO 120) <= a_in15 OR b_in15;

"\Vli!N , 110" =>
-- a XOR b
datapath_out (127 IXMNIO 120) <= a_in15 XCR b_in15;

"\Vli!N , 111 , =>
--NOT a
datapath_out (127 IXMNIO 120) <=NOT a_in15;

"\Vli!N , 000" =>
-- pass b (the datapath)
datapath_out (127 IXMNIO 120) <= b_in15;

w-I!N OIHERS =>
datapath_out (127 IXMNIO 120) <= b_in15;

END CASE;
END PROCESS drive_datapath_out15;

196

A.2 Shifter Component

-- Left shift operation
dir_left:

PROCESS (data_in, shift_amt, data_mask16, data_mask8,
data_mask4 , data-mask2 , data_mask1 ,
llayer5 , llayer4 , llayer3 , llayer2)

BFGIN
IF (shift_amt(4) = '1') 'THEN

-- rotate/shift left by 16 positions
llayer5 <= data_in(15 IXMNIO 0) & (data_mask16 AND data_in(31 IXMNIO 16));

ELSE
llayer5 <= data_in;

END IF;

IF (shift_amt (3) = '1 ') 'THEN
-- rotate/shift left by 8 positions
llayer4 <= llayer5 (23 IXMNIO 0) & (data_mask8 AND llayer5 (31 IXMNIO 24));

ELSE
llayer4 <= llayer5;

END IF;

IF (shift_amt (2) = '1 ') 'THEN
--rotate/shift left by 4 positions
llayer3 <= llayer4(27 IXMNIO 0) & (data_mask4 AND llayer4(31 IXMNIO 28));

ELSE
llayer3 <= llayer4;

END IF;

IF (shift_amt(1) = '1') 'THEN
-- rotate/shift left by 2 positions
llayer2 <= llayer3 (29 IXMNIO 0) & (data_mask2 AND llayer3 (31 IXMNIO 30));

ELSE
!layer 2 <= llayer3;

END IF;

IF (shift_amt (0) = '1 ') 'THEN
-- rotate/shift left by 1 position
from_left <= llayer2(30 IXMNIO 0) & (data_mask1 AND llayer2 (31));

ELSE
from_left <= llayer2;

END IF;
ENDPROCEBS dir_left;

197

A.3 Add/Sub Component

A.3.1 Sample Code for 8-bit Adder Block

seLcin:
PROCEES (carry _in , connect, add_subb)
BEG1N

-- Determine carry-in
IF (connect = '1 ') '!HEN

cin <= carry_in;
ELSE

IF (add_subb = '0 ') '!HEN
cin <= '1 ';

ELSE
cin <= '0 ';

END IF;
END IF;

ENDPROCEES set_cin;

-- invert b input if subtracting
seLb_input:

P:ROC.Effi (b, add_subb)
BEG1N

IF (add_subb = '0 ')'!HEN
b_internal <=:NOT b;

ELSE
b_in tern a! <= b;

END IF;
END PROCEES seLb_input;

-- Perform the addition
adder:

P:ROC.Effi (a, b_internal, cin)
BEGIN

-- Perform the addition
y_prime <= ("0" & a) + b_internal + cin;

END PROCEES adder;

-- Separate adder outputs into data out and carry out
drive_output:

PROCEES (y _prime)
BEGIN

y <= y_prime(7 IXMNIO 0);
carry_out <= y_prime(8);

END P:ROC.Effi drive_output;

A.3.2 Sample Code for part of 64-bit Adder Block

adder_inst4: add_sub_Sbit
PORI'MAP (-

-- data inputs a, b, carry-in

a => a_in4,
b => b_in4,
carry_in => cout3,

-- control inputs connect, add_subb

connect=> conn4,
add_subb => add_subb4,

-- data outputs y and carry-out

y => sum4,
carry_out => cout4);

198

mux4:
PROCEBS (s4, a_in4x, sumO, sum1, sum2, sum3)
BEGIN

CASE s4 IS
V\lm" "000" =>

-- direct input
a_in4 <= a_in4x;

V\lm" "001" =>
-- adder 0 output
a_in4 <=sumO;

V\lm" "010" =>
-- adder 1 output
a_in4 <= sum1;

V\lm" " 011" =>
-- adder 2 output
a_in4 <= sum2;

V\lm" "100" =>
-- adder 3 output
a_in4 <= sum3;

V\lm" OIHERS =>
a_in4 <= a_in4x;

END CASE;
END PROCEBS mux4;

A.4 Configuration Register Components

reg_store:
PROCEBS (config_cJk , rstb)
BEGIN

IF (rstb /= '1') '!HEN
- Clear the lookup table
reg <= (OIHERS => '0 ');

ELSIF (confi g_clk 'EVENT AND confi g _c I k = '1 ') '!HEN
IF (config_enable = '1 ')'!HEN

-- shift out least significant config bit
--shift-data_ out <= reg (0);
-- shift in new config bit as MSB
reg <= shift_data_in & reg (255 IXMNIO 1);

ELSE
-- hold register value
reg <= reg;

END IF;
END IF;

END PROCE38 reg_store;

-- Drive data output
data_out <= reg;
shift_data_out <= reg (0);

199

Appendix B

Configuration Formats

B.l Boolean SLAB Configuration Format

The Boolean SLAB Configuration is 288 bits, partitioned as follows:

• Most significant 128 bits are constant data (bits 287 down to 160).

• Next 48 bits control the input switch (bits 159 down to 112).

- The most significant 16 bits of the 48 control scratch path multiplexers,
selecting between datapath and scratch values.

- The least significant 32 bits control datapath multiplexers, each 2 bit group
selecting between datapath, scratch, constant, and key values.

• Next 64 bits control the byte reordering (bits 111 down to 48).

- Each 4 bits of the 64 selects which of the input bytes is switched to the
output byte corresponding to the position of the bits.

• Least significant 48 bits control core Boolean component (bits 47 down to 0).

- Each 3 bit group corresponds to an output byte, the MSB controls bypass,
while the LSBs selected between AND, OR, XOR, and NOT operations.

B.2 Shifter SLAB Configuration Format

The Shifter SLAB Configuration is 252 bits, partitioned as follows:

• Most significant 128 bits are constant data (bits 251 down to 124).

• Next 48 bits control the input switch (bits 123 down to 76).

- The most significant 16 bits of the 48 control scratch path multiplexers,
selecting between datapath and scratch values.

- The least significant 32 bits control datapath multiplexers, each 2 bit group
selecting between datapath, scratch, constant, and key values.

200

• Next 64 bits control the byte reordering (bits 75 down to 12).

- Each 4 bits of the 64 selects which of the input bytes is switched to the
output byte corresponding to the position of the bits.

• Least significant 12 bits control core Shifter component (bits 11 down to 0).

- The most significant 4 bits are bypass control for each 32-bit output.

- The least significant 8 bits control the shifters, with each 2 bit group
controlling rotate/shift and right/left.

B.3 Add/Sub SLAB Configuration Format

The Add/Sub SLAB Configuration is 324 bits, partitioned as follows:

• Most significant 128 bits are constant data (bits 323 down to 196).

• Next 48 bits control the input switch (bits 195 down to 148).

- The most significant 16 bits of the 48 control scratch path multiplexers,
selecting between datapath and scratch values.

- The least significant 32 bits control datapath multiplexers, each 2 bit group
selecting between datapath, scratch, constant, and key values.

• Next 64 bits control the byte reordering (bits 147 down to 84).

- Each 4 bits of the 64 selects which of the input bytes is switched to the
output byte corresponding to the position of the bits.

• Least significant 84 bits control core Add/Sub component (bits 83 down to 0).

- The most significant 34 bits control the most significant adder bank.

* Bits 33 down to 31 control input multiplexer to adder 7.

* Bits 30 down to 28 control input multiplexer to adder 6.

* Bits 27 down to 25 control input multiplexer to adder 5.

* Bits 24 down to 22 control input multiplexer to adder 4.

* Bits 21 down to 20 control input multiplexer to adder 3.

* Bits 19 down to 18 control input multiplexer to adder 2.

* Bit 17 controls input multiplexer to adder 1.

* Bit 16 controls carry in to adder 0.

* Each 2 bits fro 15 down to 0 control connect and add_subb signals for
corresponding adders.

- The next 34 bits control the least significant adder bank.

* Bits 33 down to 31 control input multiplexer to adder 7.

201

B.4

* Bits 30 down to 28 control input multiplexer to adder 6.

* Bits 27 down to 25 control input multiplexer to adder 5.

* Bits 24 down to 22 control input multiplexer to adder 4.

* Bits 21 down to 20 control input multiplexer to adder 3.

* Bits 19 down to 18 control input multiplexer to adder 2.

* Bit 17 controls input multiplexer to adder 1.

* Bit 16 controls carry in to adder 0.

* Each 2 bits fro 15 down to 0 control connect and add_subb signals for
corresponding adders.

- The least significant 16 bits control bypass for each output byte.

Multiplier SLAB Configuration Format

The Yrultiplier SLAB Configuration is 244 bits, partitioned as follows:

• Most significant 128 bits are constant data (bits 243 down to 116).

• Next 48 bits control the input switch (bits 115 down to 68).

- The most significant 16 bits of the 48 control scratch path multiplexers,
selecting between datapath and scratch values.

- The least significant 32 bits control datapath multiplexers, each 2 bit group
selecting between datapath, scratch, constant, and key values.

• Next 64 bits control the byte reordering (bits 67 down to 4).

- Each 4 bits of the 64 selects which of the input bytes is switched to the
output byte corresponding to the position of the bits.

• Least significant 12 bits control core Multiplier component (bits 3 down to 0).

- The 4 bits are bypass control for each 32-bit output.

B.5 L UT SLAB Configuration Format

The LUT SLAB configuration can be considered to have two parts, the control con
figuration at the SLAB level, and the actual L UT data itself. They will be considered
separately.

The L UT SLAB Configuration is 256 bits, partitioned as follows:

• Most significant 128 bits are constant data (bits 255 down to 128).

• Next 48 bits control the input switch (bits 127 down to 80).

- The most significant 16 bits of the 48 control scratch path multiplexers,
selecting between datapath and scratch values.

202

- The least significant 32 bits control datapath multiplexers, each 2 bit group
selecting between datapath, scratch, constant, and key values.

• Next 64 bits control the byte reordering (bits 79 down to 16).

- Each 4 bits of the 64 selects which of the input bytes is switched to the
output byte corresponding to the position of the bits.

• Least significant 12 bits control core LUT component (bits 15 down to 0).

- Each of the 16 bits controls bypass for corresponding output bytes.

The L UT Data Configuration is 32768 bits, partitioned as follows:

• Each 8 bits of data represents the output corresponding to the equivalent ad
dress input. Thus, if the address "11111111" was input to the LUT, the most
significant 8 bits of the 32768 would be selected for the output; similarly, if the
address "00000000" was input, the least significant 8 bits would be selected.

B.6 XORnet SLAB Configuration Format

The XORnet SLAB Configuration is 4341 bits, partitioned as follows:

• Most significant 128 bits are constant data (bits 4340 down to 4213).

• Next 48 bits control the input switch (bits 4212 down to 4165).

- The most significant 16 bits of the 48 control scratch path multiplexers,
selecting between datapath and scratch values.

- The least significant 32 bits control datapath multiplexers, each 2 bit group
selecting between datapath, scratch, constant, and key values.

• Next 64 bits control the byte reordering (bits 4164 down to 4101).

- Each 4 bits of the 64 selects which of the input bytes is switched to the
output byte corresponding to the position of the bits.

• Least significant 4101 bits control core XORnet component (bits 4100 down to
0).

- The most significant bit selects mode of operation (1 for 64-bit mode, 0
for 32-bit mode).

- The next 4 bits control bypass for corresponding 32-bit outputs.

- The next 1024 bits (4095 down to 3072) control output bit generation for
the most significant XORnet. Each group of 32 bits selects which input
bits contribute to generating the corresponding single output bit.

203

B.7

- The next 1024 bits (3971 down to 2048) control output bit generation for
the next XORnet. Each group of 32 bits selects which input bits contribute
to generating the corresponding single output bit.

- The next 1024 bits (2047 down to 1024) control output bit generation for
the next XORnet. Each group of 32 bits selects which input bits contribute
to generating the corresponding single output bit.

- The least significant 1024 bits (1023 down to 0) control output bit genera
tion for the least significant XORnet. Each group of 32 bits selects which
input bits contribute to generating the corresponding single output bit.

Key Memory Configuration Format

The Key Memory Configuration is 4 7 bits, partitioned as follows:

• Most significant 7 bits are maximum count of the shift counter (bits 46 down
to 40).

• Next 7 bits are the maximum count of the reload counter (bits 39 down to 33).

• Next 4 bits are the shift amount (bits 32 down to 29).

• Least significant 29 bits control select between keyO and key1 for each of the 29
SLABs.

B.8 PE-FUNC Configuration Format

The PE-FUNC Configuration is 45274 bits, partitioned as shown in Figure B.l.
The 130-bit top level configuration shown as the most significant bits of the PE

FUN C configuration is partitioned as follows:

• Most significant 128 bits are constant data (bits 129 down to 2).

• Least significant 2 bits select initial scratch input between SLAB 0 key, SLAB
1 key, constant, or datapath values.

B.9 Routing Node Configuration Format

The Routing Node Configuration is 73 bits, partitioned as follows:

• Bit 72 enables streaming operation.

• Bit 71 enables three-state operation.

• Bits 70 downto 64 are the maximum count for system output counter.

• Bits 63 downto 57 are the maximum count for the stream counter.

204

Top-level config (130) Keymem config (4 7)

Boolean config (288) Boolean config (288)

Boolean config (288) Boolean config (288)

Shifter config (252) Boolean config (288)

Add/Sub config (324) Boolean config (288)

Multiplier config (244) Boolean config (288)

Shifter config (252) Boolean config (288)

Add/Sub config (324) Boolean config (288)

LUT config (256) LUT data (32768)

Boolean config (288) Boolean config (288)

Boolean config (288) Boolean config (288)

Shifter config (252) Boolean config (288)

Add/Sub config (324) Boolean config (288)

XORnet config (4341) Boolean config (288)

Shifter config (252) Boolean config (288)

Add/Sub config (324) Boolean config (288)

Figure B.l: PE-FUNC Configuration Format

205

• Bits 56 downto 50 are the maximum count for data counter 1.

• Bits 49 downto 43 are the maximum count for data counter 2.

• Bits 42 downto 40 select the datapath output for the IDLE state.

• Bits 39 downto 37 select the datapath output for the STREAM condition.

• Bits 36 downto 34 select the datapath output for the RUNNING1 state.

• Bits 33 downto 31 select the datapath output for the RUNNING2 state.

• Bits 30 downto 28 select the feedback output for the IDLE state.

• Bits 27 downto 25 select the feedback output for the STREAM condition.

• Bits 24 downto 22 select the feedback output for the RUNNING1 state.

• Bits 21 downto 19 select the feedback output for the RUNNING2 state.

• Bits 18 downto 16 select the system output value.

• Bits 15 downto 12 select the start signal for the key memory.

• Bits 11 downto 8 select the start signal for the stream controller.

• Bits 7 downto 4 select the start signal for the system output.

• Bits 3 downto 0 select the start signal for the datapath.

B.lO System Configuration Format

The system configuration is 453543 bits and consists of an interleaving of routing
nodes and processing elements. For the proof-of-concept system, the overall configu
ration is as follows:

• Routing Node 0 Configuration

• PE-FUNC 0 Configuration

• Routing Node 1 Configuration

• PE-FUNC 1 Configuration

• Routing Node 2 Configuration

• PE-FUNC 2 Configuration

• Routing Node 3 Configuration

• PE-FUNC 3 Configuration

206

• Routing Node 4 Configuration

• PE-FUNC 4 Configuration

• Routing Node 5 Configuration

• PE-FUNC 5 Configuration

• Routing Node 6 Configuration

• PE-FUNC 6 Configuration

• Routing Node 7 Configuration

• PE-FUNC 7 Configuration

• Routing Node 8 Configuration

• PE-FUNC 8 Configuration

• Routing Node 9 Configuration

• PE-FUNC 9 Configuration

• Routing Node 10 Configuration

207

' :w ,.

