








A COMPARATIVE STUDY OF ENDOTRELIN AND SMlAFOTOXIH ACTION

IN VASCULAR AND NON-VASCULAR SMOOTH MUSCLEl

BY

EXONG ITO EKONG ETA. B.M., B.Ch (Big.)

A thesis submitted to the School of Graduate studies
in partial fulfilment of the requirements for the degree

of Master ot Science

Faculty of Medicine
Memorial university of Newfoundland

spring 1991

st. John's Newfoundland



.+. Nalionallibrary
01 Canada

=~=C~IViceSBranch
395WellinglOnSl'eet
on-,OrUrIo
t<lA0N4

:b~~~enalionale

Oirectiondesa~silionsel
des seMces bibliographiques

395,n..oeWellington

~rn.~~)

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada t.Q reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
In any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accorda une licence
irrevocable at non exclusive
permeltant a la Bibliothllque
natlonale du Canada de
reprodulre. preter, dlstribuer ou
vendre des copies de sa these
de quelque manlsre at sous
quelque forme que ce salt pour
mettre des exemplalres de cette
these a 1. disposition des
personnes interessees.

L'auteur conserve la proprlete du
droit d'auteur qui protege sa
these. Ni la thllse ni des extraits
substantiels de celle-c1 ne
doivent etre Imprimes ou
autrement !"eproduits sans son
8utorisatlon.

ISBN 0-315-82&&3-0

Canada



Thb th••i. ill dedicatlld to .Y pU'lInt. and
to lI.y .on, Ito.



ABSTRACT

Tha hypothe.is that endothelin (ET-l} ill the endogenous ligand. for

"Iarafotoxin receptore- (SRTX receptors) was examined. The actiOI'll of ET-l

and SRTX-b were compared with those of the well characterized

vasoconstrictcr, norepinephrine (HE). The rationaie wall to identify and

compare the transduction-effector mechanisms of these peptidee versus NE in

vascular and non-vascular smooth mu~_les.

In this stUdy, the ret eorta end enococcygeus muscles were used as

represantativoe of vallculer and lIon-'/aecular smooth mUllcle, reopGctivoly.

The role of extraceU'Illlr CBZ• was studied by omitting caZ. trom the

physioiogicei saline solution, and the contribution ot voltege-opereted CeZ"

Channels (VOCes} &l;11I....d by d.termining the effactll o! nitedipine.

addition, the effects of ryanod.ine, which interferes with the release of

celluler CaZ., was also atudied. The roles of arachidonic acid products were

datermined by studying the effects of the cyclooxyqenal!le inhibitor,

indomethacin. and the lipoxygenase inhibitor, nordihydroguaiaretic eeid

(NDGA). The contractions ellcited by E1'-l and SRTX-b (10 OM), or "'E I 1 ~M)

were approximately equieffective in term. of tension developement end

correepond to ECSO values, and these concentrations were thus used throughout

the stUdy. In CaZ·-free Krebs, the three a90n18t8 qenerated approximately

similar 1evelB ot' tone in the aorta and t':q anococcYgeu& correspondlng to 18

and S ~ of the maximum response, respectively. Nl.fedipine, 10 ~M,

eigniticantly inhibited responees to E:T-1 in both the aos:ta and anocoecyqeue;

the responeee to SRTX-b and NE were, however, not eiqnificant1y effected in

either tiesue. A combination of 10 ~M ryllnodine and nifedipine caused nellr

cOll\p1ete inhibition of responle to ET-l in thlll aorta and ello lignl.ficant1y



11·PO:qo9.n••• inh.LbitoE", MoeA, inhibited the E"e.pon•• to tT-i in to-;e aOE"ta and

30 nH both iT-I and SRTX-b induced mY0genic act.ivity il\ norully qui••cent

anococcyqeu. Illulcle. A8 deteI1!lined by the lo.e of Iayoqenic activity, the

til.ue. recovered more rapidly trOll'l SRTX-b than ET-l, with complete recovery

apparont aftllr 2.62 t 0.85 and 5.22 :t 0.06 1'1, re.peetively. Omitting Ca2' frOll

the Krebe solution raduead recovery timet to 1.62 t 0.2 and 2.4 t 0.51 1'1,

re.peetively.

In eonl"lul10n, the .tudie. performed indicata that .. number of c.ll

ei9nllliin9 proce.e.. are aetivat.d by tT-l .nd SRTX-b in IlIlOOth IIl\ltcl. lind

th1. cOIlld aecOIlnt for the va.ded r.spon.... The ."qq••tion that iT-I aol.ly

act. on the 'SRTX J;'lIc.ptor,· •• propo••d by Klooq .nd Sokoloveky 11989).18

probabiy too .l.ap1.i.tie. R••ult. frc. thi••tudy .leo indleat. that ti••u.

"arlabillty doe. exlet and, i.ldeed, .ubel••••• of KT/SRTX t.eepton have been
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Chapter 1

INTRODUC'1':ION

1.1. Vaecular tOIUI.

The control ot: vaac.... lar tone hall continuad to ba an en19mll to physiciana

and medic,H researchers alike, the pluralit.y of antihypertena1.vea attest to

this. Whatllver ltl cauee,and theorlel llbound, the charactedstlc hemodynamic

fillature of hyplllrtenillion il a &ustained elevation in total peripheral vascular

realatllnce, with variable cardiac output (Lund-Johansen, 1977). Control of

resistance and capacitance functiona in paripharal circulatiOJ\ haa baen ahown

to be dependent on the tone of vascular smooth muacle (Mel lander and

Johanason, 1968). Vascular tone ia harmoniously controlled at various

levels; extrinaically by neural and humoral inputs and intrinsically by the

propertiell ot: etru.ctural components of the smoot.h mUGcle. Con8llquently,

hyperteneion may be viewed au a failure of circulatory re<jlulation by on8 or

Illore of the88 mechanisml (Brody It 41., 1980). Thl' vie.., 11 not ehared by

rOlkow (1990) ...ho emphasizes that structural changes of reshtance velsale

are the kly eite of disturbance in eBlential hypertension. Nonethelen,

conlliderable evidence points to alterations, at the ce1lull.r level, in the

regUlation of vascular tone all at ieaet a contributinq factor to the etiology

ot hyperteneion (Mulvany, 1989, Tri<jlqlo, 1984). Thus, stu.c!lea of the v4riou.

influeneell that can afteet tne level of vascular Il1IOOth IlI\Ilcie tone ara

central to turthering our understandinq ot not only (lormal control prOC.88SS

but allo cnange. that may provs to be the basie 1.or tlyperten'l~ dileao•.

since this thesis concerna tho pharm..cology of a tamliy of potent

valloconstrict~r peptidel, the endotnelinl!, ths int.toduction ... lil focus on



peoc••••• th.t requlate .,..culae tone. 1'hu., it i. apparent that vaacular

MlOOth lll\Iaeia i_ upoaeel to a wida array ot atl.auli ranqinq troe _chanical

to eh_ieal, which uy be ucitato.ry or inhibito.ry, and that vaacular ton. at

any point in t1me La tha algebraie 'UlIl ot reaponae. to th••• inputs. Kost,

it not aU, ot the.e .vent, or st1Dl1i lire medllltad by r.c.ptor llctivlltion,

eubsequont aignal trllnsduction and rll.ultant phydoLOljIic r.sponaCl which, i"

thil Cllse, would blI contrllction or relaxation.

Receptors tor neutotrln.mittau such as norepinephrine and .catyLcholin.

are no lonqer abstrllct conc.pte a. it hat b.coma po•• ible to biochemically

II01ubUi;ta and holat. thClm and, with molecuhr biological tIilchniquee,

detet'Dline their IIJIllno acid ••qu.nce. We now know that th.a. recepton are

membnn. protein. with diltinct contigurationa. Th. wid. array ot .timu1i

earller _ntioned arrLv. at the raceptol." either .. _c:hanical aivnala, .\Jch

as .tretch, whlch in the Intact orqanil.', _y be a rite in Intrava.cular

diatending pre.aura, or elactll."ica1 ati.lluli applL.c:I directly or induced by

ch_lcal. (11.9. pot••• iUlll chloride or by a wlde vllri.ty ot neurotrllneIll.Lt:t.rl

ranqinq trOlII liJaple &IIIino acldl, luth all qlycine, to polypeptide horll'Onel lind

the _ll known neurotranllllltters atetylcholine ."d catechol_i.na.).

The tint Itap ot ree-ptor aetivatlon involve. the bindinV ot a 9iv.n

1i9and to ita ret.ptor with a resultant conformational. chanVe.

c:ontormational chan'ile in tha membrane ceceptor induces a high affinity atat.

tor aqonht in tha pre••nc. ot q\lanLne nucLeotldlla (Cas.el and Selinqllc,

1976). It wa. later .hown that t':lle quanine nucleoeid•• were bound to clctain

proteins now .imply reterred to .. Q-protein. or 'i/U.nine nucleotide binding

proteioe (DeLeao at .1., neD). It LII blIcollling clear that pla."" IfIlI1Ilbrane

receptorl belonq to IItC\lctur.l1y related tulli.. _ucll all the G prot.in



coupled receptorll or ligand-gated ion channelll (Schofidd and Mlbott, 1989).

Indeed, nlne different genee have been found to code fot C p.r:oteLnB

(FteiBsrnuth et al., 1989). The G-protein LII a ttimer IlIade up of Q, Band y

Bubunits which are necellllary for interaction with receptor, bllt the

db.ocLation of lIubunLtll La requi.r:ed fot activation. There appean to be a

conllnaus of opLnicn that the Q subunit, Which binds ths ac;tivated receptot

and GTP, effects the tranlduction procel8 to the amplifiel:' en:r.yme Iystem in

an aqonL.t-dependent manne.r: (eel Figurs 1). Tho pl:'esence .nd prepunderance

of thell8 ;unplifier eny:z;mes appeal:' to be tillll",," dllpendent and their actlvation

ie agonLst dependent. Thus, the activation of adenylatCl cyclallll and the

re.dtant increaae in c;l\MP In cardiac mlillcle leads to increased contractLle

ability whereae in smooth muscle the increasll in eMP leadB to rela,,-a.tion

(sharma <lind Bhdla, 1989).

The second meesengers produced by the ampLLfi.IU· en:r.yrne phollphoLLpaee C

vL:r., DAG and 1Pl, act interdependently. InoBitol l,4,S-trLlJphoephate (IP,)

Ln.:!·lcee the cell to mobl.1i:r.e etill another mellenger, calclulll ions (C,,2',

Lrolll endoplai'lmic (sarcoplaemic) reticullllll or cdeisome depending on the cell

(Berridge, 19S5). In gsneral, the IIcond meullngen bind to reqlllatory

components of a protein kinase, an en:r.yme that acttvatee or inhibits "

cellular reeponee such ae contraction or eecretion by add Lng phOBphOtyl{POsZ",

groups to p"rticulu' proteine. Caleium binds to a family of protetn.

Lnclllding calmodulin and troponin C. In turn, cdci.um-calmodul1n aotivate.

a proteLn kinaee. ActLvat1.on of protein kinue C (PKC) rllquiree CaZ' and

phosphatidyll8rine, and dtacylqlycerol increlllS the affinity of PKC for

these activatore. Peotein kinase C s81llctively phosphorylatll Berinll and

thrllonine rllsidues. It 18 now genetally be1.J,.eved that the ma'ot mllehsnilll1l of



P'i!JVr. 1: Schematic rlpr.sentaticn of receptor activatJ.on by agonist and

80M post receptor Bvents.

A, agonietl R, r.cep~gr; CI, B. y, subunita o~ GTP binding

prot81n, GTP, guanosine triphosphate 1 PLA2, phollpholipase"21 PLC,

pho.pholipall8 C; 1'11'2' phoophatidyHnooito14, S-bispholllphate, PAG,

diacylglycerol; plCC, proteln kinase CI PC, phoaphat1dyleholina,

PA, phosphatidic acid; IPs, inositol 1,4,S-tr!.llIphosphatal SR,

sarcoplasmic ret!.clllum.





re;ulaUon of contr-action is throuqh bindinq of Ca20 to calmodulin and of the

ca2·-callllodulin complex to myoain liqke chain kinase, followed by myolin liqht

chain photphorylation that permits activation of myosin ATPalle by actin (KalI\m

and Stull, 1985J.

The initiation of contraction 1.6 brought about by a tranBient riaa in

cytoeoUc calcium when" call iii stimulated by an external eiqnal. The ca20

enterll throuqh channels that are selectl.ve or rlllatively selillctivlI fot' this

ion and aimultaneous release from intracellular stores aids in the traneient

dse of cytosol1c calclum. Some channels are voltage-dependent and open when

the action of a nourotrar.smitter leads to changes in the transl\'4mbrane

voltage differences that normally exillt acrOSI the membrane; and othst'e open

whlln a hormone Dr neurotransmitter interacte with • cell eurface receptor

that ie linked to channde known as receptor operated Ca2o-ehannels (Carafoli

ancl PenniBton, 1985). Thia rille in calcium is thollght to be responeible for

the transient or initial contraction resuiting from the cascsde of kinase

sctivation l.ading to muecl. contraction with relaxation reBulting when a

fall of cytosolic calcium concentration occurs. The on/off twitch role fot'

caZo may be overridden during a su.tained contraction (RasllIu'88n, 1989).

During a .uetained or tonic cootraction, the intracQUular Ca2+ concentration

does rille ae predicted but only trandently and then it falle back to basal

levele within a minute or BO even though active tension is maintained (Morgan

and Morgan, 1.984; Silver and StuU, 1982). Rasmussen (1.986) postlllatee that,

during the austalned phue, contraction is dependent on extracel1111ar CaZ. in

.pite of the flI.ct that its concentration ie no lonqer elevated. During a

8ufltained contractiun, it appeare that a speciHc ca2·-Bendtive enzyme,

protein kinase C, beCOII\88 associated with the plaema membrane and J.n this



location i8 responsive to hormonally induced changes in the rate of pllllflla

membrane ca2• influx .t"atheJ:' than ehanoes in Ca2• concanl:.J:ation (Sl\aal:1T1an st

.1.,1989). Thus, it .sottlle that thees ie altsrod llensit:i.vity of cootractLls

proteins in the presence of activated p.t"otein kinue c at bual ca2• levels.

The transd.ant .t"iaa in intracellular calcium and 011.0 toqether cause

protein kinase c to ase:ociate with plasma msll'lbrana. Unlika IP3, 0110 remains

11'1 the membrane; loa long a8 the 0110 cOl'ltel'lt of the membrane rerllllins high,

protein kil'lase C ramail'l' liu"ociatsd wJ th tl\a membrane (Rasmussen, 1989).

Rallmulllllln (1999) thus concluded that the tranllillnt relll&lIe of Ca?+ from

calcisomell and the m!.gration of PKC frOl\l cytollol. to pl.aafl'la fllelTlbrane are the

hallmark of the initial stages of a eustained ceUular reaponSR to ,,1'1

extracellular llignal. However, the ncent flndinq by Sunako et al. (1990)

that lIulltained high levels of diacylqlyc8J:ol (OAG) do not directly correlate

with incr8asinv or 8us~ained tlll'lsion questions tile eingY1ar role of 01lG 11'1

the suetalned cellular responDe. In a eOOlpadson of measured levlllll of 0"'0

in response to anqiotensin :II and endothelin-l, Sunako ee al. (1990) obaerved

that a oustained. high level of OAG ind.uced by angiotensin waB accompanied by

a loes of tension whereae a dscre«se 11'1 the levol of DAG was aaaociated with

increaeing tension for endotheHn-l.

The key feature of the RaSllluellsn Illodel (Il.asmuuel'l, 1989} of sustained

clll1u1ar reBponlle is tile operation of two temporally diet!.nct brlllnches of the

calc!.ulll meBeenqer-systllml ill. calOlOdulin branch act iva during the lnitial

phase of response, in which thll transIent, IP] -induced rise il'l the cytosoHc

concentration of calcium a.cts on calmodYlln-dependent protein kinaoel to

flltlilr the phosphorylation of one sub8et of cellular proteins, and a PKC

branch, in which the rise in calclym concentratiol'l in the submeOlbrane dOfllaln



acts on plaGma mentbranG-as,oeiated PKC to altsr ths phospho..:ylation of a

dUfsE'ent lIub8St ot cellula..: proteine involved in mediating thG lIeeond,

lIIuetained phallB t'lf cellular responlle. This ",odel further postulatss that the

phyeieal diGtance betwsen the plllBma lIlentb..:ane loelltion of activated PKC and

the ccntrllctile p..:ctaina can be brldq"d by kinase eascadell, one

phoephoryillting the other until. contractile protein phosphorylation is

achieved. The evidence in Gupport of this model is that there is

phosphorylation of two high molscular-weight proteins a,eoeiated with smooth

muscls contraction, desmin and caldesmon, which are localized in domains of

the cell that are remcte from thlil sit8 ot PKC action. In conclusion,

RaGlIlUSSen noted that Ca2• appears to operate all lUI intracellular me88enqer

only during brief cellular re'ponGes or during the initial phases of

sustained rellponaes. Furthermore, a sUllltained reGponlle phaeB 1.6 dependent on

a calcium eignal gene..:ated in a ..:eGtl:ieted region of the cell mentbrane by an

incl:eaee in rate of caz+ c~;;,ling across the membrane. RasmU88en maintains

that this lubmembrane calcium signal acts on calcium sensitive, plasma

membrane-allGociated tl:anaducel:s to generate other eignale. In eGGence, it is

the messengers generated by the tl:ansducel:s, rather than calcium, that convey

information from the cell lIurface to the c:ell interior. It ill,however,

appal:ent that much I:emains to be lea..:ned about the kina8e -;asc:adee and the

lIepaJ:ate control of calcium c:ycllng and the plaGma membrane association of

Th" plar.~, alkaloid l:yanod1no hllll pl:oved to be Il. useful pl:obe fOI:

IItudying the rolee of in~)"'acellular ca2• IItol:ea in initiating and eUlltaining

muecle contraction (Jenden and Fairhul:llt, 1969). Most etudies with ryanodine

have involved investigationG of intracellular calcium stol:es ill ,keletsl and



heart muecl. (Beech, 19851 takatta et Ill., 1985, Sutko 8t 81., 1985).

recently, Hwang ano:1 van Breellllln (19B7) have uilld ryanodinB to eXlI.llline

intracellular calcium etoree in v;uculllr llmooth mUBcle. Caffeine hal ..180

been used in similAr studies (Leijten lind van Breemen, 19841 Sato et d ••

1988). The extent to Which the different calcium lltores in the plaema

membrane, sarcoplasmic reticulum and mitochondria of smooth muscle can be

examined may help to elucidate the nature of the defect in ca2> alluded to in

the studie. by Shibata at al. (1975) and Kwan (l985) concarnin9 chan9ae in

valcular smooth muscle lunction in hypertension.

Recent studiee of endothelial-vascular smooth mUllcls interaction,

howeve;;-. euggeet that changeB in endothelial cell function may be of

importance (Luscher, 1990). Ths endothelium forms an interface between

circulatin9 humoral a91lntB and vascular Bmooth mu.cla which, for a 10n9 time

wa. thoug:ht; to .erve only barrier functionl with the primary role of

regulating the paelage of varied aubetance. betwesn blood and tiaeuee. The

endothelium can alia act AS an endo"'rine org-an in reeponse to stimuli and

relealill proBtaglandins, growth factors, relaxin!! factorl and constr1ct1ng

substances, all of which have potential to modulate growth or reactivity of

the underlying smooth muscle (Loeb a.nd Peach, 1989).

An 1ncrease in blood pressure has the potent1al to alter lIlany of the

normal smooth muscle-endothelium reactions. Endothelial damage potentially

can impair important metabolic functions of the endothelial cell layer,

thereby allowing- exposure of tha vessel wall to factors with which it

normally dosl not come into contact (Loeb and Peach,1989!. Prellure induced

changee also have the potential to alter the ability of the endothel1um to

releass smooth muscle condition1ng factors or to alter cSllponsivllneel of the
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smooth mllscle cell' and vaBeulal;' nerve terminals to Ilubstanees 01:' lIiqnalli

derived trOlll the endothelium (Loeb /lnd Peach, 1989). Golby and Beilin (1972)

firllt proposed that endothelial injury reBulted from an elevation in blood

presBure. Subssq\lently, Huttner at al. (1913) clearly delnOnstJ:'ated that

endothl!ll1al permeability to honB>:adi&h peroxidase and ferritin W'B incJ:"eased

in anima18 made hypertensive by either Bortie coarctation or catecholamine

infusion when eompared to normotenllive 001'lt1;'018. The changes 1n permeabllity

were associated with strueturd ehange. in the endothelium such 'B openinq of

·;t8rC8111,11.II: 9llP. and nuclear pinching'. As permeability incr_aGes, the

lIccess of vasoactive blood borne Bubstances to smooth muscle is alao enhanced

(LOeb and Peach, 1989).

III addition to acting IlB a barrier to blood borne vasoactiVe agents,

eithel:' aa an actual phyaical barl:'iel:' or aa a metabolic bal:'l:'iel:', the

<lndothelium can ayntheBir-e snd I:'elease compounds whl.ch csn increase a8 well

as decrease blood prlillBureC8ee review by LlIachel:',1990j. AlthOugh the

ultimate control at blood prellaure ill the rllGult of a myriad of competing

lignala, an alteration in the syntheaLe, storage, release or responae to

locally acting, tonically .l:81eased endothelium-derived substances could prove

eatastroph!.c to thll: delicate balance of feedback loopa controlling vf.eoactlve

hOl:'mone release, neul:'onal activity levels and cent.l:al reflexes. The

homeoetatic mechani9ms normally controll),nq blood p.l:lissure could bs dillturbed

enough to produce or exacerbate hypertenaion (Loeb and Peach, 1989j. It il

thue apparent that etudiea of the pharmacology of the factors released from

endothelLal ceUa may prove to be prcHtable with respect to furthering our

unde.t"standing of the cellul".t" basis for the inc.t"eased peripheral resistance

IUlecciated with eeeential hype.t"teneion.
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bt.Je the non-ree09nitlon of the en,,:!...l role it eould play in -oduliltlnq t.h.

fl.lnct.!..olu! of valculer .-ootn mulcle, in _pit. Of ita Itrat-.qic .~toldc.l

keen lenla of ob.ervation ot l"urehgott and lawadzki (1980) to indicate to

va.cular phyeiologlat.a and pharJMcologists that there h II'IOre to IIIndothellWll

than 'ust .. phy.lcal barrier.

marked vasodilatatlon in various vllsculi!lr beda J.n .'!.1:LIl. 101•• well eataba_hed

many y.ar& ago {••• rev1ew by FUl;"ch90tt, 1988). It haa allo been

dltll'lClnltrated that acetylcholine and other Illulclrinlc _gall1.etl could produce

relaxation of i,ailltltd perfuled or 6upertu8ttd blood ......ela cantneted by

19731 Vanhoutte, 19741. ThUll, it w•• to be expected that IIlUllcarinlc aqoniete

iealated preparetlone of blood v••Beh Ieee rev1"" by !'Il.cchgott., 1988). Thh

lola. not the caae until 1980 when Furchgott and Zawadzkl not.ed. that the non-

relaxatlon of their helical .trip preparat.ion. lola. dlle to the dll••ction

technlque whleh denuded. til. v.llela of endothelium. When th18 procedllr. lola.

modified so that damaglil to the ,ndoth.Ual e.ll lay.r lola. avold.d, the

r ••u1tin9 helical .trip. exhibited good rallxatlon in r:lspon.e to low

concentration. of: acetylcholine. It was damonetr:at.d by light 1Il1crolcopy,

and "lao by Icanning electron lIIicrolilcopy IFurchgott It 11., 1981). that there

i_ a dlrect relation.hip between the extent of r:elllxatlon of aortlc

prepolntione by lIcetylchollna lind the reaction of endoth,UlIl c.11. retdned.



One hypctheah to explain the obliga.tory I:'ole of andotheUal calli in

the reldxation of rabbit aOl:'ta by acetylcholine was that this agent, acting

on tha muscarinic receptor in thelle cellll, stimulat.ed them to release •

Bubstance that, in turn, acta on lIl1\OOth mUlcl. c8llB in the vasgel media to

act.ivatG relaxation. In talilt.ing t.hh hypothesis, callcade pllrfueion and

luperfullion procedures hav~ yielded positive result III (Griffith lilt .aI., 1984;

ForetBrmann et aI., 19841 Rubanyi Bt aI., 1985) a.nd the "sandwich" lIIOunta ot

Furchgott and Za'",adzkl (1980) have been consistently positive. Thus was born

the concept of endothelium-darived relaxing factor (EDRF). The nature of

SDRF hall bllen a subject of controversy ranging from the number of pOlillil1.ble

SDRFs to chemical characterization. There seem to be two candidatel 80 far

for the relaxation induced by andothelium. One of them has been named

endothelium-derived relaxing factor (EORFI Furchgott & Zawadzkl, 1980) and

thG other hall been named endothelium-derived hyperpolarizing factor (EDHF)

(Taylor Bt Ill., 1988). SDRF is eaid to increase tisQue cyclic GHP

concentrationa and produces an electricaUy-eilent relaxat.lon, ...hereae EORF

proouceli t.rane1ent hyperpolari~ationae.ociated with opening ot ~-permeable

K·-channels. Thie event. may Barve to initiate relaxation processee and to

close any open voltage dependent Ca-channela (Taylor et a1., 1988). The

findings ot Feleto'l and Vanhout.te, 1988/ Chen and Suzuki, 1990/ Hiller and

Vanhoutte (1989) contirm this postu1at.e. Marshall and Kontos (1990), in a

review of endothelium-derived relaxing tacton, have noted that several

suggestione, including those that EORF ill a product. of Upoxyg8nllse

met.abolilm of arachidonate (Peach lit Ill., 1985), a product ot cytochrome P-

450 oxygllnaae (Singer at Ill., 1984) or a carbonyl-containing cornpcund.

(Griffith et Ill., 1984), hllve been disproved. Iloet recently, Ivid'ance has
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been gathered suqljleatin9 that EORF qenarlt811 by aeetylcholine in blood.

vessels, ~md by bJ:'adykinln in cultured endotheliaL cells, is nitric Qxid.

(pallllllr et &1., 19871 Iqnarro et al., 1987). This view i. euppoctad by

pharmacological similarities between nitric oxide and tORr (19narra .t al.,

1987), by inhibition of aetlan of both n1.tric 011 ide and SDRF by varioue

pharmacoloqlcal blocking aqents luch 8S hemoqlobin and methylene blue (Martin

_t al., 1984). and inhibition of production of both nitric oxide and EORr

tt'om arginine by Nll-monomethyl-L-arqin,lne (L-NMMAI (RaBu ae al., 19891.

In spite of Bueh compelling data, there has been no unanimity of

opinion. Soma inveetiqatorll have been able to l.dentify pharlll&CoLoqlcal

ditterenClJB between nitdc oxide and EOI'IF (Long ee 011., 1987); othlJr

invlJlltigatorll have shown that thll amount of nitric oltide rel.a,ed 1)1'

acetylcholine frOlll vessels or by bradykinin from endothelial clJlh is not

sutt'lcient to explain the observed vasodl1atlon (Mysrs at al., 1989)1

finally, othlJr inv.stigators have been unlll)le to Hnd relellse of nitric oxide

by electron-spin rlJIIOnanC8 technique. coupled with the U88 of epl.n trap.

(Rubanyi Bt 011., 19891. That EDRF may be a nitric oxlde containing compound

that ill lIIuch more active in inducing vaSOdilation than nitric odde itself

haS been euqgeeted. Nltrosothlo1s have properties that render them

appropriate candidate. tor this purpoBB (Myers at ..1 .• 1989; Wei and Kontos,

1990).

The oblJ.gat:ory role of endothelJ.a1 cells for the manifBlltatlon of

aeetylcholine-induced relax"tion extends to m"ny arterl.es in a variety of

species inclUding dog, cat, guinea-pig and humans [Furchgott and Zawadzki,

19801 Furchgott ee al., 19811 Cherry et ttl., 1982), the unexplained

exceptions being the basllar artery ot the dog and coronary arterl' of the pig



(ltatuaic:ual., 198./ Sh1loaka... ac d., 1987).

tha andotIloeUlft-d.per>d.nt r..panaivaneaa to acety1choUne (or to othar

....o.cth'••g.nta) aa notad by Vanhoutt. (1989) La not tilt., aa it can be

IllOdUhU1:1 chronically by heaodyn_ic y.dab1.a or honllOnel natlla (KiUar .c

d., 1986, Cd.•cione at d., 1989). Chronic -od1ll&t1.0n by hGeodYII_ic

..ari.b1ea Ny .ltp1ain ..hy, in anl.AJ.la and in IlullI&na, the .ndoth.11......

dependent reaponaea to acety1choll.n. (&l\d ot the andotheLLlI_dependent

dUatou) are conaider.b1y blllnted in pedpheral veina compar&d to arteriea

(De Mey and Vanholltte, 1982). 1t h importilnt to note that acetylcholine

doeo not circlIlate in blood and in moat UUlI" innervated by choHnergic

narvea, .cetylcholinelter..e, an en;r;yme that ia remilc-kably attectiva in

cilpidly deatroy1.ng the chol1.ner91.c ttanll(l1.ttu, 1.1 pre.ant. Kance, to date,

no avidence haa bean obtainad that acetylcholine rel...ed trOll choUnargic

naevel can r.ach andot.halial cali. Ln IllIOllnta alltticianc to evoka

andothelium-dapendent r.lnationa. HOWRyer, slIb.unc.a cirClilaUn9 in the

blood VO\Ild be potential can<l.ldatal tor tri99aring .ndottlf:U.....-depand.nc

reepenaea. Inde., endotllelhl caLLa, .t l.aat 11\ laC'ga blood ......ls

carryltl9 OllYgenatad blood, contain aradrana:t91c rK.pton that, ..ben

act-lyatad, can evoke .n4othellllllt""dependent relaxation of tha Ilnderlyinq

• .:>oth _acla (COck. and ""'ilia, 1983; H11lar and VanhOlltte, U8S, Vanhoutte

and !liller, 19891. H.nc., J.t 11 likely that aZ-adrenergic andoth.UUfll

dapendent effectl of cltecholl..inee contribute to vaooditator effecta 1.n tha

cOtonary circulation or the eplanchnic bad IVilnhoutte, 1989).

Finally, it hal bean kl\lIWn for decadaa that, when tlQI.I in~raaaea thl:ough

liIc-OjIe arteriea, dillltiition enlilea (-flow-induced vaaodL1I.tetlon-, (aee revle..

by Vanholltle,1989). It 11 now eatabUlhed that thi. phenOlllftl\on La
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emiothelium-dependent. and can b. 1It.t.r1.buted to EDRF caulS_d by an iner•••• ln

shear Itrees. Whether thilll ia 8.condary to rele.,. of autacoid

(ll.catylcholina, ATP. serotonin or lIubetanc8 PI by certain ••1ectLve

endotheli"'1 cells or to direct activation of all endothelial celle by ahaar

atruae 18 uncertain (Vanhoutte, 1989).

1.3. CoAtractiIlg fact.ora.

While learthing for possible heterogeneity of endothelium-dependent

relaxation to acetylcholine, aclanoeine clipt.-;,sphate, arachidonic acid Ilnd

thrombin, it was discovered that endothelial cells, When exposed to certain

stimuli, n.:lt only produced vascular dUator(e) (Furchgott, 19831 Vanhoutte eo

41., 1986), but aleo vasoconstrictors - so called endothellum-derived

contracting- factor(e) (BDCF) (De Mey and VanhQutte, 1982; 19831. At least twc

d.itferent types ot' EDcre have been id.entified IVanhoutte and KatuB1c, 19881.

One type is a rapid onset, hypoxia induced, cyclooxyg-enase inhibitor

reeletant BDCF; " rapid relaxation eneues when normoxJ.a returnl. Thll

substance is still unidentified. 'rhe time cours" ot action makes it unlikely

that the endothelium-derived contracting- factor{l) involved are peptides

relellBed from hypoxic endothelial cella (Rubanyi Ilnd Vanhoutte, 1985;

Vanhoutte et al., 1989), Bince the .l:espons" to hypoxia ill faeter than peptide

induced contraction and can be prevented by a calcium ar., ..1g-onlllt. Indeed,

endothe1in is not stored in endothelial celle (Yanag-isawa Bt d., 1988b). A

eecond type of EoeF is 8enlitiv8 to cyclooxYl;lenase inhibition, and itl

releaBe iB induced by It variety ot atimuli, including- arachidonic acid,

acetylcholine, ca1cimycin (1'.23181), sudden stretch in cerebral arteries ot

dog-, aorta ot (SHR) spontaneously hyperteneive rat, canine aystemic and

pulmonary vlin. (Hiller and Vanhoutte, 1985; Katusic lit al., 1987; De Hey and
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Vanhoutt., 1983). Recent studies (see LUlcher, 1990) 8uqqest that

lIlteration in the production of the constrictell: PGHZ may be a contributing

facto!:' to the inerealle in the peripheral resiltlnee associ.ted with essential

hypsrtendon. A third EDCr LB the peptide endathelin, a factor odqina.lly

.Baociated with the supernatant of cultured endothelial csl1e which pJ:'OdUC88

a 10n9 luting contraction. Thill endothelin-induced contt'action is very

difficult to reverB' and it llJ ('saitant to cyelooxygenase inhibition but ill

attenuated by trypllin (Gillespie at .1.,19861 Yanagillawa at d., 1988_1.

In canine systelllic Bnd pulmonary veins, arachidonic acid augmented

contractions eVOked by norepinephrine; the auqmentatlon waa not obse~ved in

p~epa~ations in which the endothelium had been mechanically ~emov8d (De Hey

and Vanhoutte, 1982). This obeervation was the first demonstration that the

preaence of endothllllial celle can augment, rather than depren, contractile

rellponae of 1IIolated blood vellselli. The facilitation by arachidonic acid of.

the rellponlles of the endothellum of. eyetemic and pulmonary velne wae

p~evented by inhibitorll of the enil'yme cyclooxyqenasli but not by inhibitors of.

prolltacyelin synthetale, thromboxane .ynthatalB or lipoxyqenallB (HUler and

Vanhoutte, 1985). Theile Hndinqe indicate that venoull endothelial celli

could metaboliil'e arach1.d.onic acid into a valloconetrictor proetanoid, other

than proetacyc11.n and thromboxane 1'12'

HOllt recently, the fact that attempt, to bioallsay the endothelium-derived

contracting factor released by acetylcholine have faUed, indicatell that a

very 1abUe lubetance eueh as an endoperoxide intermediate or oxygen-derived

free radical must be involved or that the sl..lbstancQ ie only released towards

the abluminal aide of the blood. vesael wall (t.Uacher, 1990). Scavengers of

oxyglln-derived radicalll, lIuch aa superoxide dismutaslJ do prevent the
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endotheliUlll-delMlndent. eontractlon. to acet.ylcholine in the cerebral blood

v••••l. bue not. In the rat t.horaclc aorta (lIl1ch-Sc:hwelk tie a1 •• 1989 t. It. 1.

p-rtlnent to not. that the r..llull.tion of perfused canine t'eD:lral artert by

acetylcholine con.l.eta ot transient alld IUlt.alned cocponentl. The transl.ent

eceponent 1, ob••rv-.1 with lower concentratlone ot lloC:etylcholine and appears

to be cau,ed by activation of endothelial. "1-111u8carlnic receptors, tha

luat.lned component. 1••••n with higher concentratlona of the cholinergIc:

tl:'lne.tl\ltter and can be attributed to stimulation of 1l2-muscarinie recaptorl

(Rubany! lit .11., 1987). The tran,lent, but not the eustained, reepon•• 1.

inhibited by quinacrine and metyrapone, which 11I991UJt that thE! fo.eme.e 11

madi_ted by a met_bolite of _.eachidonic acid (Rubanyi and Vanhoutte, 1987).

Convll.eellly, hi~h conc.ntn.tiona of catecholalllinea inhibit the auat.int14 but

not the tranei.nt ph••• of the re.pona. to ac.tylchoUn. (Rubanyi .t .11 .•

1985). Th. endoth.lil,llll-d.pIIndtmt contractlona to ac.tylcholine occur with

hi~her conc.ntr_tiona of acetylcholine than tho.e n.eded to rei•••• EDRP

(Laacher and V.nhoutt., 1\186). Thua, wlth hlgher conrentrAtlon. of

Acetylcholine, EDAF Le .till rel.aeed, hOOolev.r, releaa. of the contnctlnljl

factor(s) by higher concentr_tlon of the chol1ner~ic trenemlttar blunt. the

relaxant .ffect with a preponderant contr_ctUe ceepone••

The recent review by Laacher (1990) auma up the current t.eend of

thought, notably th_t a contracting factor other th.n endothelin. namely

proltaglandln H2' may be involved in defec::t1.v••ndotheli.l cell function in

hyperten.ion. N.verth.l•••• " role fOl: endoth.lin haa not been ruled out.

1.3.1 l!:adotbeUa.

Evidence for a va.oc::on.tric::tor endothelial ptlpt.lde c-.me from atudle. on

cultured bovine .ndothell_l celle. whoa. aUplirnatant h_d contractU.



propert1.e& on bovine pulmonary, plg and rabbit coronary arteries (O'Brien and

McMurtry, 1984/ Hickey.e .1., 1985; GilhBpie.e al., 1986). The exhtence

of a new vasoconstractor peptide lIynthsllhsd by the endot.helium w.s

poatlilated after ruling Ollt. the possibility t.hat. angiot.ensin or subst.ance P

could mediate tho.e effects (Gille.pie et &1., 19861.

The contract.ile peptide wae isolat.ed and purlfled fr01ll cultured cells of

porcine aortic endothelium by 1'anagieawa et d. (1988a). Endothel1n was

identified a~ a 2i-llllIino acid, potent vaaoconttrictor pepticle and since it

wao repol:ted that t.here were at least. three endothelin genes in the hllman

genome, t.he productll of it.e expression were designated £'1'-1, £1'-2 and ET-3

(Inolle ee al., 1989). More recently, ET-4 (vasoactive inteatinal cont.ractOl:

- VIC) has been isolated fJ:'om the mouse Isalda .r 41., 19891 and expressed

predominantly in thB; inte.tine, ralsing the p08sibUity of tissus speciflc 1.':1'

varianta. ET-1 i' ldentlcal to the form originally isolated from porcine

endothelial cslla (Itoh at 41., 1988), whereas the amino acid ssquence of ET

J is identlcal to that found in the rat genome (Yanagieawa ee al.; 1988b;

InOll8 et Ill., 1989). Theretore, it was thought that JTI'lny martlllaibn epeciee,

including pig, dog, rat lind human produce the three ieopeptidee of the

.ndotheUn family (1'anaqiBllwa and Masaki, 1989a, b).

1.3.2 Rl9Ulatioo of .yotha.h .Dd r.1•••• ot aDdothaliD.

11 peptide ot 203 IImino acids i. the precursor molecule tor endothellns.

7h8se pro-hormonee demonetrate speciee ancl lsopeptide-epecitiC' diffeJ:'ence. in

amino acid 8equence (Sill)Oneon and Dllnn, 1990a). In addition to contalning

the mature ET peptide, the prepro-precursors contaln 4 cysteine-rich, ET-like

region (15 re.iduel) that ie I\lghly conserved l1'anagieawa et 41., 1988al Itoh

.e aI., 1988). The biologiclIl significance of dUtarencea in amino acid



eequence b,tween the prepro epeciee, and of the pre.ence of ..n ET-Ulte

peptide within the prepro tT, are unclear.

In cuUured endothelial celli, prepro t'1'-l iI proteolyt:icdly cleaved to

form a 38 (human)- or 39 (porcine)-amino acid biq ET (Shil\flli at d., 1989).

Thil is 8ubsequently peoceilead to lIlature £'1'-1 by the putathe 'endothalln

converting en~yme' ('lanagilaw/l lilt 01.1., 198801). 'lanagh'awa and M..aki (19898)

have suqgested that endoproteo1ysis may provide an imporUnt lIit. for

pharmacoloqical intervention.

It appe,u8 that va.cular endothelial cells do not proouce £1-2 or ET-3/

onl}' ET-l, or its mRNI., can be detected in enc:lotheU.. l cell. in culture

supernatant ('{anag-i.awa and Maea.ltl, 1989a.). The expresslon of ET-2 hn not

yet been convlncinqly demon.trated in any tieaue. Shinmi lit oil. (1989) have

demonstrated that ET-3 iIlrnunoreactive matecial iI pceeent in porcine brain

homogenate. In addition, endotheUn and related peptidee can be aynehell1:ted

a.nd secreted from cenal epithelial cella (Shichici at .11. 1989) and

intestinal celh (Saida et Ill. 1989) of non-endotheUal odgin.

Host recent studies (KacCumbar at al., 1989; l"lacCumber at d., 1990,

Yoshbawa et al., 1990) .how that £1 i80peptides are diffecsntially expcll...c:l

only in specific tissues, which auggaat that ti8aue-specific faetors control

the rate of ET gen. expreslIion. Above cited lnvestiqator. demonetrated

tranllcrlptll for both prepro ET-l and prepro £T-3 in edult rat lunq, kidnay,

eye and brain, whereas both ET-3 and £'1'-1 were abundantly exprs88ed ln the

lunq. ml'lNA transcript. for VIC (ET-4) have been found in the murine

int.stlnal tract (Saida et al., 1989). in the rat kidney, I!:T-l W88 axpc...ed

predomlnantly in the lMIdullary vaaa r.cta IHacCumber at al., 1989). '1'he

inability to d8lTlonstrate ET-l qens expression in SOlr18 adult tiuu•• could
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reflect. the relaUve insensitivity of NOJ:'thern IlnalyBis to detect raJ:'e

transcript or peer: hybridization of ET~l and E'r-J probes with

noncomplementary t18'U8 specific tT iaoforms (Simonllon ..nd Dunn, 1990&).

An important aIIpect. of endothelln biology i. the failure to demonstrate,

J..n Li...k.Y., endothelhim-dependent. vlleooonatrictiQn mediated by endotheHn. It

hae been speculated that £1-1 frOtn endothelium is rsqulated at. the level o~

peptide eyntheeh but not at the level of the mechanisms of releaSE<

(Yanatjlisawa and Maskai. 1989a, bl. The induction of E1-1 mRNA and/or peptide

by various chemlcal atimull hall been studied mainly in cultured endothelial

celle. The 91:0\<l1n9 list of phyeiological stillluli that can increase £T-1

production includes thrombin (~an1l9isawa lit al., lSSSa); transforming gtowth

factot B (Tefl-B) (Kur!.hari et al., 1989); anqiotenllin II (Emori Itt al.,

1989) I (Arg)vaBOpuss1.n (l:mori _t al., 1989) I fluid dynlltl\ic _hear atrellB

(~oahizumi ae al., 1989). Thrombin, anqlotenllin II and vallopresdn stilnulatll

phOllpholipuliI C activity in endothelial celle leading to the formation of the

aecond mea.angera inositol 1.4,S-trispltosphate (which mobilizee ca2• frOll'l

intracellular storage lites) and 1,2 diacylglycerol (which IIt1mulates protllin

kina•• Cj. Shear etress aLso increases intracellular free C1l2• concentration

in cultured endothelial cells , both by stimulating the inflUX of

8xtr'acellulllt CaZ. and mobilizing- intracellulat CaZ. (Ando et 1111., 1988).

Indeed, ET-l mRNA and peptide are aiso induced by CaZ· ionophorell and pltorbol

eeter. (Emori at al., 1989, Yanagisawa at 11.1., 1989). These ob••rvations are

consistent with the 1.dea that product1.on of ET~l in endothel1.al celie can

both be ragulatlld by intracellular Caz. and protein kinase C - that is,

poeeibly by PI turnover signalling in endothelial cells.

The 5' promoter region of human E1'-l gena contain. several elements



reiponlivi to 12-0-tetr"dec"noylphorbol 13-"cat"tl ...hich "re found in other

genee that can be induced by phorbol elt~_ .. (Inoue at al., 1989). It ,,1110

eont"inl the nuclear f"ctor-l-binding elementll that h"vll ree"ntly bean

recognized to be involved in rllpona8 to TGF-B. Wh"thar th".e potenti"l

re9"latory DN"- elemente in tn" ET-l gene "re "ctu"Uy involved in tho

regul"tion ot ET-l production by agentll lueh u tnole Ihted abov" will be

determined by promoter mapping studiaa. The level of 2'1'-1 mRNII in

.ndothel1.al cella may be controlled not only by tranacriptional regulatiol1

but allo by post transcdptional r"9ulo\t1.on of mRNIl. degradation. Halt-Ufa

studiea ua1.ng th" tranacription 1.nhibitor aetinomyc1.n D have rnvaalad Chat

ET-l mRNA 1.. extremely labile, ho\ving an lntracellubr half-lite of about IS

minutes (Yllnagisawa at .1., 1989). Thill rapid degradation ie specific tor

ET-l mRNlI, lines a-actin mRNA has a milch longer half-life (10-20 h) in ths

same cells. Both pordne and human ET-l mRNA pouells several 'AUUUA'

eequencllS in the J' non-transhted ragiona. Theile AU motifs ha.ve been

recognir.ed to be involvld 1.1'1 highly lIelective mRNA dsetabllir.ation and ar"

found in mRNAe encoding certain traneiently expraaeed cytokinell. growth

tectorl and nuclear proto-oncogene productl IUludly 1.nvolved 1.n programming

ot cellular 9rowth and differentiation). It 1.e eonce1.vable that ET-l mllY

also belong to thlll claee of eignal molecules.

1.3.3 Pbarmacological effect, of endotbelin,

Endothll1.n haa been deecribed as the lIIOet potent valocon8trictor known

(Yanllqieawa et al., 1988a). The contractile aetiv1.ty of the different

endothelinl in rllnked order ill: ET-2>ET-l~ET-4>ET-J (Yanegieawa et ..1.,

19891 Rodman et a1., 1989; Saida It .1., 1989).

ET-l provoklil8 etrnng IUltained contractione in isolated vallcular Imooch
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muscle p~lIparation8 in almollt all animal specles ano vascular regions

examined including microveue18 (Brain, 1989). Other vallcuLat effects of ET

1 include the stimulation of releil.ee of 8icosanoids lind andotllel1.um-dependent

relaxing factor (EORF) from per fUlled vallcuLar bads (de Nucci lie .Ill" 1988).

The additional findIng that endothelln acts not only on vaBeui«r but

non-vaaculaJ: tililll<lI"a ('i,lnllgLilIllwa and Kallaki, 1989b). haa rais.d questione

about its role in the control of vascular tone. ET-l has a wide spectrum of

pharmacological effeccll on non-v&IIcuLar tiseuee vi%.: contraction of atrway

(Uchida.t al., 1988/. intutinalamooth muscle (deNIlc:ci at a1., 1988180>:'988

et "1., 1989), uterine smooth m...acle (Borges lit 0111., 1989; Eglen et iIIl.,

1989), cardiac chronotropic and inotropic actionl (Ishikawa et ill., 1988a, bJ

and otill'lulation of atrial natriuretic peptide rele,:u!le (Fukuda et al., 1988),

inhibition of ouabain sensitive Na+jK+ ATPase (zeidel et oil., 1989) blockade

of the antidIuretic effect of vasopreasin~ (Goetz at 41., 1988),

modulation of catecholllJnine re1eaae frOlll aympathetic termini and

adren(lmeduller chl:OlIlaffin cells (Tabuchi et Ill., 1989, Boardel: and Marlott

(1989), and the lItilllu1ation of a1dostllrons rlilsase in adrenal glomeruloea

cellI (Cozza 1ft :;., 1989). Evidence luggestivs of a neuromodu1atory role

hall been adduced (Jones lit iIIl., 1989; Kokesi er iIIl., 1989).

spectl:um of target tissusa and of spec iss nan-specificity imply that £1'-1

might havlI widll l:aoq1n9 actions in diverlle organs. In \":ultured melanqlal

cells (Badr et .11.1., 19891 simonson litt 0111., 1989), and vascu1.ar smooth Illullcle

cslls (J<omuro et Ill., 1988), £1'-1 Is a potent mitoq8n end etimu1i!lteB c-myc

and c-fol proto-oncogene exprssBion l:esu1t1.mil 1n hyperplasia, luggeBting a

poadb1e role for E1' in vallcular remodelling or atheroacleroeill (Simonson end

Dunnl 1990b).
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Perhaps the moat perplexing finding has been the 6~.eovery of II etrong

identity between endothelina and aIle.totoxln. sacafotoxine, all Characterized

by Kochva Bt Ill. (1982). Wallet" et ,,1. (.\984) and'1'akasaki Bt ,,1. (1998). an

potant valilQconatrictor, cardiotoxic poptLdea from tho venom of the burcowinq

.lIp (Atractallpie enqaddenllis" which cause severe coronar:y BpllBm /I,nd ECG

chanqes in Ilnake bite vietlma. The similarity between thelUI two peptidsil led

Craur at Ill. {19SB/1989} to examine their evolutionary trend", and Kloog and

Sokoloveky (1989) have hypothe8i~ed that the biological activity of

endothelln and llIarafotoxin are mediated via a common receptor. IndoGd, they

suggest that endothelins are endoqenoull ligands for 'sarafotoxin receptors'

(SRTX receptors).

Sarafotoxine (SRTX-4, -b and -c) and more E"ecently -d (Bdolall at oil.,

1989) are ill qroup of 21-lUlIino acid residue cardiotoxic peptldes isOlated from

the venolll of "tr:actaepia el19addenela, which are E"ieh in cyllteine and ahow

eequence identity to the malMla1ian endothellns £T-1, £1'-2, &T-3 and ET-4.

Eight naturally oceurrinq paptidas of the endothe11njsarafotoxin 'f4mily' are

now known (Fig. 2), All eiqht peptides contain 21 amino acids which posse.s

Cys1, Cys), Cys11 and Cys1S residllell, with disuifide bonds between Cys3 and

Cysll and between Cys1 and Cys1S (Yanaqiaawa et a1., 1988b, Takasaki at al.,

1988). Radllction of the disulfide bonds of the 5RTX& (K1oog et .1.,1988),

and of the endotheHna (Kimllra et al., 19881, resultl1l 1n a marked 10SB of

bindinq and activity. "lao cOlMlOn to these peptides is the hydrophobic

carboxyl teminal tail His16-Trp21. Cleavaqe of Trp21 from £T-1 reslllted in

marked loes of vasoconstrictive ability (Kimura et .1., 19881, HoreoveE",

even thouqh Glu1? lind Val 19 of SRTX peptidee are replaced by Leu1? lind 11e19
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respectively in endothel1.n peptidea, the _1.2011- lI,nd hydrophobic nature of the

carboxy tecminal taU Ire pre••cved. This replacement, however, appear. to

be of little functioni!.l significance. Fa!:' eXllIlIple, 11'5 t - iCl,:l.inated SRTX-b "'nd

E'I'-l poi-en indlatlnguilhable binding properties and both ,stimulate PI

lphoephatidyl lnolilitide) hydrolyeb in various reg1,onll of the rat bC8in and

alao In the atrium (Aml:I4r tit 8l., 1989). SRTX-b lind £'1'-1 a1ll0 8ltert almost

.I.dentical effects on the cardiovascular ayltem, nUllIly oOl:'onary

vasoconstriction, which is manifested electrocardiographically in miclil by

elevation of S-T segment, induction of atJ:'loventricular block and induction

of positive inotropic llnd chronotropic effects ('ianaghllwlI. lit 11,1., 19886,

Ta~....saki se a1., 1988; Wo11ber9 at al., 1988; Ru Hu at a1., 1988; Ishikawa at

al., 198801, bj. Furthermore, cross-dellensititation between ET-l and SRTX-b

induced changes in phosphoinoBitide turllOVllr in neurons has also been

demonlltrated (Lin et Ill., 1989).

It ill alBo interesting to note that in all llndothelin/SRTX peptidell, the

N-termino1l sequence i8 Cysl-S8r2/Thr2-Cys3; SRTX-a, SRTX-b, ET-l, ET-2 and

ET-4 (VIC) contain Sed, whlie SRTX-c, SRTX-d and ET-3 contain Thr2.

Takasaki se al. (1988) or9ue that it 8e8mll unlikely that the lower toxioity

of the latter thrae peptides compared to the forlMr, and the vo1sodilatoJ:y

activity at both SRTX-c lind ET-3, are due to lIubltit\ltion of the threonine

for serine in position 2 on the grounds that the propertlGll of these two

relliduss are rathel: IIlmilal:. ThuI, the most important differencel between

the various peptidee of endothelin/sarafotoxln • family' relide within the

sequence of the inneJ: loop Cys3-Cysll. All the peptides poellalls OlulO, and,

except for SRTX-c, they have Asp8-Lys9. Therefore, the sequence at position

4-7 represents the variable 1"e9iOn of the endothelin/SRTX peptide 'family'
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{IUooq and sokolov.ky, 1989}. '1'11\1', IIn11k. t.h, '~on.t.nt· C-ter81inal taU ot

the,. pept:lde., their If-t.~1n.l ..qulnee. are varhbl.. Another lntlr••tll\9

dl.ff.renee bet_en tha v.rlou••ndothlll..n/SRTX peptide. Lnvolv.. tll.it lilt

eh.rgll' which appear to derive fro. variationa in the loop created by tll.ir

di.ulfide bond.. For in.tanel. SR1'X-. and SRTX-b ...ch havi two po'itLv, and

char.... would all hav•• nit eharga ot -1 within the looPI SRTX-c (with tour

neqatlve charge., wollld havi I ntilt charg. of -4, Ind ET-J (with two po.itlvi

and two negative chatgl.) I0I0111-4 have a nat ell"rga of O. "'. SRTX-b and 21'-1

have dmUat: vaaocon.trlctivi and cardiotoxic afflleta, which are ditt-rent

from thOle of SRTX-c and 2'1'-], it Bel!ll\1 that an Qv.rall n.. t chang. of -1

withln the eya3-Cy.U loop i. required for biologic.1 .etivity (Jll00q and

Sokalav.ky. 19891. The aba.nee of thi••ingl. n.t eharg. in SRTX-c and ET-3

ia, .. ide trom their CCDlIOn eyal-Thr2-eya3, anath.r CClrIllOn f.atur. of th•••

tWCI peptid•• which _y contribute to th.ir vaaodU.tary activity. ~v.r,

the m.arked diU.rllnc. bet_en t.he intralaop charg•• at SRTX-e (-4' and r:r-J

(01 m.ay not. e.plain the ditt.r.ncea in pot.nei•• and/or machani... of binding,

and .ecand lIea••nger .)'ateru ut.ll1:r.ed b)' SRTX-e and £T-3 veraua ET-l or SRTX-

b (Klao; and SOkolo••k)', 1989). It ahould be atre.a.d that SRtx-d dUfen

frolll SRTX-b in two .ub.titutions, which appar.nt.ly do not affect bindin9 in

rabbit aorta, but do r.sult 1n eon.1d.ubl)' lower lethality and

va.oeon.tr1etor potaney (£CSO valuel of 90 nH and 5 nH, re.peetiva1YI Bdolah

ec: &1., 19B9). From the functional point of -,iew it ia 1.nter••t1.nq t.hat

SRTX-l;: and SRTX-d are thl! laaat toxic:. l'lthol.gh a lower binding afUnity to·

heart and brain _llIbran... and lower pho.phoinod.t1.de hydroly.ie and

.a.oeonatric:t1.nq aet1.vit.1.e. have been c:h1.Sled for SRTX-c: (Taka..ki at .1.,
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19138/ K1009 lit 41., 19881. SRTX~d hSII been sl)mm to have similar binding

chllracterhtic. to SRTX-b but len efficacy as a vasoconstrictor (Bdolah et

41., 19891. According to Graue.t a1. 11988/1989), the suggestion that the

C-tarminal 'taU' ill Gallsntial for vlIGoc:onlltrlctor activity (YanaglsawlI et

.1 .• 1988b) 8eems les8 ll.kely ae thls tail dHfecs between the two groupll

(lIIammal VetllUD lInake), but it La virtlldly identical. within each group with

the exception of SRTX-d which hu an ET-l1ke taU. For instance, SRTX-b and

ET-1 ace both potent vllloconet.rlctots, and ditfer in their C-tllrminlll

'calli', while SRTX-b lind SRTX-c: on the one hand, lind E1-1 and 21-3 on the

other, which have Bimilar tails dUfar in their vlIlloccnst.ricting powers by an

order of magnitude (":ianagiaawa ae 1111., 1988b; Wollberg ae 41., 1966).

1.3.5 Endotllalln lind earafotoxln rac.pton.

The existence of lour endothelin peptides also raises the possibility of

ex1.stence of multiple endothelin receptor subtypes (Yanagieawa and Hasaki,

1989bl saida et 1111., 1989). However, in cultured rat aortic smooth muscle

cells, a single class of saturable, high affinity binding sites for [125I)ET~1

haa been daacribed (Hirata at «1., 1985b). There is no unanimity in classe.

or eubtypes of receptors; thus Watanabe et 11.(1989) have defined two

distinct typllB of £T recsptors on ehiek cardiac membranee. Kloo'J at al.

(1989), uling homogenate I of rat atria, aorta, uterua, cerebellum, caudate

and putamen, indicated heterogeneity of ET/SRTX receptor and adduced evidence

for three receptor aubtypea. Iiore than one receptor has been propolsd in

blood ve8lels: a receptor with high affinity for £T-l may mediate the

vasoconatrictor raepense in vascular smooth muscle cells, where"" a receptor

with higher affinity for ET-J may be involved in t.he endothelin-induced

release of EDRF from endothelial c:elli. Bindin; studies with eynthetic:



aarafotoxln suggsst the eXllltsnce of a hatar098neou. popuhtlon of vaacul.r

receptotl for andothellnll and eerafotoxins (Hirata et al., 1989) .inc. the Itl

v.lue for SRTX ill apparently greatlr than the app.rent II,:j value for the

vascular ET receptor•• Furthermore, Ambar at al. (1989) have dealOnetuted

marked differencee in tha .Uinitilll of 12SI·SRTX for It. binding aite. in

varlou. tissues of the rat. Activation of endothelln receptors ill uBoci.tad

with an increue of phosphoinoeitida turnover except in cultund va.cul.1:

.mooth mUllcle cella lHirata.t al., 1988b), suggesting th_ exlatenca of a

specific receptol:-pho.pholipaae C ey.tem. Thill lIJystllm can alllo be .timulated

equally by 8arafotoxins lLin et al., 1989; Kioog and Sokolovsl<y, 1989/ Hirata

at al., 1989). The fact that stimulation of phospholipase C by tr-l in rat

aortic cdl. involvee a pertullis toxin-ineen.itive G-protein allowlI fOI: the

speculation that the receptors for endothelln belon9 to a G~protein coupled

superflllllly (Yanagoie.wa and Maeaki, 1989a). Furtherfl\ore, Tabr!zchi and

Triggle (1990) have provided~ evidence from pithed rats that, in

vucular smooth muscle, • cOllIponent of the response to ET r8lulta from

activation of a pertull8io toxin-Iln.ltive Q-protein that ia coupled to a

receptor operated ealcium channel andlor non-specific catIon channel..

Autoradiographic studies have demonstrated the existence of IndotMlln

rlceptors not only in vascular tiasue, but aleo in rat brain, kldney, lung,

adrenal gland and intestine (Jones et .1.,1989; I(ol<eei et Ill., i989). Lonq

laeting effects of endothelin appear to be directly related to ths nature of

the interaction with thfl receptor(e) and. Thus, the d1.ssoc1.t1.on of

rac1iolal:lelled endothfllln has bellO shown be very slow, with 8S\ of the initial

cell-bound radioactivity remaining after 2 hours (Hirata et "'1., 1988b).

Oalron fit d. (1989) have studied ET-l and ET-3, SflTX-b and SRTX-c
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binding in intact calli and hclIIoqlnat.l' of rat heart. lIlyocyte. ~d MV'

detIIOnatr,t.<Rd hiqhlr atflniti•• for ET-l .nd SATX-b thin ET-3 and SR'tX.c.

Vith cro..-linki~ technl'l\'" Sllqiure ae d. (illl!lll) were aho ~l. to

diltlngubh ET-bindlnq lit. proteii'll trOll the Cll,8 and r lubunitl of the L

type c.-ch&t\nel. Furthanoorl. Ambit ae al. (1981l), 1I11n9 cOlIlpetitivl bind!nv

atlldl•• in rat atrl, and brain, had inferred rlc_ptar l\lbtypea for ET-l and

SRTX-b but 11I99,ntad that th. two ,hilleD I COlllllOn binding lite.

l_no1091,c.1 evidence frOlll antibodi•• Iga1nlt ET-l and SRTX-I) rav••l

low crola-reactivity bltw••n the two paptld•• {Flemlnqlr It .1.1989}.

PlImlnqer at a1. (1989) It911Bd th.t this low reactivity rellects the fact that

the antibodiel rlco9nh:8 the variable aequlnee found within amino a(lida 4

1. Thi. hypotheaia wa. confirmed by CNBr cleava..e of the met.hionyl I;"eeidue

at poaition 6 in SRTX-b and at po.ition 1 in £'1'-1 ('lealingel;" ee d., 1989).

On the other hand, the binding propertie., aa well aa the ability to iruSuce

pho.phoinodtide hydrolyaia, were very at.llar in the .edified and native

peptide., indicating that, de.pit. cle..,age of the peptide bond, the

biologiclllly active confor-=ltion reaponaible tor either binding 01;"

phoapho1.noaitLde hydroly.ia i. retained. Probably thla retention of activity

reflects the importance of the two dLaultide bond.. It thus appeat'S that

neither the argulHnt [or a role of the chat'ge oft-I} on the peptide. loop. of

£1-1 and SRTX-b , nor dlllUad.tiEtll or dinillUaritie. in the C-terminal

'taU' of the two group. of peptideu (ET/SRTX) can adequately explain their

contractile 01;" biochemical propertiee, Pethap' the only chatactetiltLc

·Jiatinguialling t.he weak !rl')lll etrong contract.U. peptide. ill t.hreonine at

polition 2. Hewever, lovell the ptelence of threonine at position 2 doe. not.

C( ·.Ifer differing binding propertleu for thl potlnt cont.z:actlle SR1X-b veraue



the weakly contractile SRTX-c (Bdollh et 41., 1989). In thia context, the

findinga of oraur .t.1. (1988/a9) must be emphashed, aa there il a Itrict

eonservation of the C-terminal amino acid .equeoc. in the mllllWllalian v.nu.

lIoake pepticle except for SR1'X-d which hae Ile-Ile-Tcp of the manvnaliao qroup

at polition 19, 20 and 21, respectively. Nonetheles8,thll pharmacolQ9ieal

activitiee of SRTX-d and ET-l differ. It is al.o lot.rellting to oote that

the C-tRrminal hexap4!ptide, endothelin (16-21), diffeclU'Itiatee between

endothelin receptors in the rat aorta and quinea pig- bronchu., where it i.

neither an agoniilt nor antagonist in thQ former but a full ago~,lllt in the

latter (M1I99i lilt 41., 1969). Cleavage of 'l'rp21 trOlll ET-l lind SRTX-b resulted

in marked loSS ot vaeoconetrictive ability (Kimura It 81., 1986, Nakajima et

a1., 1989). It vasoconstrictive ability is 10 dependent on 1'rp21, it tollow8

that all eight pepti(\es should be equieffective since ail have 1'rp211 but

this ill not the case. The cotMlon factor of Trp21 and variable potencie. ot

the eight peptidee lend credence to Iluggestlon. ot Kloog and sokolovllky

(1989) that the variability of the C-terminal tal! io of littls functiona.l

significance. Th. recent report by Galron at .1. (1990), that diftlrlitnt

pathwaYIl are utiliud by endotllBlin and sanfotoxin subssquent to

phoBphoinolliticle hydrolyaia in rat myocytell, lends credence to our hypothesis

that the dUterent seven amino acid eequence between ET-l and SRTX-b may lead

to different cell bindim; andlor utilintion of mel8enqer Iyeteml in

different tiellulits. Indeed, such dieaimilaritiea between ET-l and SRTX-b have

already been reported by Goet:. Ett ai. (lq89j for thllll effllllcte of til_ t",o

peptidea on renal blood flo"'. Thie latter observation providee evidence for

the report that there are t",o .pecifie raceptorll in the rat kidnay mellangial

cella (Sugiura litt a.1., 1989) •
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11'1 the orlq1.nd P&pCI1: of Yu...gl••wa ae d. (198h). it W•• 'l,l!J9••ttld

that .1Idothell.n lUy act dinctly on mellll:lJ:iI.fle ion channel.. Thi_ hypothe.I.

of the a-scorpion t01l11'1', wh.l.ch are known to bind to the tetrodotollCln-

.anelt1.ve lta-channell. aued on the ••n81tlvity of _ndothelin contraction to

nicardlpine, and the tact that Na- and C.-channell balong to the aatlle h.lnily

of voltaqe-dependent lllel\'lbnne 101'1 channel. a. tho•••enaitive to the Q-

.corpion toxin. (Tan.be at al .• 1987). they proponed that endothe1.l.n could

repreunt the endoqenoua ligand for L-type calcium chlnneh. Additional

support for th18 hypoth••h walt obtained with the ob..rvatiell that, using

patch clamp technique., ET-l activated caldulll influx c\.u:renta through

dihydropyridine volhqe-••naitive Ca-ch.lnneh lGota .Ie al., 1989).

ad.U.tion, it haa b..n reported th.lt, i.n the rat aorta and portill vein, the

eontr.lction .1114 45C& uptake inducad by endotheUn, tNt IlOt tho.a cauaed by a-

.corpion tOll:in or ..aratridin" _ra LnsenlltLve to tetrodotoll:Ln, tl-conotoxin

.Ind Na ramov.l1, whena. nif,dipLne, ni.trendipina. ver&pulil, nickel and ca-

free IDIdiulll. inhibited the.. proc,..es {Jorge, .Ie .11., 1989; Eqlen .It .11.,

1989).

There ia, however, all:p8rimental .vidence that Contradi.cta thia

hypatheds. Indeed, Augult ec II. (1988) aho obaenld thlt, Ln the rat

aOrta, the vlllaocOnattLctor dtact, ot endothelin and aho the dihydropyridine

8ay !C 8644, an agonLet at the to-type C.a-ch"nnel, were ditferent, and Bay K

8644, but not endothelin, required a parthl pu-depollri:tation liIItilllulation

in order to evoke contractiona. Furthermore, ttl. etteetl ot endothelin were

cOlll.pantively in.lilnlltive to nitedipine, nitrendipine, 'Ierapul1, dl1tia:t_
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or: galloparnil, where•• t.hole ot Bay K 8644 were 1l11Il:kedly reduced (,"uqult Ie

a1., 1988; criscione It al., 1989). In the rabbit lorta. the endothelin

mediat.ed contraction waB inaenslt1.ve to nU,cliplne, nlclrdip.i.nll and v,rap_it

(OhlBtein at a1., 19891. and in the _Ienteric artery and 1\19U111: and

m811enteri.c v.Lnll ot thh animal, nl.cardipinB blocked Say Il: 8644 eVOked

eontraction. but did not. affect those produced by endothlilin (O·Orio'l'Is-Jult.

at: al., 1989). It has been reported that the hypecpolari:r.lltlol'l elicited by

the K+-channel opener, cromakalin, reduced endothelin-mediated contl';"lctione

in rat aortic strips (Criscione ae 11., 1989) Olchlot"obenzamil, I blocker of

Na·-Ca2+ exch.ng-e, a1eo inhibited endothelin-mediated contractiona, amiloricte,

hact no effect (Crilcione ee • .l., 1989). The effects of dichlorobenzamU m4Y,

however, reflect the non-alllsctive inhibition of endothel1n-aetlvated cation

channels and not result from inhibition of the lla+-ca2• exch6nge syet&lll IV4n

Renterghem .e 41., 19891 Criecione et. 11.1., 1989j. The electrophysiological

studin of Wdln8fer et 11.1. (1989) and Van Rentsrghem (1989) have beln moat

illuminating in eluc;ldating the mach.nhm of action at endothelin in

comparison to other agonl.lts. Van Rentet'ghem (1989) propoles that the

IItlectrophysiologie effect of ET-l involves three typal cf channele. The

firat electrophysiological effect of ET-l in epontaneoualy active ceUa i. a

traneient hyperpolarization, during whJ.ch the epontaneoua electrical activity

of the cell atopn. It ia followed by depo1ari1.ll.tion and a recovery or the

electrical activity with a higher frequem:y. In cells with no epontaneou.

activity, ET-l allo producea a hyperpolarization followed by 6 depoL4rhation

during which 4 spiking activity ill t.riggered. rn the presence of a 1,4

dJ.hydropyridine (DliP), ET-l stUl producee a depolarization following II.

transiont hyperpolarization, but the spikinq activity is abollshed. The
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tranl1ent outward current induced by ET-l was characterized as il K+ current.

It is due to the opening of 6,2+ and c:harybdotoxin-lIensLtiva C.2+-activAted k+

channal. which are aleo involved in the spontaneous activity. Tha inward.

current activated by ET-l revereed near -1 mil lllld Ls due to thl! opening- of

Ca2'" perllleable non-Ielective cation channell. Van Rentet'qhem at d. (1989)

concluded that ET-l changell the Intt'acellular caZ+ concentJ:'atLon by two

ditt.rent mechanisms; (1) it lLbentes CaZ> from internal storoe (pres1.lm.bly

throuqh 1P3 production) and (ii) it activates a non-eelectlve ciiIltLon channel

in the pllul"a membrana that 18 perm~able to Ca2+. The depolarl..::r:lltion inducod

by the openinll of the non-selective cati,,;, channele brinqa tbe membt'lna

potent ill lavQl naar the thrllshold for L-type Cl2+ channel aetivlltion and

thereby eventually producee I spikin9 activity. COnsequently, 8ubetantial

llIlIounu of caZ> then flow into the celle via L-type ea-channsls. The authors

lIurmi8lld that it is thet'llfors not lIurprilinq tbat blockers of L-type caZ+

channell can eliminate II. lIignificant component Qf the ET-induced contractJ.on.

The umaininq contraction compona,,': obsQrved in the pretence of channel

blockers may bs due to I (a) Ca2+ liberated from internal IItorea, (bJ CaZ+

flowinq through non-selectivs cation channel. and tcl to I putative

etimulaHon of protein kinase C by diacylglycerol. Wallntlfer et d. (1989)

have shown that in the melenteric rellel:OlI.nce vaDlele (HRVI) of the rat, ET-l

acts as a full contractilll a90nill1:, giving tonic contractions equivalent to

those lIeen with NE and arginine vaeopresein (llVP), but it produ.cea only about

JS' of the membra.ne depolari"ation t-1 mV) produ.ced by NE or AVP {-20 lIIVl.

The relllone underlying this difference have been amply explained by Van

Renter9hem It .Ill_ (1989). The authore concluded t.hat the deql:"ee of

depolarhation caused by ET-l would not alone induce enough CaZ+ entry throuqb
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voltage-Ilensitive c.z- channelu to yield tensIon (12 rnV depolariution with

15 mH 1l+ gave no tendon). Hence, ET-l mu.t avah other cellular effectl in

addition to mellWrane depolarization in order to activate the KRV.. Ind••d,

the ••quential or temporal Ipac1.ng of eventl, aa pCOpoeed by Van Renterqhem

ae al. (1989), 1lI;1II!111\ to pJ:'ovide the ,!"lllel"<;l IJ.nk to the ai.ctrophy.iologic

"tudoy by Wallnofer at al. (1989). However, Hay (19901, in examining the

mechanism of tT-l-induced contractions of the rat aorta in comparlBon with

the quinea pig trachea, concluded that ET-l-induclId contractiOl'UI of the rat

aorta were more eenaitLve to the effocts of incubation in a Caz+-lree mecHum.

or with nicardipine or etauroeporine, Buggesting that differencee ekiet in

tho relative mechanieme whereby £T-1 producee contraction in different

1.3.7 PharllllacokiDetics of eadothe1ia.

Pharlllllcoltinetic studt.e with endotheHn are few. Despite its long

lasting vascular effecta, the half-life of this popUd. in the plUlIla ia very

ahort; 181111 than 2 minut8lJ (pernow lit "1., 1989). Thill lin been Ilttributed

to a quick extraction of the peptide from plluma during pulmonary circulation

(de Nucci et el., 1988) or by renel, splenic and lIkelstal muecle clftaunce

(PernO\l et d., 1989). In rats, i.v. injected 12SI-labeled ET-1 Will rapidly

eliminated from the blood stream, and tlla administered radioactivity

distributed chiefly to the parenchyma of the lungs, kidney and liver (Slliba

ae .1., 1989), Thle rapid decay rate was virtually unchanqed even when a

pres80r amount (1-2 nMol. Kg") of cold £T~l le co-adll'linietered with the

radiolabeled tracer. Neverthelese, the prellor reapon8s uIllla11y l.ets more

than one hour, The extremely elow dissocleUon of ET-1 from lta receptors

and/or other cellular components in vascutar emooth muecle (Hicata ee ,1.,



1988bJ may at hast partly account f.:r the dilcrepancy bet'~o;\1 tbe timEl-

course for al1.mination of the exog'enoully appl1.ed peptide from tha

ci.r:ouhtinq bLood and that for the prelillor effect of tho peptide. Within a

few minutes of Lv. injection of 125t_labalad &T-l, a major fraction of

radioactivity wall fO\lnd in lunlile, ld.dneys, l1.ver and spla..n {Kokesi ae ,d.,

1989; Shib.. at 11., 1989). Horeov/;lr, HPtC anlLyelll of th/;l injected 1251_

labellld ET-l remaininlil in the circulating blood indicated that its chemical

form w.u (lOt siqnific.ntly altered in the blood stream (Pe.r:now et a1., 19891

Shiba et 41., 1989). 1251_labsled ET-l aleo olppe"rs to be ve.r:y ,t"ble in

heparinized whole blood!n Ull2 at 31"C. Thus, the rapid ellminaticn of ET-

1 from tha circuLation may be due to trapping of the intact peptide by the

parenchymal orqana. I'.ore recently, Sokoloveky et .1.ll990) have ahown that

incubation of endothelins (ETs) with bovine kidney neutral andopeptidaelil

(IIEP) resulted in a selective two atep deqrad"tion with lOIll of biochamical

activity. The first etep was the "nickinq- of the SerS-teu6 bond, followed

by cleavage at amino-tetminal eide of Ile19. The- nicked" peptide exhibited

biochemical activit.lee cOltlpanble to tholle of int.act peptide - i.&:. , binding

to the ET-receptor, induction of inositol phospholipid hydrolysis and

tOll:icity. The twice-cleaved product, however, was inactive. On the other

hand, the saralotoxine (SRTXI) were more relletant to NEP than were the ETsl

the t1lo for ET-l was -1 hour while it was M4 hours fcr SRTX-b and even hiqher

for SRTX-c. The authou concLuded that the relultl from theBQ~

findinge lIlay indicat.e a regulator.y role for IIEP (or similar en:ymes) in the

physiological inactivation of ETs. This might also help to explain why,

\lnder physioloqical conditions, ETs may be: leiS toxic than SRTXs. Neutral

endopeptidasQ is laid to be widely distributed in the body, occurring in



"
.~eifie Itl"lletIU"" in the central n8r"01l1 arlt_, kidney, 1"'"9

int••tinell as .,.11 ". in neutrophile .nd riorobla.ta, but ita cone.ntrltion

in vascular eru:lothaU.al cell_ il very low. The trapping of -.:.dlol.~llld n-l

in certain CII:9_nl, and thl .valiability ot nluteal endopeptida.. at I

r.l.ti....ly high concentratlon Ny not juat ba .. coincidence but .. phydolOljJlc

loc:a.lization of I ...bltrate and en:tlfl'le for optUu.l deqndation. Despite thllr

clole bloch_leal and Clelpeer binding propertl•• , thLa llI&y alia b••

notewoJ:thy differencI betwe.n SRTX-b and £T-1. It lII.y wall be that the

ItJ:uctural differenc.. could account for the c11ftlum:el 1n p'hll.t"macokinatici

of tho: two peptlde,. B•••l concentration of Et-1 1n healthy human pl.,ml

"_11I eo valC'Y frolll one laboratory to another. 1ondo ee 11. (1989) reported 1

value of 0.6:1:2 !lllOl/fl\L (mean:l:S.D.), Cernauk and Stewart (1969) repol:t,d

0.26:tO.24 P9/1GL 01: 104:1:94 fIMJ1/L and Su~ukl et .1. 119S9) repol:ted 1.510.5

P9/raL (rangll 0.7-2.4 poq/1Il1) lOI: l_lee. In dheaee nate., auch aa

cardioqenie IIhock, levllle of 3.65:1:1.14 pq/fDL have been ..asured. ICa.rnacek and

Stewart, 1989). Hopefully, iIlOce data on the pharw.acClklnetics of endothalln

and BarafotOllin will tHICOlM available and parhap., with etandar'dir.ation of

Mthodll, the -norlll\al- pla'lIla coneentr'atlon of In' 01111 be deterTllinad.

:In lUJrllllary, I:eeeal:ch with endothelin hall left ue with lIlOr'e qu••tlonl

tran anlWctrs. Notably, whet al:e the phy:!Jiologic role. ot endothelin? Ie

endothelin the caul. or the effect of a pathol09ic nate? "r'e the li'ilnd

transduction pathway. of ET-l and SRTX-b the sanul? FLnally, il endothelin a

'honnone' or autacold ot ••If-deltruction7

followLnq areal1
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eli Bndothelin Icta on a wida Spectrulll of u.rget t1••I.I•• _114 lack'

.peei•• ap8clfic:lty. hrtherlllOca, andothelin do•• not origin.e8 f~

anc1othal1.ws &.lona.

lUI Althouqh n-l and SItTX-b 'how bloch_lcd and binding

characterilltlc_, ttls a.htanee of receptor subtype. allOWJl for the

po•• ibUlty of the•• t_ peptid•• binding to dhtinc:t recapto.u and u\·.11!.zin<;

differlnt Ilqnill tra"lductlon patllwll.y'.

The (lveraU abjectlv•• of the thl,ia lt8re I A) to cOlIlpara tlla

actione of endoth.l1n-l lET-i) and ....rafotodn 56b (SRTX-b) with tho.. of •

wall chancteched Iqonilllt, nonpinephrlne (NEI and 81 identify and compare

the transduction .ffector raechanl.ms utiliud by these peptidea with HE.

ExpedftlentB wera d•• lqnact to .n~_r thl following qulltLonl:

1) Are the canerlctUa Illech.nblll& lr.~uc..cl by thee. peptidee and

no.t"epinephrinll the .... in v&ecula.t" !1M non-ya.cuh.t" emooth lIuecllla?

2J 00 BT-l and SRTX-b intll.t"&et with the e8Jll1l receptor?
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Chapter 2

MATERIALS AND METHODS

2.1.

Hale Spraque-Dawley rata (225-250 9) were purc:hasl!Id frQIlI Canadian

Hyl:II:Ld Farml, Halifax, Nova Scotia, These arlimala were used for all in rlJ;J;,g

.tuelLea ment.ionlld ill the theaLi.

The l:'"tlJ were housud. in the anLmal cars facility of the Faculty 'ot

MedLcine, KemorLal Univ8t:lJLty of Newfol\ndland. undllir minimal diseale

conditione, three rats to a cage. Tha rooms had a 12-hour light, 12-hour

dark, light cycle with controlled hl,lI~idLty and temperature.

At all times, the animaia M.d free aeeas'" to food (Purina Rat Clio,", from

Charlal River Inc., Montreal) and water.

2.2. Choice of ti..ue.

The preceding literature review 11l\lstratll that a wiele ranqe of

tLII_Ue., have been ueed in the study of endothel1n and earllfotoxin. the major

objec:tive of this st1.ldy was to determine whether endothelin and saratotoJl:ln

.hared the same membrane rec;:eptor;--t.ranlllduction eystem ':'t1 emooth muscle. It

was decided that a comparison of a vascular to a non-vaecular preparation be

lIIade. The rat anoc:occyg8ue muscle and oeeophageal tunic:a musc:ularb mucosa

(THH) were chosen lUI representatives of the non-vaecular smooth muscle, and

the portal vein and thoracic: aorta tor vascular smooth mUllIcle. The tielllue

had to meet: the following criteria, to DB conllidered luitable:

(i) 1:'8silience of tii:s1.le in long experimental protocol,

(ii) repeated use following recovery tram exposure to given agon1sts,

(iU) consistency of res1.l1ts; and



(iVI s.ndtivity in t.ms of respon.1iI at low cone.ntrations.

~i..ue preperlltioD.

The rllt.....r. killed by a sharp blow to the head aneS ex..nqulnated

by ellrvieal tran••etlon. The thoracic lIorta, portal vein. 08.ophaqus and.

anoc:oc:cygelu .lIl1elll _r8 isolated ilnd placed in w.re (37·C) kabs .ollltion

eontinuoulIly bubbled with oxyg:lln/carbon diodd8 (9S\ Oz I S\ COz). Adherllnt

eonnllctlve th.ue was earlltully removed trOlll the aorta, carll being taken not

to stretch thll prllparation. Any rellidual clot "'II' removed fronl the lUlXlen at

the aort~ with tin. torc:ep. betore c:uttill; the art8ry into 3-4 lTWIl ring

segmllnt. (ColdborlJ and 1'rig:gl., 1977). Thelia rill;s werll slIspended betw.,"

trillngul~r ,haped arterial hooka in a 10 m1 organ bath c:ort"ining Kreb'

,olution, at pH 7.4, doublll j"c:k...ed to lD"intain II tllltllper"ture of 37·C and

bubbled with 9S\ 0;: 15' COz c:ontinuously t.hrouC}hout the duration of

experiment,. ene hook wall anchored to a fixed point in the org~n bath whUe

the other w.a connect.ed to the tore.-di,p1ac_nt transducer.

The portal vein wa. dissec:t.ed. tree ot adharent thsua, incised. along its

llilngth to tara a IItrip, and tilild at. both IIl1ds with 'ille (Sutt;er and Liull9.

1977). The "lIin was then lMlunted in an orlJlln b.th tor iSOlll8tric: force

_a.ur_nt.1I in a s1JaUar _nner as deserib~ llbo'" tor the aorta.

The paired anoeoccY\JeulI "ullelas wera diB.aet;sd frae of connecti"a tissue

and e"ch tied at. its origin and inllertion before remo"al from t.he anlmal tor

.ullpenllion in the orC}an bath with conditions idlllltical a, for tha "aBcular

pr.paratlons (modified from cilllillJpi., 1972).

The tunica mUllculari. mllc:osa (TMM) of the o••ophaqua was BlIt lip ..

d.scrlbed by Bieger and Trig;l. (1985) "nd .uep.nd,d in an organ bath with

conditions identlcal to those described for tha other ti••lle••
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All ella tissues wel:e aet up lit 1I preload tension of 0.5 'ii, except for

the ;\ortic ring preparation WhOll8 pJ:eload tension was eat at 2 q. The choice

of pre-Load tension WIIS based on previously publhhed evidence 'll to the

optimal conditions for thesa. tluuBs. The tissuell ware allo_d ona hour to

attain llquUibri\lm under resting tension. IlIometric tansion lola. recorded on

• Beckman R611 Cynograph l.Hllng Grase F1' 03C force displacement tranaducen.

Exped••ntal protocol.

This study was perfo~ed using- all four isolated prepal,"stlonl. During

equilibration, Krebs buffet" WlllI changed avery 15 minutes until ths tissue

maintained a st.able bueline Undlll: the lIpeclfied rSllting tension. Gensrally

this took ons hol,u: to achieve. Th. till.l,uu. were always prepared in pain

except fol;" pOl;"tal vein which had to be isoiated t'l;"om two rate (attempts Ilt

using: two halves tl;"om one I;"at hed pl;"oducetl repeated experimental t'lllluru).

Each tis8ue was eXPQsed to HE and, using a concentrlltion cange ot 10.9 H to

10" M, a cumulative concentration-response curve was constructed. the

tissues were washed every 10 minutes until a return to baseline was achieved

following' which the tisault8 Wllre allowed 30 minutes of recovery with chango

of Krebs butter every is minutes. Atter recovery, eal;h tissue wae expolsd to

ET-l and, using a range ot lO·n M to 10'1 H, a cumulative concentrat1.on-

reeponee curve wae conllltcucted. The ti8111ues were washed every 10 minutes

until a return to baeeline WllS athieved. Since, with SRTX-b, recovery lola.

rarely cotllplete on II given day, the same protocol was repeated on other

experimlllntal dates. Y('OllI these experiments it Willi possible to detemine the

threshold concentration of (',aponle (sensitivityj ot each theil' and

determine ECSO values for the different agonista all well 48 their recovery



time in pnyB1010qic butler (Krebs). In the c:a.. of the oesophaqus

preparation, a _scarinic a90nht, cis-clioxolane leO) vall Uled to test the

viability ot the TKH before deterJlllining the .ff.ctiven... of ME a. a

.pa..alytic agent.

Bt..dJ 21 Itol. of ."t,...c.11\11_r calc1... leaZ•••

Anoeocc:ygllul ..ulcle, vhich .howed lIIO.t re.ilience, wall initially u.ed

for thil study. All other cl)nd1.tionl earlilr atated in Study 1 were

applicable el(cept the omhsion of C.Z. from the Krebs buffer. A pair of

anococcygeul muscie lola. obteined from each rat and one of each pair wa. uled

al a control in which tho Krebl buffer had caZ• at normal concentration.

Three concentration relponle curves wtIl:'1 constructed beyond ths thre.hold

value of NE for the ti••uee. Following recovery frCll'll NE. ET and SR'I'K-b

eoncentration- reeponle curvee were eonltructed IInder identlca1 exper1.lllent_l

conditiona.

Further eX&lIIint.tlon of the role of extracellular C&;2• .involved the 1,1.••

nifedipin. Ica1ciWll channel antagoni.t). In the•• e.ptIriAllntl.

_nococcyg.uI lind aorta, having met the earller defined criteria, _r. ue""

for the stlldy. The protocol involved the initial challenge of II pair Of

tillue. with HB, BT-1 lind SRTX-b at concentrationl equivalent to the Zc,o

V_1111111, which had beIIn .acHer determined, in nOl:'lll&l Itcebl buffer foll~d by

repeated walhing of tielUIl until a return to baaellne was achieved. The

ti..uell were allowed 30 minutel to recover with .. change of caZ·-free Kreba

buffer every 15 minute.. Subeequontly, ET-l or SRTX-b 10" M (10 nM) or 10.6

H Nt waa add.d to the orgoan i'ath and a CaZ' concentracion-r.eponee curv. ~aa

eonatructlld. The thlue. wtIre again waahed every 10 lIl1.nute. wlth caZ·~fre.

Kreb, buffer unt1.1 a return to baaeline wa. achleved and then they were



aUowed. another 30 .inut.s to racover. The n.xt atag. involved. the addition

at nUed.lpin. (ealeiwe ch"nnel blocker I at " eone.ntration of 10 pM. to aU

the organ batha. Th... till"'" _r. allowed on. hO"'r inC\lb"tion in

nit.dipin. before repeating ca2" conc.ntration-napon.e c",rve in the pre.enca

ot 1 PH lfE, 10 nH ET-l and 10nH. SRTX • .respectively. Since nifediplne ...a.

disaolved in &baohte ethanol, contl:ol e",per_nta to .",amina the affect of

thia aolvent ...er. perfo~d.

studr 31 Role of a"'tracelluler and ilitrac.Uula.r calcilla (CaZ").

AnocoecygBu8 muacles and rings from thoracic aorta were \,Ieed in thla

protocol in pairs. All previous e",perimental procedures were malnt.ined

except that c"Z" w.s OlIIitted fram the kreb. buffer as was the ease for

8:"lIIination of extracellular ealclullI. 10 nH ET or 10nH SRTX-b or 1 pH N!

were added. to each organ bath and if any contnetions occurred in the Ca2'_

fr_ mediua, they ...are aUowed to rlllach a .t"ble platlll.u, foU01oOil\9 whLch a

ca2" concentration re.pon•• curve was constructed. Thsues wsr. waahad with

c.Z"_free ltrebs evary 10 ..inuta. until a raturn to ba.eUn....... achieved. and

allowecl anoth.r 30 lIinutaa for recovery. Ryanoc:line, whlch interferes with

the relea•• of cellular caZ", was added to aach organ bath to aChieve a

concentration of 10 pM in ca2"_fJ::ee Kreb. buffar. The ti.aues _ra allowed

one hour incubation in ryanod.ine before repeatLng a caZ" concentratLon

reaponBe curve in ths preeence of .ither ET-1, SRTX-b or HE. Subasqusnt1y,

they ....ere waShed with caZ'-tree Krebs evsry 10 minutas until " return to

baseline was "chievsd, toUow1nq which ryanodine 10 pH lola. added snd ths

tlsluee allowed to incubat.e for one hour. I'lnaUy, nifed.1pine 10 pH ",as

added. and the ti••us. aUowed I further ana hour incubation and • c.2
<

conCentr.tion reapena. curve constructed in ths presence of ET-l. SRTX-b Ind



In ordgr to addre,a the poeeibUity that ryanodine 1.s more effect1.ve 1.n

deplet1.ng lntracelllllar Caz- in the pl:elSenCe of an agoniet, further

u:pel:lmenta using I:yanodine alone, l:yanocUna with caffeine, and l:yanod1.ne

c:oneul:l:ently with an agonilt in a Ca2·-fl:ee Krebl were deli9nad and run

Beaentlally ulin9 the 8811\8 exper1.mental protocol.

FUl:thel: axperimente were conducted to elCllIlline the effect of other

intracellular CaZ. depletol:", namely repeated 8'il0nbt IlIt1.lIlulation with NE, 01:

a combination of repeated agonist nimulation follow-ad by ryanodine

inCUbation, before conetruct10n of a CaZ> concentl:ation-responllil cUl:ve. To

fUl:the .. eva1uata the ..ole of CaZ• in the contractile proce.a of E'1'-l, SRTX-b

and NE, anococcygeus muscle rsapona.1 to 10 nM £T-l ano:! SRTX-b and 1 .uM HE

were meaeured l" normal Kreba, Ca-free Kl:eba, and following I:yanodine

treatment in nOl:1l\al Kl:ebe.

Add1tional evaluat1.on of the I:ole of CaZ• in the contl:actUe procela

Involved the uee of the voce op••'er Bay K8644. In these sete of Ilxp8l:imentl,

a depolarizing (subcontl:act11e) ~ 'Ie1 of K· (15 mM) in a Krebs buffer, wa.

UlBd. Ilotonicity of Kn,ba buffel: was achieved by subet1tut1.on of Na+ at

equ1.valent concentration. Concentrat1.on-reaponla curvea to Bay It 8644 were

con,cructed tor snococcygeu. muscle and sorta. The ti.aue. were wuhed every

10 minute. until reco'le..y W4a achieved and allowed a fUl:ther 3D minute. for

complete recovery. Subaequently, 1 nH £T 01: SR'I'X-b 01: 100 nJol NE were added

to the respective ol:g.n batha and concentl:st1on responll8 curvea to 8ay It 8644

I:epeated.

St;u<!y 41 RtJJe of aracllidoQic acid. ..t&holit.a.

Pdred ",nococcyqeue mUlc1e. and rinqe of thoracic aorta were used fOI:
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elCp.rLmental. condit.ion. identical. to tho.. prlv1.olul.y .pp1i~. eaZ'

concentration-teepan" c:~"•• _rl con_tnlct..:! 1n thl pr•••nci of 10 nH E'!'-l

and SRTX-b and 1. ,Iht "E, r ••pectlvlly. Th, ti,.u,. wer...nhed w1th c ..Z>_tr••

following which .. further 30-III1.nute lnterval w... allowed for cOllIplete

recovery. 10 pH lndOlMthacin or 10 pH NDGl\ WI.' added to lI.en or9an ~.t.h and

tl••u•• were incubated therein tor one hour. C..Z> COOcBntraUon-re.pon••

curvel in the pr"'nce of the three agonbt.....r. eonetrueted..

Further explr1Jnente wlra al10 designed in order to .ddral' the qUletlon

ot epeciU.clty ot NeGl" In th••• lat, of IlCp8rlmllintl, anococcygeul and

thoracLc aortic ringe WIre &9a1n u••d. 1\ control uperilllint ....ith so lIIH X' in

c.Z·-frl. krebs WI.' d•• iqned and caZ' concantration-raaponll curvII conltructed

without and with MOOA. Tha th.:ee agonhtl ET~l, SRTX-b and HE vera e._lnad

curtal wi.thout and wlth MOGA. Aa vi.th othar axper_nta, and 11'1 ordar to ald

agoniat dieeociation, the tieluee _r8 valhed with caZ·-fre. Xrlbl aftar tha

initial concentration-r.aponall curtel.

Itudy. Each paLl' of tLesual wal placed in a 10 11I1 organ bath with normll

x.:ebe solution and maintained under identicel ax~rLmllntal condition., I'

lIarlier defined. A pair of lortic rlnga .nd anoeoecY911UI muac:l. were axpoled

to HE and anothar aet to XC!. After the initiel concantrat.ion-r.apona.

curve. to tha.1I two agoniltl, the tlaauea _r. wllhed IIvary 10 minut.a until

rllcovery to baaellna waa Ichlaved, then allowed another 30 IIlLnut•• for full
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recovery. Threshold concentrations of ET-l or SRTX-b (1 nH) were "dded to

one arqan bath with one of a pair while ita complementary unit IIsrved all a

eontrol . Tilllluee were allowed to incubata tal:' 1 hour [allowing the addition

of aithea:- ET-l or 5RTX-b and then concentration-re.ponsB curves to N£ and KCl

aad Trigqle, 1973) [aM).

Normal Kl'sb_ buffer (mMll NaCI 11B; KCI 4.7: cllclZ 2.5; MqS04 1.2; KH2P04

1.2; NaHCOJ 12.5/ Dextrose 11.lo

CllZ·-frfUill Krebs lola. made by omission of C.e12 from the above with the addition

of 0.01 mH EGTA.

Hlqh X+ Krebs (mK) HaCl 101.1, Kei lS, CaC12 01 M950, 1.2/ xtl2P04 1.2,

NaHCO, 12.5, Dextrau 11.1-

Very HIgh K+ KnbB (mH) HaCI 72.71 KCl 50, C"ellO/ M950, 1.2/ kH2P04 1.2,

NaH~ 12.5; Dextn'''' 11.1.

All conetituenta were reagent qr,:;.de and were d1.o901.ved 1.n de1.onLzed d1.at1.11ed

The follow1.nq agent. were used: endothel1.n-l and sarafotoxin (S6b)

(Peptide. Internat1.onal, Louisville, KY).

NE, indomethacin and NOGA were purchaaad from Sigma Chemical co., (St.

Louis, HOj.

Ryanodine and c1.s-dioxolana (ReGlIlarch BiochemicalG Incorporated, Natick,

II",.

c.tteine was obtained trOlll J.T. Baker Co., Phllllpsburq, NJ.

Nifedipine Will< • qenerous qUt trom Sayer, LeverkuGen, W. Germany.
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Ryanodine, nit.dipln., lndomathaein and NDGA were ptEipared •• atoek

.olutions ot 10-2 K in absolute ethanol; 10 pL of uoek _clution added to 10

mt organ bath brought the bath concentration to 10'5 M.

All other reagents, ot analar 9J:'ede, were diuolved in diBtUlad w.tee

and where appropl"iate, pH adjuatmentll for inereaaed solubility were made with

MaOH or !lel.

2.1. st.tl.tic8.

The ECsO values wilt. obtained by graphically calculating the

concentration of agonist producing 50\ of ita m&lClmurn reeponse (fleming.

Westfall, DeLllLande lind JeUet, 1972).

Where indicated, results ace exprelllled 8e mean J: 5EH (atandard error of

the mean) calculated by the computet" atatiet!.cal progralMle of Gustafson, T.L.

Statietical 1lI1gnificancll was determined b¥ Student'e t tliret (one-tailed) for

paired .ample, or analyab of variance (ANOVAl for independent ullIplu ueinq

the above COCllputer proqrarMl8. Ol.fferenceu by the 't'-teat or I\.NOVI\. warll

conllidered to be siqnificant it p<O.OS. The er.:'Ilple size (n value) le

indl.cllted in all tables>
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CHAPTER 3

RESULTS

St,\\dy 11 Tiisul au'•••i11g

Due to the failure of the THM from the rat oe.cphaqus to respond to

either ET-l or SRTX-b (J triall) ,the '1'MM was omitted from further atlldi.,.

Of the remaining three tLII.ues under con.idl;lration, the portal vein (Figure

4). showed great: 8enllitivity In two parameters - frequency and amplitude of

its spontaneous myogllnic response - the reSpOnllQlI we.:e rather erratic (Fiqure

3). It also WiUI omitted from further studies.

The anococcygeuB and aortic preparations met the defined criteria and

were llublJequently Ullad for all the~ work described in this th.si••

In choosing .nococcyqeull muacl••a the non-vaacuh.r smooth muscle ot choice,

the following useful proplu:ties, or characterLatLcs, a~ ",numerated by Goyal

(1984) were considered viz :-

(il It consists entirely of smooth llIuscle cells arranged in parallel

bundles to form a sheet, 10 that there is a minimal diffulion barrier

for drug access or ion exchange studies.

(ii) The mUlcle l..u represented bUat",rally 10 that control and tsat

preparations can be taken from the same animal.

Anatomically, this mUlcle is associated with the intestine but differs in a

number of a.pects froll' intestinal smooth Illulcle. Intestinal lmooth lDuscle

poseess'." spontaneous lDyogsnic activity and is inhibited by stimulation to!

sympathetic nerves snd excited by the stimulation of parasympathetic nerves

(Goyal, 1984). The anococcygeus muscle, by contrast, has a high stable

resting memklr..ne potential of -60 mV, shOWS no spontaneous activity, either
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eleetrical or mechanical, and ia excited by lIympathltlc nerv•• but inhibited

by a non-cholinerqic. non-adrenergic pathway. The nature of this inhibitory

transmitter is unknown (CClled and Gillespie 1973, Creed, Gill.llpl. and Mulr,

1975).

Time-dependent relilpQnsBs were auo.e8ad by eonatl:ucting four

concent.ration-rempon•• curves to Nt over II period of four hour.. A lon of

tone of about 15' of Inltial m•• iJIlal tll'ponlle 101'" noted, (Tllble 1). tn order

to deteJ:1lline the optimal concentration range for theBe 1:1.88u1l8 and obtain EC,O

valuea, concentJ:'ation-relponae CIlCV911 to NE, tT-l and SRTX-b "'ere

constructed. The 1"88U1t, of theee experiment. are graphically pre.anted

(Figure S), which doee net ahow the full concentration range of agoniete

tlxllJlIined becauee the deecent'.ing limb of the hyperbola h", been deleted for

noatnaee. It wae evident that ccncontraticne of NE beyond 10-5", or 3 x 10'11",

for ET-l and SRTX-b were detrimental to tielllUJ ra8pcmBiveneBo Illnd rellultad in

II 1088 of tenllion or eublllequent non-relllponee to theee agOnillt. FurtherlllOre

10-7M (0.1 pM) of &T-l or SRTX-b induced myogenic-like activity in norlflally

q.d.elllcent llnococcygeue mUlIe1e which rendered t.he t.issues unusable for

Bubeequant experiment.. in normal Krabe buffer (Fiqura 6). As det.erl'llined by

the loee of myoqenic activity, the t.heu•• recovered more rapidly from SRTX-b

than ET-1 with cOlTlplete recovery apparent after 2.62iO.8S and 5.22iO.06 houre

re'p4etiveLy. Omitting ca2• from tile Krebs SOlution significantly (~t"-te.t)

reduced recovery times to 1.62:10.2 and 2.40iO.51 hours reepectively (Tlble

2). Thus, a CaZ+-free Xrebe buffer wae ueed to wash tiesues wllenever ET-l,

or SRTX-b, Wlle used in an experilllental protocol to ha.ten ti8lue recovery

frOID effecte of tho peptidea. In order to avoid the induction of mY09anic

activity by ET-l or SRTX-b, cone.ntrationa of JO nM, or greater, were rarely
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l,lQecl 1n lub••quent eXptlr1mentl. Incleecl 10 nM ET-l, or SII.TX-b, which

;;Ot.tsspondl approximately to the E~o valuu of theBe peptldes wal uled,

unl.... oth.twill. at"ted. Nifedipine, at 10 JIM, had nO 8frltct on the pClptide-

induced mY0genic activit.y. Cenen.lly, cont~.ct1le rBBponsee to ET-l an"-

SRTx-t Ileemed lnsensitlve to nUedipine I.n the nano-low 1II1crolllOlar rang-e.

t,ltudy 21 Roll of extrac:ell1tlar c.2•

Control response. elicited by E'1'-1 and SRTX-b (iO nK) ';11: NE (1 pH.) were

approx1muely equieffect.ive in term. of ten.lon developed (Figure 7). In

ca2·-frae Krebs, the three 4gonistl generatect approximately dlll!.la: llvel. of

tone in the aorta and. .noc::occ::ygeu.. mUllell1, corresponding to 18' and Sil of

maximum r.sponee in the controls rellpectlvely {Table 31. MUllcle tone

generated by the peptldes even in the absence of external cal., was maintained

in contrast to that with NE (Figure 8). NHedipine wae used in the

Ilxper1l1lente deBignttd to determine the role of voce. in requlating the ent:y

of extraceUular ca2•• Nif.dipine (10 PMI did significantly reduce b~' +t--

tellt only (not by ANOVAj the r ••pon••• to ET-1, but not to SRTX-b and HE in

the aort" (T"ble 4 1 lIee alBa Flg\.lre 9",b and e). In tha "noeoceygeulI, 10 pM

nHedipine liqnitic.ntly red\.lced the llIexim.l reapOnllB to ET-1 IFi",. lOa), but

rellponaell to SRTX-b (Fig. lOb) and HE (Fig. 10c) were not significantly

reduced. However, it ie noteworthy t""t the decreue in lIenBitivity for £T-

1, SRTX-b and NE was ll1l."," than that obllerved in the aorta. The persistence

of nifedipine in the tillllU.. wall aSlessee! by repeating ca2• concentration-

re.ponse curvel in the presence of " stated agonlllt concentration after

washing every 10 minutea for one hour following the l:eturn to baseline. In

the aorta, recovery :rom nifediplne ln the presence of ET-l ancl SRTX-b clid

not occur. The r ••ponse of the aorta to NE dld not show recovery after
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nifedipine application, a:"thol.lgh the rnaxlml.lm contractile neponse, poet

n1.fedipine waehout, apPl:oached the control mulml.lm, but, .e with the two

peptidee there wae a decre.ee in eeneltivlty as evident by the ehUt of the

curve to the riqht (Fiqure 11a, b and c). In the anocoecygeuB, recovery h:om

n1.fadipine 1.n th8 pre.ence of the ttu:ee .<;Ion1.tll .u:hibl.ted a eimil.r pattern

(lee Figure 12&, b and c). AI <II. "881.11e of the lncompletll recovery from

nlfedipine, tiuuell which had been I'lxpolled to nifedipine were not uled for

further lnve.tigationl.

AS lIulI'r.arit.d in Table 3 • it 1s evident that .imple exposure to a c.Z._

free medium d.ralltlcally reduced contractile responses to £T-1, SRTX and HE in

both the aorta and the anococcygeue. To further evaluate the role of Ca2+ in

the contractile proces","s gf £'1'-1, SI\TX-b and liE, the reeponaes to 10 I\M E'1'-1

and SI\'!'X-b and 1 pH NE ware lIIeaaured in norlllal Krebs, Ca2+-free Krebs, and

aft.J:' treatment with ryanodine foJ:' 1 hour followed by te-introductlon of

normal Krebs (Fl;ure 13). AnococcY;8UII tlasues, which had been previously

expo,.d to normal Krebs but were switehed to a CII2+_free Krebs immediately

before agonist exposure, demonsttatad significantl,! reduced rllillponses to all

t.hree agoniets with the inhibition of responses to 8'1'-1 and SRTX-b being

gl:'eatel:' than that observed for liE. Incubation for one hour In a Ca2'-free

Krebs plua 10 pM ryllnodine, followed by re-inttoductlon Of notlllal. Krebs and

Iqoniet, led to IU1 enhaneement of t.he responses to 8'1'-1 and SRTX-b. The

effect. on the SRTX-b reaponss was eiqnificantly 'il':eater than that for 8'1'-1.

The response to tf8 was not diffetsnt ftom ths control. l"i9Urlt 14 illustrates

the effect of the above protoeol in the aotta. In t.he aott.a, t.he cont.tol

responses at t.he peptides in nOl:'lIlal Krebs did not. differ si9niticant.ly from

aaeh othet but each WaB lSignit!!=antly different from the HE respon.e. In



Ca2·-free Krebe, the rs_ponaee to ET-l and HE were not lignificantly different

from their control responses in normal Krebe, wherea. SRTX-D in Ca2·-free

Krebs dlllnOnBtratGcl a ligniticantly reduced rasponlll comparad to itll control.

Like anococcygeua, the reepcnaa of the illort<1 to HE in a ca2·-fraa Krebs WAS

significantly hig'her thAn the responses to either ET-l or SRTX-b.

cc>ntrast to etudiea with the anococcygeus, the post ryanodine responsee to

ET-l, SRTX-b and NE in the aorta did not differ significantly frOl!l their

controls.

Experiments were conducted to further compare Ind evaluate the role ot

extracellular versus intracellular CaZ• in the contract"ile re"ponse to ET-l,

SRTX-b al'ld NE. After obtaininq the control concentration-reeponae curveI' to

ca2• in the presence of the appropriate Igonist, tissuse wIre washed And

incubated in 10 pM ryanodine for one hour following which the Ca2•

concentration-reeponOie curves were repeated. RGsponees to £1'-1 in tha

anococcyg<)UG wora significantly enhancCld by ryanodine treatment alone (Figure

15a, band cl. Subsequently, the tissuea were "911in lJubjected to ryangdine

treatment In the preeonce of 10 pM nLfodiplne In ll9ht proof chambero and CaZ.

concentration-response curvlll8 were again repeated in the presence gf

appropriate agonist. Rellponslll to ET-l "nd HE: were .ignitLc"ntly reduced in

the anococcygllull b:.lt leee eo for SRTK-b which was not significantly reducad

(Figure 15a, band cl. In the aorta, with a combination of ryanodine and

nltlldipine treatment, there Wal marked and signLficant lnh1bition of the

contractile response to ET-l and NE bllt not to SRTX-b (Fi9ure 16a, b ancl c;

lIee also Table 41. The discrepancy arislng from visual aSS.8amant of

concsntration response curves ( Figllres 15 and 16 (a, b and ell Againet Table



4 ill thll rallult of prllllllntation of data derived from \ inhibition of control

maximal rellpons••ubj.ctect to 'tatillUcal "nalysi.. Furthllr IIxplol'ation ot

the poolB of intJ:'acellulaJ:' caZ·-utilhed by the agoniet wa. necII•• itat-.d,

IIince ryanodinll alone did not IInUrely depllltil the clIll ot thll intracIIUular

CaZ• utilized tor contraction. ThUll, rllllponseB to HE: liven after incubation of

both aorta alld anococcygeuB with ryanodille were maintained Patel And

Triqg1e (1986) had demonstrated intracellular CaZ. dllpl.tion by r.p.at.d

stimulation of the rAt tall artery in CaZ·-free Kr.bll with HE:. Rap.atlld

IItimulation with NE can partially deplete the intracellular Btore' of CaZ·

frOlll both the anococcygeull and aorta, however, there ill a C.Z·_pool which

resists depletion even after an IIxtended, and repeated, stimulatIon w1.th NE

for 2-3 hourll (F1.gurll 17a and bJ. Figures 18 and 19 (a, b and c)

demonstrate the rll8Lwnse charactllt:'iBtics for NE depilltlon which, whlln

compared to ryanodine depilltion (Fiqurllil 15 and 16 (a,b and C) ), wllre

B1,milar, except that ~yanodinll was morll affllctivll in reducing rllepons.s to

SRTX-b when ullild with nitedipine. Further attemptll to addrasil the question

of which intracellular CaZ· pooll are sensitive to ryanodine andl or NE,

involved experirnentll in which ti..ues had been repeatedly stimulated with NE

and then incubated in ryanodine (01" ana hour. The rlillults ft"OnI atudiee with

the anococcygeue (Figure 20a, band c\ maintained a pattern aimllar to thosloi

for ryanDCIina alone (Figure ~~., b and c). The reeultll from studioe with tho

aorta, Figure 21a, D and c,were identical to thOBe obtained following Cal.

depletion with Nit alone(Figure 19a, b and C). It has been auggeetlild that the

effectivenee;;, of ryanodine in depleting ISarcoplasmic reticulum cal < i.

enhll:leed by the simultaneous prennce ot an a90nist. In the anococcygeu., the

maximal contractile reaponeee to SR'-X-b atter ryanodine treatment alone or



tyanodinll plus caffeine Ot COflCUtteflt application of ryaflodine plus SRTX-b

wsre appatently enhanced when compaced to the controL responses (Fiqura 22&,

b and C). Howevet, t1valual:ian af the thrse treat.ment. by ANOVA showed that

theee dif(erencee were not ei~nif1.cantly differe,lt from each other. Figure

23a, band c illustrateD the ceaponee Obtained fcom anococcy~eu. with 10 nH

E1'-1. Evaluation of the three treatment a by ANOVA ahowed theae d1.ffatanc••

were not. .ign1f1.cant. In the aotta, t.teatment wit.h rY'nodine, or cyanodine

plull caffeine ,a~aln, raaulted in nO ai<;nlf1.cllnt differencl1IB frQIII. the

rellp8ctlve controlD (Fiqure 24a , b and C). Similarly in the ao>:,l:a, w1.tll

ET-l as ~he agonist, tha differencee were not ei<;nUicant when examined by

ANOVA alJ three ind8lpendent variables (Figura 25a, b and c).

Since nifadlpine was only partially effective at lnhibitinq ca2+ entry,

t.ha furt.her .lucidat.ion of routee of entry of extracellular ca.2+ waca

nece.aaty. Fat thie purpoae, a known L-type calcium channel opener Bay K B644

was uaed wlth a pattially depolatbin.... (is mM K+l Krebll buffat to expiote the

effect. ot ET-l, SRTX-b and NE. Figure 26a, band c Ihowe the reeponle in

anococcyglue to Bay K <1644 without, and with, eub-threehold concentratione of

1 nH ET-l and SRTX-b and 100 nH NE. An apparent enhanced contractila

responee to tha three agoni8tl ",al noted but thele differenclII ..ete not

etati.tLcally evaluated for eigniflcance prLll\arUy becauee the l:eeponsel in

the anocoecygeu8 in tile pteeence at Bay K 8644 (eee Figure 21) were not

concentration-dependent. FLgute 28a, band c demonltratee the enhancement

of 8ay " 8644 raeponeee in the aorta in tha presence of the t.htea agoni8t.

under examinatLon.

Study 41 Role of aracb.idoQ1c acid .etabolitlle

The role of the production of arachidonic acLd metabol1.tal in reepon••
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to ET-l. SRTX-b and ME "'.1 I.plored by cOlllparinq control caZ• eoncentration

C'.pone. curve. in tha pr•••nce of 10 J\H £1'-1, 10 nK SIl.TX-b or lilt!. ME in the

&b••nca of or followl"9 • ana hour incubation with tha cyc:1OOllygen...

inhibitor, indOlllethaeln(lO JlMl. Piquee 29 and 30 ahow no Inhanc_nt. of the

contro18 (tabla 4).

A further elucidation of thl role of &qonht-induead arachidonic acid

_t_bollte pl:oduction involved thl Ill. of the lipoIlYlIlen••• inhibitor, NIX:A.

In the InococcY91111 preparatlon (Fiqure Ha, b and c). the taupon••• to £1'-1

and HE, but. not SR'I'X-b, wire liqnificantly reduced by 10 pH NOGA ( Pohl It

ill., 1987). In th_ aorta trlgl,1[8 32-., b and c). the rillpon••• to SRTX-b

and HE Wire not. Ilgnlflc:&ntly reduced by HOGA. whar••• NOCA Il.qnltlcantly

daalgnlnq experiment. which cOlIpared the inhibition by HOC'" of the

conc.ntration-depend.nt contractU. respon••• t.o CaZ' in t.he pre.anca of tT-l,

anoc:oeeygeue pre~ration. a significant inhibition of the HE wn sch1.ve4

ITabl.41. A ai./llUar, but inaiqniHcant patt.rn of inhibition by HOC" of X'

induced contractions was notad IFiqur. JJa and bl. F19uo:•• J4a and b

demonstrate that the reduction of the contractU. responle by MOO ... was not

noted in the aorta with eJth.r NE or K" inducad contractions.

Experiments _r. d.signad in order to avaluate whather d.,one1tlzation

of tha anocoecyqaus and tha aorta oeeurrlld following axposure to subthrashold

concentration of eith.r SRTX-b or ET·l. Figures 35a and b illustrata tha



eUecte of the prior expo.~re of the .InOC'QCcYgeue to • eub-contr.lctile

concentration. 1 nil of SRTX-b, and InK of ET-l, t',epectively, on

concentration-reepon'e curv., to ME. Pdor expoeure to SRTX-b (Fi9un 35.),

but not £1'-1 (Figura J5bl. .ignlfio;antly (-t--tenl. reduced .~b.equ'l'It

r.epona., to Mil:. Figur" 350; and d lllu,tnte the aft.eta ot t;" ._

procedure 01'1 the cOI'l1::el'ltratiol'l-r,apone. curve. to XCL and inclic.t. that the

pre.anc. ot itT-I b~t l'Iot SRTX-b, .ignificantly al'lhancad the r ••pon••' to KeL.

In the aorta (Fiqut',e 3r.a - dl neither the prior expo.ure to 1 11K SRTX·b nor

1 nH &1-1 resulted in a ei9niHc:ant ("t --tilt 1 de••n.1.ti~ation of the

re.ponS8S ot tile ti••ue. to .ub••quel'lt c:oncantJ:'atlon-t'8.pona. curvea to

either HE or KCL. However. eignificant l"t"-te.tl anll.neament wa. noted tor

KCL concentratlon-re.ponae curv.e !ollowlnq '.po.ura to 1 11M SRTX-b or 1 11K

ET-l (Figure. 360; al'ld dl. and aho tor ME eoncentration-napon.e curve.

following .xposure to 1 nH SRTX-b (Figura 36a,. b~t not to 1 nH £1'-1 (FilJUre

36bl



rigu.:re :I: Aalina acid .~.nc•• ot .ndothol1n. and ••ratotox.1.nl.

ISM lilt ot ~br.,.1atlon. tor alt.rnaU.,. _.1.no;ll.

abbe.viation. tor ami.no ac:!.d•• 1



~

Cy"&r.cys-Ser-Ser-Leu-Mel-Asp-Lys-Glu-Cy.Val-Ty.-.Phe-Cys-JDs-Leu-Asp-Ue-Ue-Trp ET-l

C"..s.r·<)•.s.r-s.r·T.....Leu·Asp-Ly.-Glu.cys-V.I·Tyr-1'he-Cy..llis-Leu-Asp-IIe-II..Trp ET-2

Cls-'l'hr-Cys-Plae-nlr-Tyr-Lys-Asp-Lys-Glu-Cys-VBI-Tyr-Tyr-Cys-llis-Leu-Asp-IIe-lIe-Trp E'l-3

Cy.-Ser-Cys-Asn-&r-Trp-Leu-Asp-Lys-Glu-Cys-VaI.Tyr-Phe-Cys-His-Leu-Asp-Ue-1Ie-Trp ET-4

Cys.s.r.cy.-Ly..Asp-Mel.Thr-Asp-Lys-Glu.cy..Leu-Am-PhM:y••Ilis-GIn.Asp-VaI.Ile-Trp SRTX..

Cy.·Ser.cy.-Ly.·Asp-Mel·11tr·Asp-Ly.-Glu-Cys-Leu·Tyr.I'be-C75-IIis-GIn·Asp-V.I·lI••Trp SRTX·b

C,..-Tlr.t"-Cys-Asn-Asp-Met-Thr-Asp-Glu~lu-eys-Leu-Ant-Pbe-Cys-IIIs-Gtn-Asp-V"-Qe..Trp SRTX-c::

Cys-'1'IIr-Cys-Lys-Asp-Met.l1,r-Asp-Lys-Glu-Cys-Leu-Tyr-Phe-Cys-11is-Gin-Asp-Jle-lle-Trp SItTX-d
1 5 10 15 . 20

Figure 2 Amino add sequence or endolbeUns Dnd sararoloxiJlS



rilJ>lr_ 3: Il11l.,t.rat1on of the erratic r ..pon.e of the rat porbl. veL" to

£1-1, SJltl-b and Ill: In· 6).
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ri9ll" 4: Illu.trat•• the r..pon•• of rat portal .e1n to SRTX-b with c:hanq_.

in frequency and. U1plitllOIl of n.pone. at a;anilt concent.ration••~

low a. 10.10 H.
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Figure 51 Cancantrat.ian-re.ponelli curve. tor ET-l, SRTX-b and NE with til.

anacoccyqeu. mu.cle in normal. krebs bu.ffar. Points are the lUan

(: S.E.H.) ot n-6. ECSO valu.ea were obtainllid from the" curv•••
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ripI'. " In4uc1:ion of -rag.Die act:i.1ty in the anoeoeCV9-. lIlueele

foUowln9 lI..hevt of A) O.l,.,H ET-l; &1 0.1 ~ SRTX~b w1th nOnlAl

xrebe buffel:.
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log cone. (M)

"
Tilllll-depenc!lInt variation In the re8ponse of the anocDccyg8uI

muscle to four cOJll;:entration-re8pon8. curve. cbtall'led to Nt

over 8 four ho,,,; period.

-7.0

7.23

8.12

.06

.30

J.83

B.O

.31

.91

J.6S

.08

.40

'.s

6.88

Tin,us t.ension i. lTICIaliured in grams.



"
Effect of ca2'-ornltlslon on recovery time (houre) of the
anococcygeull muscle frolll peptide-induced myogenic 8l::tivity •

ET-l In • 4)

SRTX-b (n L 4)

• 5.20 t 0.66

2.62 to.55

·2.40:t 0.50

1.62:t 0.20

Time valuea at'e Mellnll (*" S.E.M.)
* Denote significant d.ifferences (ANOVA) between ET-l and SRTX-b. p < 0.5 •



PJ..guno 7: I111111trataa th. r.aponae to equieffectlve concentr&tiona of ET

1, SIlU-b &.lid H~ lot their &Pprox1Jn&t. Ze.- in : (a, anccoccygalla

&.lid (b) acrt&. chart apead thrOllqhOllt th1e atlldy waa m&1nt&intlld

at O.2SIml/a.c.
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'0

%ebl. J: Effeet of retJlOval of extn.cel1I11u- C.~ Oil eontrac:tl1e rlll.pon••• of

anococcyqlllua and aorta to ET-l. SRTX-b and KI.

AnoeoccygftU8

&1'-1 110 nM)

SRTX-b (10 nH)

(1 ~HI

5.16:1:0.81

5.9211.50

17.0 :t 3.0

15.3 :t1.6

21.0:1:2.3

Value. are llI.an. of percentag_ muilnum control respell••a ( •. 0;. in the

pr••ence of extracal1uhr C.Z. I :t S.E.K. (n· 4)
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ri~Jr. 8: Illustration ot the maintained tonG induced by ET-l and SRTX-b

compared to the non-eulIta!.;•.otd tone induced by NE in CaZ• -free

Itrebs buffer.

1\) AnococcY98US

B}
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EUeet ot 10 ,uH nitvdipine on Ca2+ eoneentration

retpont. obtlined Ln the tort...l in the pretence ofl

al 10 nK ET-1; b) 10 nK SR'i'X-b; and ej 1 pH NE.

Open and eloted symbo18 repr•••nt control and

nlfvdipin. tJ:eatment, re.~ctiv.ly :t: S.B.H. (n. 41
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Figure lOa, b Bali c:: Effect of 10 JIM nifedipine on CaZ. concentration-

responsE' obtained in the anococcyqeua in tho

prasonce Ofl aj 10 nH ET-1/ b) 10 nH SRTX-b: c) 1

pM NE. Open and closed aymbo111 raprelent control and

nifedlplne trelltl'llent,rellpectively :t S.E.M.• (n. 4)
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Figui:"e 11a, b aDd c: 1l1uIltration Df the per.hunt effect of 10 -",M

nlfedlplne on C.z. e'oneentratlon-responee obtained in

tho aorta in the prusllnee of III 10 nM £T-l; b) 10 nM

SRTX~bl c:) 1 pM. NE. Control curves :t $.£.M. are

reprellented by open llymbo1a, e.g. 0-0, and tn th..

presenee of nUedipine by filled symbols, e.q • • -.

and post-nifed1.pine by b,-lJ.. tn" 4)
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Figur. 12a, b aDd CI Illullt.rat..l,.on o~ the persiltent inhj,bition fClllowinq

10 pK nifedip!ll" .pplicatiCln on the C.2•

concentration-r••ponlll curve obt.ained in t.he

anococ:cygeull in the preaence of a) 10 nH £T-l; b)

10 nK SI\TX-b/ c} 1 pM liE. Control C\lrvell ! S.E.K.

are repr•••nted by open 1I~'lIlbol•••• g. 0-0, and in

the pre8ence of nlfedlpine by filled lIymbolll, e.g.

e-e and poat-nitedipine by lJ.-lJ.. (n. 4)
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l"ilJUre 13; A comparilon of the contractile effects induced by 10 11M ET-l,

SRTX-b and 1 pM NE in the rat anocoeeygeUB prl!paraeior. in normal

Krebs _ and C.Z·-free Krebs~ . The Krebs solution W8S

.witched frcm normal to Ca2·-free Krebs juet before agoniet

addition. Ths efheta of ryanocl.ine (SJ were atud ied by

incl:t,ating tisaues in CaZ"-free Krebs and 10 pM ryanodine for one

hour followed by re-introduction of normal Krebs and agonist.

Values represent means j; (S.E.M.) n • 6. Statiltieal differenees

between mllanD were assessed by one-way ANOV".

* Denote IBignifieant differenee8 ( p < .OS)
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Pi9\11'. 1&: A cOftlpl.rl.on of the contractU. e££-.::t. induced by 10 nH tT-l,

SRTX-b and 1 f.ll'l tiE in tile rat aortic ring pr.~ratlQn In normal

1treb. _ • Cah-£ree Xreb. 525Z! . The Krebe eolution ",ae

• ..,1.tched trOl'll nOrlllal to CiI."-£~ jU8t betora _gon1lt addltion.

The effect. of ryanodln. [SJ ..,ere .tudled by lncubat1n;

t1sllue. 1n Cah-tr•• Krebl + 10 ~K ryanodlne for one hour follOlolod

by :r"e-lntroductlon of ;)or....al Krebs and a;on1It. l"allle8 reprsDont

lIleanc :t (S.E.M.). (1'1.6)

Stat.lBtlcal ditterencea bet..,ssn meana "'are au_eooed by ons-",ay

* Denot. significant differencee I p < .OS)
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Figure lS4, b ."ul Cl Effect of 10 }JH ryanodine on Ca2+ concentration

r.esp0nlut c~rves obtained in the anoc:ocC:Ygelu, 1n the

presence of a) 10 nM ET-ll b) 10 nH SRTX-l; 0) 1 pH

NE. Control curves t S.E.H. I1re repreoented by open

aymbolll, 8.9' 0-0, and in the pre1.lnCe of ryllnodine

by filled symbo18, •• 9 • • -., and, in the presence of

10 pH ryanodine + nifedipine by 1:.-1:.. (n. 4)



...
o

TISSUE TENSION ( g )
o N ~ m ~

J, .--+---+-----II----+----l

I
en

I
N

95



UE TENSION (g)
TISS '"

~ _~~--to!'_--i"'f----;-_I:' N
Cll

...
o



o
I

'"

SUE TENSION(g)TIS 01>-

N

97

I
l\l



Figure 168, b aad. .,: Effect of 10 pM ryanodinB en Ca2' cOJ'\centratLon

reBpone. obtain"lId in eo<:ta in the pre8enc. at aj 10

IlK ET-l; b) 10 nM SRTX-l, c) 1 pM Nt. Cont<:ol

C\l<:ve. ::t S.t.H. are <:eprltlintad by 0plln liJymbOll.

e.g. 0-0. and. in the preeence of <:yanodine. by

filled Bymbol_. e.9 • • - •• and. in the preeBnce of 10

pH ryandoinB + nUadLpine by ~-IJ.. (n· 4)
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Pigure 17 (a and. b) I Illustration 1.n , a) iIlnoc:oc:c:ygeua anct b) aorta that

repeated stinlulat1.on with NE, in a CaZ·-free Krebs

buffer can rllduc:e the t.1.aaue reaponllJe to a certain

basal level beyond which further attenuation 1s not

pcllJ1ble.
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riguJ:1l 18., b .'ld c: Effactof NE-induced Cal. d.epllltion on calcium

concllntration-rlllllllPQnall obtained in anococcY91l1,11l in

the preDence of a) 10 nM ET-l/ bl lO nM SRTX-b; cl 1

pH tiE. Control curvee j: S.E.H.•re reprllDanted by

open 8ymbolD, Cl.g. 0-0, "'nd after NE deplet.ion by

filled eymbols, e.g . • -. and, in the preElenca of 10

.uH nifedipine, responae ie by .0.·4. (n" 41
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F.1!l\1r. 1,a, band c:: Effe~t. of NE-indu~ed Ca2• depletion on Ca2•

~on~l!ntration-responBe curvo. obtained in the aorta

1n the presence of al 10 nM ET-1; b) 10 nH SRTX-b,

c) 1 pH NE. Control curva. :t S.E.M. ar. rapre••nted

by open symbol., a.9. 0-0 and after HE depletion by

filled e}'llll:lols, e.g • • -. and, in the preBen~e of 10

pH nitedipine, by A-A. (n· 4)
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Pigure 20a, b aDd. c: Effact of aaquantial NE and ryanodina indllcad. Caz•

dap1ation on caZ- concantration-raapon,a CllrV1I1I

obtainll4 in the anococeyg8u. 1.n the pre••nea of a)

10 nH ET-1, b) 10 Nt SIl.TX-b; e) 1 pM NE. Control

eurvaa .t S.t.H. ara npr•••ntad by open .~1.,

'.'if. 0-0 and. after NE and ryanodina d..pletion by

Hlled lymI:)ola, a.g • • -. and, in the pr..anea of 10

pit nUad.ipina, by I1-A. (n· 4)
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Figure 21_, b .Iut Cl Effect of 8equential NE and ryanodine CaZ• depletion

on ca2• concentration-rellponlle curve. obtained in the

aorta in the prellence of a) 10 nM ET-l: b) 10 nM

SRTX-b; c) 1 ,11M NE. Controi CUI;"Ve8 :l: S.E.M. are

l;"epl;"1I8ented by open lIymbOlll, 8.g. 0-0 and after NE

and ryanodine-induced depletion by filled lIymbolll,

e.g• • -. and, in the pl;"8l1enCe of 10 ,11M nifedipine,

by A~A. en. 4)
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"igu~ 221., b aDd CI COIIIpllrll.tive etfectll of al 10 ,uH ryanodlnlill b) 10 pH

ryanodinllJ plull 0.1 IlIM cafteins/ c) 10 JlH ryanodine +

10 oM SRTX-b reepectiveiy on Ca2> concentration-

rllJaponee curves Obtained 1(\ the anococcygGUIil.

Control curves ± S.E.H. are represented by open

lIymboill e.g. 0-0 and atter treatment by a, band c

above, by filled lIymbo11l e.q. e-•. Note that 10 nM

SRTX-j) ia administered after ca2> depletion in a il.nd

b. (0 • 4)
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ri911t'e 23a, b aDd Cl COIlIparative affectl of al 1D PH ry.nodinal b) ID PH

ryanodi.na plus D.l mM eaffeine; c) 10 ~ ryanoctin. +

10 nM ET-l concurrently on C.z. concentration-

response obtained in the anococcygeu,. Control

eurve. :t: S.E.K. "re represented. by open eymbolB BolJ.

0-0 and after treatment by a, band c above, by

filled symbols 8.q • • -e. Note that 10 nH ET-l wae

administered after CaZ<- depletion in a and b. (n

.4)
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PiguA 2"a, b &ad c: COIIIparat1.ve effect. ofl aj 10 pH ryanodiul b) 10 .uK

ryanodin. plus 0.1 mM caffeine/ c) 10 pM ryanodlne +

10 nH SRTX-b concurrently on Cal· c:onc:entntion-

re.pons. curve. cbta1.nltd in the aorta.

C\lrve. :I: S.E.M. are repr•••nted by open .ymboll •• 9.

0-0 and after tr.atment by a, b and c abov., by

fiUed. .ymbolB •• 9••-e. Not. that 10 nH SRTX-b was

-'I
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I'ii\ll'e 25a, b aDd (ll compautive effecta of aj 10 ,uH ryanodinol bJ 10 pH

ryanodine p111a 0.1M eaffeine) C) 10,uK ryanodine +

10 nM ET-1 concurrently on CilZ• concantration-

raaponse eurv•• obtained in the aorta. Control

curv•• :l: 5.E.H. ara repre ••nted by open aymbolB "9-

0-0 and after treatment by <I, band c above, by

.filled ayPlbole 8.9 . • - •• Note that 10 nM SRTX-b was

ad,ministered after C.z. depletion in I) and bj. (n

'4)
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Pigul:e :lb, b aDd C:l Efhc:t of a) 1 nit £1'-11 III 1 nH SRTX and c) 100 nK

NE on thll Bay K B644 concentration-c••pon•• curve

obtain.d in anococcyg.u.. Control curve. :l S.E.H.

ar. reprllilented by open Iymboll 8.g. 0-0 and aft.r

application of .t, band c: _bove, by fillR _ymbol.

e.g.•-e. (n. 4)
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rigun :17; Illustr"tion of the concentration-independent reepone. ot the

anoeoceyqeus (al in contrast to the concentrat.ion-d.pendent

rQlponlle of the aorta (hI to Bay K 8644.





rigv.r. :;;tS., b aDd CI Etfect at tha pn..nca ot al 1 nH ET-l, bl 1 nH

SRTX-b and C') 100 11M ME on Sa? X 8644 conc:anc:ratl,on

r ..pona.. curves obtainad in the aorta. Control

curv•• :I: S.E.H. are repra••nted by open aYlflbol••• g.

0-0 and attar application ot a, band c above by
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'igu.re 2'., b aDC CI Effect of 10 JlK indomethacin on the Ca2+

concentration-responBs cu.rvs obtainsd in

anoc:occygeuB in the preunca of a) 10 oK ET-l; b) 10

oM SRTX#b I and c) 1 pM NE. Control curves ± S.E.'"

are rsprs8entarJ by opsn symbol. 8.9. 0-0 and after

application of l.ndomethacln by fillad symbols ".9 .
• -e. (n. 4)
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Figull'. 30a, 1:1 alul Cl Effeet of 10 pM indomethacin on the ea2•

concentll'ation-rellponlle curve obtained in the aorta

in the prellence of II) 10 nH £T-li b) 10 nM SRTX-b,

and oj 1 pM NE. Control curves : S.E.M. ere

represented by open aymbol_ a.9. 0-0 and aftsr

appl1.oation of I.ndOl'llethaein by tilled symbo18 e.9 •

• - •• (n· 4)
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Jl'igv.re 31a, b aad c: Effect of 10 pH NOaA on the C4Z• concentration.

ruponse curvel obtained in the anococcy;eus in ths

preunce of 4) 10 nM ET-l/ b) 10 nM :>RTX-b; and c) 1

pH NE. Control curves :t S.E.H. are reprssented by

open symbols 1.9. 0-0 and aftlltr application of NDGA

by filled Iymboll •• q • • -e. In· 4)
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Figurll 3:1a, b aDd. c: Effect of 10 11K NOC,. on thll CaZ• concllntntion

r ••pcm.e Cl,lrV1I1I obtain.d in the aorta in the

pr.... nc:. of al 10 nK ET-l, bl 10 nM SRTX-bl cl 1 pH

!fE. COntrol curve • .t O.E.H. ar. r.pr•••nt.d by

open ,ymbola '.9. 0-0 and .fter application of NDCA

by filled aymboll '.9. e-.. In • 51
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Figura 33 (a aad b); Il) Effect ot 10 pM NDGA on 1l90nist concentrlltion-

response curVIIIS in the anococcYgeus tOI- i) ET-l 0-0 ;

ii) NE 4-4; iii) CaZ. concentration-response curves in

the preeence of SO mM K· 0-0.

b) Effect ot 10 pM NDGA on agonist CClncentration-

response curves 1.n the II.l'lOCoccyqeuB to l- 1.) SRTX-b

v-v; ii) NE 0-0; iii) Ca2• concentration-re_ponlls

curve_ in the presence of SO mM K· a-D.

Control curves ~ S.E.M. are reprellented by opsn symb0111,

e.g. 0-0 and &ftsr the appllcatlon of NDG.'! by tilled

_ymbola, e.g . • -.. (n· 6)
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riglll'8 34 (a aDd b): al Effect of 10 JJH NOGA on agonist concentl'ation

l'8sponse curv'Is in the aorta to :- i) £1'-10-0; ii)

NE 6-61 iii) c ...2• concentration-response CUl'ves in

the pl'esence of SO mM K· C-C.

bl Effect of 10 JJH NDGA on agonist concentration

response curves in the aorta to :- 1) SR1'X-b v-v 1

ii) NE 1>.-1>.; ili) ca24 concentration-response curve.

in the presence of 50 /fIH K4 0-0 .

Control curve. = S.E.H. are reprellented by open

symbols, 8.9. 0-0 and after application of NOCA by

filled syml:>olB, e.g • • -.. (n _ 6)
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Pi""re 35a, b. c aDel el: Effect. ot' SRTX-b and ET-l on concentratlol'l-re.pon••

curves to NE al'ld KCL in the anococcyqeus ; - a) 1 oM

SR~X-b I b) 1 nM ET-l on NJ:l cOl'lcentrat.ion-reepon••

curves, C) 1 lIM SRTX-b : d) 1 lIM ET-l on KCl

concentration response curves. Control curve. t

S.E.H. are represented by open eymbolll, e.g. 0-0 and

after application of ET-l or SRTX-b by Hlled

lIymbolB, e.9 • • -.. (1'1. 4)
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rig-lin 36., b, C .l1d cl; £ff.ct ot SR1'X-b .nd £1'-1 on eoneentr.tion-r.lponle

eurv•• to HE lind KCL in the .ort. ;- .) 1 nK SflTX-bl

b) 1 nK ET-l on nor.pin.phrine concentr.tion

r.lponl' cllrv.II ej 1 nH SRTX-bl dl 1 Nt £1'-1 on kCl

conc.ntration-r'lpon•• CUE"I.I •

Control curv•• :!: 5.£.". are repre••ntecl by open

.ymboll, •. g. 0-0 .nd .tter .pplication ot £1'-1 or

SRTX-b by fl.1'.,d lyaboh, •. g. e-•. In -.}
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CH1r.PTER ..

DISCUSSION

4.1. aaoeral coodderaUolis.

This etudy focused on t.hs similarities and differences between the mode

of actione of £T-l, SRTX-b and Nt on vascul.ar and f\l;ln-Vallcul.ar smooth muscle.

TIm rationale for chooGing to compi1re the reeponees of both vaecular and non

vascular sll\OOth muscle preparatione to endotheUn and sarafoto)!:in versus NE

rofloctD tho wido!lproad biological effect .. of th..." peptid... on both vucular

"nd non-v"acular smooth mUllele, as well as their endocrine effects on the

adrenal glanda, kidney and neurohypophyeia. A comparison with the effects of

Nt was also considered logical since the effects of this ilIlline on smooth

muscle have baen extentively litudied.

For such a comp"rillon to be valid it was conGidered important to

minimize the poseible variables to a controllable number. Cognisance was

taken ot criticism of isolated preparatJ,onll being in an "rtificial medium and

perhllpa reflecting a non-physiological situation. However, the choi'Ce of an

ieolatiKI preparation avoida the etfeots of the peptide, on nEl:uronal,

endocrine and cardiovascular variables. Criteria earlier deecribed in the

mQthodB BGction worCl: \,lllad to lIolect the DxpCl:r1.mantal t1.SBUCl:8. Coneequently,

the final choice of aorta and anococcyqeus muscle was not only the result of

pharmacological 80reening but aluo of the publlllhed propertie. of th.,ee

tissues and the fact that both the control and experimental tisG\,loS were

obtainable from the Game an1.mll1.

Furthermore, the choice and emphasis on 8tudyin<;l the role and sourcee of

calcium utUi:ted 1n mediating the effects of ET-l 6>nd SR'rK-b reflectll a major
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intare&t 1n the 1:01. of a cation that b known to carry external 81gn418 to

the cell interior with a resultant bioloqic response. Moreover, calciulll haal

been implicated in altered smooth 1I'I\Iscle reactivity in hypertetuHon

{Flt.itpatrick and S%.O!ntivanyi, 1980; l·.wan, 1985, Dominic:r.ak and Bohr, 1990,.

and the findLng of high lIndothlllin contentll in blC"onchial exudate. of

asthmatice (Nomora et. aI., 19B'l) 1I\19988ta that the relationship bet....e"

calch"" endathelin and llmooth mUBcle dy.function h lin important llIelis.

The involvement ot eavel'al ampliUer en:.ymeu su<;h "8 phoaphol1.pas8 C,

phospholipase A2. pl\oepl\oll.paB8 0, IIdenyiate cyc1608 and guanylate cyclase

1n the signal transduction process made it imperative to study the

contribution or impact ot the prodl.lcts of these en"'yrt'lell il'l the abeencG ot

cOl'lfol.ll'lding variables of nerves, citculating hormones and their metabolltee.

It has been stated that ET-l and SRTX~b ghare the lIamll membrsfle receptor

and cellular mode of action (Kloog and Sokolovsky, B89) but, aince thete are

only 66' identical amino acid ssqu~lncea i1stween ET-l and SRTX-b (Hirata et

al., 1988a; WlI.tanabe et Ill., 1989; YanagiIJawa and Masaki, 1989a), this

concludon may be qUlutioned. Studiell baled upon ditferenCllll in recovery

time following contractions to ET-1 versus SRTX-b with recovery ln either

CaZ+-ccmtaining or Caz+-tree Krebe allggeet II role tor caZ' 1n the binding and

dlesoelation of ET-l and SRTX-b to their receptorl.). It ill spec1l1at8d that

these differences 1n IlPP4rent dissociation constants may reflect the already

noted. differences in the amino aeid compotition of ET-l Verell11 SRTX-b and

resultant differences In reeeptor binding propertieD.

Recently, in an Gndothelin conference review, Webb (1991) noted that

the 1I1PHAR committee on Receptor Nomenclature and Drug ClanlHcatlon

reconrnended that the ET-l 'selective' receptor dcacribed by AU.i st "1.(19')0)



and IIhich llIay be the vaacuiar IIll100th llIullc1e receptor, be named the ETIl.

receptor, and the nonselective rllceptor degcribed by Sakurai, be named the ETs

receptor. The endothe1in receptor cloned by Arai hall 421 amino acid reaidues

(<I8.S kLla) and that by Sakurai e~ a1. (1990) consista of 415 amino acid

realduee (46.9 kOa). They contrast r;emarkably with two receptor. earlier

l"olated in cu1turlld r"t llIeaan9i,,1 cellll (Sugiura .. t 011., 1989) with Kw. of

58,000 and 34,000. It is unclear whethar tha differancell in mo1ecula>: weight

of the recllptor. i. a tillllue phenomenon or the rellult of techniquee applied

in the illolation procell8.

4.2. Role of extracl!11ular calclwa (cs2.).

The firllt dellcription of the importance ~f ca2• in the tluid bathing

Useues was llIade by Ringer (1883) and by implication an intracellular

melleenger in,;olved in contr"ctlon. A Ilariee of obllervatlons then ahowed that

calcium >:egulates not only contralltion but a1eo many other cellular proce8aes

lIlIch ae 8ecretion Of hormonea (Kojillla at 11!11., 1985), neurotransmitters

(lerael et al., 1979; l<n19ht and Baker, 1982),and 91ycoqen metabolism in the

liver (Cohen, 1979, Garcia-Sainz and Hernandez-Sotomayor, 1985j. Some of t.he

respon.ee mediat.ed by ca2• are brief (and oft.en repetitive), but otheu are

quit.e prolonqed. TI. a diversity of calcium messenqer patterns hal come to be

recogni:z:ed ae organlzat.ional diveraity of calcium me8senqer eylltems

charact.eristic of cell type, tiaeue or orqan (RiSsmuosen, 1986). Thus, there

18 a strlking difference in thw manner by which Ca2• serves t.o couple Sti.lllU1U8

to contraction in skelet.al mU8cle as compared to smooth muecle or cll!lrdial.:

muscle. The u1t.rast.ructl,lral arrangement which a110wII for differential source

or storage of Cal. has been relat.ed t.o phasic and tonic responses in the three

typee of mUSCles m~nt.ioned. 1n skelet.al muscle, a dlstinct source of CaZ.
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involved in the contraction and r.-alaxatl.on is the lIatcopllBmic reticulum

(Eba.hi Be a1., 1978\. Depolarhation of the ph.ma membrane, linked to the

u.rc:aplaamlc retieulum via the T .ystenl (i!!. functiona:" complell). indue•• the

teleaee of Ca2~ leadinq to contraction; relaxlI.tion ia achi.ved by

repolu'lutlon and reaec\ltl1ulation ot CaZ> by tho liI;lrCOplaBmic reticuillm leoe

review by Rasmusson, 1986). In carcHac l'IIulIele, C.Z> cyclell acrOllB both the

plasma membrane and the sarcoplasmic reticulum membrane. DepoLarlu.tion of

the plasma-membrane leads to an influx of CaZ> through voltage dependant

channelll, which reeuLta in the relellse of caZ+ from the sarcoplasmic rotlculum

via a calcium-induced calcium release process (Chapman, 1979). The reBulting

rilla In lntr...callul... r c ... lclull\ l"ltiatall a contractile response, and

relaxation 1.B aChieved by a reversal of the caZ. cycle.

The situation in Ilnooth mUllcl. 11 quite different. all, notably in

valcular lmooth musele, smooth muecle has thl: eapabillty to maintain a

contractile respon8e for houra with or without dspolarl:r.atlon (Bolton, 19791

Hashimoto et el., 19B6). The urcoplasmic reticulum of llmooth mUllcl_ has

been shown to ba an lntraca1.1.ular organalla ot variable slze but In vallcular

8mooth mUllcle it can be a8 EiUctllnslv8 all In mammalian cardiae ",u8c18 and can

accumulate CaZ- and other dlvalent catlonB, e.g.srZ·(Devlne et aJ., 1972). It

le noteworthy that Devine et a1. (1972) demonstrated that there 11 a general

correlation among ditferent Bmooth mUBcles between the Import ance ot

extracellular CaZ- in receptor-ll\8diated contractile response a and the r~\ative

volume of 8lIrCQplallmic reticulum in the muscle (seo review, Minneman, 1988).

For elO;llrnple, rabblt lIIellentvrlc vvin had only 2.2\ vl'rcoplaBmic reticulullI and

depended cOlllplately on extraeellultIr caZ. for agoniBt-induced contractlons,

whentlll 8trlP8 of main pulmonary artery had 5.1\ lIarcoplasmic reticlllum and
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I."Dtalned a .lgnit!eant eoner.ctile response to &90011t in the abeence ot

extracellular c.Z· (Devine at &1., 1972). Po.aibly the lII1.ze of the storage

pool for releasable calcium influences the relative contribution which

extracllllu~ar and intracellular C. 2• make to aqonist.··mediated re_pon••• in

smooth muscle, a1thol,l9h tilt. does not necessarlly explain how rel'eptol:

activation i. HOked to both louree. of calcium (Hionem_n revlew, 1988). In

many muscles, ehe different phaeea of contraction have a different dependence

on extracellUlar Ca2• (Bevan et al., 1982). However there ill no clear

correlatLon batween ph.elc and tonic contractiong and the importance of ca2•

influr. (Bee review, Minneman 1988). In rabbit aorta and ear arellry. tApid

phasic contuctions cauBed by NE .!.te not dependent on the p:tesence of

Dxtrll<:ellulat Ca2+ (Deth and van Breemen, 1977), wheteas in rat mesenteric

atteries or reBistance ve.Beh, NE-incluced rapid phasic eontractionll u·.

aboliahed in a caZ·-free ll'ledium (Godfraind and Miller, i993).

llnococcygeus muscle, slow tonic; contractions to NE are less sensitive to

inhibition by CaZ+ entry blocker& than arB phasic contraction. (Oriowo, 1984),

while the reverBe holds true in rabbit aorta (Deth and van Breemll'n, 1977).

The results in Table J ahow the relative contribution of Ca2• to the

contractile procells in rat aorta and anococcygeull mUllcl. for ET-l, SRTX-b and

NE respectively to be 17:1:3\, 15:tl.7\ and 2l:t2.3\ of maximal contraction in

the aorta_ and 5:t.3\. 5t.7\ and 6t1.0a\ of maximal contraction in the

anocoecygeus muscle in normal Krebs loluti:lI\. 11 notewort_~y characteristic of

thelle contractions wall that the peptides E'T.-l and SRTX-b, Whether in ca2+

free or caZ+-containing medium, WIre llble to initiate tonic cont~'actions in

both the aortll and llnotoccYgeul. wherea. only phllSic contractions to NE were

lIeen in both the aortll and II.nococcygeus when ca,Z+-fres Krebs was used (Figure



Sj. These nsultB .Ire consiltent wIth those of WaUnofar It .1. (1~891 from

melentarlc reelltance vel,elB (KRVI. The f.\Uure to tone in ~ caZ+~fre.

IMlciLum after a tranlient contraction induced by Nt in rabblt inferior ven.

cava ,tnd rabbit aorta hal a1ll0 been noUd by Khalll and van Bo:e8lllen (1990)

and Hiaairo and Paiva (1990l reep8"tively. The finding of .. a",,,l1 austained

I:ontraction induced by the peptidal in Ca1'-free medium 1e "ondltent with

that of other reports of the actione of ET-l(Huang fit a1. 1990/ Kiaelro and

Paiva, 19901. HOlllt comparativll studiee of ET-l and SRTX-b allude to their

simUaritiea of action and their reeponlee in CaZ'-free are also qu1ta

limilar. How9ver, the~ of cell signal11ng processes prosflnted 1n thle

theslll(given overleaf) doell IItlow a variety of difference a=ngllt the agoniatll

under examlnation. The non~mainteMnceof ton9 for NE-induced contraction in

a CaZ'-free fl\llIdiu/ll, in contra.t to the pept~1es. IU9geeta that extracellulAr

o::a2' has a llIajor role to play in maintaining tone with NE.

There is clearly a rola fOl- extracellulAr ...,alcium in the contractUe

reeponsll to ET~l, SRTX-h and NE as evidenced by a 1088 of :>80\ of tho

contractile response in ca2'-free l'Illldium, t1owever, this role diffe", foo: each

agoniat. For ~xa.mple, whareas NE 1s capable of inithtinq a phasic

contractile r.spon•• il'l the abaence of extracellular ca2', only tonic

r'lsponles to £T-l and SRTX-b were observeo:l (Figure 8)/ true phaBic response

to £T-l and SRTX-b, in both rat aorta and Anococcygeu', require extracellulAr

ca2+. The converse WAS true for the initiation and maintenance of tonic

responses.

';he route of entry of extrAcellular Ca2' into the cell h.. received

considflrilble attention. These routes. often refao:red to as channell, can be

SUbdivided on the bAD is of thelr selective permeability to particular ionl,
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rlvi_ by Hilln_", 1988). Within each cl••• of channl11 whlcb are ~r.e.bh

to • particulu 1,on and opened by • p.art.la.lar let.ulul, theee UI _lItO

.ubel...... So tar til>:'. dletinct. type., nalllCly. ~L·. "N" and "T" type. of

C.z.. channel' havi been identified 11'1 diffleent cell typ.. (5tuuk and

Herm8meyer. 19861 Yriedman It al., 1986: ae'n, 1985). Th••• dum"ela can b4I

channel. activltlon, t.hl tt,", eourse of l.f\ll.l;:tivatlon, and the lensltlvlty to

require relaelv.ty atcono; dllpohrl:tatlonll for letlv.tlon, inactivate II"w1y,

and "re r=odullltid by dlhydropyridine C.~·-cll.nn.l llntaqonhte. "T"-type"

Inlenlitlv. to dlhydropyJ:'ldln... eN-type" ell.n"el, 11.110 require a fairly

lerong depolarlu.tlon tor activat.lon. lllacthiles with an Inter'medhte tl...

Po. It d., 19871. a•• ldlll the three ...bel••••• of volta9. oper.ted

ISolton, 19791 ~'lln Sr.-.n .t al., 19791. HOW1Iv.r, th.r. ha. been only Omll

report of 11n91e ch.nnel recordinq that lIupport. the exL.tence of r.ceptor

operatlad c.2• ch.nneh in .moot" IllUBcle (Benham and TIILen, 19871. Other .econd

me.eenger operated ch.nnel. have been recorded in neutrophil. (von T.ch.rnec

.t .1.,1986), lymphocyte. (kuno .nd Gardner, 1987) .nd rllt buin (Fr..er lind

Sarnacki, 19901.

Voltage-oper.ted C.2• channels ace known to be quite heteceq.neou. in

n.ture, with the exht.nce of multiple typee ot Cal· currents in neuronBl lind

nann.uronal eell. det.r.-ined u.inq volt"9. ei..p lIlIItho<h (sala "nd
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HIIt.';slIon.1990; Bean, 19891 Bea review by Shearman at al., 19891. M-type

channels have been reported to 8xht only in neurona.~ cells (TaLen at al.,

19881 KUlar, 1987) i.aving -L- and -T'· type channels whose distribution in

tEtl'"'!lB or relative den_ity in smooth muscle ill not known. Claims for the

exLlltllnc:e lind non-existence of 'T'-channels in Ilmooth musel. ara emerging

(Gan1.tkllvich and Isenberg. 1990; HatBuda at oil., 1990) and the Situation ia

A. the L-type channel 18 the only type of C.2·-ch",nnel 80 tar

Ldentlfied that La unaLtive to dihydropyridine. (OHPa), it is aho referred

to all th.. "DHP-reclIptor- ( ••e raview b~' Shearman, 1989).

ThUll far:. at.tempts have been made t.Q highlight evente at the level of

receptor IUld amplitier en:lt.ymeB. The effact. of these en:lt.ymes on Ca2'-c:hannel

modulation, alld the elaboc-ation of other ftaec:ond meallengers ft like IP3 end DAG

from membrane catabolism, have bllen cOl\lpositely aaBeeed by interference with

en:eymes or producte of their pathw,!yll.Thele proces'es are given in the

SUMMARY' (j::age 184) and echematiC'ally in Figure 37.

Thill study has avoided receptor binding studie.. Findings by other

inveatigatora (Hirata Ie: .111.,1989, Ambar ac: .111.,1989) have not shown any

differences in binding parametera between ET-1 and SRTX-b, although lueh

studies have demonstrated the existence of receptor subtype•. Furthermore,

the demonstration of low cross-resctivity between antibOdies railed against

ET-l ,!nd SRTX-b clearly s""qqest immune sy.tam recognition "nd by the same

token, receptor recognition (Flemlnger et .Ill. ,1989).

The failure of binding and biochemical studies to distln9uish betwaen

£1'-1 and SRTX-b receptoC's does not neceaearily lead to the conclusion that

theee peptidee interact with an identical population of receptor.

The role of DHP-seneitive C.Z·-channels in the maintenance of contractile
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rllspon8es to E't-l, M\TX-b and HE was explored udl'\q the channel «neagan!_!;

nifedipine. In the aorta. nitedipine (10 "'M) BiqnU'ieantly reduced the

maxir4ulII reeponl.s to £'1'-1, but not NE and SR'l'X-b, and a180 reduesd the

eeneitivity of the response to theBe agonist8 in the aorta (Figure 9a, band

e). In the anoeoc:c:yq81,l8, 10 11K nifedlplne lIiqnifieant.lr reduced tile maximal

I:BlIponse to £'1'-1, b\1t J;8eponse8 to ME and SRTX-b were not ,lgniflcantly

redueed (Fique. lOa, band el. However, it 1. notewort~,y Lilat the deenas.

in the maximum responses to ET-l, SRTX-b and NE was mor:e than that. observed

for the aorta. The reslllt.ance 01" NE induced contractions in the anoeoccygeu8

to :"lfedipine ia consistent with the finding of Or10wo (1984) b<.lt the

divergence in the sensitivity of responses to E'I'-l in aorta and SRTX-b in

anococcygeus ware surprising for peptides that are said to act on th.. sam..

receptor and have the sallie mode of action (Klooq and Sokolovsky, 1989).

o••pit. the clear dspendence on extracellular ca2>, the inability of

nifecHpine tl'lultment alone to completely lnhlblt the rIUJ.P!'ns.s in both

preparatione, indicates that cellular mechanisms other than voltage-operated

calcium channels must also play a significant role In th~ contractile

proces.es activated by the two peptldes and NE. 1t should also bl:l noted that

the concentration of nifedlpine, 10 /1M, that was used In theae atudles il

high and the InM.bltory eUects noted agalnat ET-l may reflect lome non-

apecific actions of this lubltance that are not yet documented. Recently,

Inoue et al.(l990) demonstrated that £T-1 augmentu unitary ca20-channel

cuz:rents in the guinea pig portal vlin and tluly were abie to characteriz.e two

typee of unitary 8az, cuz:rente with conductances of 22 pS and 12 pS.

Nlfediplne WaB said to lnhiblt both typeu of unitary channel current,

although the sensitivity of 22 pS caZ> channel wee 20-fold higher tlla" the 12



pS CaZ·-channel. Althouqh Inoue et al. (1990) did not. gpecUioaliy eX&llline

the etfecte of w-conotoxin on the lZ pS current generated by £T-l, other

nudiell (Lawaon and Chatelain, 1989; TOPQuzis: at a1., 1989) 6uggllst that the

lZ pS current ill an N-type channel. Thull, based upon .lope conductance

an",lye1s, the two typ8e of current that &T-l activatue in the guinea pig'

portal yuin could repreaent those produced by "L- and "N"-type C.Z·-channel•.

R<l1l1nk ot Ill. (1990) hav" cl~mon.. trilt"d the intllrnali:.atien of &T-1

rQceptors by cultured human vascular "mooth mUlicle celle and have therefore

IlUggested that thi.. proc8ss may be relevant to the characterbtically

persistent contractila aUecte ef this p8ptide on ';:;he vascuieture. In view

ef its persietent contractile effects, it ie likely that the SRTX-b receptel'

undergoee a similar precese, however, thin hall not yet bllen demonntratec:l.

lino ee ,1. (1988) have dl!lllonstrated the existence of two cluees ef

c'lciull. etores in guinea pig pertal vein, pulmonary artery and taenh. call 

one with both "Ca2·-induced caZ. release" (CICR) and "l1'3-ind~c~ ca2•

releaee- (IICR) mechanismB (!a) ilond the other only with the ncR lI\echanisms

(~AJ • Theee authors demonstrated that after ryanodine treatment, the caZ"

store (,lia) loet its c<:'pacity to hold cdcium a.nd went further to suggest tnoit

the CaZ• released from §.a produces the initial phase at contracture. By far

the mOlt intereeting question raised by Iino et a1. (198B) 111 "If the

aec:ond messenger for the agonist is indeed 11'3 as hall been 6u9gQsted in many

other cells (Berridge and Irvine, 1984), then why do agoniets not release caZ•

from ~Il in the absence at extracellular CaZ. 1" lino et al. (1988) .ug:geatad

a numbel:' at poeaibillt.ies - one h that following agonist action the released

1P3 may not reaeh thl! §B Bite, alternatively 1P3 may not be used a.s the second

messenger or finally, that nCR from.liB requiree extracellular caZ•• lino ae



(1988) "rquld ~hat _ince the UCR h". been .hown to be dependent on •

peaZ• (_log(C.Z·11 at .ppE"oxl.aately 1 (Iino, 19811, it i. po•• iole that Ip)

r.l••••• caZ• frOlll ~B only when th.r. 1.1 suffiei.nt CaZ• influx to k_p thl

caZ• concentration in thl vicinity of the Itorl hi9he". than a eertain eritieal

They finally eubalittld that there eould c.".tainly be othe".

po•• ibilities whieh n.l<I.d further Itudy and clariHe.tion. "rhe allg91!18tion

.io: Itorel fixlld in all o~n eonfiquratlon hal been supportld by the finding of

H1.eaYeJlla and T"k"yan.qi (1988). In the preuence of E"yanodine, even if utorl<l

c.Z. w•• depletld by e.ffeinl, tho "."t. of riao of tha BlCt.t;acoUllla". CaZ'_

ind\1eed eonteaetion eelll.llined at • higher level.

My data with anocoeeyqelll mupele ac. eonli.tent with the finding of

Hil.y,- and Tak.ay.naqi (198S) eoneerning- the Itlect. of ry.I.nodLne, but the

eonelu.ion frota illY d.ta 1.1 that the c.Z. mobU1.&1.ng _ct..nL_a, and ability

to ....tain them, .re likely to bel agonist dependent. In thb reg.rd, the

pE"otain kina•• C with the ph"", me&bE"ane in the pE"e..nce of dillcylqlyeerol

lIulIt"ininq the c:ellular r.lIpons. may only b. valld in the pE"elenc:e of

extracellular C.z., The in.bility of HE to ..lntein ••ultaLned c:ontraetion

in the abllence at extr.cellul.r C.2• que.eLon. thL. model, in that 0-

&dr.noc:.ptor actlvatLon il thought to Lnvolvl' the production of

diacylglyc.rol and inolito1 triapholphat.(lel r.vl.... by Minnem"n, 19881,

Furthermore, the abilLty of ET-1 "lid SRTX-b to m.int&1n 81,11taLned tone Ln the

.bsence of extr.eellular c.Z· indicates th.t there LII more to IUlt.lned

cdlular responl. than membrane anociation of dlacylglycerol and C1I1•

lIlObiliutLon oy IP1. II crucial q..testion 1.s if liE, AI for ET-1 and. SRTX-b,
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produr.8S !P, and CAG on receptor activation, why ill the rEI_pones to NE ph".ie

like and thos8 to E'1'-1 and SRTX-b tonie-like in a c.Z·-frsll Krebs? No definite

answer can be provided at this t11%18.

Further experiments were conciucted to compare and ev.luate the role ot

extracell\llar VBrllUB intracellUlar; caZ- in the co;,tra<;tile rellpanae to £'1'-1,

SRTX-b and NE. In these experiments, lontrol cumulativll C.Z. concentration

I;"eaponse curves were constructed in the presence of an appropriate &90n1.gt,

tissues were then w••hed and incubated in 10 pH ryanodine for one hour

following which the Caz- concentriltion reeponae curves were rep.ated. In thl.

study, the 811me concentrations of the agonhts (i.e. 10 nM E'1'-1,10 nH SRTX-b

and 1l'M NIl:) wlfrlf used as in other phaaes of thill projlllct. After washinq and

recov"ry to basolino, the tissues were again subjected to ryanodine treat3lent

in the presence of 1.0 ,uK nifedipine in light-proot chambers and caZ•

concontration reaponse curves were constructed in the pressnce ot the

appropriate agonist. Responaes to ET-l in the anococcyqous muscle. wore

signUicantly enhancsd by ryanO<line treatment alone (f'iqurelll lSa, b and C).

Treatment with nifedipine siqnlficant1.y reduced the responeeli to ET-l and NE

but sign1.fJ.cantly less so for SRTX-b (table 4) • It ill apparsnt that the

sKtrll.cel1ular Caz. requirements for ET-l and NE induced contractions partly

utilize nifedipinlll-slllnflitive volt'gEl operated channel'. There h, however,

a cOlllponent of each contraction which is nUedipine-insenGltivs.

response to SRTX-b following depletion of the intracellular ryanodine-

8ensitive etore and nifedpine blockade was not eignificantly reduced,

euggesting that CaZo entry may depend upon non-selective cation channels (owen

"'c al., 19861 Patridqe and Swandulla, 19881 Oortiqiesen et al., 1990).

JIIdditlonallUtperlmentll to explore the preliminary finding that ryanodine
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and NE depleted the same Btore[sl of intracell\l!ar ctolcium were conducted.

Fiqure 17& demonstrates that n1peateu;!. stimulation with NE In anocDccyo;eue

could only depLete the Uasuee of calcium to a certain buel level beyond

which fUJ:ther deplBtl.oll seemed illlpoosible, even for: an Ilxtendad IItilllulatl..on

of 2-3 houu. FLqul:8 18a, band c demonstrate calcium rellponee curves of th..

tht'ee llqonlBts ul'lder examination following depletion of the NE aenaitiv8 Ca2+

ato.z:ee with repeated NE exposure. When cOlIIpal;'ed to depletion of cellular Ca2+

stores with ryanodlne (Figures lSI., band cl, the rsapone81l were llIimllar in

the anoccccygBulI Bll:Cept that nifedlpine dLd not e1gnlticantly reduce the NE

co.ponee .. was the case following ryanod-ine treatment. These data confil:m

the postulate ot Iino et .1. (19aSl that~" stOl:es i!l.l:& aanaielve to l:Yilnodine

and 1P3 ganerllted by Ilgoniat. The only discrspancy was the ins19nif1cllnt

reduct.ion of NE responss by n1.fed!pine following NE induced-deplet.ion of

cellular Cillo stores. Furthermore, the data indicate that rYilnodlne, unllke

NE, hOlde lntrllcellular CillO-channels in an open conflgurat.ion auch that the

intrllcelluler st.ores lOBe t.heir capacity to reaccumulate calo following

et1mulaticn, where!UI NE depletaa the cellular storae ot Cillo but 1.llve. them

with the ilbility to rellccl,uQulsts and IlI1lintll1n Il fl.lnctlcnlll capacity. Th..

availability of ca2+ stOrBS that ilre sensitive only to IPJ explaina the

capacity ot NE to evoke a contraction aftvr treatment with ryanodine. An

interesting development is the hOlation ot the IP] receptor (Chadwick et. Ill. ,

1990l a.nd the inabiB.ty to isolate Ca2·-induced Cal· release channels from the

sarcoplasmic reticulum of smooth muscle. It WilQ concluded that, although

the.te is iln IP3 receptor in smooth muscle, there may not be il di.ltLnct

ryanodl.ne receptor (Chadwick st al •• 1990). It ia moat probable that thLs

etore varies f.tom tissue to tinue since Patel and TrLqqle (1986) were able



to deplete the rat t.U artery of ca2+ by repeated exposure to mi:,

Furl;her atternp,:;s to add.;e•• the question of which intracellular calciulll

poole were seneltive to ryanodlne and/or NE involved experiments in which

thsues weI'S repeatedly stimulated with NE in a CaZ+-free krebs and then

incubated in ryanodinll for one hour. The results from anococcyqeus (1'1qur811

20a, b and C) maintained a pattern .imilar to tho.e with ryanodine alone

which were earlier described (Fiqures IS., b and C),

The poslilbility that the effectivl'!nese of ryanodlne could be enhanced by

the eimultaneous prssence of an aqoniet which effectively holdS the

ryanodine-seneitive release channel in an open etate, thus snhanclng- ca2+

depletion, wa.s eyplored, In order to address thil!l possibility, exper1.tnents

were deelqned in which ryanodine alone, ryanodine and caffeine, and ryanodinll

and aqonist, respectively, were used to deplete the tissue of cel1ul.r CaZ+,

In the anococcyqeue (Flqurlilll 22a, band cleal+ concentration- response curves

in the presencs of 10 nH SRTX-b and 10 nM SR'rX-b plus ryanodinll showed no

aignificant differences when evalusted by IINOVA. The data presented are

consietent with those o~ I1.no et al. (1988) who concluded that ryanodine acts

on the calcium induced calcium ralease (CIeR) channels only when they are

open, and that ryanodine does not have any appreciable effect on the IPJ-

induced calcium rlllea8e (IlCRI cha.nnels even if the drug 1.8 applied when

these channels are open, From my data concerninq interactions between

caffe1.r;s and ryanodine I conclude that caffeine and ryanodine likely act on

the eame calcium pool/s). Support for this hypothesis is provided by thll

fact that the effecta of ryanodine with and without caffeine were not

siqnlfl.cantly different from lIac:h other. Figure 234, band c illuotrate the

responses Obtained in allococcygeus with the use of ET-l. Evaluation of the
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not 81qnlficAIlt thul c:ontlC1l1n'i .uiier Unding. ",1th SIl.TX-b c:oncernimil

depletable c.2' pooll.

I'vrtl\er .1Ilcidat1on of tb, rout.. of entry af ntrac:dllllar cdc!.... h.d

become nacelllary .a blockade with nif.dip!no hd boen eho"n to b. only

partially efrective ..nel thIn only when \l.ed at a high concentration. ~o

contractions induced by £T~l. SRTX-b "nd 11£. known L-type calclulIl chlMel

opener Bay K 8644 wa. \lIed wltll dBpohl:'1.zlnq (15 nUlK"l Rub, buffer. rlqure

26&, b Illd :: Bilow the taeponlell 1.n .nococcyqeuG to a",y k 8644 wIthout and

with 1 11M ET-l .ncl: SRTX-b Ind 100 nM N£ {lllbccntrlctllQ concentration_I.

COntractile ca.pon•• to the tllree Ilgon11el "as noted but .lnce tile rei_pollia

of thl anococeyglul to Bay It 8644 (Figure :Z') did not dll/aQnstrate etrict

eoncentn.tion dlp8ndencl, th••e differencell were not .tetiec:.lly e"luated for

dgnific:a.nc.. Thi. aU99•• t tile involvement of non·.l1ecti... cation chanMlla

and perhaps, "II" and ·1'~-typ8 channels in the contractile prac..a of tile

IoIIOOth .....cl... propo.ad by ....er;.l luthou (O·OrlUnll-.1ulte .t .1., 19891

Voin aenterqh_ et 41., 19891 patridge and SVandulla, 19881 Inou. at 011.,

1990).

In further ••parieentll conducted to cOIIpare .tld tlv.a,lu.te tile role of

elltracellular v.nUB intraclIllular C.Z. in til. contrlctile r.epon•• to ET·l,

SRTX-b oInd NE in the aorta (Figures 16., b and c), a combination of ryanodil1l1

and nifedipine prod\:lced a marked and ,1qniHc.nt inllibitl.on (ANOVllj of til'

contractlll1 re.ponll. to ET-l Illd NE, but not SRTX·b t .ee al.o Tabl.••,.

Tille eU9g••ta that an lntrac.llular lource of caZ', which 1. _1ntained by

••tc:ac.,llu1ar c.Z- entec:inQ ..ia • nlfe41pLne-.enl1tlve route playe a
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signi.ficant tole in determining the contractile reSpOtll58 to ET-l whereas

nifedipine-inseJlsitlvQ routes ",ro utilized by and SRTX-b.

Experiments to expand on the preliminary finding that ryanodlne and. NE

depleted the 8an'le storos of intracellular calcium in the .aorta (Figure 17b)

demonstrate that z:epeated stimulation w1.th NE in a CIl2+-free Krebs could only

deplete the tbGuoe of calciU.lll to II certain basal level beyond whi<;h (luther

deplet1.on lIGemed impolBible. FigutSlI 19a, band c demonstcate respanes_ to

ET-l. SRTX-b and NE from the aorta following depletion of NE-senllitlve ca2•

lItOtllD with ..spoated HE expolll.u:SS • When compared to depletion of cellular

Ca2• storss with cyanodine, it can be Bssn that the rellultll were eim1,lar

(Fiqure 164, b and c). Sequential depletion in aorta of NE-sensitive Caz~

stores with repeated NE elCposurea followed by incubation in ryanodine

(Fiquree 21a, band cJ were not differant frOlD. Figurell 19a, band c or Figure

16&, band c thus confirming our earlier speculation that: ryanadine and NE

acted on the same depletable CaZ. pool.

11'1 II parallel IItudy with the aorta, designed to determine whether

ryanodine wall more effective in the prellence of an "gonillt, ryanodine

alone, ryanocline and caffeine, "nd ry"nodine plue either the agoniet SRTX-b

or 2T-1 were compared IPi9urea 24a-c and 25a-c reapectively). NO aignificant

differences W8re oblerYed IANOVA). Nifedipine, even at 10 ~H, proved to be

only partiaUy effectlve at inhibiting the rS"'ponses to SRTX-b, 2T-l and N£

in tnlt aorta and thue, additional expltrimenu were deeiqned to elucidate the

role and routee of extracellular caZ. utilization. Figul:liIs 28a, band c

demonstrate enhancement of responses to £T-l, SRTX-b and tiE over the control

reeponsea induced by 10 ~H Bay K 8644 in a depolarizing (15 mH K·j Krebe

alone. 11'1 contrast to anococcygeue, the responeee of aorta to Bay K 8644



demonstrated a striet eoneentration dependence (Figure 27b I. No eKplanation

for t.hs ~flappin9~ reaponsil of anoeoceyqeus to Bay k 8644 when contrast.ed

with t.he ellstained tone and conesntrat.ion-depllndent relponsQJ exhibited by

the aort.a t.o Bay k 86344 (Figllrt 27. and b) ean be offered, alt.hough

electrophylliolo9ical studiel m..y provide an inei9ht..

4.4 Role of U'acbidoDic acid lIletabolitel.

There is a direet. aSlociat.ion bet.ween phosphat.idylinositoi turnover,

diacylglycerol prod.llction, and arachidonic acid release (see review by

Rasmuasen, 19861. Arachidonic acid COllld be generated by one of three

from phosphatidyl1nositol 4,5-bisphoephatll (PIP21

diacylqlycerol with further metabolism to phosphati.di.c acid and arachidonic

acid or !rolll phosphatidy1choline to lysophoaphatidy1choLlne and arachidonic

acid. The metabolism of phosphatidic add .. -:: .raehidonic add frc.l the ••

pathways 11 eatalynd by phosphollpase "2 (see rsview by Exton, 1988).

aIt.ornate pathway is thg hydrolyllh of phollphatidylchoUno by phoophoUpaae

C and D t.o arachidonie acid (Irving and Exton, 1987). The view that agoniat

inersases diacyl9iyeerol levels eolely via the atlAlulation Clf

phosphat.idyllnoaitol bisphoaphate lP1Pzl brsakdown and reeulunt PAC leading

tCl phosphatidic acid i.s not strictly aupported by experimsntlll data.

Emergent biochemical data (Irvinq and Exton, 1987; Socckino It 41., 19S51

have revealed t.hat fatty add cOfllpos1.tion of DAG and/or PA produced qrsatly

exceeds the decreass in mass ot inositoL phoapholipids. Thus, agonistl may

induce t.he breakdown C't another phospholipid, phQsphatidyleholins, and

suppClrt for this hypothesis is provided by the agonist induced increases in

phosphoeholine and eholine aeen in hepatocytes, 3TJ Hbrobialtl and amooth
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lI'lllllcle celllil (see review by Exton, 1988).

There liI.emll to ce II. prevalent notion (0811 RUlllUlIsen, 1986) that once

produced, arachidonic aci.d 1s r4pidly metabOlit8d largely vilto the

cyclooxYgenase pathway to endopeJ:'Qxlde8, prostaglandins and thromboxane A2

with negl1qlble contribution of \;tle l1poxygerlllslil patllwav. Data from recsnt

studies with endothelin (Rapoport Bt a.I., 1990) seem to agree with this

notl.on. However, it le well Bst:abllllned that Bomlil LipoxganasB product.

(Vanhoutte at a1., 1985) do affect smooth mu.chl: function, and a role for

llpol<ygen••e metabolitss in mediating the effects of 81'-1 hal been dellcribed

by Rellink at a1. (1989). Furthermore, the work of Reynolds Bt: al. (1989) has

demonstrated that phorbol Bster treatment diuociatad endothe1in-stimulatad

phoephoinoeltide hydrolyaiB ami arachidonic acid release in vascular emooth

muecle CIilUB. Thill later etudy sugqe8tB paraUel or Bynergiatic :IllilchaniBlllB

for initiating the contraction of smooth muscls.

In view of the poniblo role of arachidonic: acid lIletabolites in aqonilt

induced contraction, the effecta ot ET-l, SRTX-b and NE were explored by

conetructing calcilllll concentration respcmee cl.lrvea in the presence of these

llgoniets llnd in the absence or presence of the cyclooxyqenaBe inhibitor,

indomethacin (10 pH), (Figure 29a, band c for anococcyqeueJ. The responses

to the three llqoni'ts in preasnce of indomethacin were not e.i.gnifica.ntly

different frc-Ill 8llch other ae .nalyllild by lINOVA. Thus, at least in the

anococcyqeus, products of cyclooxygenaB8 llre of negligible coneequence in the

contractile procen (see '{'abll 4). The results wers limilar for the aorta

(Fiquree JOe, bend c; Table 4). These findings are in cantrallt to Rapoport

lilt al. (1990) who noted a signiticant inhibition by indOlllethacin of ET-1

induced responses in the aorta. Further exalllination of ths effectl of the
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thrall aqonhtll in the anoeoccygeus in the "baGnell and presenclI of 10/11'1

nordihydroguaiarlltic acid (NOGA), a lipolCyganaeB inhibitor, revealed that

rEtspen.., to E1'-1 and tiE were lIIignifLcantly J:edueed when cocnpared to conttoh

by "t"-tIlUlt analys1,8 (Figure lie-e,and Table 4). In ths .otta (Figure 324, b

and C). r.lIpClnllea to SRTX and I'lE when compared to eontroll wera not

significantly reduced by NDGI\., where18 that to £1'-1 was aignlficantly reduc:"d

when examined by the "t"-tSlIt respectively. The inability of IANOVA) to

detect a eignUicant dlffeJ:'lInce may reflect the low number of el<perimental

replications. The results with £1'-1 were consistent with the flnd.l.nqll of

Resinlc et .II. (1969) who obeerved almost complete inhibition of I]HI-

arachidonic acid relealEl by NOGA, 8l.l\lgut.ing that such extracslll.llar labellsd

materiah reprelllented ei.cosanoid metabolites derivctd f~OfIl Upoltygenue

activity. Reeink at a1. (1989) alao found that endothelin-induced a~achldonic

acid ~elease was ~elatively insensitive to both indon,ethac1n and

maclofenamate (cyeloo.llyqenase inhibitor), thue eonfirming ou~ find1nq of lack

of efhct of indomsthacin On rssponses to ET-l, SRTX-b and HE. Ths findin\ls

of Resink et: al. (1989) aleo suggest. that it is phospholipase A2 that mediatSB

the generation of the lipoxyqenalle produc;:t followinq Elndothelin stim\llstion

ae they report that neomycin, a putative phospholipase C inhibitor (Slivka

and Inse1, 1987), did not inhibit arachidonic acid releass. Resink at .1.

(1989) conCluded that the lack of inhibition by nsomycin indicates th.t

activation of phospholipase A2 by endothelln may occur thro\lllh a pathway th.t

h independently parallel with, rather than secondarily sequenti&l to, the

ph08pholipaee C pathway. Sueh independent pathways have been proposed for cr,-
adtenerqic J:'eceptote (Slivka and Inset, 19881 8ureh et &1., 1986). The data

from my ellperil:nenttl do not support this hypotheeis, at least Ln the aorta.



dnce SRTX-b was not liqnj,ficant1y inhibited by NDOA. However, in ths

anococcyqeul. the NE nsponee was significantly inhibited by NCG". Thil

further pointe to the d1.versity of pathways I.lti11.ZlId by the different

aqon1.ets in diffsrent tissues. Reynoids et al. (1989) have shown the dose

reaponBe relationship of endothe11.n to {'Ill-inollitol phollphaU formation and

rJIlI-arachidonic acid ralllaGe In rabbit renal artery Yascular amooth muscle

ceLlII and ha.ve alluded to the fact that. since the £cSO val.ues for both

responees were yery sim1.lar. 0.2-0.4 nK, both response. were, moet 11.kely.

mediated by a single population of endothe1.in receptou. Reynolds et a1.

(1999) noted that. in the FRTLS thyroid c ~lls. pertuuis toxin completely

inhlbitilld "'I-adrenergic recillptor milldiated PL"2 activation but did not af:fect

Ql-sdronergic recoptor-modiatod phoepholipase C actlYation (BuJ:'ch et al.,

1996). Thee. data indicate that ",,-adren.rqic receptorl of these caUs were

coupled to PLC end PLl'.2 by different 0 proteins. Reynol.d8 et al. (1989)

concluded that the coupling of a,-adrenergic receptorl to phospholipase C

(PLe) ar.J phoephoUpae. 112 (PLII2) activation occurred in parallel and w".

indepenclently regulated in tho.. cells.

The que.tion of non-.pucHic actione of tfDO,. (Rime~e and Vanhoutte,

19BJ) wae addreeead by designinq experimenl:.l1 wtlich CClllpared the inhibition of

contractile reeponse produced by NCGA on agonillt cumulative concentration

response curves. e.g. £T-l, NE eompared to inhibition by NOGA of calciulll

.,mcentration response curve in the presence of 50 rnM k·. Figure JJa and b

showad thaI:. ", the anococcygeue preparation, where significant inhibition of

the maximal response 1:.0 HE by HDGII was achieved, no .i9nific"nt inhibition

by NDOA of k· induced contrao:tiQns were noted. Figures 34a and b .how that in

the aocta. no 8i'ilnificant reduction af eontr..ctil. reeponB8 to either NE or



1\.' by NDGA w.... achieved.. A c:ompadaon ot UguuI 3Ja and. b to fiqurea 34.1. and

b laave. aOlllll poaaibiUty for equivoc...tion and .I. au.ch the lpecLficlty of

"OGA _y ba que.tionable. IIon.thalase, tha mora racent work by Sc:riabina, Pan

and Vanhoutte (1990) hll .hown that ths MOCA action waa .pecific tor

1iJM)>o:ygt!ln.ae.

".5. Agoaiat. cro..-cl.aaodt.L.at:ioo.

In the couraa of ti ••lla 8cr.anLn9, it waa noted that ET-l, SRTX-b or NE,

when cumulatively adnliniat.red to re.ch b... th concentr... tions of 10.1 H or 0.1

pH for ET-l or SRTX-b, and 10 pH for NE, often rUllited in da88naLtization to

administratIon of • particlllar .90nist, thls qlla.tion had to be addreaa<od.

Aa aar1.Ler JM)Lntacl OI.It in the Hater.!..als and Hethod. aection. it was ob••rved

th.t if the concentration of 10 nH for £T-1 and SRTX-b or 1. pM for NE WII not

reproducible concantraeion r ••pan.a curves to tT-1. SRTX-b and Pi: could be

obtained for up eo 4 houra (Tabla 1). In tha study by Hiaeiro and Pdva

defllOn.tratin9 homologous da.ansLtlz.tion to ET-l. Howevar, the c:oncentrltion

used wall 100 11M (0.1 JlMI which, II d.emon.trated 11'1 till. atudy, 1. euffic:lant

to induce Illyoqenic activity in anococcY911l1 or lub.equant non-r••ponee in till,

aorta. At tho concentratlona ulllld in my study, whlch ware apprOKlmataly tCsa

va1.ua. for tha.e aqoniat., ct•••nlltizatlon waa not obaarved and thu. our

{. indlnge are not conehtlnt wi.th those of Hialito Ind Palva (1990). A good

dilCCllrae of the phenOlllBnil of de.anaiti.ntlon ITrigQ1I, 1980, <loeB not "'/I
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t.o relllte dell.neitheticn to dose or eoncentratlon, which the &utho:t:' define,

as diminished rellponee dut'im~. or .ubssquent to, the initial ....c:tl.on of & drug

(varioue1.y described as tachyphylaxis, tolerance, refraetorl.ne18 or

lIubeeneitLvlty}. Recent dev.1.opmentB in this area hllve clearly indicatect

that conditions which decnall& or increallil agonl.llt-receptor interaction,

either chronically or acutely, result in oppoel.ng alterationl 1n effector

sensiti'Jity (Tdggle, 19801. Given the agonist-recaptor internali~ation ot

ET-l as !'loced by R&'sink ee a1. (1990), it could be argued that internaliation

of liqand-rClcllptor complex leads to 1088 of cQceptor. thereby provJ..dinq the

basi, for deeeneitiution. However, Auguet lit: .1. (1990) had dsmonst.ratsd

that even at concentrations as low as 10 nH, Et-l but not SRTX-b inducQs

crose delJeneitlzation of rat aorta to SRTX-b or £1'-1, rlJepecthely. In a

second set of eltperilllBnts, Auquet et al. (1990) using 0.1 pH of £1'-1 or SRTX

iJ demonstrated that pret.reatment with SII1'X-b did not affect subsequent

responass to ET-l or SR1'X-b whereaa pcet.reatment with E1'-1 I1gnificantly

reduced responllee to £1'-1 and SR1'X-b. Auguet ,t al. (1990) concluded that

£1'-1 and SR1'X-b may activat.e a COfnnlOn receptor since E'I'-l induces

deeenllltization to both ET-l and SRTK-b and went on to postulate that SRTX-b,

unlike £1'-1 (Hirata at al., 1988a), may bs more rsadily dillloci.able from ite

binding llite alld hellcll doee not normally induce deaengitiration. Fu.rthermorg,

Auguet et 41. {1990) suggest that the long lasting effect of the peptidea of

the E1'/sRTX family is more likely to be due to their pClllt-receptor events

rather than to the nature of binding of tile drug to the receptor

{irreversible or not), sincs the rate of wllshout waa the sarno with the

contraction induced by £T-i and that induced by SRTX-b. liy data, all

determined by 10lia of myogenic activity in anoc:oecygeuli {Figure 6 iIlnd Table
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31. .how differing diolJDchtion characteristic. of ST·l "nd SRTX-b. The

argument that thil!ll activity llIay be a post-receptor event may be conceded on

the basis of the wor\{. "): Van Rentllrghem at al. (1989) and Sakata at al.

(1989) who related ET-I-Lnduced ".pLking" activity to <::a2._ actlvated K+

channeh and cytolloLic Ca2+ spikes to mechanical reeponBe of tonus

!lowevet, my dati (Figure 3Sa and b) demonatrate the phenomenon at cr088-

de.eneltization between SI\TX-b and NE in rat anocDccygeus and the abeence of

cJ:08s-deesna1.tization between &T-l and NE. Thill (:.)"Ct'4I1CII markedly with the

data pnsencad in Figure 3Se and d which were desiqned as controle for the NE

tlI1i1panB8 by lublltitutinq cumulative concentration rSlIponlls curves of NE with

XC1. In this BubBBt, Bnh.ncefllent of the maxlmal rellponse to KCL wee noted

with both £T-1 and SRTX-b. Stat!.stical eVi!luation of responses by "NOV"

showed B1qnifl:::snt different.. for the effects of SRTX-b on the Nil response

and the SR1'X-b effect on the KCl concentration raeponse curves. 'l:hlY

cont.eastlll with the ET-1 effect on Nil and KCi concentl:ation response curves

whllll.ee compal:1&ons in the anococcyqaus W'1IlI.te not significant as aseeBeed by

In the aorta (Fiqurel 364, b, c and d), thers wae no

desensitization, as asseeed by ANOVA anelysis to Nil or I(C1 after pretreatmllnt

With either £'1:-1 or SRTX-b.

The moet obvioul conClusion that can !:Ie reached from the present IIItudy

1& that £1'-1 and SRTX-b interact with a hetllroqeneous population of

rllcepton. If E:T-1 and. SRTX-b do interact with a hOlllOgeneous receptor

popUlation, then 11qna1 tranllduction path.ways are differentially
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activated/soe also Gall:on Bt .11.1990). However,lIIy data does eugqsllt that the

affinity of £1'-1 and SRTX-b btndinq to their receptol:(e) in the anoc:oc:cyqeue

1.IiI increased in the preeence of 8xtra:.:ellular Ca2• "nd this is reflected by

the time interval needed tor ,U."ppsllrance of induced myogenic activity in

Chit enoc:ol;cyq8ulII muscle in C1II2+-conU.ining and CII2°-free Krebs bufter. A

cOfI\pllrison of thie lntcu:val in elther Krebs Boluticn shows that SR'l'X-b

d1880elate8 faster from its receptor than d0ge ET-l. In contrast ,the

effects of NE can be terminated 1n leu than 2 minutes. £1'-1 has been shown

to be intllrnlllized by endocytosis along with 1ell 1:8Ceptoc (Ree1.nk at a1.,

1990} and this may llxplain the basil of the persistent contractile activity

of the peptidell.

by nifedipine in the anococcygeus bears st.rong similarities to the resistance

of NE to nifedipine. Horeover, the demonstration of cross-desensitization of

NE effects by SRTX-b !.n the anococcygaus suggest that these agonists may

share a common post.-recsptor mechanism coupled via a common G-prot.ein.The

significant reduction in the aorta of ET-l, but not NE and SRTX-b, responses

by nifedipine points to the divergent utilization of Ca2+ channels by the two

peptides in different. t.issues. The validity of this suggestion is not

diminished by the finding of no significant. differsnces (ANOVA) between the

three agonist following nifedipine treatment t.ecause other protocols

(nifedipina and ryanodine) have demonstrated signl.ficant differences between

the peptides (ANOVA), Table 4. The e1ect.rophyllio10gic characterillt.ics of

small depo1arh.atlons (-1 mVl for ET-1 in contrast to -20 mV for NE

(Walln6fer et. 41., 19891, and the suggestion of thB role of "U"-type channels

(Inoue ee 41., 1990) for £T-1 along with the eeneitiv1.ty of reeponsD to



dihydropyridine., suggest that £T-l may be opening "L" and "H"-type calcium

channel. whereas SRTX-b may be opening "L" and "'I'"-type calcium Channels

depending on the preponderance of Channels in the t1.asues. "H"-type channel.,

however, have not previously been ;l.uociated in IllllOOth muecle.

The inability, after ryanocUne treatment, of nUl;ldipine to further

inhibit SRTX-b reaponlles in the aorta is in contrast to the ntllar complettll

inhibition of £T-l, after ryanodine treatment, thus lsnding additional

support to the divergent use of caicium poois by the three agonists. This

leads to the conclusion that the processes affectin<;l Ca2+ mobiliution are an

intrinsic propel;"ty ot an agonillt and the availability of aenaitive Ca2+ etOl;"es

in a particulal;" ti8sue determinea the effectivenQU of the agonht.

Since ET-l, SJl.TX-b and tiE have been ahown to produce DlllO and IP, aa

univeraal second measengel;"s the inability ot tiE to sustain tone in the

absence ot extracellular Ca2• !luggeat, that ET-l and SRTX-b muat be producing

something in addition to OAO and IP) which couid not be determined by my

pl;"otocols. Howev&l;", the dell\Onstrition by Pric8 et .1. (1989) that oncogenic

ras could atilllulate phosphatidylcholine hydrolysis, diacylglycerol relllasil

and arachidonic acid production without alturing inoaitol phosphate illveLs in

SwiS8-JTJ cells is conllistent with the findings of Hirata .. t .1. (L98811)

concernin; the action. of ET-l in vascular smooth Illuscle cells. Fu.r:thermore,

the domonlltration that ET-l io a potent mitogen which stimulates e-mye and c-

fOB proto-oncogene expression 11188 .r:eview by SLmonson and Dunn. 1990b) leave,

room tor spoculation that oncogenic ras can be stimuiated by ET-l and SRTX-b.

Oncog8nically activated r.a protoins contain single amino acid substitutions

and are generally unresponsive to OTPaS8 aetLvating protein, a cellular

proteln that stimulates GTP hydrolyaJ.s by normal p21 ru (Trahey and McCormick,
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19S1j in an "active" (G'l:P-bol,lndl eonformation. Price et al. (1989)

DU9gaeted that ras rapidly !letlvatea a number ot cellular "19na111ng Dy,tamo,

lead1.nq to a sUlItained increase in diacylglycerol levels. In contrast:.

Sunako lit 081. (1990) propose a phospholipase C eystem qener.ating If) and 011.0

as an explanation tor ET-l induced changss in diacylglycerol dLiring sustained

tone. Sunako at 41.(1990) do concede that there could be other mechanblllD of

DAG production. The auqqeation by Price et al. (1989) fits the R4smllsl;len

(1986) lllOdel ot Guetained cellular response and would, perhaps, explain the

bash of Et-l and SR,TX-b .ulItalnad tone in the abllonce of e"tracellular C.Z•.

Additional "tuellell aco required to address thi, matter.

By far the most important cc dusion derived from the ryanodine studies

is that IP3 may not be the intracellular Cal. mobili~er for contractione

induced by ET-l or SRTX-b whereas those inducad by NE nave a significant IP3

dependency. Based on the eharacterieties of SQ' and sa intracellular Cal +

storee (Uno &t .Ill., 1988" and the emergent MI.M and "N"-like CaZo channel

utilization by ET-l and "1." and MT M type Cal· channel utilization by SRTX-b

(Inoue et .Ill., 1990; Lawson and Chatelain, 1989; Topouds ee al., 1989), it

can be postulated that tns primary electropl\ysiologic avent in the action of

these pQ{'tidea involv8s the opening of "N"-like or MT"_type caZ. channels with

a reBultant Ca2• inducod Ca20 relell.8e from Sa otor80 initiating contraction.

Maintenance of tone is brouqht about by activation of protein kinase C with

6ustained Levels of diacylglycerol not involving the inoaitol phosp!:'ate

pathway. HE can be postulated to act via the activation of "1." and "T" type

CaZ. channels leading to caZ·-induced caZ. relene to initiate contr.ction.

However,there is a dspendence on extracellular caZ. to sustain activity of

diacylglyceroL and protein kinase C to maintain tone. The sharp spike of



eontraetion indueed by NE in a CaZo_Ine medium is likely due to IP3-mediated

mobilitation of caZo frolfl SB stores. The non-maintenance of tone i. due to

the t"lIacculllullltinq property of SB IItor.1I thereby reduclng intr.cellular caZo

to a levill billow which the dia.cylglycerol and protllin kina•• C activity

cannot be maintainlld. The ablience of the characteristic spUtlld contraction

for the two peptidlls is evidence that the SB store is not stilflulated by ET-l

and SRTX-b. Thie aleo explain. the thll ability of HE, in the abeence of

extracellular CaZ>, to mobilize intracellular caZ> from So and SB ae opposed

to the peptide use of Sa fltorlile pr..dominlln\:ly. In I C.IIZo_free medium, NE

leads to the production of IP3 which mobilizlU sn CaZ> to releaee CaZ> from Sa

stores to generate the phasic contraction. The rapid rllllccumulation

characteristics of SB atores lowerll CaZ' below a critical level for

contraction while IP3 ie metabolized. I further epeculate that the emall

alowly riaing tone of peptide induced contraction may be due to activation of

oncogenic rile with production of diacylglycerol which, in alleoc1.lltlon with

protein kinaee C, can function at low intt"acellular CaZ' levela. Thua, iarql'

contractions may be dependent on CaZo-induced caZo reiease foetet"ed by the

entry of extracellular caZ> through "L-, "T-, "N" or, pllrhaps, non-specific

cation channelil.

The .£tecta of NDGA hava been clearly demonlltratad to be IIp''cific tor

lipoxyqsnase products which could be <;IIenorated from arachidonic acid derived

from either the phosphatidyllnositol or the phosphatldylchollne pathway.

Further electrophyslologic charactet"Lzation of the Caz> channel types in

smooth muacle, as well as the elfllct of pt"oto-oncoqenes induced by ET-l lind

SRTX-b, will be needad to completely characterize the physioloqlc effecte of

these peptides. The dlffet"ences in the cell eiqnalling processes in vascular



varsu. non-va.culAr t1lIOOth llIu.cla demonst.rated in this lItudy sU9gest that

SRTX-t1 .n.... itt-l _y not act on a hocrooqenaoua racaptor poP'llatlon. othar

avidanca in the litaratu.t:. is .lao indicativa at "captor subtype. tor tha••

related peptidll. (Webb, 19911.

In conclu.ion, ray studies indic.te that £1'-1 initi.tll. contraction in

tha rat thor.cic aorta and anococcygsus by dspolarizing the plaa_ ",Gnlbrano

with a resultant infl\lx ot ca2• through voLtalilll-operated. channeh and non

specific cation channela. The incoming Ca2• leada to calcium induced calcium

releasll trom the Sa Itores. IntJ:"acellular c.lcium, having risen abOVII the

cJ:"itical concent.ration activates phospholipase "2 to produce S-lipox¥gena.1I

prod\lcts to lIustain the cont.raction. In the latter tonic phase, activation

ot t'all oncogene pt'ocI\1ce. su.tained leveh ot diacylgLycerQL which, in

a.soci;ltion with protain kina.a C, .... int.in. tona tor lonq periode eVlln in

the face of a dUlin.hing cdcium concentration. Tha al.jor ~rane lipid

catabolir.ed probably pho.phatid:ylcholina rather than

A .ulllllllry at the .i9nalUng pt'ocelUlea that ar.. involved: ie representad

in Figure 37.



Pi.~I:'. 37. Sehematie 8U""".l'y o~ edl signalling pro<;:811••• in .mooth 1lIU1Iele

activated. by ET, SR'1'X, NE. DHP, dihydropyd<Unlll PLe,

phospholipaaa CI DAG, diaeylqlyeel'oll PLAZ' phQspholipaaa AZI PKC,

protein kinale C, 01, G-pl:'ctein.
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