A COMPARATIVE STUDY OF ENDOTHELIN AND SARAFOTOXIN ACTION IN VASCULAR AND NON-VASCULAR SMOOTH MUSCLE

CENTRE FOR NEWFOUNDLAND STUDIES

# TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

## EKONG ITO EKONG ETA







## A COMPARATIVE STUDY OF ENDOTHELIN AND SARAFOTOXIN ACTION IN VASCULAR AND NON-VASCULAR SMOOTH MUSCLE

BY

EKONG ITO EKONG ETA. B.M., B.Ch (Nig.)

### A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Science

Faculty of Medicine Memorial University of Newfoundland Spring 1991

Newfoundland

St. John's

----



National Library of Canada Bibliothèque nationale du Canada

Acquisitions and Direction des acquisitions et Bibliographic Services Branch Disection des services bibliographiques

395 Wellington Street Ottawa, Ontario K1A 0N4 395, rue Wellington Ottawa (Ontario) K1A 0N4

Your Me Volre rélérence

Our He Name relievence

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons. L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-82663-0



This thesis is dedicated to my parents and to my son, Ito.

A Destant State of

W AND THE PARTY DESCRIPTION OF THE REAL PROPERTY AND

the second se

## ABSTRACT

The hypothesis that endothelin (ET-1) is the endogenous ligand for "earafotoxin receptors" (SRIX receptors) was examined. The actions of ET-1 and SRIX-b ware compared with those of the well characterized vasoconstrictor, norepinephrine (NE). The rationale was to identify and compare the transduction-effector mechanisms of these peptides versus NE in vasoular and non-vascular smooth succies.

-and

In this study, the rat aorta and anococcygeus muscles were used as representatives of vascular and non-vascular smooth muscle, respectively. The role of extracellular  $Ca^{2+}$  was studied by omitting  $Ca^{2+}$  from the physiological saline solution, and the contribution of voltage-operated Ca2+ channels (VOCCs) assessed by determining the effects of nifedipine. In addition, the effects of ryanodine, which interferes with the release of cellular Ca<sup>2+</sup>, was also studied. The roles of arachidonic acid products were determined by studying the effects of the cyclooxygenase inhibitor, indomethacin, and the lipoxygenase inhibitor, nordihydroguaiaretic acid (NDGA). The contractions elicited by ET-1 and SRTX-b (10 nM), or NE ( 1 µM) were approximately equieffective in terms of tension developement and correspond to ECso values, and these concentrations were thus used throughout the study. In Ca2+-free Krebs, the three agonists generated approximately similar levels of tone in the aorta and the anococcygeus corresponding to 18 and 5 % of the maximum response, respectively. Nifedipine, 10 µM, significantly inhibited responses to ET-1 in both the aorta and anococcygeus; the responses to SRTX-b and NE were, however, not significantly affected in either tissue. A combination of 10 µM ryanodine and nifedipine caused near complete inhibition of response to ET-1 in the aorta and also significantly

iii

reduced the response to both ET-1 and NE in the anococcygeus. The lipoxygenase inhibitor, NDGA, inhibited the response to ET-1 in the aorta and ET-1 and NE in the anococcygeus muscle. The cyclooxygenase inhibitor, indomethacin, however, had no effect on the responses to any of the three agonists in either the aorta or anococcygeus. At concentrations greater than 30 mK both ET-1 and SRTA-b induced myogenic activity in normally quiescent anococcygeus muscle. As determined by the loss of myogenic activity, the tissues recovered more repidly from SRTA-b than ET-1, with complete recovery apparent after 2.62 ± 0.85 and 5.22 ± 0.06 h, respectively. Omitting Ca<sup>2+</sup> from the Krebs solution reduced recovery times to 1.62 ± 0.2 and 2.4 ± 0.51 h, respectively.

In conclusion, the studies performed indicate that a number of cell signalling processes are activated by ET-1 and SRTA-b in smooth muscle and this could account for the varied responses. The suggestion that ET-1 solely acts on the 'SRTX receptor,' as proposed by Kloog and Sokolovsky (1989), is probably too simpliatic. Results from this study also indicate that tissue variability does exist and, indeed, subclasses of ET/SRTX receptors have been inferred by others (Yanagiawa and Maxaki, 1989b; Mayler, 1990).

"Law as a restant over to " which is a restal for side .

#### ACKNOWLEDGEMENTS

The author wishes to express sincere gratitude to Dr. C.R. Triggle for his unflinching support and supervision throughout the programme. a interference administration for an article solution of the second s

and weeks

1

Gratitude is also expressed to members of the supervisory committee, Dr. A. Rankin and Dr. V. Richardson, for patience and understanding for the duration of the programme.

Informal discussions with Dr. Reza Tabrizchi and Dr. Ayo Adwagbo were most useful and greatly appreciated.

I would like to acknowledge the financial support of the Medical Research Council of Canada and Faculty of Medicine of Memorial University.

Finally, I thank my wife, Asibong, for her steadfastness.

Portions of this thesis have been published in a peer reviewed Journal:

Eta, E. and Triggle, C.R. (1991) A comparative study of endothelin and sarafotoxin action in vascular and non-vascular smooth muscle. Neurochem. Int. 18, 559-564.

## TABLE OF CONTENTS

|          |         |                                                                                                                 | Page |
|----------|---------|-----------------------------------------------------------------------------------------------------------------|------|
| DEDICATI | ON      |                                                                                                                 | ii   |
| ABSTRACT |         |                                                                                                                 | iii  |
| ACKNOWLE | DGEMENT | S                                                                                                               | v    |
| TABLE OF | CONTEN  | TS                                                                                                              | vii  |
| LIST OF  | TABLES  |                                                                                                                 | ix   |
| LIST OF  | FIGURES |                                                                                                                 | x    |
| LIST OF  | ABBREVI | ATIONS                                                                                                          | xv   |
| I. INTRO | DUCTION | T Contraction of the second | 1    |
| 1.1.     | Vascula | r tone                                                                                                          | 1    |
| 1.2.     | Endothe | lium-derived relaxing factors                                                                                   | 11   |
| 1.3.     | Contrac | ting factors                                                                                                    | 15   |
|          | 1.3.1   | Endothelin                                                                                                      | 17   |
|          | 1.3.2   | Regulation of synthesis and release of endothelin                                                               | 18   |
|          | 1.3.3   | Pharmacological effects of endothelin                                                                           | 21   |
|          | 1.3.4   | Homology between endothelin-1 and sarafotoxin-b                                                                 | 22   |
|          | 1.3.5   | Endothelin and sarafotoxin receptors                                                                            | 26   |
|          | 1.3.6   | Mechanism of action of endothelin/sarafotoxin                                                                   | 29   |
|          | 1.3.7   | Pharmacokinetics of endothelin                                                                                  | 33   |
|          |         |                                                                                                                 |      |
| 1.4.     | Objecti | Ves                                                                                                             | 35   |
| 2. METHO | DS AND  | MATERIALS                                                                                                       | 37   |
| 2.1.     | Animals |                                                                                                                 | 37   |

2.2. Choice of tissue 37

|     |     |        |                                                      | Page |
|-----|-----|--------|------------------------------------------------------|------|
|     |     | 2.3.   | Tissue preparation                                   | 38   |
|     |     | 2.4.   | Experimental protocol                                | 39   |
|     |     |        | Study 1: Tissue screening                            | 39   |
|     |     |        | Study 2: Role of extracellular calcium (Ca $^{2+}$ ) | 40   |
|     |     |        | Study 3: Role of extracellular and intracellul       | ar   |
|     |     |        | calcium (Ca <sup>2+</sup> )                          | 41   |
|     |     |        | Study 4: Role of arachidonic acid metabolites        | 42   |
|     |     |        | Study 5: Cross-desensitization                       | 43   |
|     |     | 2.5.   | Composition of buffers                               | 44   |
|     |     | 2.6.   | Drugs and chemicals                                  | 44   |
|     |     | 2.7.   | Statistics                                           | 45   |
| 3   |     | RESULT | "S                                                   | 46   |
|     |     |        | Study: 1                                             | 46   |
|     |     |        | Study: 2                                             | 48   |
|     |     |        | Study: 3                                             | 50   |
|     |     |        | Study: 4                                             | 52   |
|     |     |        | Study: 5                                             | 53   |
| ł   | ۱.  | DISCU  | ISTON                                                | 178  |
|     |     | 4.1.   | General considerations                               | 178  |
|     |     | 4.2.   | Role of extracellular calcium (Ca <sup>2+</sup> )    | 180  |
|     |     | 4.3.   | Role of arachidonic acid metabolites                 | 195  |
|     |     | 4.4.   | Agonist cross-desensitization                        | 199  |
| . 1 | REF | ERENC  | ES                                                   | 209  |

viii

Street of the state of the

## LIST OF TABLES

| Table 1 | Time-dependent variation in the response of the<br>anococcygeus muscle to four concentration-response<br>curves obtained to NE over a four hour period. | 65 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2 | Effect of $Ca^{2+}$ -omission on recovery time (hours) of the anococcygeus muscle from peptide-induced myogenic activity.                               | 66 |
| Table 3 | Effect of the removal of extracellular Ca <sup>2+</sup> on the contractile responses of the anococcygeus muscle and aorta to ET-1, SRTX-b and NE .      | 70 |
| Table 4 | Comparison of % changes in the responses to ET-1, SRTX-b and NE.                                                                                        | 71 |

## LIST OF FIGURES

| Figure | 1   | Schematic repro                                                     | esentation of receptor activation post receptor events.                                                                                                                     | 4  |
|--------|-----|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure | 2   | Comparison of family with sa                                        | amino acid sequence of endothelin<br>rafotoxin family.                                                                                                                      | 55 |
| Figure | 3   | Concentration-<br>and NE in the                                     | response curves of ET-1, SRTX-b<br>portal vein of the rat.                                                                                                                  | 57 |
| Figure | 4   | Illustration o<br>parameters - f                                    | f portal vein sensitivity by two<br>requency and amplitude to agonists.                                                                                                     | 59 |
| Figure | 5   | Concentration<br>and NE with t<br>buffer.                           | response curves for ET-1, STRX-b<br>he anococcygeus muscle in normal Krebs                                                                                                  | 61 |
| Figure | 6   | Induction of m<br>anococcygeus m<br>A) 0.1 µM ET-1<br>Krebs buffer. | yogenic activity in the<br>uscle following washout of<br>; B) C.1 µM SRTX-b with normal                                                                                     | 63 |
| Figure | 7   | Illustration o<br>concentration<br>approximate EC                   | f the response to equieffective<br>of ET-1, STRX-b and NE at their<br>508 in :- a) anococcygeus and b) aorta.                                                               | 67 |
| Figure | 8   | Illustration o<br>and SRTX-b com<br>NE in Ca <sup>2+</sup> -free    | f maintained tone induced by ET-1<br>pared to non-sustained tone induced by<br># Krebs buffer.                                                                              | 72 |
| Figure | 9 ( | (a, b and c)                                                        | Effect of nifedipine on Ca <sup>2+</sup><br>concentration-response curves<br>obtained in the zorta in the presence<br>of a) ET-1; b) SRTX-b and c) NE.                      | 74 |
| Figure | 10  | )(a, b and c)                                                       | Effect of nifedipine on calcium<br>concentration-response curves obtained<br>in the anococcygeue in the presence of<br>a) ET-1, b) SRTX-b and c) NE.                        | 79 |
| Figure | 13  | l(a, b and c)                                                       | Illustration of the persistent effect<br>of nifedipine on Ca <sup>2+</sup> concentration<br>-response curves obtained in the aorta<br>in the presence of a) ET-1, b) SRTx-b |    |
|        |     |                                                                     | and c) NE.                                                                                                                                                                  | 83 |

| Figure | 12(a, b and c)                                                      | Illustration of persistent inhibition<br>following nifedipine application on Ca <sup>2+</sup><br>concentration-response curves obtained in<br>the anococygeus in the presence of<br>a) ET-1, b) SRTX-b and c) NE.                  | 86  |
|--------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure | 13 A comparison<br>SRTX-b and NE<br>normal Krebs,<br>in normal Kreb | of the contractile effects induced by ET-1,<br>in the rat ancococygeus preparation in<br>ca <sup>2+</sup> -free and post-rysudime treatment<br>ps.                                                                                 | 90  |
| Figure | 14 A comparison<br>SRTX-b and NE<br>normal Krebs,<br>treatment in a | of the contractils effects induced by ET-1, in the rat actric ring preparation in $Ca^{2*}$ -free and post ryancdine normal Krebs.                                                                                                 | 92  |
| Figure | 15(a, b and c)                                                      | Effect of ryanodine on Ca <sup>2+</sup><br>concentration-response curves obtained<br>in the anococygeus in the presence of<br>a) ET-1, b) SRTX-b and c) NE.                                                                        | 94  |
| Figure | 16(a, b and c)                                                      | Effect of ryanodine on Ca <sup>2+</sup><br>concentration-response curves obtained<br>in the aorta in the presence of<br>a) ET-1, b) SRTX-b and c) NE.                                                                              | 98  |
| Figure | 17(a and b)                                                         | Illustration in. a) anococcygeus and<br>b) acrta that repeated stimulation<br>with KE in Ca <sup>25</sup> -free Krebs can reduce<br>the tissue response to a certain level<br>beyond which further attenuation is not<br>possible. | 102 |
| Figure | 18(a, b and c)                                                      | Effect of NE-induced $Ca^{2*}$ depletion on $Ca^{2*}$ concentration-response curves obtained in the anococcygeus in the presence of a) ET-1, b) SRTx-b and c) NE.                                                                  | 104 |
| Figure | 19(a, b and c)                                                      | Effect of NE-induced Ca <sup>2+</sup> depletion on Ca <sup>2+</sup> concentration-response curves obtained in aorta in the presence of a) ET-1, b) SRTX-b and c) NS.                                                               | 108 |
| Figure | 20(a, b and c)                                                      | Effect of sequential NE and ryanodine<br>-induced Ca <sup>2+</sup> depletion on Ca <sup>2+</sup><br>concentration-response curves obtained in                                                                                      |     |

Page

xi

|                       | the anococcygeus in the presence of<br>a) ET-1, b) SRTX-b and c) NE.                                                                                                                                           | 112  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                       |                                                                                                                                                                                                                | Page |
| Figure 21(a, b and c) | Effect of sequential NE and ryanodine<br>-induced Ca <sup>2+</sup> depletion on Ca <sup>2+</sup><br>concentration-response curves obtained in<br>the aorta in the presence of<br>a) ET-1, b) SRTX-b and c) NE. | 116  |
| Figure 22(a, b and c) | Comparative effects of a) ryanodine,<br>b) ryanodine plus caffeine and<br>c) ryanodine plus SRTX-b on Ca <sup>2+</sup><br>concentration-response curves obtained in<br>the anococcygeus.                       | 120  |
| Figure 23(a, b and c) | Comparative effects of a) ryanodine,<br>b) ryanodine plus caffeine and<br>c) ryanodine plus ET-1 on Ca <sup>2+</sup><br>concentration-response curves obtained in<br>the anococcygeus.                         | 124  |
| Figure 24(a, b and c) | Comparative effects of a) ryanodine,<br>b) ryanodine plus caffeine and<br>c) ryanodine plus SRTx-b on Ca <sup>2+</sup><br>concentration-response curves obtained in<br>the aorta.                              | 128  |
| Figure 25(a, b and c) | Comparative effects of a) ryanodine,<br>b) ryanodine plus caffeine and<br>c) ryanodine plus 27-1 on Ca <sup>2+</sup><br>concentration-response curves obtained in<br>the aorta.                                | 132  |
| Figure 26(a, b and c) | Effect of a) ET-1, b) SRTX-b and<br>c) NE on Bay K 8644 concentration-<br>response curve obtained in anococcygeus.                                                                                             | 136  |
| Figure 27(a and b)    | Illustration of a concentration-independent<br>response of the anococcygous( a), in contrast<br>to the concentration-dependent response of<br>the aorta (b), to Bay K 8644.                                    | 140  |
| Figure 28(a, b and c) | Effects of the presence a) ET-1,<br>b) SRTX-b and ) NE on Bay K 8644<br>concentration-response curves obtained<br>in the aorta.                                                                                | 142  |
| Figure 29(a, b and c) | Effect of indomethacin on the Ca <sup>2+</sup><br>concentration-response curves obtained                                                                                                                       |      |

xii

|                          | in the anococcygeus in the presence of a) ET-1, b) SRTX-b and c) NE.                                                                                                                                                                                                                                                                                                                                                                                 | 146 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 30(a, b and c)    | Effect of indomethacin on Ca <sup>2+</sup><br>concentration-response curves obtained<br>in the aorta in the presence of<br>a) ET-1, b) SRTX-b and c) NE.                                                                                                                                                                                                                                                                                             | 150 |
| Figure 31(a, b and c)    | Effect of NDGA on Ca <sup>2+</sup> concentration-<br>response curves obtained in the<br>anococcygeus in the presence of                                                                                                                                                                                                                                                                                                                              | 164 |
| Figure 32(a, b and c)    | a) EF1, B) SRIA-D and C) DA.<br>Effect of NDGA on Ga <sup>2</sup> concentration-<br>response curves obtained in the aorta<br>in the presence of a) ET-1, b) SRIX-b<br>and b) N                                                                                                                                                                                                                                                                       | 154 |
| Figure 33(a and b)       | and 0 ne.<br>a) Effect of NDGA on agonist concentration-<br>regeonse curves in the anococcygeus to :-<br>1; RT-1, ii) NZ and iii) Ga <sup>25</sup> concentration-<br>regeonse curves in the aresence of 50 m K <sup>2</sup> .<br>b) Effect of NDGA on agonist concentration-<br>regeonse curves in the anococcygeus to :-<br>i) SRTx-b, ii) NZ and iii) Ga <sup>25</sup> concentration-<br>regeonse curves in the presence of 50 m K <sup>2</sup> .  | 150 |
| Figure 34(a and b)       | <ul> <li>a) Effect of NDGA on agonist concentration-<br/>response curves in the aorta to :-<br/>i) RT-1, ii) RE and iii) Ga<sup>2+</sup> concentration-<br/>response curves in the presence of 50 mK K<sup>+</sup>.</li> <li>b) Effect of NDGA on agonist concentration-<br/>response curves in the acrta to :-<br/>i) SRTX-b, ii) NE and iii) Ga<sup>2+</sup> concentration-<br/>response curves in the presence of 50 mK K<sup>+</sup>.</li> </ul> | 165 |
| Figure 35(a, b, c and d) | Effect of SRTX-b and ET-1 on concentration-response curves                                                                                                                                                                                                                                                                                                                                                                                           |     |

Figure 35(a, b, c and d) Effect of SRTX-b and ET-1 on concentration-response curves to NE and KCL in the ancoccygous :a) SRTX-b, b) ET-1 affects on NE concentration-response curves; c) SRTX-b, d) ET-1 effects on KCL concentration-response curves.
Figure 36(a, b, c and d) Effect of SRTX-b and ET-1 on concentration-response curves to NE and KCL in the aorts i-1

xiii

- ANS - JAMES - SAME

|           | a) SRTX-b, b) ET-1 effects on NE<br>concentration-response curves;                                |     |
|-----------|---------------------------------------------------------------------------------------------------|-----|
|           | C) SKIX-D, d) ET-1 effects on KCL<br>concentration-response curves.                               | 173 |
| Figure 37 | Schematic summary of cell signalling processes in smooth muscle activated by ET-1, SRTX-b and NE. | 207 |

xiv

## LIST OF ABBREVIATIONS

| G-Proteins         | guanine nucleotide binding protein                                                                                                         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| GTP                | guanosine triphosphate                                                                                                                     |
| TM2                | transmembrane domain 2                                                                                                                     |
| DAG                | diacylglycerol                                                                                                                             |
| GMP                | guanosine monophosphate                                                                                                                    |
| CAMP               | cyclic adenosine monophosphate                                                                                                             |
| IP3                | inositol 1,4,5-trisphosphate                                                                                                               |
| ATPase             | adenosine triphosphatase                                                                                                                   |
| GTPase             | guanosine triphosphatase                                                                                                                   |
| GTP                | guanosine triphosphate                                                                                                                     |
| ATP                | adenosine triphosphate                                                                                                                     |
| EDRF               | endothelium-derived relaxing factor                                                                                                        |
| EDHF               | endothelium-derived hyperpolarizing factor                                                                                                 |
| L-NMMA             | N <sup>6</sup> -monomethyl-L-arginine                                                                                                      |
| VIC (ET-4)         | vasoactive intestinal contractor (endothelin-4)                                                                                            |
| mRNA               | messenger ribonucleic acid                                                                                                                 |
| TGF-B              | transforming growth factor B                                                                                                               |
| c-myc              | cellular oncogene myc                                                                                                                      |
| c-fos              | cellular oncogene fos                                                                                                                      |
| p21 <sup>ras</sup> | GTP hydrolysis stimulating oncogenic protein                                                                                               |
| Kd                 | dissociation constant                                                                                                                      |
| Ki                 | $\begin{array}{rl} Ki &=& \underbrace{1} & \\ K_0 & (dissociation \mbox{ constant of a competitive } \\ & & \mbox{inhibitor}) \end{array}$ |

dihydropyridine

DHP

xv

| ÷ð. |  |  |  |
|-----|--|--|--|
|     |  |  |  |
|     |  |  |  |
|     |  |  |  |

xvi

| NE               | norepinephrine                                               |
|------------------|--------------------------------------------------------------|
| i.v.             | intravenous                                                  |
| AVP              | arginine vasopressin                                         |
| PGH <sub>2</sub> | Prostaglandin H <sub>2</sub>                                 |
| HRV              | mesenteric resistance vessels                                |
| NEP              | neutral endopeptidase                                        |
| ANOVA            | Analysis of variance (one-way)                               |
| CICR (Sa)        | calcium induced calcium release ( $\alpha$ stores)           |
| IICR (SB)        | inositol trisphosphate induced calcium release<br>(ß stores) |
| EDCF             | endothelium-derived contracting factor                       |
| PA               | phosphatidic acid                                            |
| P043-            | phosphate                                                    |
| PLC              | phospholipase C                                              |
| PLA2             | phospholipase A <sub>2</sub>                                 |
| NDGA             | nordihydroguaiaretic acid                                    |
| ET-1             | endothelin-1                                                 |
| SRTX-b           | sarafotoxin-b                                                |
| PC               | phosphatidylcholine                                          |
| vocc             | voltage operated Ca <sup>2+</sup> -channel                   |
| SHR              | spontaneously hypertensive rat                               |
| PIP2             | phosphatidylinositol 1,4-bisphosphate                        |
| PGI2             | Prostaglandin I <sub>2</sub>                                 |
| G                | glycine (Gly)                                                |
| A                | alanine (Ala)                                                |
| v                | valine (Val)                                                 |
| L                | leucine (Leu)                                                |

| I                | isoleucine (Ile)         |
|------------------|--------------------------|
| F                | phenylalanine (Phe)      |
| P                | proline (Pro)            |
| S                | serine (Ser)             |
| т                | threonine (Thr)          |
| c                | cysteine (Cys)           |
| м                | methionine (Met)         |
| W                | tryptophan (Trp)         |
| Y                | tyrosine (Tyr)           |
| D                | aspartic acid (Asp)      |
| N                | asparagine (Asn)         |
| E                | glutamic acid (Glu)      |
| Q                | glutamine (Gln)          |
| ĸ                | lysine (Lys)             |
| R                | arginine (Arg)           |
| н                | histidine (His)          |
| Rb <sup>+</sup>  | Rubidium                 |
| Sr <sup>2+</sup> | Strontium                |
| THM              | Tunica muscularis mucosa |
|                  |                          |

xvii

#### Chapter 1

#### INTRODUCTION

### 1.1. Vascular tone.

The control of vascular tone has continued to be an enigma to physicians and medical researchers alike, the plurality of antihypertensives attest to this. Whatever its cause, and theories abound, the characteristic hemodynamic feature of hypertension is a sustained elevation in total peripheral vascular resistance, with variable cardiac output (Lund-Johansen, 1977). Control of resistance and capacitance functions in peripheral circulation has been shown to be dependent on the tone of vascular smooth muscle (Mellander and Johansson, 1968). Vascular tone is harmoniously controlled at various levels; extrinsically by neural and humoral inputs and intrinsically by the properties of structural components of the smooth muscle. Consequently, hypertension may be viewed as a failure of circulatory regulation by one or more of these mechanisms (Brody et al., 1980). This view is not shared by Folkow (1990) who emphasizes that structural changes of resistance vessels are the key site of disturbance in essential hypertension. Nonetheless, considerable evidence points to alterations, at the cellular level, in the regulation of vascular tone as at least a contributing factor to the etiology of hypertension (Mulvany, 1989; Triggle, 1984). Thus, studies of the various influences that can affect the level of vascular smooth muscle tone are central to furthering our understanding of not only normal control processes but also changes that may prove to be the basis for hypertensive disease.

Since this thesis concerns the pharmacology of a family of potent vasoconstrictor peptides, the endothelins, the introduction will focus on processes that regulate vascular tone. Thus, it is apparent that vascular smooth muscle is exposed to a wide array of stimuli ranging from mechanical to chemical, which may be excitatory or inhibitory, and that vascular tone at any point in time is the algebraic sum of responses to these inputs. Nost, if not all, of these events or stimuli are mediated by receptor activation, subsequent signal transduction and resultant physiologic response which, in this case, would be contraction or relaxation.

Receptors for neurotransmitters such as norepinephrine and acetylcholine are no longer abstract concepts as it has become possible to biochemically solubilize and loolate them and, with molecular biological techniques, determine their amino acid sequence. We now know that these receptors are membrane proteins with distinct configurations. The wide array of stimuli earlier mentioned arrive at the receptor either as mechanical signals, such as stretch, which in the intact organian may be a rise in intravascular distending pressure, or electrical stimuli applied directly or induced by chemicals (e.g. potassium chloride or by a wide variety of neurotransmitters anging from simple mino acids, such as glycine, to polypeptide hormones and the well known neurotransmitters acetylcholine and catecholamice).

The first step of receptor activation involves the binding of a given ligand to its receptor with a resultant conformational change. The conformational change in the membrane receptor induces a high affinity state for agonist in the presence of guanine nucleotides (Cassel and Selinger, 1976). It was later shown that the guanine nucleotides were bound to certain proteins now simply referred to as G-proteins or guanine nucleotide binding proteins (DeLean et al., 1990). It is becoming clear that plasma membrane receptors belong to structurally related families such as the G protein

coupled receptors or ligand-gated ion channels (Schofield and Abbott, 1989). Indeed, nine different genes have been found to code for G proteins (Freissmuth et al., 1989). The G-protein is a trimer made up of a, B and y subunits which are necessary for interaction with receptor, but the dissociation of subunits is required for activation. There appears to be a consensus of opinion that the a subunit, which binds the activated receptor and GTP, effects the transduction process to the amplifier enzyme system in an agonist-dependent manner (see Figure 1). The presence and preponderance of these amplifier enzymes appear to be tissue dependent and their activation is agonist dependent. Thus, the activation of adenylate cyclase and the resultant increase in monoth muscle the increase in CANP leads to relaxation (Sharma and Shalla, 1989).

The second messengers produced by the amplifier enzyme phospholipase C vis, DAG and FP, act interdependently. Inositol 1.4.5-trisphosphate (FP<sub>3</sub>) induces the cell to mobilize still another messenger, calcium ions  $(Ca^{2v})$ from endoplasmic (sarcoplasmic) reticulum or calcisome depending on the cell (Berridge, 1985). In general, the second messengers bind to regulatory components of a protein kinase, an enzyme that activates or inhibite a collular response such as contraction or secretion by adding phosphoryl(PO<sub>3</sub><sup>2\*</sup>) groups to particular proteins. Calcium binds to a family of proteins including calmodulin and troponin C. In turn, calcium-calmodulin activates a protein kinase. Activation of protein kinase C (PKC) requires  $Ca^{2*}$  and phosphatidylserine, and diacylglycerol increases the affinity of PKC for these activators. Protein kinase C selectively phosphorylates series and threoning residues. It is now generally believed that the major mechanism of

Figure 1: Schematic representation of receptor activation by agonist and some post receptor events.

A, sgoniet; R, receptor; a, S, y, subunits of GTP binding protein; GTP, guanosine triphosphate; PLA; phospholipase A; PLC, phospholipase C; PIP; phosphatidylinositol 4, 5-bisphosphate; DAG, discylglycerol; PKC, protein kinsse C; PC, phosphatidylcholine; PA, phosphatidic acid; IP, inositol 1,4,5-trisphosphate; SR, sarcoplasmic reticulum. ٩.



regulation of contraction is through binding of Ca<sup>2+</sup> to calmodulin and of the Ca<sup>2+</sup>-calmodulin complex to myosin light chain kinase, followed by myosin light chain phosphorylation that permits activation of myosin ATPase by actin (Kamm and Stull, 1985).

The initiation of contraction is brought about by a transient rise in cytosolic calcium when a cell is stimulated by an external signal. The Ca2+ enters through channels that are selective or relatively selective for this ion and simultaneous release from intracellular stores aids in the transient rise of cytosolic calcium. Some channels are voltage-dependent and open when the action of a nourotransmitter leads to changes in the transmembrane voltage differences that normally exist across the membrane ; and others open when a hormone or neurotransmitter interacts with a cell surface receptor that is linked to channels known as receptor operated Ca2+-channels (Carafoli and Penniston, 1985). This rise in calcium is thought to be responsible for the transient or initial contraction resulting from the cascade of kinase activation leading to muscle contraction with relaxation resulting when a fall of cytosolic calcium concentration occurs. The on/off switch role for Ca2+ may be overridden during a sustained contraction (Rasmussen, 1989). During a sustained or tonic contraction, the intracellular Ca2+ concentration does rise as predicted but only transiently and then it falls back to basal levels within a minute or so even though active tension is maintained (Morgan and Morgan, 1984; Silver and Stull, 1982). Rasmussen (1986) postulates that, during the sustained phase, contraction is dependent on extracellular Ca2+ in spite of the fact that its concentration is no longer elevated. During a sustained contraction, it appears that a specific Ca2+-sensitive enzyme, protein kinase C, becomes associated with the plasma membrane and in this location is responsive to hormonally induced changes in the rate of plasma membrane  $Ca^{2+}$  influx rather than changes in  $Ca^{2+}$  concentration (Shearman *et al.*, 1989). Thus, it seems that there is altered sensitivity of contractile proteins in the presence of activated protein kinase C at basal  $Ca^{2+}$  levels.

The transient rise in intracellular calcium and DAG together cause protein kinase C to associate with plasma membrans. Unlike IP<sub>3</sub>, DAG remains in the membrane; as long as the DAG content of the membrane remains high, protein kinase C remains associated with the membrane (Rammusen, 1989). Rammusen (1989) thus concluded that the transient release of Ca<sup>2+</sup> from calcisones and the migration of PKG from cytosol to plasma membrane are the hallmark of the initial stages of a sustained cellular rempones to an extracellular signal. However, the recent finding by Sunako *et al.* (1990) that sustained high levels of diacylglycerol (DAG) do not directly correlate with increasing or sustained tension questions the singular role of DAG in the sustained cellular response. In a comparison of measured levels of DAG in response to angiotensin II and endothelin-1, Sunako *et al.* (1990) observed that a sustained high level of DAG induced by angiotensin was accompanied by a loss of tension whereas a decrease in the level of DAG was associated with increasing tension for endothelin-1.

The key feature of the Rasmussen model (Rasmussen, 1989) of sustained cellular response is the operation of two temporally distinct branches of the calcium messenger-system: a calmodulin branch active during the initial phase of response, in which the transient, IP<sub>1</sub>-induced rise in the cytosolic concentration of calcium acts on calmodulin-dependent protein kinases to alter the phosphorylation of one subset of cellular proteins, and a PKC branch, in which the rise in calcium concentration in the subsemberme domain

acts on plasma membrane-associated PKC to alter the phosphorylation of a different subset of cellular proteins involved in mediating the second, sustained phase of cellular response. This model further postulates that the physical distance between the plasma membrane location of activated PKC and the contractile proteins can be bridged by kinase cascades, one phosphorylating the other until contractile protein phosphorylation is achieved. The evidence in support of this model is that there is phosphorylation of two high molecular-weight proteins associated with smooth muscle contraction, desmin and caldesmon, which are localized in domains of the cell that are remote from the site of PKC action. In conclusion, Rasmussen noted that Ca2+ appears to operate as an intracellular messencer only during brief cellular responses or during the initial phases of sustained responses. Furthermore, a sustained response phase is dependent on a calcium signal generated in a restricted region of the cell membrane by an increase in rate of Ca2+ cycling across the membrane. Rasmussen maintains that this submembrane calcium signal acts on calcium sensitive, plasma membrane-associated transducers to generate other signals. In essence, it is the messengers generated by the transducers, rather than calcium, that convey information from the cell surface to the cell interior. It is, however, apparent that much remains to be learned about the kinase cascades and the separate control of calcium cycling and the plasma membrane association of PKC.

The plant alkaloid ryanodime has proved to be a useful probe for studying the roles of intracellular Ca<sup>2+</sup> stores in initiating and sustaining muscle contraction (Jenden and Fairhurst, 1969). Nost studies with ryanodime have involved investigations of intracellular calcium stores in skeletal and

heart muscle (Besch, 1985) Lakatta et al., 1985; Sutko et al., 1985). Nore recently, Hwang and van Breesen (1987) have used ryanodine to examine intracollular calcium stores in vascular smooth muscle. Caffeine has also been used in similar studies (Leijten and van Breesen, 1984; Sato et al., 1988). The extent to which the different calcium stores in the plasma membrane, sarcoplasmic reticulum and mitochondria of smooth muscle can be examined may help to elucidate the nature of the defect in Ca<sup>2+</sup> alluded to in the studies by Shibata et al. (1975) and Kwan (1985) concerning changes in vascular smooth muscle function in hypertension.

Recent studies of endothelial-vascular smooth muscle interaction, however, suggest that changes in endothelial cell function may be of importance (Lüscher, 1990). The endothelium forms an interface between circulating humoral agents and vascular smooth muscle which, for a long time was thought to serve only barrier functions with the primary role of regulating the passage of varied substances between blood and tissues. The endothelium can also act as an endo-rine organ in response to stimuli and release prostaglandins, growth factors, relaxing factors and constricting substances, all of which have potential to modulate growth or reactivity of the underjung smooth muscle (Loob and Peach, 1969).

An increase in blood pressure has the potential to alter many of the normal smooth muscle-endothelium reactions. Endothelial damage potentially can impair important metabolic functions of the endothelial cell layer, thereby allowing exposure of the vessel wall to factors with which it normally does not comes into contact (Loob and Peach, 1989). Pressure induced changes also have the potential to alter the ability of the endothelium to release smooth muscle condutioning factors or to alter responsiveness of the smooth muscle cells and vascular nerve terminals to substances or signals derived from the endothelium (Loeb and Peach, 1989). Golby and Beilin (1972) first proposed that endothelial injury resulted from an elevation in blood pressure. Subsequently, Nuther et al. (1973) clearly demonstrated that endothelial permeability to horeeradish peroxidase and ferritin was increased in animals made hypertensive by either aortic coarctation or catecholamine infusion when compared to normotensive controls. The changes in permeability were associated with structural changes in the endothelium such as opening of storcellular gaps and nuclear pinching. As permeability increases, the access of vasoactive blood borns substances to smooth muscle is also enhanced (Loob and Peach. 1989).

In addition to acting as a barrier to blood borne vasoactive agents, either as an actual physical barrier or as a metabolic barrier, the endothelium can synthesize and release compounds which can increase as well as decrease blood pressure(see review by Lüscher, 1990). Although the ultimate control of blood pressure is the result of a myriad of competing signals, an alteration in the synthesis, storage, release or response to locally acting, tonically released endothelium-derived substances could prove catastrophic to the delicate balance of feedback loops controlling vasoactive hormone release, neuronal activity levels and central reflexes. The homeostatic mechanisms normally controlling blood pressure could be disturbed enough to produce or exacerbate hypertension (Loeb and Peach, 1989). It is thus apparent that studies of the pharmacology of the factors released from endothelial cells may prove to be profitable with respect to furthering our understanding of the cellular basis for the increased peripheral resistance associated with essential hypertension.

#### 1.2. Endothelium-derived relaxing factors.

As noted above, certain functions have been ascribed to the endothelium but the non-recognition of the crucial role it could play in modulating the functions of vascular smooth muscle, in spite of its strategic anatomical location is, perhaps, surprising. Fortuitous as some may claim, it took the keen sense of observation of Furchgott and Sawadzki (1980) to indicate to vascular physiclogists and pharmacclogists that there is more to endothelium than just a physicla barrier.

The ability of acetylcholine and other muscarinic aconists to produce marked vasodilatation in various vascular beds in vivo was well established many years ago (see review by Furchgott, 1988). It has also been demonstrated that acetylcholine and other muscarinic agonists could produce relaxation of isolated perfused or superfused blood vessels contracted by stimulation of adrenergic nerves (Rand and Varma, 1970; Steinsland et al., 1973; Vanhoutte, 1974). Thus, it was to be expected that muscarinic agonists should produce relaxation of spontaneous or drug-induced contractions of isolated preparations of blood vessels (see review by Furchgott, 1988). This was not the case until 1980 when Furchgott and Zawadzki noted that the nonrelaxation of their helical strip preparations was due to the dissection technique which denuded the vessels of endothelium. When this procedure was modified so that damage to the endothelial cell laver was avoided, the resulting helical strips exhibited good relaxation in response to low concentrations of acetylcholine. It was demonstrated by light microscopy, and also by scanning electron microscopy (Furchgott et al., 1981), that there is a direct relationship between the extent of relaxation of aortic preparations by acetylcholine and the reaction of endothelial cells retained.

One hypothesis to explain the obligatory role of endothelial cells in the relaxation of rabbit aorta by acetylcholine was that this agent, acting on the muscarinic receptor in these cells, stimulated them to release a substance that, in turn, acts on smooth muscle cells in the vessel media to activate relaxation. In testing this hypothesis, cascade perfusion and superfusion procedures have yielded positive results (Griffith et al., 1984; Forstermann et al., 1984; Rubanyi et al., 1985) and the "sandwich" mounts of Furchgott and Zawadzki (1980) have been consistently positive. Thus was born the concept of endothelium-derived relaxing factor (EDRF). The nature of EDRF has been a subject of controversy ranging from the number of possible EDRFs to chemical characterization. There seem to be two candidates so far for the relaxation induced by endothelium. One of them has been named endothelium-derived relaxing factor (EDRF: Furchgott & Zawadzki, 1980) and the other has been named endothelium-derived hyperpolarizing factor (EDHF) (Taylor et al., 1988). EDRF is said to increase tissue cyclic GMP concentrations and produces an electrically-silent relaxation, whereas EDHF produces transient hyperpolarization associated with opening of 86Rb-permeable K\*-channels. This event may serve to initiate relaxation processes and to close any open voltage dependent Ca-channels (Taylor et al., 1988). The findings of Feletou and Vanhoutte, 1988; Chen and Suzuki, 1990; Miller and Vanhoutte (1989) confirm this postulate. Marshall and Kontos (1990), in a review of endothelium-derived relaxing factors, have noted that several suggestions, including those that EDRF is a product of lipoxygenase metabolism of arachidonate (Peach et al., 1985), a product of cytochrome P-450 oxygenase (Singer et al., 1984) or a carbonyl-containing compound (Griffith et al., 1984), have been disproved. Most recently, evidence has

been gathered suggesting that EDRF generated by acetylcholine in blood vessels, and by bradykinin in cultured endothelial cells, is nitric oxide (Palmer et al., 1987; Ignarco et al., 1987). This view is supported by pharmacological similarities between nitric oxide and EDRF (Ignarco et al., 1987), by inhibition of action of both nitric oxide and EDRF by various pharmacological blocking agents such as hemoglobin and methylane blue (Martin et al., 1984), and inhibition of production of both nitric oxide and EDRF from arginine by M<sup>6</sup>-monomethyl-L-arginine (L-NBMA) (Ress et al., 1989).

In spite of such compelling data, there has been no unanimity of opinion. Some investigators have been able to identify pharmacological differences between nitric oxide and EDPF (Long et al., 1987); other investigators have shown that the amount of nitric oxide released by acetylcholine from vessels or by bradykinin from endothelial cells is not sufficient to explain the observed vasodilation (Hyers et al., 1989); finally, other investigators have been unable to find release of nitric oxide by electron-spin resonance techniques coupled with the use of spin traps (Rubanyi et al., 1989). That EDRF may be a nitric oxide containing compound that is much more active in inducing vasodilation than nitric oride itself has been suggested. Nitrosothiols have properties that render them appropriate candidates for this purpose (Myers et al., 1989; Wei and Kontos, 1990).

The obligatory role of endothelial cells for the manifestation of acetylcholine-induced relaxation extends to many arteries in a variety of species including dog, cat, guinea-pig and humans (Furchgott and Zawadrki, 1980; Furchgott et al., 1981; Cherry et al., 1982), the unexplained exceptions being the basilar artery of the dog and coronary artery of the pig (Katusic et al., 1984; Shimokawa et al., 1987).

The endothelium-dependent responsiveness to acetylcholine (or to other vasoactive agents) as noted by Vanhoutte (1989) is not fixed, as it can be modulated chronically by hemodynamic variables or hormonal status (Miller et al., 1986; Criscione et al., 1989). Chronic modulation by hemodynamic variables may explain why, in animals and in humans, the endotheliumdependent responses to acetylcholine (and of the endothelium-dependent dilators) are considerably blunted in peripheral veins compared to arteries (De Mey and Vanhoutte, 1982). It is important to note that acetylcholine does not circulate in blood and in most tissues innervated by cholinergic nerves, acetylcholinesterase, an enzyme that is remarkably effective in rapidly destroying the cholinergic transmitter, is present. Hence, to date, no evidence has been obtained that acetylcholine released from cholinergic nerves can reach endothelial cells in amounts sufficient to evoke endothelium-dependent relaxations. However, substances circulating in the blood would be potential candidates for triggering endothelium-dependent responses. Indeed, endothelial cells, at least in large blood vessels carrying oxygenated blood, contain ap-adrenergic receptors that, when activated, can evoke endothelium-dependent relaxation of the underlying smooth muscle (Cocks and Angus, 1983; Hiller and Vanhoutte, 1985; Vanhoutte and Miller, 1989). Hence, it is likely that a2-adrenergic endotheliumdependent effects of catecholamines contribute to vasodilator effects in the coronary circulation or the splanchnic bed (Vanhoutte, 1989).

Finally, it has been known for decades that, when flow increases through large arteries, dilatation ensues ("flow-induced vasodilatation") (see review by Vanhoutte,1989). It is now established that this phenomenon is
endothelium-dependent and can be attributed to EDRF caused by an increase in shear stress. Whether this is secondary to release of autacoid (acetylcholine, ATP, serotonin or substance P) by certain selective endothelial cells or to direct activation of all endothelial cells by shear stress is uncertain (Vanhoutte, 1989).

## 1.3. Contracting factors.

While searching for possible heterogeneity of endothelium-dependent relaxation to acetylcholine, adenosine diphOsphate, arachidonic acid and thrombin, it was discovered that endothelial cells, when exposed to certain stimuli, not only produced vascular dilator(s) (Furchgott, 1983; Vanhoutte et al., 1986), but also vasoconstrictors - so called endothelium-derived contracting factor(s)(EDCF) (De Mey and Vanhoutte, 1982; 1983). At least two different types of EDCFs have been identified (Vanhoutte and Katusic, 1988). One type is a rapid onset, hypoxia induced, cyclooxygenase inhibitor resistant EDCF; a rapid relaxation ensues when normoxia returns. This substance is still unidentified. The time course of action makes it unlikely that the endothelium-derived contracting factor(s) involved are peptides released from hypoxic endothelial cells (Rubanyi and Vanhoutte, 1985; Vanhoutte et al., 1989), since the response to hypoxia is faster than peptide induced contraction and can be prevented by a calcium ar, agonist. Indeed, endothelin is not stored in endothelial cells (Yanagisawa et al., 1988b). A second type of EDCF is sensitive to cyclooxygenase inhibition, and its release is induced by a variety of stimuli, including arachidonic acid, acetylcholine, calcimycin (A23187), sudden stretch in cerebral arteries of dog, aorta of (SHR) spontaneously hypertensive rat, canine systemic and pulmonary veins (Miller and Vanhoutte, 1985; Katusic et al., 1987; De Mey and Vanhoutte, 1983). Recent studies (see Lüscher, 1990) suggest that an alteration in the production of the constrictor PGH<sub>2</sub> may be a contributing factor to the increase in the peripheral resistance associated with essential hypertension. A third EDCF is the peptide endothelin, a factor originally associated with the supernatant of cultured endothelial calls which produces a long lasting contraction. The endothelian-induced contraction is very difficult to reverse and it is resistant to cyclooxygenase inhibition but is attomated by tryosin (Gillespie et al., 1986; Yanagiaava et al., 1986a).

In canine systemic and pulmonary veins, arachidonic acid augmented contractions evoked by norepinephrine; the augmentation was not observed in preparations in which the endothelium had been mechanically removed (De Mey and Vanhoutte, 1982). This observation was the first demonstration that the presence of endothelial cells can augment, rather than depress, contractile response of isolated blood vessels. The facilitation by arachidonic acid of the responses of the endothelium of systemic and pulmonary veins was prevented by inhibitors of the enzyme cyclooxygenese but not by inhibitors of prostacyclin synthetase, thromboxane synthetase or lipoxygenase (Hiller and Vanhoutte, 1985). These findings indicate that venous endothelial cells could metabolize arachidonic acid into a vaseconstrictor prostanoid, other than prostacyclin and thromboxane 3c.

Most recently, the fact that attempts to bloassay the endothelium-derived contracting factor released by scetylcholine have failed, indicates that a very labile substance such as an endoperoxide intermediate or oxygen-derived free radical must be involved or that the substance is only released towards the abluminal side of the blood vessel wall (Lüscher, 1990). Scavengers of oxygen-derived radicale, such as superoxide dimutase do prevent the endothelium-dependent contractions to acetylcholine in the cerebral blood vessels but not in the rat thoracic aorta (Auch-Schwelk et al., 1989). It is pertinent to note that the relaxation of perfused canine femoral artery by acetvlcholine consists of transient and sustained components. The transient component is observed with lower concentrations of acetylcholine and appears to be caused by activation of endothelial N-muscarinic recentors; the sustained component is seen with higher concentrations of the cholinergic transmitter and can be attributed to stimulation of My-muscarinic receptors (Rubanvi et al., 1987). The transient, but not the sustained, response is inhibited by guinagrine and metyrapone, which suggest that the former is mediated by a metabolite of arachidonic acid (Rubanyi and Vanhoutte, 1987). Conversely, high concentrations of catecholamines inhibit the sustained but not the transient phase of the response to acetylcholine (Rubanyi et al., 1985). The endothelium-dependent contractions to acetylcholine occur with higher concentrations of acetylcholine than those needed to release EDRF (Lüscher and Vanhoutte, 1986). Thus, with higher concentrations of acetylcholine, EDRF is still released, however, release of the contracting factor(s) by higher concentration of the cholinergic transmitter blunts the relaxant effect with a preponderant contractile response.

The recent review by Lüscher (1990) sums up the current trend of thought, notably that a contracting factor other than endothelin, namely prostaglandin H<sub>2</sub>, may be involved in defective endothelial cell function in hypertension. Nevertheless, a role for endothelin has not been ruled out.

1.3.1 Endothelin.

Evidence for a vasoconstrictor endothelial peptide came from studies on cultured bovine endothelial cells, whose supernatant had contractile properties on bovine pulmonary, plg and rabbit coronary arteries (0'Frien and McMutry, 1984; Mickey et al., 1985; Gillespie et al., 1986). The existence of a new vasoconstrictor peptide synthesized by the endothelium was postulated after ruling out the possibility that angiotensin or substance P could mediate those effects (Gillespie et al., 1986).

The contractile peptide was isolated and purified from cultured cells of porcine aortic endothelium by Yanagisawa et al. (1988a). Endothelin was identified as a 21-amino acid, potent vasoconstrictor peptide and since it was reported that there were at least three endothelin genes in the human genome, the products of its expression were designated ET-1, ET-2 and ET-3 (Incus et al., 1989). More recently, ET-4 (vasoactive intestinal contractor - VIC) has been isolated from the mouse (Saida et al., 1989) and expressed predominantly in the intestine, raising the possibility of tissue specific ET variants. ET-1 is identical to the form originally isolated from porcine endothelial cells (Itoh et al., 1988), whereas the amino acid sequence of ET- 3 is identical to that found in the rat genome (Yanagisawa et al., 1988b; Incus et al., 1989). Therefore, it was thought that many mammalian species, including pig, dog, rat and human produce the three isopeptides of the endothelin fully (Yanagisawa and Masaki, 1988, b).

1.3.2 Regulation of synthesis and release of endothelin.

A peptide of 203 amino acids is the precursor molecule for endothellns. These pro-hormones demonstrate species and isopeptide-specific differences in amino acid sequence (Simonson and Dunn, 1990a). In addition to containing the mature ET peptide, the prepro-precursors contain a cystelne-rich, ET-like region (15 residues) that is highly conserved (Yanagisawa et al., 1986a; Itch et al., 1986). The biological significance of differences in amino acid

sequence between the prepro species, and of the presence of an ET-like peptide within the prepro ET, are unclear.

They ave Bare

ちゃっけちいち あしまち ちちっちい ちしっち

In cultured endothelial cells, propro ET-1 is proteclytically cleaved to form a 38 (human) - or 39 (porcine)-mmino acid big ET (Shimmi et al., 1989). This is subsequently processed to mature ET-1 by the putative 'endothelin converting ensyme' (Yanagiaswa et al., 1988a). Yanagiaswa and Masaki (1989a) have suggested that endoprotolysis may provide an important site for pharmacological intervention.

It appears that vascular endothelial cells do not produce ET-2 or ET-3; only ET-1, or its RRHA, can be detected in endothelial cells in culture supernatant (Yanagisawa and Mauski, 1989s). The expression of ET-2 has not yet been convincingly demonstrated in any tissue. Shimsi et al.(1989) have demonstrated that ET-3 immunoreactive material is present in porcine brain homogenete. In addition, endothelin and related peptides can be synthesized and secreted from renal epithelial cells (Shichiri et al. 1989) and intestinal cells (Saida et al. 1989) or non-endothelial origin.

Most recent studies (MacCumber et al., 1989; MacCumber et al., 1990; Yoshizawa et al., 1990) show that ET isopoptides are differentially expressed only in specific tissues, which suggest that tissue-specific factors control the rate of ET gene expression. Above cited investigators demonstrated transcripts for both prepro ET-1 and prepro ET-3 in adult rat lung, kidney, eye and brain, whereas both ET-3 and ET-1 were abundantly expressed in the lung. mRNA transcripts for VIC (ET-4) have been found in the murino intestinal tract (Saida et al., 1989). In the rat kidney, ET-1 was expressed predominantly in the medullary wasa recta (MacCumber et al., 1989). The inability to demonstrate ET-1 gene expression in some adult tissues could reflect the relative insensitivity of Northern analysis to detect rare transcript or poor hybridization of ET-1 and ET-3 probes with noncomplementary tissue specific ET isoforms (Simonson and Dunn, 1990a).

An important aspect of endothelin biology is the failure to demonstrate, in situ, endothelium-dependent vasoconstriction mediated by endothelin. It has been speculated that ET-1 from endothelium is regulated at the level of peptide synthesis but not at the level of the mechanisms of release (Yanagisawa and Maskai, 1989a, b). The induction of ET-1 mRNA and/or peptide by various chemical stimuli has been studied mainly in cultured endothelial cells. The growing list of physiological stimuli that can increase ET-1 production includes thrombin (Yanagisawa et al., 1988a); transforming growth factor B (TGF-B) (Kurihari et al., 1989); angiotensin II (Emori et al., 1989); [Arg]vasopressin (Emori et al., 1989); fluid dynamic shear stress (Yoshizumi et al., 1989). Thrombin, angiotensin II and vasopressin stimulate phospholipase C activity in endothelial cells leading to the formation of the second messengers inositol 1.4.5-trisphosphate (which mobilizes Ca2+ from intracellular storage sites) and 1,2 diacylglycerol (which stimulates protein kinase C). Shear stress also increases intracellular free Ca2+ concentration in cultured endothelial cells , both by stimulating the influx of extracellular Ca2+ and mobilizing intracellular Ca2+ (Ando et al., 1988). Indeed, ET-1 mRNA and peptide are also induced by Ca2+ ionophores and phorbol esters (Emori et al., 1989; Yanaqisawa et al., 1989). These observations are consistent with the idea that production of ET-1 in endothelial cells can both be regulated by intracellular  $Ca^{2+}$  and protein kinase C - that is, possibly by PI turnover signalling in endothelial cells.

The 5' promoter region of human ET-1 gene contains several elements

responsive to 12-0-tetradecanoylphorbol 13-acetate which are found in other genes that can be induced by phorbol est\_\_s (Inoue et al., 1989). It also contains the nuclear factor-1-binding elements that have recently been recognized to be involved in response to TGF-8. Whether these potential regulatory DNA elements in the ET-1 gene are actually involved in the regulation of ET-1 production by agents such as those listed above will be determined by promoter mapping studies. The level of ET-1 mRNA in endothelial cells may be controlled not only by transcriptional regulation but also by post transcriptional regulation of mRNA degradation. Half-life studies using the transcription inhibitor actinomycin D have revealed that ET-1 mRNA is extremely labile, having an intracellular half-life of about 15 minutes (Yanagisawa et al., 1989). This rapid degradation is specific for ET-1 mRNA, since B-actin mRNA has a much longer half-life (10-20 h) in the same cells. Both porcine and human ET-1 mRNA possess several 'AUUUA' sequences in the 3' non-translated regions. These AU motifs have been recognized to be involved in highly selective mRNA destabilization and are found in mRNAs encoding certain transiently expressed cytokines, growth factors and nuclear proto-oncogene products (usually involved in programming of cellular growth and differentiation). It is conceivable that ET-1 may also belong to this class of signal molecules.

#### 1.3.3 Pharmacological effects of endothelin.

Endothelin has been described as the most potent vasoconstrictor known (Yanagisawa et al., 1988a). The contractile activity of the different endothelins in ranked order is: ET-2>ET-1>ET-4>ET-3 (Yanagisawa et el., 1989; Rodman et al., 1989; Saida et al., 1989).

ET-1 provokes strong sustained contractions in isolated vascular smooth

21

;

muscle preparations in almost all animal species and vascular regions examined including microvessels (Brain, 1989). Other vascular effects of ET-1 include the stimulation of release of elcosanoids and endothelium-dependent relaxing factor (EDRF) from perfused vancular beds (de Nucci et al., 1988).

The additional finding that endothelin acts not only on vascular but non-vascular tissues (Yanagisawa and Masaki, 1989b), has raised questions about its role in the control of vascular tone. ET-1 has a wide spectrum of pharmacological effects on non-vascular tissues viz: contraction of airway (Uchida et al., 1988), intestinal smooth muscle (deNucci et al., 1988; Borges et al., 1989), uterine smooth muscle (Borges et al., 1989; Eglen et al., 1989), cardiac chronotropic and inotropic actions (Ishikawa et al., 1988a, b) and stimulation of atrial natriuretic peptide release (Fukuda et al., 1988), inhibition of ouabain sensitive Na\*/K\* ATPase (Zeidel et al., 1989) blockade of the antidiuretic effect of vasopressin in vivo (Goetz et al., 1988), modulation of catecholamine release from sympathetic termini and adrenomedullar chromaffin cells (Tabuchi et al., 1989; Boarder and Mariott (1989), and the stimulation of aldosterone release in adrenal glomerulosa cells (Cozza et 12., 1989). Evidence suggestive of a neuromodulatory role has been adduced (Jones et al., 1989; Kokesi et al., 1989). The wide spectrum of target tissues and of species non-specificity imply that ET-1 might have wide ranging actions in diverse organs. In cultured mesangial cells (Badr et al., 1989; Simonson et al., 1989), and vascular smooth muscle cells (Komuro et al., 1988), ET-1 is a potent mitogen and stimulates c-myc and c-fos proto-oncogene expression resulting in hyperplasia, suggesting a possible role for ET in vascular remodelling or atherosclerosis (Simonson and Dunn; 1990b).

## 1.3.4 Homology between ET-1 and SRTI-b.

-----

Perhaps the most perplexing finding has been the discovery of a strong identity between endothelins and sarafotoxin. Sarafotoxins, as characterized by Kochva et al. (1982), Weiser et al. (1984) and Takamaki et al. (1988), are potent vasconstrictor, cardiotoxic peptides from the venom of the burcowing asp (Atractaspis engademsis), which cause severe coronary spasm and EGG changes in snake bite victims. The similarity between these two peptides led Graur et al. (1988/1989) to examine their evolutionary trends, and kloog and Sokolovsky (1989) have hypothesized that the biological activity of endothelin and sarafotoxin are mediated via a common receptor. Indeed, they suggest that endothelins are endogenous ligands for 'sarafotoxin receptors' (SHX receptors).

Sarafotoxins (SRTX-a, -b and -c) and more recently -d (Bdolah et al., 1989) are a group of 21-amino acid residue cardiotoxic peptides isolated from the vence of Atractaspis engaddensis, which are rich in cynteine and show sequence identity to the mamalian endotheline ET-1, ET-2, ET-3 and ET-4. Eight naturally occurring peptides of the endothelin/marafotoxin 'family' are now known (Fig. 2). All eight peptides contain 21 amino acids which possess Cys1, Cys3, Cys11 and Cys15 residues, with disulfide bonds between Cys3 and Cys11 and between Cys1 and Cys15 (Kanagisswa et al., 1988), Takasaki et al., 1988). Reduction of the disulfide bonds of the SRTXs (Kloog et al., 1988), and of the endothelins (Kimura et al., 1988), results in a marked loss of binding and activity. Also common to these peptides is the hydrophobic carboxyl terminal tail Hisi6-Trp21. Cleavage of Trp21 from ET-1 resulted in marked loss of vasoconstrictive ability (Kimura et al., 1988). Moreover, even thouch cluif and Val 19 of SRTX periodes are replaced by Leui7 and Ile19 respectively in endothelin peptides, the size and hydrophobic nature of the carboxy terminal tail are preserved. This replacement, however, appears to be of little functional significance. For example, <sup>175</sup>I-iodinated SRTX-b and ET-1 peer-ess indistinguishable binding properties and both stimulate PT (phosphatidy) inositide) hydrolysis in various regions of the rat brain and also in the atrium (Ambar et al., 1989). SRTX-b and ET-1 also exert almost identical effects on the cardiovascular system, namely coronary vasoconstriction, which is manifested electrocardiographically in mice by elevation of S-T segment, induction of atrioventricular block and induction of positive inotropic and chronotropic effects (Yanagiaawa et al., 1988a, Rakasaki et al., 1988; Wollberg et al., 1988; Ru Hu et al., 1988; Ishikawa et al., 1988a, b). Furthermore, cross-desensitization between ET-1 and SRTX-b induced changes in phospholonoitide turnover in neurons has also been demonstrated (Lin et al., 1989).

It is also interesting to note that in all endothelin/SRTX peptides, the N-terminal sequence is Gys1-Ser2/Thr2-Cys3; SRTX-a, SRTX-b, ET-1, ET-2 and ET-4 (VIC) contain Ser2, while SRTX-c, SRTX-d and ET-3 contain Thr2. Takasaki et al. (1988) argue that it seems unlikely that the lower toxicity of the latter three peptides compared to the former, and the vasodilatory activity of both SRTX-c and ET-3, are due to substitution of the threenime for series in position 2 on the grounds that the properties of these two residues are rather similar. Thus, the most important differences between the various peptides of endothelin/sarafotoxin 'family' reside within the sequence of the inner loop Cys3-Cys1. All the peptides possess GluIO, and, except for SRTX-c, they have Asp5-Lys9. Therefore, the sequence at position See. 2

a president of any in-

(Kloog and Sokolovsky, 1989). Thus, unlike the 'constant' C-terminal tail of these peptides, their N-terminal sequences are variable. Another interesting difference between the various endothelin/SRTX peptides involves their net charges which appear to derive from variations in the loop created by their disulfide bonds. For instance, SRTX-a and SRTX-b each have two positive and three negative charges and ET-1 and ET-2, with one positive and two negative charges would all have a net charge of -1 within the loop; SRTX-c (with four negative charges) would have a net charge of -4, and ET-3 (with two positive and two negative charges) would have a net charge of 0. As SRTX-b and ET-1 have similar vasoconstrictive and cardiotoxic effects, which are different from those of SRTX-c and ET-3, it seems that an overall net change of -1 within the Cys3-Cys11 loop is required for biological activity (Kloog and Sokolovsky, 1989). The absence of this single net charge in SRTX-c and ET-3 is, aside from their common Cys1-Thr2-Cys3, another common feature of these two peptides which may contribute to their vasodilatory activity. However, the marked difference between the intraloop charges of SRTX-c (-4) and ET-3 (0) may not explain the differences in potencies and/or mechanism of binding. and second messenger systems utilized by SRTX-c and ET-3 versus ET-1 or SRTXb (Kloog and Sokolovsky, 1989). It should be stressed that SRTX-d differs from SRTX-b in two substitutions, which apparently do not affect binding in rabbit aorta, but do result in considerably lower lethality and vasoconstrictor potency (EC50 values of 90 nM and 5 nM, respectively; Bdolah et al., 1989). From the functional point of view it is interesting that SRTX-c and SRTX-d are the least toxic. Although a lower binding affinity to heart and brain membranes, and lower phosphoinositide hydrolysis and vasoconstricting activities have been claimed for SRTX-c (Takasaki et al.,

1988; Kloog et al., 1988), SRTX-d has been shown to have similar binding characteristics to SRTX-b but less efficacy as a vasoconstrictor (Bdolah er al., 1989). According to Graur et al. (1988/1989), the suggestion that the C-terminal 'tail' is essential for vasoconstrictor activity (Yanagisawa er al., 1988b) seems less likely as this tail differs between the two groups (mammal versus snake), but it is virtually identical within each group with the exception of SRTX-d which his an ET-like tail. For instance, SRTX-b and ET-1 are both potent vasoconstrictors, and differ in their C-terminal 'tails', while SRTX-b and SRTX-c on the one hand, and ET-1 and ET-3 ont ET-5 other, which have similar tails differ in their vasoconstricting powers by an order of magnitude (Yanagiaawa et al., 1988b; Wollberg et al., 1988).

#### 1.3.5 Endothelin and sarafotoxin receptors.

The existence of four endothelin peptides also raises the possibility of existence of multiple endothelin receptor subtypes (Yanagiasawa and Masaki, 1989b) Saida et al., 1989). However, in cultured rat aortic smooth muscle cells, a single class of asturable, high affinity binding sites for [<sup>125</sup>1]27-1 has been described (Hirata et al., 1988b). There is no unanimity in classes or subtypes of receptors; thus Watanabe et al.(1989) have defined two distinct types of ET receptors on chick cardiac membranes. Kloog et al. (1989), using homogenates of rat aris, aorta, uterus, cerebellum, caudate and putamen, indicated heterogeneity of ET/SRTX receptor and adduced evidence for three receptor subtypes. More than one receptor has been proposed in blood vessels: a receptor with high affinity for ET-1 may mediate the vasoconstrictor response in vascular smooth muscle cells, whereas a receptor with higher affinity for ET-3 may be involved in the endothelin-induced release of EDRF from endothelial cells. Binding studies with synthetic sarafotoxin suggest the existence of a heterogeneous population of vascular receptors for endothelins and sarafotoxins (Hirata et al., 1989) since the Ki value for SRTX is apparently greater than the apparent Kd value for the vascular ET receptors. Furthermore, Ambar et al. (1989) have demonstrated marked differences in the affinities of <sup>125</sup>I-SRTX for its binding sites in various tissues of the rat. Activation of endothelin receptors is associated with an increase of phosphoinositide turnover except in cultured vascular smooth muscle cells (Hirata et al., 1988b), suggesting the existence of a specific receptor-phospholipase C system. This system can also be stimulated equally by sarafotoxins (Lin et al., 1989; Kloog and Sokolovsky, 1989; Hirata et al., 1989). The fact that stimulation of phospholipase C by ET-1 in rat aortic cells involves a pertussis toxin-insensitive G-protein allows for the speculation that the receptors for endothelin belong to a G-protein coupled superfamily (Yanagisawa and Masaki, 1989a). Furthermore, Tabrizchi and Triggle (1990) have provided in vivo evidence from pithed rate that, in vascular smooth muscle, a component of the response to ET results from activation of a pertussis toxin-sensitive G-protein that is coupled to a receptor operated calcium channel and/or non-specific cation channel.

- Verte

Autoradiographic studies have demonstrated the existence of endothelin receptors not only in vascular tissue, but also in rat brain, kidney, lung, adrenal gland and intestine (Jones et al., 1969). Kokesi et al., 1989). Long lasting effects of endothelin appear to be directly related to the nature of the interaction with the receptor(s) and. Thus, the dissociation of radiolabelled endothelin has been shown be very slow, with 65% of the initial coll-bound radioactivity remaining afters 2 hourse (Kirata et al., 1988).

Galron et al. (1989) have studied ET-1 and ET-3, SRTX-b and SRTX-c

binding in intact cells and homogenates of rat heart myocytes and have demonstrated higher affinities for RT-1 and ARX-b than ET-3 and ARX-c. With cross-linking techniques Sugura et al. (1989) were also able to distinguish ET-binding site proteins from the e.g. and y submits of the Ltype Ca-channel. Furthermore, Ambar et al. (1989), using competitive binding studies in rat atria and brain, had inferred receptor subtypes for ET-1 and SRX-b but suggested that the two mare a common binding site.

Immunological evidence from antibodies against ET-1 and SRTX-b reveal low cross-reactivity between the two peptides (Fleminger et al. 1989). Fleminger et al. (1989) argued that this low reactivity reflects the fact that the antibodies recognize the variable sequence found within amino acids 4-7. This hypothesis was confirmed by CNBr cleavage of the methionyl residue at position 6 in SRTX-b and at position 7 in ET-1 (Fleminger et al., 1989). On the other hand, the binding properties, as well as the ability to induce phosphoinositide hydrolysis, were very similar in the modified and native peptides, indicating that, despite cleavage of the peptide bond, the biologically active conformation responsible for either binding or phosphoinositide hydrolysis is retained. Probably this retention of activity reflects the importance of the two disulfide bonds. It thus appears that neither the argument for a role of the charge of (-1) on the peptides loops of ET-1 and SRTX-b , nor similarities or dissimilarities in the C-terminal 'tail' of the two groups of peptides (ET/SRTX) can adequately explain their contractile or biochemical properties. Perhaps the only characteristic -listinguishing the weak from strong contractile peptides is threenine at position 2. However, even the presence of threenine at position 2 does not colfer differing binding properties for the potent contractile SRTX-b versus the weakly contractile SRTX-c (Bdolah et al., 1989). In this context, the findings of Graur et al. (1988/89) must be emphasized as there is a strict conservation of the C-terminal amino acid sequence in the mammalian versus snake peptide except for SRTX-d which has Ile-Ile-Trp of the mammalian group at position 19, 20 and 21, respectively. Nonetheless, the pharmacological activities of SRTX-d and ET-1 differ. It is also interesting to note that the C-terminal hexapeptide, endothelin (16-21), differentiates between endothelin receptors in the rat aorta and guinea pig bronchus, where it is neither an agonist nor antagonist in the former but a full agonist in the latter (Maggi et al., 1989). Cleavage of Trp21 from ET-1 and SRTX-b resulted in marked loss of vascconstrictive ability (Kimura et al., 1988; Nakajima et al., 1989). If vasoconstrictive ability is so dependent on Trp21, it follows that all eight peptides should be equieffective since all have Trp21; but this is not the case. The common factor of Trp21 and variable potencies of the eight peptides lend credence to suggestions of Kloog and Sokolovsky (1989) that the variability of the C-terminal tail is of little functional significance. The recent report by Galron et al. (1990), that different pathways are utilized by endothelin and sarafotoxin subsequent to phosphoinositide hydrolysis in rat myocytes, lends credence to our hypothesis that the different seven amino acid sequence between ET-1 and SRTX-b may lead to different cell binding and/or utilization of messenger systems in different tissues. Indeed, such dissimilarities between ET-1 and SRTX-b have already been reported by Goetz et al. (1989) for the effects of the two peptides on renal blood flow. This latter observation provides evidence for the report that there are two specific receptors in the rat kidney mesangial cells (Sugiura et al., 1989) .

#### 1.3.6 Hechanisms of action of the endothelins/sarafotoxins.

In the original paper of Yanagigawa et al. (1988a), it was succested that endothelin may act directly on membrane ion channels. This hypothesis was supported by the similarity between the structure of endothelin and those of the g-scorpion toxing, which are known to bind to the tetrodotoxinsensitive Na-channels. Based on the sensitivity of endothelin contraction to nicardining, and the fact that Na- and Ca-channels belong to the same family of voltage-dependent membrane ion channels as those sensitive to the ascorpion toxing (Tanabe et al., 1987), they proposed that endothelin could represent the endogenous ligand for L-type calcium channels. Additional support for this hypothesis was obtained with the observation that, using patch clamp techniques, ST-1 activated calcium influx currents through dihydropyridine voltage-sensitive Ca-channels (Goto et al., 1989). In addition, it has been reported that, in the rat aorta and portal vein, the contraction and <sup>45</sup>Ca uptake induced by endothelin, but not those caused by ascorpion toxin or veratridine, were insensitive to tetrodotoxin, 2-conotoxin and Na removal, whereas nifedipine, nitrendipine, verapamil, nickel and Cafree medium inhibited these processes (Sorges et al., 1989: Eglen et al., 1989).

There is, however, experimental evidence that contradicts this hypothesis. Indeed, Muguet et al. (1988) also observed that, in the rat sorts, the vasconstrictor effects of endothelin and also the dihydropyridine Bay K 8644, an agonist at the L-type Ca-channel, were different, and Bay K 8644, but not endothelin, required a partial pre-depolarization stimulation in order to evoke contractions. Furthermore, the effects of endothelin were comparatively insensitive to nifedipine, nitrendipine, verapanil, diitiarem

or gallopamil, whereas those of Bay K 8644 were markedly reduced (August et al., 1988; Criscione et al., 1989). In the rabbit aorta, the endothelin mediated contraction was insensitive to nifedipine, nicardipine and verapamil (Ohlstein et al., 1989), and in the mesenteric artery and jugular and mesenteric veins of this animal, nicardipine blocked Bay K 8644 evoked contractions but did not affect those produced by endothelin (D'Orleans-Juste et al., 1989). It has been reported that the hyperpolarization elicited by the K\*-channel opener, cromakalin, reduced endothelin-mediated contractions in rat aortic strips (Criscione et al., 1989) Dichlorobenzamil, a blocker of Na<sup>+</sup>-Ca<sup>2+</sup> exchange, also inhibited endothelin-mediated contractions; amiloride, had no effect (Criscione et al., 1989). The effects of dichlorobenzamil may. however, reflect the non-selective inhibition of endothelin-activated cation channels and not result from inhibition of the Na\*-Ca2+ exchange system (Van Renterghem et al., 1989; Criscione et al., 1989). The electrophysiological studies of Wallnöfer et al. (1989) and Van Renterghem (1989) have been most illuminating in elucidating the mechanism of action of endothelin in comparison to other agonists. Van Renterghem (1989) proposes that the electrophysiologic effect of ET-1 involves three types of channels. The first electrophysiological effect of ET-1 in spontaneously active cells is a transient hyperpolarization, during which the spontaneous electrical activity of the cell stops. It is followed by depolarization and a recovery of the electrical activity with a higher frequency. In cells with no spontaneous activity, ET-1 also produces a hyperpolarization followed by a depolarization during which a spiking activity is triggered. In the presence of a 1,4dihydropyridine (DHP), ET-1 still produces a depolarization following a transient hyperpolarization, but the spiking activity is abolished. The

transient outward current induced by ET-1 was Characterized as a K\* current. It is due to the opening of Ba2+ and charybdotoxin-sensitive Ca2+-activated K\* channels which are also involved in the spontaneous activity. The inward current activated by ET-1 reversed near -1 mV and is due to the opening of Ca<sup>2+</sup> permeable non-selective cation channels. Van Renterghem et al. (1989) concluded that ET-1 changes the intracellular Ca2+ concentration by two different mechanisms: (i) it liberates Ca2+ from internal stores (presumably through IP3 production) and (ii) it activates a non-selective cation channel in the plasma membrane that is permsable to Ca2+. The depolarization induced by the opening of the non-selective cation channels brings the membrane potential level near the threshold for L-type Ca2+ channel activation and thereby eventually produces a spiking activity. Consequently, substantial amounts of Ca2+ then flow into the cells via L-type Ca-channels. The authors surmised that it is therefore not surprising that blockers of L-type Ca2+ channels can eliminate a significant component of the ET-induced contraction. The remaining contraction component observed in the presence of channel blockers may be due to : (a)  $Ca^{2+}$  liberated from internal stores, (b)  $Ca^{2+}$ flowing through non-selective cation channels and (c) to a putative stimulation of protein kinase C by diacylglycerol. Wallnöfer et al. (1989) have shown that in the mesenteric resistance vessels (MRVs) of the rat, ET-1 acts as a full contractile agonist, giving tonic contractions equivalent to those seen with NE and arginine vasopressin (AVP), but it produces only about 35% of the membrane depolarization (-7 mV) produced by NE or AVP (-20 mV). The reasons underlying this difference have been amply explained by Van Renterghem et al. (1989). The authors concluded that the degree of depolarization caused by ET-1 would not alone induce enough Ca2+ entry through voltage-mensitive  $Ca^{2+}$  channels to yield tension (12 mV depolarization with 15 mN K<sup>\*</sup> gave no tension). Hence, ET-1 must evoke other cellular effects in addition to membrane depolarization in order to activate the MRVs. Indeed, the sequential or temporal spacing of events, as proposed by Van Rentersphen et al. (1989), seem to provide the missing link to the electrophysiologic study by Wallnöfer et al. (1989). However, Hay (1990), in examining the mechanism of ET-1-induced contractions of the rat aorta in comparison with the guinea pig traches, concluded that ET-1-induced contractions of the rat aorta were more sensitive to the effects of incubation in a  $Ca^{2-}$ free medium, or with nicardipine or staurosporine, suggesting that differences exist in the relative mechanisms whereby ET-1 produces contraction in different tissues.

### 1.3.7 Pharmacokinetics of endothelin.

Pharmacokinetic studies with endothelin are few. Despite its long lasting vascular effects, the half-life of this poptide in the plasma is very short; lass than 2 minutes (Pernow et al., 1989). This has been attributed to a quick extraction of the peptide from plasma during pulmonary circulation (de Nucci et al., 1988) or by renal, splenic and skeletal muscle clearance (Pernow et al., 1988). In rats, i.v. injected <sup>125</sup>1-labeled ET-1 was rapidly eliminated from the blood stream, and the administered radioactivity distributed chiefly to the parenchyma of the lungs, kidney and liver (Shiba et al., 1989). This rapid decay rate was virtually unchanged even when a pressor amount (1-2 mNol. Kg<sup>-1</sup>) of cold ET-1 is co-administered with the radiolabeled tracer. Nevertheless, the pressor response usually lasts more than one hour. The extremely slow dissociation of ET-1 from its receptors and/or other collular companys are usual muscle (Hirtat et al.,

1988b) may at least partly account for the discrepancy between the timecourse for elimination of the exogenously applied peptide from the circulating blood and that for the pressor effect of the peptide. Within a few minutes of i.v. injection of 125I-labeled ET-1, a major fraction of radioactivity was found in lungs, kidneys, liver and spleen (Kokesi et al., 1989: Shiba et al., 1989). Moreover, HPLC analysis of the intected 1251labeled ET-1 remaining in the circulating blood indicated that its chemical form was not significantly altered in the blood stream (Pernow et al., 1989; Shiba et al., 1989). 125I-labeled ET-1 also appears to be very stable in heparinized whole blood in vitro at 37°C. Thus, the rapid elimination of ET-1 from the circulation may be due to trapping of the intact peptide by the parenchymal organs. Hore recently, Sokolovsky et al. (1990) have shown that incubation of endothelins (ETs) with bovine kidney neutral endopeptidase (NEP) resulted in a selective two step degradation with loss of biochemical activity. The first step was the "nicking" of the Ser5-Leu6 bond, followed by cleavage at amino-terminal side of Ile19. The" nicked" peptide exhibited biochemical activities comparable to those of intact peptide - i.e., binding to the ET-receptor, induction of inositol phospholipid hydrolysis and toxicity. The twice-cleaved product, however, was inactive. On the other hand, the sarafotoxins (SRTXs) were more resistant to NEP than were the ETs: the tw for ET-1 was -1 hour while it was -4 hours for SRTX-b and even higher for SRTX-c. The authors concluded that the results from these in vitro findings may indicate a regulatory role for NEP (or similar enzymes) in the physiological inactivation of ETs. This might also help to explain why, under physiological conditions, ETs may be less toxic than SRTXs. Neutral endopeptidase is said to be widely distributed in the body, occurring in

specific structures in the central nervous system, kidney, lung and intestines as well as in neutrophils and fibroblasts, but its concentration in vascular endothelial cells is very low. The trapping of radiolabeled ET-1 in certain organs, and the availability of neutral endopentidase at a relatively high concentration may not just be a coincidence but a physiologic localization of substrate and enzyme for optimal degradation. Despite their close biochemical and receptor binding properties, this may also be a noteworthy difference between SRTX-b and ET-1. It may well be that the structural differences could account for the differences in pharmacokinetics of the two peptides. Basal concentration of ET-1 in healthy human plasma seems to vary from one laboratory to another. Ando et al. (1989) reported a value of 0.6±2 fmol/mL (meantS.D.), Cernacek and Stewart (1989) reported 0.26±0.24 pg/mL or 104±94 fmol/L and Suzuki et al. (1989) reported 1.5±0.5 pg/mL (range 0.7-2.4 pg/ml) for females. In disease states such as cardiogenic shock, levels of 3,6511,14 pg/mL have been measured (Cernacek and Stewart, 1989). Hopefully, more data on the pharmacokinetics of endothelin and sarafotoxin will become available and perhaps, with standardization of methods, the "normal" plasma concentration of ET will be determined.

In summary, research with endothelin has left us with more questions than answers. Notably, what are the physiologic roles of endothelin? Is endothelin the cause or the effect of a pathologic state? Are the signal transduction pathways of ET-1 and SRTX-b the same? Finally, is endothelin a "hormone' or satecoid of self-destruction?

#### 1.4. Objectives.

The preceding literature review indicates general agreement on the following areas:

 Endothelin acts on a wide spectrum of target tissues and lacks species specificity. Furthermore, endothelin does not originate from endothelium alone.

(ii) Although ET-1 and SRTX-b show blochemical and binding characteristics, the existence of receptor subtypes allows for the possibility of these two peptides binding to distinct receptors and utilizing different signal transduction pathways.

The overall objectives of the thesis were : A) to compare the actions of endothelin-1 (ET-1) and sarafotoxin S6b (SRTX-b) with those of a well characterized agonist, norepinephrine (NE) and B) identify and compare the transduction effector mechanisms utilized by these peptides with NE. Experiments were designed to answer the following questions:

 Are the contractile mechanisms induced by these peptides and norepinephrine the same in vascular and non-vascular smooth muscles?

2) Do ET-1 and SRTX-b interact with the same receptor?

#### Chapter 2

## MATERIALS AND METHODS

#### 2.1. Animals.

Male Sprague-Dawley rats (225-250 g) were purchased from Canadian Hybrid Farms, Halifax, Nova Scotia. These animals were used for all in vitro studies mentioned in the thesis.

The rats were housed in the animal care facility of the Faculty of Medicine, Memorial University of Newfoundland, under minimal disease conditions, three rats to a cage. The rooms had a 12-hour light, 12-hour dark, light cycle with controlled humidity and temperature.

At all times, the animals had free access to food (Purina Rat Chow from Charles River Inc., Montreal) and water.

## 2.2. Choice of tissue.

The preceding literature review illustrates that a wide range of tissues have been used in the study of endothelin and marafotoxin. The major objective of this study was to determine whether endothelin and marafotoxin shared the same membrane receptor-transduction system in smooth muscle. It was decided that a comparison of a vancular to non-vascular preparation be made. The rat anococcygeus muscle and oesophageal tunica muscularis mucosa (TMM) were chosen as representatives of the non-vascular smooth muscle, and the portal vein and thoracic aorts for vancular smooth muscle. The tissue had to meet the following criteria, to be considered mutable:

(i) resilience of ticsue in long experimental protocol;

(ii) repeated use following recovery from exposure to given agonists;

(iii) consistency of results; and

(iv) sensitivity in terms of response at low concentrations.

#### 2.3. Tissue preparation.

The rats were killed by a sharp blow to the head and extanguinated by cervical transection. The thoracic acts, portal vein, oesophagus and anococcygeut muscle were isolated and placed in warm (37°C) Krebs solution continuously bubbled with oxygen/carbon dioxide (5%  $O_2$  / 5%  $O_2$ ). Adherent connective tissue was carefully removed from the acts, care being taken not to stretch the preparation. Any residual clot was removed from the lumen of the aorta with fine forceps before cutling the artery into 3-4 mm ring segments (Goldberg and Triggle, 1977). These rings were suspended between triangular shaped arterial hooks in a 10 ml organ bath cortaining Krebs solution, at pH 7.4, double jacketed to maintain a temperature of 37°C and bubbled with 95%  $O_2$  /5%  $CO_2$  continuously throughout the duration of experiments. One hook was anchored to a fixed point in the organ bath while the other was connected to the force-displacement transducer.

The portal vein was dissected free of adherent tissue, incised along its length to form a strip, and tied at both ends with silk (Sutter and Ljung, 1977). The vein was then mounted in an organ bath for isometric force measurements in a similar manner as described above for the sorta.

The paired anococcygeus muscles were dissected free of connective tissue and each tied at its origin and insertion before removal from the animal for suspension in the organ bath with conditions identical as for the vascular preparations (modified from Gillespie, 1972).

The tunica muscularis mucosa (TRM) of the oesophagus was set up as described by Bieger and Triggle (1985) and suspended in an organ bath with conditions identical to those described for the other tissues. All the tissues were set up at a preload tension of 0.5 g, except for the aortic ring preparation whose preload tension was set at 2 g. The choice of pre-load tension was based on previously published evidence as to the optimal conditions for these tissues. The tissues were allowed one hour to attain equilibrium under resting tension. Isometric tension was recorded on a Beckman Réil Dynograph using Grass FJ 03C force displacement transducers. 2.4. Experimental process.

#### Study 1: Tissue screening.

This study was performed using all four isolated preparations. During equilibration, Krebs buffer was changed every 15 minutes until the tissue maintained a stable baseline under the specified resting tension. Generally this took one hour to achieve. The tissues were always prepared in pairs except for portal vein which had to be isolated from two rats (attempts at using two halves from one rat had produced repeated experimental failures). Each tissue was exposed to NE and, using a concentration range of 10<sup>-9</sup> M to 10"4 M, a cumulative concentration-response curve was constructed. The tissues were washed every 10 minutes until a return to baseline was achieved following which the tissues were allowed 30 minutes of recovery with change of Krebs buffer every 15 minutes. After recovery, each tissue was exposed to ET-1 and, using a range of 10'12 M to 10'7 M, a cumulative concentrationresponse curve was constructed. The tissues were washed every 10 minutes until a return to baseline was achieved. Since, with SRTX-b, recovery was rarely complete on a given day, the same protocol was repeated on other experimental dates. From these experiments it was possible to determine the threshold concentration of response (sensitivity) of each tissue and determine EC50 values for the different agonists as well as their recovery

time in physiologic buffer (Krebs). In the case of the oesophagus preparation, a muscarinic agonist, cis-dioxolane (CD) was used to test the viability of the TMM before determining the effectiveness of NE as a spasmolytic agent.

Study 2: Role of extracellular calcium (Ca2+).

Anococcygeus muscle, which showed most resilience, was initially used for this study. All other conditions earlier stated in Study 1 were applicable except the omission of Ca<sup>2+</sup> from the Krebs buffer. A pair of anococcygeus muscle was obtained from each rat and one of each pair was used as a control in which the Krebs buffer had Ga<sup>2+</sup> at normal concentration. Three concentration response curves were constructed beyond the threshold value of NE for the tissues. Following recovery from NE, FT and SRTX-b consentration-response curves were constructed under identical experimental conditions.

Further examination of the role of extracellular  $Ca^{2+}$  involved the use of nifedipine (calcium channel antagonist). In these experiments, anococcygeus and aota, having met the earlier defined criteria, were used for the study. The protocol involved the initial challenge of a pair of tissues with NE, ST-1 and SRTX-b at concentrations equivalent to the EG<sub>20</sub> values, which had been earlier determined, in normal Krebs buffer followed by repeated washing of tissues until a return to baseline was achieved. The tissues were allowed 30 minutes to recover with a change of  $Ca^{2+}$ -free Krebs buffer every 15 minutes. Subsequently, ST-1 or SRTA-b 10<sup>-6</sup> M (10 nM) or 10<sup>-6</sup> M NE was added to the organ rath and a  $Ca^{2+}$  concentration-response curve vas constructed. The tissues were again washed every 10 minutes with  $Ca^{2+}$ -free allowed another 30 minutes to recover. The maxt stage involved the addition of nifedipine (calcium channel blocker) at a concentration of 10  $\mu$ M to all the organ baths. These tissues ware allowed one hour incubation in nifedipine before repeating Ca<sup>2</sup> concentration-response curve in the presence of 1  $\mu$ M NF. 10 nN ET-1 and 10nM SRTX, respectively. Since nifedipine was dissolved in absolute ethanol, control experiments to examine the effect of this solvent were performed.

## Study 3: Role of extracellular and intracellular calcium (Ca2\*).

Anococcygeus muscles and rings from thoracic aorta were used in this protocol in pairs. All previous experimental procedures were maintained except that Ca2+ was omitted from the Krebs buffer as was the case for examination of extracellular calcium. 10 nM ET or 10nM SRTX-b or 1 µM NE were added to each organ bath and if any contractions occurred in the Ca2+free medium, they were allowed to reach a stable plateau, following which a Ca2+ concentration response curve was constructed. Tissues were washed with Ca2+-free Krebs every 10 minutes until a return to baseline was achieved and allowed another 30 minutes for recovery. Ryanodine, which interferes with the release of cellular Ca2+, was added to each organ bath to achieve a concentration of 10 µM in Ca2+-free Krebs buffer. The tissues were allowed one hour incubation in ryanodine before repeating a Ca2+ concentration response curve in the presence of either ET-1, SRTX-b or NE. Subsequently, they were washed with Ca2+-free Krebs every 10 minutes until a return to baseline was achieved, following which ryanodine 10 µK was added and the tissues allowed to incubate for one hour. Finally, nifedipine 10 µH was added and the tissues allowed a further one hour incubation and a  $Ca^{2*}$ concentration response curve constructed in the presence of ET-1, SRTX-b and In order to address the possibility that ryanodine is more effective in depleting intracellular  $Ca^{2+}$  in the presence of an agonist, further experiments using ryanodine alone, ryanodine with caffeine, and ryanodine concurrently with an agonist in a  $Ca^{2+}$ -free Krebs were designed and run essentially using the same experimental protocol.

42

Further experiments were conducted to examine the effect of other intracellular  $Ca^{2\epsilon}$  depletors, namely repeated agonist stimulation with NE, or a combination of repeated agonist stimulation followed by ryanodime incubation, before construction of  $Ca^{2\epsilon}$  concentration-response curve. To further evaluate the role of  $Ca^{2\epsilon}$  in the contractile process of ET-1, SRTX-b and NE, anococcygeus muscle responses to 10 nM ET-1 and SRTX-b and 1  $\mu$ M NE were measured in normal Krebs, Ca-free Krebs, and following ryanodime treatment in normal krebs.

Additional evaluation of the role of  $Ca^{2+}$  in the contractile process involved the use of the VOCC ope.er Bay K8644. In these sets of experiments, a depolarizing (subcontractile) \_ vel of K<sup>+</sup> (15 mM) in a Krebe buffer, was used. Isotonicity of Krebe buffer was achieved by substitution of Na<sup>+</sup> at equivalent concentration. Concentration-response curves to Bay K 8644 were constructed for anococygeus muscle and aorta. The tissues were washed every 10 minutes until recovery was achieved and allowed a further 30 minutes for complete recovery. Subsequently, 1 nM ET or SRTX-b or 100 nM NE were added to the respective organ baths and concentration response curves to Bay K 8644

Study 4: Role of arachidonic acid metabolites.

Paired anococcygeus muscles and rings of thoracic aorta were used for

NE.

this study. They were isolated and placed in  $Ca^{2*}$ -free Krabs buffer with experimental conditions identical to those previously applied.  $Ca^{2*}$ concentration-response curves were constructed in the presence of 10 nH KT-1 and SRTX-b and 1  $\mu$ M NE, respectively. The tissues were washed with  $Ca^{2*}$ -free Krabs buffer every 10 minutes until recovery to baseline was achieved following which a further 30-minute interval was allowed for complete recovery. 10  $\mu$ M indomethacin or 10  $\mu$ M NDGA was added to each organ bath and tissues were incubated therein for one hour.  $Ca^{2*}$  concentration-response ourse in the presence of the three agonists were constructed.

Further experiments were also designed in order to address the question of specificity of NDDA. In these sets of experiments, anococcygeus and thoracic aortic rings were again used. A control experiment with 50 mM K<sup>2</sup> in  $ca^{2*}$ -free Krebs was designed and  $Ca^{2*}$  concentration-response curves constructed without and with NDDA. The three agonists ET-1, SRTX-b and NE were examined in normal Krebs buffer by construction of agonist concentration-response curves without and with NDDA. As with other experiments, and in order to aid agonist dissociation, the tissues were washed with  $Ca^{2*}$ -free Krebs after the initial concentration-response curves.

## Study 5: Cross-desensitization.

Paired anococcygeus muscles and thoracic aortic rings were used for this study. Each pair of tissues was placed in a 10 ml organ bath with normal Krebs solution and maintained under identical experimental conditions, as earlier defined. A pair of aortic rings and anococcygeus muscle were exposed to KE and another set to KCI. After the initial concentration-response curves to these two agonists, the tissues were washed every 10 minutes until recovery to baseline was achieved, then allowed another 30 minutes for full

recovery. Threshold concentrations of ET-1 or SRTX-b (1 nM) were added to one organ bath with one of a pair while its complementary unit served as a control. Tissues were allowed to incubate for 1 hour following the addition of either ET-1 or SRTX-b and then concentration-response curves to NE and KCl were constructed.

# Composition of buffers (Krebs bicarbonate buffer, adapted from Janis and Triggle, 1973) [mM].

Normal Krebs buffer (mM): NaCl 118; KCl 4.7; CaCl<sub>2</sub> 2.5; MgSO<sub>4</sub> 1.2; KH<sub>2</sub>PO<sub>4</sub> 1.2; NaHCO<sub>5</sub> 12.5; Dextrose 11.1.

 $ca^{2*}$ -free Krebs was made by omission of  $CaCl_2$  from the above with the addition of 0.01 mM EGTA.

High K\* Krebs (mM) NaCl 107.7; KCl 15; CaCl<sub>2</sub> 0; MgSO<sub>4</sub> 1.2; KH<sub>2</sub>PO<sub>4</sub> 1.2; NaHCO<sub>7</sub> 12.5; Dextrose 11.1.

Very High K\* Krebs (mM) NaCl 72.7; KCl 50; CaCl<sub>2</sub> 0; MgSO<sub>4</sub> 1.2; KH<sub>2</sub>PO<sub>4</sub> 1.2; NaHCO<sub>7</sub> 12.5; Dextruse 11.1.

All constituents were reagent grade and were dissolved in deionized distilled water.

2.6. Drugs and chemicals.

The following agents were used: endothelin-1 and sarafotoxin (S6b) (Peptides International, Louisville, KY).

NE, indomethacin and NDGA were purchased from Sigma Chemical Co.,(St. Louis, MO).

Ryanodine and cis-dioxolane (Research Biochemicals Incorporated, Natick,

Caffeine was obtained from J.T. Baker Co., Phillipsburg, NJ. Nifedipine was a generous gift from Bayer, Leverkusen, W. Germany. Ryanodine, nifedipine, indomethacin and NDGA were prepared as stock solutions of  $10^{-2}$  M in absolute ethanol; 10  $\mu$ L of stock solution added to 10 ml organ bath brought the bath concentration to  $10^{-5}$  M.

All other reagents, of analar grade, were dissolved in distilled water and where appropriate, pH adjustments for increased solubility were made with NaOH or NC1.

2.7. Statistics.

The EC<sub>50</sub> values were obtained by graphically calculating the concentration of agonist producing 50% of its maximum response (Fleming, Westfall, DeLaLande and Jellet, 1972).

Where indicated, results are expressed as mean ± SEM (standard error of the mean) calculated by the computer statistical programme of Gustafoon, 7.1., Statistical significance was determined by Student's t test (one-tailed) for paired samples or analysis of variance (ANOVA) for independent samples using the above computer programme. Differences by the 't'-test or ANOVA were considered to be significant if p<0.05. The srmple size (n value) is indicated in all tables.

## CHAPTER 3

#### RESULTS

Study 1: Tissue screening

Due to the failure of the THM from the rat oesophagus to respond to either ET-1 or SRTX-b (3 triale),the TMM was omlitted from further studies. Of the remaining three tissues under consideration, the portal vein (Figure 4), showed great sensitivity in two parameters - frequency and amplitude of its spontaneous myogenic response - the responses were rather erratic (Figure 3). It also was omitted from further studies.

The ancoccygeus and aortic preparations met the defined criteria and were subsequently used for all the <u>in vitro</u> work described in this thesis. In choosing anococcygeus muscle as the non-vascular smooth muscle of choice, the following useful properties, or characteristics, as enumerated by Goyal (1984) were considered viz :-

- (i) It consists entirely of smooth muscle cells arranged in parallel bundles to form a sheet, so that there is a minimal diffusion barrier for drug access or ion exchange studies.
- (ii) The muscle is represented bilaterally so that control and test preparations can be taken from the same animal.

Anatomically, this muscle is associated with the intestine but differs in a number of aspects from intestinal smooth muscle. Intestinal smooth muscle possesses, spontaneous myogenic activity and is inhibited by stimulation of sympathetic nerves and excited by the stimulation of parasympathetic nerves (Goyal, 1964). The anococygeus muscle, by contrast, has a high stable resting membrane potential of -60 mV, shows no spontaneous activity, elther electrical or mechanical, and is excited by sympathetic nerves but inhibited by a non-cholinergic, non-adrenergic pathway. The nature of this inhibitory transmitter is unknown (Greed and Gillespie 1973; Greed, Gillespie and Muir, 1975).

Time-dependent responses were assessed by constructing four concentration-response curves to NE over a period of four hours. A loss of tone of about 15% of initial maximal response was noted (Table 1). In order to determine the optimal concentration range for these tissues and obtain ECco values, concentration-response curves to NE, ET-1 and SRTX-b were constructed. The results of these experiments are graphically presented (Figure 5), which does not show the full concentration range of agonists examined because the descending limb of the hyperbola has been deleted for neatness. It was evident that concentrations of NE beyond 10'5M or 3 x 10'8M for ET-1 and SRTX-b were detrimental to tissue responsiveness and resulted in a loss of tension or subsequent non-response to these agonist . Furthermore 10-7M (0.1 µM) of ET-1 or SRTX-b induced myogenic-like activity in normally guiescent anococcygeus muscle which rendered the tissues unusable for subsequent experiments in normal Krebs buffer (Figure 6). As determined by the loss of myogenic activity, the tissues recovered more rapidly from SRTX-b than ET-1 with complete recovery apparent after 2.62±0.85 and 5.22±0.06 hours respectively. Omitting Ca2+ from the Krebs solution significantly ("t"-test) reduced recovery times to 1.62±0.2 and 2.40±0.51 hours respectively (Table 2). Thus, a Ca2+-free Krebs buffer was used to wash tissues whenever ET-1, or SRTX-b, was used in an experimental protocol to hasten tissue recovery from effects of the peptides. In order to avoid the induction of myogenic activity by ET-1 or SRTX-b, concentrations of 30 nM, or greater, were rarely used in subsequent experiments. Indeed 10 nM ET-1, or SRTX-b, which corresponds approximately to the EC<sub>30</sub> values of these peptides was used, unless otherwise stated. Mifedipine, at 10 µM, had no effect on the peptideinduced myogenic activity. Generally, contractile responses to ET-1 and SRTX-b seemed insensitive to nifedipine in the nano-low micromolar range. Study 2: Role of extracellular ca<sup>24</sup>

Control responses elicited by ET-1 and SRTX-b (10 nM) or NE (1 µM) were approximately equieffective in terms of tension developed (Figure 7). In Ca2+-free Krebs, the three agonists generated approximately similar levels of tone in the aorta and anococcyceus muscle, corresponding to 18% and 5% of maximum response in the controls respectively (Table 3). Muscle tone generated by the peptides even in the absence of external Ca2+, was maintained in contrast to that with NE (Figure 8). Nifedipine was used in the experiments designed to determine the role of VOCCs in regulating the entry of extraceilular Ca2+. Nifedipine (10 µM) did significantly reduce by "t"test only (not by ANOVA) the responses to ET-1, but not to SRTX-b and NE in the aorta (Table 4 ; see also Figure 9a,b and c). In the anococcygeus, 10 µM nifedipine significantly reduced the maximal response to ET-1 (Fig. 10a), but responses to SRTX-b (Fig. 10b) and NE (Fig. 10c) were not significantly reduced. However, it is noteworthy that the decrease in sensitivity for ET-1, SRTX-b and NE was muse than that observed in the aorta. The persistence of nifedipine in the tissues was assessed by repeating Ca2+ concentrationresponse curves in the presence of a stated agonist concentration after washing every 10 minutes for one hour following the return to baseline. In the aorta, recovery from nifedipine in the presence of ET-1 and SRTX-b did not occur. The response of the aorta to NE did not show recovery after

nifedipine application, although the maximum contractile response, post nifedipine washout, approached the control maximum, but, as with the two peptides there was a decrease in sensitivity as evident by the shift of the curve to the right (Figure 11a, b and c). In the anococcygeus, recovery from nifedipine in the presence of the three agonists exhibited a similar pattern (see Figure 12a, b and c). As a result of the incomplete recovery from nifedipine, tissues which had been exposed to nifedipine were not used for further investigations.

As summarized in Table 3 , it is evident that simple exposure to a Ca2+free medium drastically reduced contractile responses to ET-1, SRTX and NE in both the aorta and the anococcygeus. To further evaluate the role of Ca2+ in the contractile processes of ET-1, SRTX-b and NE, the responses to 10 nM ET-1 and SRTX-b and 1 µM NE were measured in normal Krebs, Ca2\*-free Krebs, and after treatment with ryanodine for 1 hour followed by re-introduction of normal Krebs (Figure 13). Anococcygeus tissues, which had been previously exposed to normal Krebs but were switched to a Ca2+-free Krebs immediately before aconist exposure, demonstrated significantly reduced responses to all three agonists with the inhibition of responses to ET-1 and SRTX-b being greater than that observed for NE. Incubation for one hour in a Ca2+-free Krebs plus 10 µM ryanodine, followed by re-introduction of normal Krebs and agonist, led to an enhancement of the responses to ET-1 and SRTX-b. The effect on the SRTX-b response was significantly greater than that for ET-1. The response to NE was not different from the control. Figure 14 illustrates the effect of the above protocol in the aorta. In the aorta, the control responses of the peptides in normal Krebs did not differ significantly from each other but each was significantly different from the NE response. In

Ca<sup>2+</sup>-free Krebs, the responses to ET-1 and NE were not significantly different from their control responses in normal Krebs, whereas SRTx-b in Ca<sup>2+</sup>-free Krebs demonstrated a significantly reduced response compared to its control. Like anococcygeus, the response of the aorta to NE in a Ca<sup>2+</sup>-free Krebs was significantly higher than the responses to either ET-1 or SRTX-b. In contrast to studies with the anococcygeus, the post ryanodime responses to ET-1, SRTX-b and NE in the aorta did not differ significantly from their controls.

## Study 3: Role of extracellular versus intracellular Ca2+

Experiments were conducted to further compare and evaluate the role of extracellular versus intracellular Ca2+ in the contractile response to ET-1, SRTX-b and NE. After obtaining the control concentration-response curves to Ca2+ in the presence of the appropriate agonist, tissues were washed and incubated in 10 uM ryanodine for one hour following which the Ca2+ concentration-response curves were repeated. Responses to ET-1 in the anococcyggue were significantly enhanced by ryanodine treatment alone (Figure 15a, b and c). Subsequently, the tissues were again subjected to ryanodine treatment in the presence of 10 uM nifedipine in light proof chambers and Ca2+ concentration-response curves were again repeated in the presence of appropriate agonist. Responses to ET-1 and NE were significantly reduced in the anococcyceus but less so for SRTX-b which was not significantly reduced (Figure 15a, b and c). In the aorta, with a combination of ryanodine and nifedipine treatment, there was marked and significant inhibition of the contractile response to ET-1 and NE but not to SRTX-b (Figure 16a, b and c; see also Table 4). The discrepancy arising from visual assessment of concentration response curves ( Figures 15 and 16 (a, b and c)) against Table
4 is the result of presentation of data derived from & inhibition of control maximal response subjected to statistical analysis. Further exploration of the pools of intracellular Ca2+-utilized by the agonist was necessitated. since ryanodine alone did not entirely deplete the cell of the intracellular Ca2+ utilized for contraction. Thus, responses to NE even after incubation of both aorta and anococcygeus with ryanodine were maintained . Patel and Triggle (1986) had demonstrated intracellular Ca2+ depletion by repeated stimulation of the rat tail artery in Ca2+-free Krebs with NE. Repeated stimulation with NE can partially deplete the intracellular stores of Ca2+ from both the anococcygeus and aorta, however, there is a Ca2+-pool which resists depletion even after an extended, and repeated, stimulation with NE for 2-3 hours (Figure 17a and b). Figures 18 and 19 (a, b and c) demonstrate the response characteristics for NE depletion which, when compared to ryanodine depletion (Figures 15 and 16 (a,b and c) ), were similar, except that syanodine was more effective in reducing responses to SRTX-b when used with nifedipine. Further attempts to address the question of which intracellular  $Ca^{2+}$  pools are sensitive to rvanodine and/ or NE. involved experiments in which tissues had been repeatedly stimulated with NE and then incubated in ryanodine for one hour. The results from studies with the anococcyceus (Figure 20a, b and c) maintained a pattern similar to those for ryanodine alone (Figure 16a, b and c). The results from studies with the aorta. Figure 21a, b and c, were identical to those obtained following Ca2+ depletion with NE alone (Figure 19a, b and c). It has been suggested that the effectiveness of ryanodine in depleting sarcoplasmic reticulum Ca2+ is enhanced by the simultaneous presence of an agonist. In the anococcygeus, the maximal contractile responses to SRTX-b after ryanodine treatment alone or ryanodine plus caffeine or concurrent application of ryanodine plus SRTX-b were apparently enhanced when compared to the control responses (Figure 22a, b and c). However, evaluation of the three treatments by ANOVA showed that these differences were not significantly different from each other. Figure 23a, b and c illustrates the response obtained from anococrygeus with 10 nM ET-1. Evaluation of the three treatments by ANOVA showed these differences were not significant. In the aorta, treatment with ryanodine, or ryanodine plus caffeine ,again, resulted in no significant differences from the respective controls (Figure 24a, b and c). Similarly in the aorta, with ET-1 as "he agoniat, the differences were not significant when examined by ANOVA as three independent variables (Figure 25a, b and c).

Since nifedipine was only partially effective at inhibiting  $Ga^{2+}$  entry, the further elucidation of routes of entry of extracellular  $Ga^{2+}$  were necessary. For this purpose, a known L-type calcium channel opener Bay K 8644 was used with a partially depolarising (15 mK K<sup>+</sup>) Krebs buffer to explore the effects of ST-1, SRTX-b and NE. Figure 26a, b and c shows the response in anococcygeus to Bay K 3644 without, and with, sub-threshold concentrations of 1 nM ET-1 and SRTX-b and 100 nM NE. An apparent enhanced contractile response to the three agonists was noted but these differences were not statistically evaluated for significance primarily because the responses in the anococcygeus in the presence of Bay K 8644 (see Figure 27) were not concentration-dependent. Figure 28a, b and c demonstrates the enhancement of Bay K 8644 responses in the aorta in the presence of the three agonists under examination.

## Study 4: Role of arachidonic acid metabolites

The role of the production of arachidonic acid metabolites in response

to ET-1, SHTX-b and NE was explored by comparing control Ca<sup>2+</sup> concentration response curves in the presence of 10 nM ET-1, 10 nM SBTX-b or 1 µM NE in the absence of or following a one hour incubation with the cyclooxygenase inhibitor, indomethacin(10 µM). Figure 29 and 30 show no enhancement of the responses to the three agonists. There were no significant differences from controls (Table 4).

A further elucidation of the role of agonist-induced arachidonic acid metabolite production involved the use of the lipoxygenase inhibitor, NDGA. In the anococcygeus preparation (Figure 31a, b and c), the responses to ET-1 and NE, but not SRTX-b, were significantly reduced by 10 µM NDGA ( Pohl et al., 1987). In the sorta (Figure 32a, b and c), the responses to SRTX-b and NE were not significantly reduced by NDGA, whereas NDGA significantly reduced the responses to ET-1.

The issue of specificity of inhibition produced by NDGA was addressed by designing experiments which compared the inhibition by NDGA of the concentration-dependent contractile responses to  $Ca^{2^{n}}$  in the presence of ET-1, SKTX-b or NE versus 50 mK K<sup>2</sup>. Figures 33a and b demonstrate that, in the ancoccrygeus preparation, a significant inhibition of the NE was achieved (Table4). A similar, but insignificant pattern of inhibition by NDGA of K<sup>2</sup> induced contractions was noted (Figure 33a and b). Figures 34a and b demonstrate that the reduction of the contractile response by NDGA was not noted in the acrta with either NE or K<sup>2</sup> induced contractions.

## Study 5: Cross-desensitization to agonist

Experiments were designed in order to evaluate whether desensitization of the anococcygeus and the sorta occurred following exposure to subthreshold concentration of either SRTX-b or ET-1. Figures 35s and b illustrate the effects of the prior exposure of the anococcygeus to a sub-contractile concentration, 1 nM of SRTX-b, and 1nK of ET-1, respectively, on concentration-response curves to NE. Frior exposure to SRTX-b (Figure 35a), but not ET-1 (Figure 35b), significantly ("t"-test), reduced subsequent responses to NE. Figures 35c and d illustrate the effects of the same procedure on the concentration-response curves to KCL and indicate that the presence of ET-1 but not SRTX-b, significantly enhanced the responses to KCL. In the sorta (Figures 36a - d) melther the prior exposure to 1 nM SRTX-b nor 1 nM ET-1 resulted in a significant ("t"-test) desensitization of the responses of the tissues to subsequent concentration-response curves to either NE or KCL. However, significant ("t"-test) enhancement was noted for KCL concentration-response curves following exposure to 1 nM SRTX-b or 1 nM ET-1 (Figures 36c and d), and also for NE concentration-response curves following exposure to 1 nM SRTX-b (Figure 36a), but not to 1 nM ST-1 (Figure 36b).

54

Figure 2: Amino acid sequences of endothelins and sarafotoxins. (See list of abbreviations for alternative single letter abbreviations for amino acids.)

.

" and at the state without a

.

 Cys-Ser-Cys-Ser-Ser-Leu-Met-Asp-Lys-Glu-Cys-Val-Tyr-Phe-Cys-IIis-Leu-Asp-Ile-Ile-Trp
 ET-1

 Cys-Ser-Cys-Ser-Ser-Trp-Leu-Asp-Lys-Glu-Cys-Val-Tyr-Phe-Cys-IIis-Leu-Asp-Ile-Ile-Trp
 ET-2

 Cys-Thr-Cys-Phe-Thr-Tyr-Lys-Asp-Lys-Glu-Cys-Val-Tyr-Phe-Cys-IIis-Leu-Asp-Ile-Ile-Trp
 ET-3

 Cys-Ser-Cys-Asn-Ser-Trp-Leu-Asp-Lys-Glu-Cys-Val-Tyr-Phe-Cys-IIis-Leu-Asp-Ile-Ile-Trp
 ET-4

 Cys-Ser-Cys-Lys-Asp-Met-Thr-Asp-Lys-Glu-Cys-Val-Tyr-Phe-Cys-IIis-Leu-Asp-Ile-Ile-Trp
 SRTX-a

 Cys-Ser-Cys-Lys-Asp-Met-Thr-Asp-Lys-Glu-Cys-Leu-Asp-Phe-Cys-IIis-Glu-Asp-Val-Ile-Trp
 SRTX-a

 Cys-Thr-Cys-Asp-Asp-Met-Thr-Asp-Lys-Glu-Cys-Leu-Asp-He-Cys-IIis-Glu-Asp-Val-Ile-Trp
 SRTX-a

 Cys-Thr-Cys-Lys-Asp-Met-Thr-Asp-Lys-Glu-Cys-Leu-Asp-He-Cys-IIis-Glu-Asp-Val-Ile-Trp
 SRTX-c

 Cys-Thr-Cys-Lys-Asp-Met-Thr-Asp-Lys-Glu-Cys-Leu-Asp-He-Cys-IIis-Glu-Asp-Val-Ile-Trp
 SRTX-c

 Cys-Thr-Cys-Lys-Asp-Met-Thr-Asp-Lys-Glu-Cys-Leu-Tyr-Phe-Cys-IIis-Glu-Asp-Ile-Ile-Trp
 SRTX-c

 Cys-Thr-Cys-Lys-Asp-Met-Thr-Asp-Glu-Glu-Cys-Leu-Tyr-Phe-Cys-IIis-Glu-Asp-Ile-Ile-Trp
 SRTX-c

 Cys-Thr-Cys-Lys-Asp-Met-Thr-Asp-Lys-Glu-Cys-Leu-Tyr-Phe-Cys-IIis-Glu-Asp-Ile-Ile-Trp
 SRTX-c

at the second of the second second

Figure 2 Amino acid sequence of endothelins and sarafotoxins

Figure 3: Illustration of the erratic response of the rat portal vein to ET-1, SRTX-b and NE (n = 6).

.

۰.



Figure 4: Illustrates the response of rat portal vein to SRTX-b with changes in frequency and amplitude of response at agonist concentrations as low as 10<sup>-10</sup> M. 1

-----



Figure 5: Concentration-response curves for ET-1, SRTX-b and NE with the anococcygeus muscle in normal Krebs buffer. Points are the mean (± S.E.M.) of n=6. EC<sub>50</sub> values were obtained from these curves.

.



Figure 6: Induction of myogenic activity in the anococcygeus muscle following washout of A) 0.1 µM ET-1; B) 0.1 µM SRTX-b with normal Krebs buffer.



Table 1: Time-dependent variation in the response of the anococcygeus muscle to four concentration-response curves obtained to NE over a four hour period.

| log conc. (M) | 1    | 2    | 3    | 4    | hours |
|---------------|------|------|------|------|-------|
| -7.5          | .06  | .06  | .08  | .08  |       |
| -7.0          | .41  | .30  | .31  | .40  |       |
| -6.5          | 1.21 | .81  | .91  | .98  |       |
| -6.0          | 2.63 | 2.03 | 2.08 | 2.13 |       |
| -5.5          | 4.70 | 3.83 | 3.65 | 3.5  |       |
| -5.0          | 7.23 | 6.7  | 5.6  | 5.65 |       |
| -4.5          | 8.12 | 8.0  | 6.8  | 6.88 |       |

Tissue tension is measured in grams.

| Table 2: | Effect of Ca2+-omission on recovery time (hours) of the    |    |
|----------|------------------------------------------------------------|----|
|          | anococcygeus muscle from peptide-induced myogenic activity | ۰. |

| 0007984Q-090784 | Normal Krebs (2.5 mM Ca <sup>2+</sup> ) | Ca <sup>2+</sup> -free Krebs |
|-----------------|-----------------------------------------|------------------------------|
| ET-1 (n = 4)    | * 5.20 ± 0.66                           | * 2.40 ± 0.50                |
| SRTX-b (n ≤ 4)  | 2.62 ± 0.55                             | 1.62 ± 0.20                  |

Time values are Means (± S.E.M.) \* Denote significant differences (ANOVA) between ET-1 and SRTX-b. p < 0.5 .

Figure 7: Illustrates the response to equieffective concentrations of ET-1, SRTA-b and NF at their approximate EC<sub>2</sub>s in : (a) anococcypeus and (b) aorta. Chart speed throughout this study was maintained at 0.25mm/sec.

.



:`



Table 3: Effect of removal of extracellular Ca<sup>28</sup> on contractile responses of anococcygeus and aorta to ET-1, SRTX-b and NE.

|        |         | Anococcygeus | Aorta      |
|--------|---------|--------------|------------|
| ET-1   | (10 nM) | 5.16 ± 0.81  | 17.0 ± 3.0 |
| SRTX-b | (10 nM) | 4.98 ± 0.70  | 15.3 ± 1.6 |
| NE     | (1 µH)  | 5.92 ± 1.50  | 21.0 ± 2.3 |

Values are means of percentage maximum control responses ( e.g. in the presence of extracellular  $Ca^{2+}$  )  $\pm$  S.E.H. (n = 4)

## Table 4. The responses to ET-1, SRIX-S6b and NE as compared to untreated tissue in normal Krebs buffers. Mean 1 S.E.M.

| ET-  | Rat    | NE   | SRT  | 57-  | Rat     |
|------|--------|------|------|------|---------|
| ۲    | Anococ |      | H    | F    | sorta   |
| ٠    | PAC A  | ٠    | +    | +    | 0       |
| 94.8 | ana a  | 78.3 | 84.7 | 83   | 2*-5    |
| +    |        | 1+   |      | **   |         |
| 0.8  |        | 2.3  | 1.7  | 3    |         |
| •    |        | ۰    | ٠    | ٠    | NS      |
| •    |        | 5    | N    | 35   | Te.     |
| 1+   |        |      |      | 1+   | líp     |
| u    |        | w    | 13   | 4    | ine     |
| -    |        | ٠    | -    | +    | 7       |
| 35   |        | 14   | -    | N    | ya:     |
| +    |        |      | 1+   | +    | bot     |
| 8    |        | u    | un.  | 17   | ine     |
| +    |        | ٠    | ٠    | +    |         |
| *46  |        | *38  | 61   | **92 | id anod |
| ++   |        | +    | #    |      | in.     |
| 11   |        | 8    | 20   | *    | • •     |
| -    |        | ٠    | +    | -    | Ħ       |
| 17   |        | N    |      | 7    | Idomet  |
| H+   |        | #    | #    | 1+   |         |
| 6    |        | 6    | 1.7  | 2    | bacin   |
| +    |        | +    | *    | +    | z       |
| *31  |        | 5    |      | +29  | GA      |
| #    |        | #    | #    | 1+   |         |
| H    |        | N    |      |      |         |

| NE   | SRIX | ET-1 |  |  |
|------|------|------|--|--|
| 1 94 | 1 95 | 1 94 |  |  |
| -    | -    | 80   |  |  |
| 1.1  | 0.7  | 0.8  |  |  |
| ٠    | +    | •    |  |  |
| 21   | 32   | 49   |  |  |
|      | 1+   | 1+   |  |  |
| 11   | 11   | u    |  |  |
| +    | -    | -    |  |  |
| 44   | 15   | *35  |  |  |
|      | 1+   | ++   |  |  |
| 19   | 8    | 8    |  |  |
| ٠    | -    | -    |  |  |
| +62  | 32   | *46  |  |  |
| 14   | 1+   | #    |  |  |
| 8    | =    | Ľ    |  |  |
| -+   | -    | -    |  |  |
| 0    | 14   | 17   |  |  |
| UT   | 1+   | +    |  |  |
| 9    | 7    | 6    |  |  |
| ÷    | +    | +    |  |  |
| *    |      | st.  |  |  |
| 5    | 100  | #    |  |  |
| 8    | 80   | 10   |  |  |
|      |      |      |  |  |

All data derived from 1 inhibition of control maximal response.

\* Denotes significant difference (p<0.05) assessed by one-way analysis of variance

paired observation. \* Denotes significant difference (p<0.05) from control response as assessed by Student's 't' test for

n = 4 except in (NDGA column) where n = 5

۰.

[ ] of agonist and treatment applied in each column is given in the methods section.

Figure 8: Illustration of the maintained tone induced by ET-1 and SRTX-b compared to the non-sustailled tone induced by NE in Ca<sup>2+</sup>-free Krebs buffer.

.

- A) Anococcygeus
- B) Aorta



Figure 9a, b and c: Effect of 10 µM nifedipine on Ca<sup>2+</sup> concentrationresponse obtained in the aorta in the presence of: a) 10 nM ET-1; b) 10 nM SRTX-b; and c) 1 µM NE. Open and closed symbols represent control and nifedipine treatment, respectively ± S.E.M. (n = 4)

• •

1.00-







Figure 10s, b and c: Effect of 10 µM nifedipine on Ca<sup>2+</sup> concentrationresponse obtained in the anococcygeus in the presence of: a) 10 nM ET-1; b) 10 nM SRTX-b; c) 1 µM NE. Open and closed symbols represent control and nifedipine treatment, respectively ± 5.E.M. (n = 4)

: .

۶.,







Figure 11a, b and c: Illustration of the persistent effect of 10 µM nifedipine on Ca<sup>2+</sup> concentration-response obtained in the aorta in the presence of a) 10 nM ET-1; b) 10 nM SRTX-b; c) 1 µM NE. Control curves ± S.E.M. are represented by open symbols, e.g. O-O, and in the presence of nifedipine by filled symbols, e.g. ●-● and post-nifedipine by 4-∆. (n = 4)





(b)



(c)

Figure 12a, b and c:

Illustration of the persistent inhibition following 10  $\mu$ M mifedipine application on the Ca<sup>2+</sup> concentration-response curve obtained in the anococcygeus in the presence of a) 10 nM ET-1; b) 10 nM SRTX-b; c) 1  $\mu$ M NE. Control curves ± S.E.M. are represented by open symbols, e.g. O-O, and in the presence of nifedipine by filled symbols, e.g.

•-• and post-nifedipine by  $\Delta$ - $\Delta$ . (n = 4)






and the same of a set describer of the set of a set of the

Figure 13: A comparison of the contractile effects induced by 10 nM ET-1, SRTX-b and 1 µM NE in the rat ancoccygeus preparation in normal Krebs and Ca<sup>2+</sup>-free Krebs INT . The Krebs solution was switched from normal to Ca<sup>2+</sup>-free Krebs just before agonist addition. The effects of ryanodine INT were studied by incrbating tissues in Ca<sup>2+</sup>-free Krebs and 10 µM ryanodine for one hour followed by re-introduction of normal Krebs and agonist. Values represent means ± (S.E.M.) n = 6. Statistical differences between means were assessed by one-way MNOVA.

\* Denote significant differences ( p < .05)



Statistical differences between means were assessed by one-way ANOVA.

\* Denote significant differences ( p < .05)



Figure 15a, b and c: Effect of 10  $\mu$ M ryanodine on Ca<sup>2+</sup> concentrationresponse curves obtained in the anococcygeus in the presence of a) 10 nM ET-1; b) 10 nM SRTX-1; c) 1  $\mu$ M NE. Control curves ± S.E.M. are represented by open symbols, e.g. O-O, and in the presence of ryanodine by filled symbols, e.g.  $\bullet - \bullet$ , and, in the presence of 10  $\mu$ M ryanodine + nifedipine by  $\Delta - \Delta$ . (n = 4)





9u



Figure 16s, b and us Effect of 10  $\mu$ M ryanodine on Ca<sup>2+</sup> concentrationresponse obtained in sorta in the presence of a) 10 nM ET-1; b) 10 nM SRTX-1; c) 1  $\mu$ M NE. Control curves ± S.E.M. are represented by open symbols, e.g. O-O, and, in the presence of ryanodine, by filled symbols, e.g.  $\Phi - \Phi$ , and, in the presence of 10  $\mu$ M ryandoine + nifedipine by  $\Delta - \Delta$ . (n = 4)







Figure 17 (a and b): Illustration in : a) anococcygeus and b) sorta that repeated stimulation with NE, in a Ca<sup>2-</sup>-free Krebs buffer can reduce the tissue response to a certain basal level beyond which further attenuation is not possible.



Figure 18a, b and c: Effect of NE-induced  $Ca^{2*}$  depletion on calcium concentration-response obtained in anoccocygeus in the presence of a) 10 nM ET-1; b) 10 nM SRTX-b; c) 1  $\mu$ M NE. Control curves ± S.E.M. are represented by open symbols, e.g. O-O, and after NE depletion by filled symbols, e.g.  $\Phi = \Phi$  and, in the presence of 10  $\mu$ M nifedipine, response is by  $\Delta^{-}\Delta$ . (n = 4)







Figure 19a, b and c: Effect of NE-induced Ca<sup>2+</sup> depletion on Ca<sup>2+</sup> concentration-response curves obtained in the aorta in the presence of a) 10 nM ET-1; b) 10 nM SRTX-b; c) 1 µM NE. Control curves ± S.E.M. are represented by open symbols, e.g. O-O and after NE depletion by filled symbols, e.g. O-O and after NE depletion to 10 µM nifedipine, by Δ-Δ. (n = 4)







Figure 20a, b and c: Effect of sequential NE and ryanodine induced Ca<sup>2+</sup> depletion on Ca<sup>2+</sup> concentration-response curves obtained in the anococcygeus in the presence of a) 10 nM ET-1; b) 10 nM SRTX-b; c) 1 µM NE. Control curves ± S.E.M. are represented by open symbols, e.g. 0-O and after NE and ryanodine depletion by filled symbols, e.g. ●-● and, in the presence of 10 µM nifedicine. by Δ-Δ. (n = 4)







Figure 21a, b and c: Effect of sequential NE and ryanodine  $Ca^{2*}$  depletion on  $Ca^{2*}$  concentration-response curves obtained in the aorta in the presence of a) 10 nH ET-1; b) 10 nH SRTX-b; c) 1  $\mu$ M NE. Control curves t S.E.M. are represented by open symbols, e.g. O-O and after NE and ryanodine-induced depletion by filled symbols, e.g.  $\bullet - \bullet$  and, in the presence of 10  $\mu$ M nifedipine, by  $\Delta - \Delta$ . (n = 4)





-



the second second second

• Figure 22a, b and c: • Comparative effects of a) 10  $\mu$ M ryanodine; b) 10  $\mu$ M ryanodine plus 0.1 mN caffeine; c) 10  $\mu$ M ryanodine + 10 mN SRTX-b respectively on Ca<sup>2+</sup> concentrationresponse curves obtained in the anococygeus. Control curves ± S.E.M. are represented by open symbols e.g. O-O and after treatment by a, b and c above, by filled symbols e.g.  $\bullet - \bullet$ . Note that 10 mM SRTX-b is administered after Ca<sup>2+</sup> depletion in a and b. (n = 4)






Figure 23a, b and c: Comparative effects of a) 10  $\mu$ M ryanodine; b) 10  $\mu$ M ryanodine plus 0.1 mM Caffeine; c) 10  $\mu$ M ryanodine + 10 nM ET-1 concurrently on Ca<sup>2+</sup> concentrationresponse obtained in the anococygeus. Control curves ± S.E.M. are represented by open symbols e.g. 0-0 and after treatment by a, b and c above, by filled symbols e.g.  $-\bullet$ . Note that 10 nM ET-1 was administored after Ca<sup>2+</sup> depletion in a end b. (n = 4)







Figure 24a, b and c:

Comparative effects of: a) 10  $\mu$ M ryanodine; b) 10  $\mu$ M ryanodine plus 0.1 mM caffeine; c) 10  $\mu$ M ryanodine + 10 mM SRTX-b concurrently on Ca<sup>2+</sup> concentrationresponse curves obtained in the acrta. Control curves ± S.E.M. are represented by open symbols e.g. O-O and after treatment by a, b and c above, by filled symbols e.g.  $\bullet - \bullet$ . Note that 10 mM SRTX-b was administered after Ca<sup>2+</sup> depletion in a and b. (n = 4)







Figure 25a, b and c: Comparative effects of a) 10 µM ryanodine; b) 10 µM ryanodine; b) 10 µM ryanodine + 10 nM ET-1 concurrently on Ca<sup>2+</sup> concentration-response curves obtained in the aorta. Control curves t 5.E.M. are represented by Open symbols e.g. O-O and after treatment by a, b and c above, by filled symbols e.g. ●-●. Note that 10 nM SRTX-b was administered after Ca<sup>2+</sup> depletion in a) and b). (n = 4)

articles " a l'automation

the second second second second







the search of the second of the second of

Figure 26a, b and c:

Effect of a) 1 nM ET-1; b) 1 nM SRTX and c) 100 nM NE on the Bay X 8644 concentration-response curve obtained in anococcygeus. Control curves f S.E.M. are represented by open symbols e.g. O-O and after application of a, b and c above, by filled symbols e.g.  $\bullet - \bullet$ . (n = 4)







Figure 27: Illustration of the concentration-independent response of the anococcygeus (a) in contrast to the concentration-dependent response of the aorta (b) to Bay K 8644.

24.000





Figure 28a, b and c: Effect of the presence of a) 1 nH ET-1; b) 1 nH SRIX-b and c) 100 nH NE on Bay X 8644 concentrationresponse curves obtained in the aorta. Control curves i S.E.H. are represented by open symbols e.g. C-O and after application of a, b and c above by filled symbols e.g. ●-●. (n = 4)







Figure 29a, b and c: Effect of 10  $\mu$ M indomethacin on the Ca<sup>2+</sup> concentration-response curve obtained in the anococcygeus in the presence of a) 10 nM ET-1; b) 10 nM SRTX-b; and c) 1  $\mu$ M NE. Control curves ± S.E.m. are represented by open symbols e.g. O-O and after application of indomethacin by filled symbols e.g.  $\bullet - \bullet$ . (n = 4)







Figure 30a, b and c:

Can't have don't a character

Effect of 10  $\mu$ M indomethacin on the Ca<sup>2+</sup> concentration-response curve obtained in the acrta in the presence of a) 10 nM ET-1; b) 10 nM SRT×b, and c) 1  $\mu$ M NE. Control curves ± S.E.M. are represented by open symbols e.g. O-O and after application of indomethacin by filled symbols e.g.  $\bullet-\bullet$ . (n = 4)







-

I've the field the state and a state and and and a state of the state of

Figure 31a, b and c: Effect of 10  $\mu$ M NDGA on the Ca<sup>2+</sup> concentrationresponse curves obtained in the anococcyseus in the presence of a) 10 nM ET-1; b) 10 nM SRTX-b; and c) 1  $\mu$ M NE . Control curves i S.E.M. are represented by open symbols e.g. O-O and after application of NDGA by filled symbols e.g.  $\bullet - \bullet$ . (n = 4)





1 20.

Ĵ



Figure 32a, b and c: Effect of 10 µM NDGA on the Ca<sup>2+</sup> concentrationresponse curves obtained in the aorta in the presence of a) 10 nH ET-1; b) 10 nH SRTX-b; c) 1 µM NE . Control curves ± 0.2.M. are represented by open symbols e.g. O-O and after application of NDGA by filled symbols e.g. ●-● . (n = 5)




160

(b)





Figure 33 (a and b): A) Effect of 10 µM NDGA on agonist concentrationresponse curves in the anococcygeus to:- i) ET-1 O-O; ii) NE A-a; iii) Ca<sup>2+</sup> concentration-response curves in the presence of 50 mM K<sup>+</sup> O-O.

> b) Effect of 10  $\mu$ M NDGA on agonist concentrationresponse curves in the anococcygeus to :- i) SRTx-b  $\nabla - \nabla$ ; ii) NE O-O; iii) Ca<sup>2+</sup> concentration-response curves in the presence of 50 mM K<sup>+</sup> D-D. Control curves ± S.E.M. are represented by open symbols, e.g. O-O and after the application of NDGA by filled symbols, e.g.  $\bullet - \bullet$ . (n = 6)





(ъ)

Figure 34 (a and b): a) Effect of 10  $\mu$ M NDGA on agonist concentrationresponse curves in the morta to :- i) ET-1 O-O; ii) NE  $\Delta$ - $\Delta$ ; iii) Cm<sup>2+</sup> concentration-response curves in the presence of 50 mK K<sup>\*</sup> O-C .

b) Effect of 10  $\mu M$  MDGA on agonist concentration-response curves in the acts to :- i) SRTX-b  $\nabla - \nabla$ ; ii) NE A-A; iii) Ca<sup>2+</sup> concentration-response curves in the presence of 50 mM X<sup>+</sup> D-D.

ŝ

Control curves  $\pm$  S.E.M. are represented by open symbols, e.g. O-O and after application of NDGA by filled symbols, e.g.  $\bullet - \bullet$  . (n = 6) 991



.



(ъ)

Figure 35a, b, c and d: Effect of SRTX-b and ET-1 on concentration-response curves to NE and KCL in the anococcygeus :- a) 1 nM SRTX-b ; b) 1 nM ET-1 on NC concentration-response curves; c) 1 nM SRTX-b ; d) 1 nM ET-1 on KCl concentration response curves. Control curves ± S.E.M. are represented by open symbols, e.g. O-O and after application of ET-1 or SRTX-b by filled symbols, e.g. ●-●. (n = 4)

;



(a)

÷.







というないないないないないないとうない、「あいいない」ないないないないないないないで、 ちょうちょう

Figure 36a, b, c and d: Effect of SRTX-b and ET-1 on concentration-response curves to NE and KCL in the aorta :- a) 1 nH SRTX-b; b) 1 nH ET-1 on norepinephrine concentrationresponse curves; c) 1 nM SRTX-b; d) 1 nH ET-1 on KCl concentration-response curves .

Control curves  $\pm$  S.E.M. are represented by open symbols, e.g. O-O and after application of ET-1 or SRTX-b by filled symbols, e.g.  $\bullet - \bullet$  . (n = 4)



and a second of the

174

(a)



(Ъ)





## CHAPTER 4

## DISCUSSION

## 4.1. General considerations.

This study focused on the similarities and differences between the mode of actions of ET-1, SRTX-b and NE on vascular and non-vascular smooth muscle. The rationale for choosing to compare the responses of both vascular and nonvascular smooth muscle preparations to endothelin and sarafotoxin versus NE reflects the widespread biological effects of these peptides on both vascular and non-vascular smooth muscle, as well as their endocrine effects on the adrenal glands, kidney and neurohypophysis. A comparison with the effects of NE was also considered logical since the effects of this amine on smooth muscle have been extensively studied.

For such a comparison to be valid it was considered important to minimize the possible variables to a controllable number. Cognisance was taken of criticism of isolated preparations being in an artificial sedium and perhaps reflecting a non-physiological situation. However, the choice of an isolated preparation avoids the effects of the peptides on neuronal, endocrine and cardiovascular variables. Criteria earlier described in the methods section were used to select the experimental tissues. Consequently, the final choice of aorta and ancoccygeus muscle was not only the result of pharmacological screening but also of the published properties of these tissues and the fact that both the control and experimental tissues were obtainable from the game animal.

Furthermore, the choice and emphasis on studying the role and sources of calcium utilized in mediating the effects of ET-1 and SRTX-b reflects a major interest in the role of a cation that is known to carry external signals to the cell interior with a resultant biologic response. Moreover, calcium has been implicated in altered smooth muscle reactivity in hypertension (Fitzpatrick and Szentivanyi, 1980; kwan, 1985; Dominiczak and Bohr, 1990), and the finding of high endothelin contents in bronchial exudates of asthmatics (Komora et al., 1989) suggests that the relationship between calcium, endothelin and mmooth muscle dysfunction is an important issue.

The involvement of several amplifier enzymes such as phospholipase C, phospholipase A<sub>2</sub>, phospholipase D, adenylate cyclase and guanylate cyclase in the signal transduction process made it imperative to study the contribution or impact of the products of these enzymes in the absence of confounding variables of nerves, circuidting hormones and their metabolites.

It has been stated that ET-1 and SRTX-b share the same membrane receptor and cellular mode of action (Kloog and Sokolovsky, 1989) but, since there are only 664 identical amino acid sequences between ET-1 and SRTX-b (Hirata er al., 1988a; Natanabe et al., 1989; Yanagisawa and Masaki, 1989a), this conclusion may be questioned. Studies based upon differences in recovery time following contractions to ET-1 versus SRTX-b with recovery in either  $Ga^{2n}$ -containing or  $Ga^{2n}$ -free Krebs suggest a role for  $Ga^{2n}$  in the binding and dissociation of ET-1 and SRTX-b to their receptor(s). It is speculated that these differences in apparent dissociation constants may reflect the already noted differences in the amino acid composition of ET-1 versus SRTX-b and resultant differences in receptor binding properties.

Recently, in an endothelin conference review, Webb (1991) noted that the IUPHAR Committee on Receptor Nomenclature and Drug Classification recommended that the ET-1 'selective' receptor described by Arai et al. (1990) and which may be the vascular smooth muscle receptor, be named the ETA receptor, and the nonselective receptor described by Sakurai, be named the ETA receptor. The endothelin receptor cloned by Arai has 427 amino acid residues (46.5 kDa) and that by Sakurai et al. (1990) consists of 415 amino acid remidues (46.9 kDa). They contrast remarkably with two receptors earlier isolated in cultured rat mesangial cells (Sugiura et al., 1989) with Nw. of 58,000 and 34,000. It is unclear whether the differences in molecular weight of the receptors is a tissue phenomenon or the result of techniques applied in the isolation process.

## 4.2. Role of extracellular calcium (Ca2+).

The first description of the importance of  $Ca^{2+}$  in the fluid bathing tissues was made by Ringer (1883) and by implication an intracellular messenger involved in contraction. A series of observations then showed that calcium regulates not only contraction but also many other cellular processes such as secretion of hormones (Kojima et al., 1985), neurotransmitters (Israel et al., 1979; Knight and Baker, 1982), and glycogen metabolism in the liver (Cohen, 1979; Garcia-Sainz and Hernandez-Sotomavor, 1985). Some of the responses mediated by Ca2+ are brief (and often repetitive), but others are quite prolonged. The diversity of calcium messenger patterns has come to be recognized as organizational diversity of calcium messenger systems characteristic of cell type, tissue or organ (Rasmussen, 1986). Thus, there is a striking difference in the manner by which Ca2\* serves to couple stimulus to contraction in skeletal muscle as compared to smooth muscle or cardiac muscle. The ultrastructural arrangement which allows for differential source or storage of Ca2+ has been related to phasic and tonic responses in the three types of muscles mentioned. In skeletal muscle, a distinct source of Ca2+ involved in the contraction and relaxation is the earcoplasmic reticulum (Ebashi et al., 1978). Depolarization of the plasma membrane, linked to the sarcoplasmic reticulum via the T system (a functional complex), induces the release of  $ca^{2*}$  leading to contraction; relaxation is achieved by repolarization and reaccumulation of  $Ca^{2*}$  by the sarcoplasmic reticulum (see review by Rasmussen, 1986). In cardiac muscle,  $Ca^{2*}$  cycles across both the plasma membrane and the sarcoplasmic reticulum membrane. Depolarization of the plasma-membrane leads to an influx of  $Ca^{2*}$  through voltage dependent channels, which results in the release of  $Ca^{2*}$  from the sarcoplasmic roticulum via a calcium-induced calcium release process (Chapman, 1979). The resulting rise in intracellular calcium initiates a contractile response, and relaxation is achieved by a reversal of the  $Ca^{2*}$  cycle.

The situation in smooth muscle is quite different as, notably in vascular smooth muscle, smooth muscle has the capability to maintain a contractle response for hours with or vithout depolarisation (Bolton, 1979; Hashimoto et al., 1986). The sarcoplasmic reliculum of smooth muscle has been shown to be an intracellular organelle of variable size but in vascular smooth muscle it can be as extensive as in mammalian cardiac muscle and can accumulate  $Ca^{2*}$  and other divalent cations, e.g.  $Sr^{2*}$  (Devine et al., 1972). It is noteworthy that Devine et al. (1972) demonstrated that there is a general correlation among different smooth muscles between the importance of extracellular  $Ca^{2*}$  in receptor-mediated contractile responses and the relative volume of sarcoplasmic reticulum in the muscle (see review, Hinneman, 1988). For example, rabbit mesenteric vein had only 2.2% sercoplasmic reticulum and depended completely on extracellular  $Ca^{2*}$  for agonist-induced contractions,

retained a significant contractile response to agonist in the absence of extracellular Ca2+ (Devine et al., 1972). Possibly the size of the storage pool for releasable calcium influences the relative contribution which extracellular and intracellular Ca2+ make to agonist-mediated responses in smooth muscle, although this does not necessarily explain how receptor activation is linked to both sources of calcium (Minneman review, 1988). In many muscles, the different phases of contraction have a different dependence on extracellular Ca2+ (Bevan et al., 1982). However there is no clear correlation between phasic and tonic contractions and the importance of Ca2+ influx (see review, Minneman 1988). In rabbit aorta and ear artery, rapid phasic contractions caused by NE are not dependent on the presence of extracellular Ca2+ (Deth and van Breemen, 1977), whereas in rat megenteric arteries or resistance vessels, NE-induced rapid phasic contractions are abolished in a Ca<sup>2+</sup>-free medium (Godfraind and Miller, 1983). In rat anococcygeus muscle, slow tonic contractions to NE are less sensitive to inhibition by Ca2+ entry blockers than are phasic contractions (Oriowo, 1984), while the reverse holds true in rabbit aorta (Deth and van Breemen, 1977).

The results in Table 3 show the relative contribution of  $Ca^{2+}$  to the contractile process in rat aorta and anococcygeus muscle for ET-1, SRTX-b and NE respectively to be 17:3%, 15:1.7% and 21:2.3% of maximal contraction in the anococcygeus muscle in normal Krebs solution. A noteworthy characteristic of these contractions was that the peptides ET-1 and SRTX-b, whether in  $Ca^{2+}$ free or  $Ca^{2+}$ -containing medium, were able to initiate tonic contractions to NE were seen in both the aorta and anococccygeus when  $Ca^{2+}$  free Krebs was used [Figure 8). These results are consistent with those of Wallmöfer et al. (1989) from mesenteric resistance vessels (MRV). The fillure to tone in 2  $ca^{23}$ -free medium after a transient contraction induced by HE in rabbit inferior vena cava and rabbit aorta has also been noted by Khalil and van Breemen (1990) and Miasiro and Paiva (1990) respectively. The finding of a small sustained contraction induced by the peptides in  $Ca^{24}$ -free medium is consistent with that of other reports of the actions of ET-1 (Huang et al. 1990; Miasiro and Paiva, 1990). Nost comparative studies of ET-1 and SRTX-b allude to their similarities of action and their responses in  $Ca^{24}$ -free are also guits similar. However, the <u>SUMMANY</u> of cell signalling processes presented in this thesis (given overleaf) does show a variety of difference anongst the agonists under examination. The non-maintenance of tone for HE-induced contraction in a  $Ca^{24}$ -free medium, in contrast to the peptides, suggests that extracellular  $ca^{24}$  has a saip role to play in maintaining tone with NE.

- -------

There is clearly a role for extracellular valcium in the contractile response to ET-1, SRTX-b and NE as evidenced by a loss of >80% of the contractile response in Ca<sup>2+</sup>-free medium, however, this role differs for each agonist. For example, whereas NE is capable of initiating a phasic contractile response in the absence of extracellular Ca<sup>2+</sup>, only tonic responses to ET-1 and SRTX-b were observed (Figure 8); true phasic response to ET-1 and SRTX-b, in both rat aorta and anococcygeus, require extracellular Ca<sup>2+</sup>. The converse was true for the initiation and maintenance of tonic responses.

The route of entry of extracellular  $Ca^{24}$  into the cell has received considerable attention. These routes, often referred to as channels, can be subdivided on the basis of their selective permeability to particular ions,

| 51 184                                   |                                                                                            |                                                         |
|------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------|
|                                          | AORTA                                                                                      | ANOCOCCYGEUS                                            |
| Role of extracellular Ca <sup>2+</sup>   | Amplification of contraction                                                               | Amplification of contraction                            |
|                                          | ET-1 ≡ SRTX-b ≡ NE (Normal Krebs)                                                          | ET-1 ≡ SRTX-b ≡ NE (Normal<br>Krebs)                    |
|                                          | Maintenance of tone                                                                        | Maintenance of tone                                     |
| 4                                        | $ET-1 \equiv SRTX-b$ (independent of $Ca_e$ )                                              | ET-1 = SRTX-b (independent of $Ca_e$ )                  |
|                                          | NE (dependent on Ca <sub>e</sub> )                                                         | NE (dependent on Ca <sub>c</sub> )                      |
| Nifedipine-sensitive processes           | SRTX-b = NE (insensitive)                                                                  | SRTX-b = NE (insensitive)                               |
|                                          | ET-1 (sensitive component)                                                                 | ET-1 (sensitive component)                              |
| Ryanodine-sensitive processes            | no significant inhibition                                                                  | SRTX-b > ET-1 > NE                                      |
| Nifedipine/Ryanodine sensitive processes | ET-l ≡ NE (significant<br>inhibition)                                                      | SRTX-b (no significant<br>inhibition)                   |
|                                          | SRTX-b (no significant<br>inhibition)                                                      | ET-1 = NE (significant<br>inhibition)                   |
| Indomethacin-sensitive processes         | ET-1 < SRTX-b = NE (no significant<br>inhibition)                                          | ET ≥ SRTX-b > NE (no<br>significant inhibition)         |
| NDGA-sensitive processes                 | <pre>SRTX-b = NE (no significant<br/>inhibition); ET-1 = significant<br/>inhibition)</pre> | ET-1 S NE (significant<br>inhibition); SRTX = no effect |
| Cross-desensitization                    | SRTX and ET-1 do not cross-                                                                | SRTX demensitizes NE response                           |

•

and also by the stimulus which primarily controls channel permeability (see review by Minneman. 1988). Within each class of channels which are permeable to a particular ion and opened by a particular stimulus, there are also subclasses. So far three distinct types, namely, "L", "N" and "T" type, of Ca2+ channels have been identified in different cell types (Sturek and Hermsmever, 1986; Friedman et al., 1986; Bean, 1985). These channels can be distinguished on the basis of the strength of depolarization required for channel activation, the time course of inactivation, and the sensitivity to dihydropyridine Ca2+-channel agonists and antagonists. "L-type" channels remuire relatively strong depolarizations for activation. inactivate slowly. and are modulated by dihydropyridine Ca2+-channel antagonists. "T"-type" channels are activated by smaller depolarization, inactivate rapidly, and are insensitive to dihydropyridines. "N-type" channels also require a fairly strong depolarization for activation, inactivate with an intermediate time course, and are also insensitive to dihvdropyridines (Nowycky et al., 1985, Fox et al., 1987). Besides the three subclasses of voltage operated channels, successions of receptor-operated Ca2+ channels have been made (Bolton, 1979; van Breemen et al., 1979). However, there has been only one report of single channel recording that supports the existence of receptor operated Ca2+ channels in smooth muscle (Benham and Tsien, 1987). Other second messenger operated channels have been recorded in neutrophils (von Tscharner et al., 1986), lymphocytes (Kuno and Gardner, 1987) and rat brain (Fraser and Sarnacki, 1990).

Voltage-operated Ca<sup>2+</sup> channels are known to be quite heterogeneous in nature, with the existence of multiple types of Ca<sup>2+</sup> currents in neuronal and nonneuronal cells determined using voltage clamp methods (Sala and Matteson, 1990; Bean, 1989; see review by Shearman et al., 1989). N-type channels have been reported to exist only in neuronal cells (Teien et al., 1988; Miller, 1987) leaving "L" and "" type channels whose distribution in terms of relative density in smooth muscle is not known. Claims for the existence and non-existence of "I-channels in smooth muscle are emerging (Ganitkevich and Isenberg, 1990; Matsuda et al., 1990) and the situation is unclear. As the L-type channel is the only type of Ca<sup>2+</sup>-channel so far identified that is sensitive to dihydropyridines (DHPs), it is also referred to as the "DHP-receptor" (see review Shearman, 1989).

Thus far, attempts have been made to highlight events at the level of receptor and amplifier enzymes. The effects of these enzymes on Ca<sup>2+</sup>-channel modulation, and the elaboration of other "second messengers" like IP<sub>3</sub> and DAG from membrane catabolism, have been compositely assessed by interference with enzymes or products of their pathways.These processes are given in the SUMMARY (page 164) and schematically in Figure 37.

This study has avoided receptor binding studies. Findings by other investigators (Hirate et al., 1989; Ambar et al., 1989) have not shown any differences in binding parameters between ET-1 and SRTX-b, although such studies have demonstrated the existence of receptor subtypes. Furthermore, the demonstration of low cross-reactivity between antibodies raised against ET-1 and SRTX-b clearly suggest immune system recognition and by the same token, receptor recognition (Fleminger et al., 1989).

The failure of binding and biochemical studies to distinguish between ET-1 and SRTX-b receptors does not necessarily lead to the conclusion that these peptides interact with an identical population of receptor.

The role of DHP-sensitive Ca2+-channels in the maintenance of contractile

responses to ET-1, SRTX-b and NE was explored using the channel antagonist nifedipine. In the aorta, nifedipine (10 µM) significantly reduced the maximum responses to ET-1, but not NE and SRTX-b, and also reduced the sensitivity of the response to these agonists in the aorta (Figure 9a, b and c). In the anococcygeus, 10 //M nifedipine significantly reduced the maximal response to ET-1, but responses to NE and SRTX-b were not significantly reduced (Figure 10a, b and c). However, it is noteworthy that the decrease in the maximum responses to ET-1, SRTX-b and NE was more than that observed for the aorta. The resistance of NE induced contractions in the anococcygeus to rifedipine is consistent with the finding of Oriowo (1984) but the divergence in the sensitivity of responses to ET-1 in aorta and SRTX-b in anococcygeus were surprising for peptides that are said to act on the same receptor and have the same mode of action (Kloog and Sokolovsky, 1989). Despite the clear dependence on extracellular Ca2+, the inability of nifedipine treatment alone to completely inhibit the responses in both preparations, indicates that cellular mechanisms other than voltage-operated calcium channels must also play a significant role in the contractile processes activated by the two peptides and NE. It should also be noted that the concentration of nifedipine, 10 µM, that was used in these studies is high and the inhibitory effects noted against ET-1 may reflect some nonspecific actions of this substance that are not yet documented. Recently, Incue et al.(1990) demonstrated that ET-1 augments unitary Ca2+-channel currents in the guinea pig portal vein and they were able to characterize two types of unitary Ba2\* currents with conductances of 22 pS and 12 pS. Nifedipine was said to inhibit both types of unitary channel current, although the sensitivity of 22 pS Ca2+ channel was 20-fold higher than the 12

ps  $Ga^{2n}$ -channel. Although Inoue et al. (1990) did not specifically examine the effects of  $\omega$ -constain on the 12 pS current generated by ET-1, other studies (Lawson and Chatelain, 1989) fopouzis et al., 1989) suggest that the 12 pS current is an N-type channel. Thus, based upon slope conductance analysis, the two types of current that ET-1 activates in the guinea pig portal vein could represent those produced by "L" and N"-type  $Ga^2$ -channels.

Resink et al. (1990) have demonstrated the internalization of ET-1 receptors by cultured human vascular smooth muscle cells and have therefore suggested that this process may be relevant to the characteristically persistent contractile effects of this peptide on the vasculature. In view of its persistent contractile effects, it is likely that the SRTX-b receptor undercose a similar process, however, this has not yet been demonstrated.

Ino at al. (1988) have demonstrated the existence of two classes of calcium stores in guines pig portal vein, pulmonary artery and taenia coli – one with both "Ca<sup>2+</sup>-induced Ca<sup>2+</sup> release" (CICR) and "IPy-induced Ca<sup>2+</sup> release" (IICR) mechanisms (ga) and the other only with the IICR mechanisms (gb). These authors demonstrated that after ryanodine treatment, the Ca<sup>2+</sup> store (ga) lost its copacity to hold calcium and went further to suggest that the Ca<sup>2+</sup> released from ga produces the initial phase of contracture. By far the most interesting question raised by Iino et al. (1988) is: "If the second messenger for the agonist is indeed IP<sub>3</sub> as has been suggested in many other calls (Berridge and Irvine, 1984), then why do agonists not release Ca<sup>2+</sup> from gB in the absence of extracellular Ca<sup>2+</sup> ?" Iino et al. (1988) suggested a number of possibilities - one is that following agonist action the release IP<sub>3</sub> may not reach the gB site, alternatively IP<sub>3</sub> may not be used as the second messenger or finally, that IICR from gB requires extracellular Ca<sup>2+</sup>. Ino et al. (1988) argued that since the IICR has been shown to be dependent on a  $pGa^{2*}$  (-log[ $Ga^{2*}$ ]) of approximately 7 (Iino, 1987), it is possible that  $IP_3$  releases  $Ga^{2*}$  from g8 only when there is sufficient  $Ga^{2*}$  influx to keep the  $Ga^{2*}$  concentration in the vicinity of the store higher than a certain critical level. They finally submitted that there could certainly be other possibilities which needed further study and clarification. The suggestion by Iino et al. (1988) that ryanodine seems to hold the  $Ga^{2*}$  channels of the ga stores fixed in an open configuration has been supported by the finding of Bisayama and Takayanagi (1986). In the presence of ryanodine, even if stored  $Ga^{2*}$  was depleted by caffeine, the rate of rise of the extracelular  $Ga^{2*}$  main for the star of rise of the extracelular  $Ga^{2*}$  main for the star of rise of the extracelular  $Ga^{2*}$  main for the star of rise of the extracelular  $Ga^{2*}$  main for the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main for the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extracelular  $Ga^{2*}$  main the star of rise of the extrace

Wy data with anococcygeus murcle are consistent with the finding of Hisayama and Takayanagi (1988) concerning the effects of ryanodime, but the conclusion from my data is that the  $ca^{2*}$  mobilizing mechanisms, and ability to sustain them, are likely to be agonist dependent. In this regard, the Rammuseen model for  $Ca^{2*}$  cycling across the sembrane and the association of protein kiname C with the plasma membrane in the presence of diacylglycerol sustaining the cellular response may only be valid in the presence of extracellular  $Ca^{2*}$ . The inability of NE to maintain a sustained contraction in the absence of extracellular  $Ca^{2*}$  questions this model, in that aadrenoceptor activation is thought to involw: the production of diacylglycerol and institut triphosphate(see review by Minnesan, 1988). Furthermore, the ability of FF-1 and SNTX-b to maintain sustained tone in the absence of extracellular  $Ca^{2*}$  indicates that there is more to sustained cellular response than membrane association of diacylglycyrol and  $Ca^{2+}$ mobilization by TP3. A crucial question is if NE, as for FF-1 and SNTX-by produces IP<sub>3</sub> and DAG on receptor activation, why is the response to NE phasiclike and those to ET-1 and SRTX-b tonic-like in a Ca<sup>2+</sup>-free Krebe? No definite answer can be provided at this time.

Further experiments were conducted to compare and evaluate the role of extracellular versus intracellular  $Ca^{2*}$  in the contractile response to ET-1. SRTX-b and NE. In these experiments, control cumulative Ca2+ concentration response curves were constructed in the presence of an appropriate agonist, tissues were then washed and incubated in 10 pM ryanodine for one hour following which the Ca2+ concentration response curves were repeated. In this study, the same concentrations of the agonists (i.e. 10 nM ET-1.10 nM SRTX-b and 1µM NE) were used as in other phases of this project. After washing and recovery to baseline, the tissues were again subjected to ryanodine treatment in the presence of 10  $\mu$ M nifedipine in light-proof chambers and Ca<sup>2+</sup> concentration response curves were constructed in the presence of the appropriate agonist. Responses to ET-1 in the anococcygeus muscles were significantly enhanced by ryanodine treatment alone (Figures 15a, b and c). Treatment with nifedipine significantly reduced the responses to ET-1 and NE but significantly less so for SRTX-b (table 4) . It is apparent that the extracellular Ca2+ requirements for ET-1 and NE induced contractions partly utilize nifedipine-sensitive voltage operated channels. There is, however, a component of each contraction which is nifedipine-insensitive. The response to SRTX-b following depletion of the intracellular rvanodinesensitive store and nifedpine blockade was not significantly reduced, suggesting that Ca2+ entry may depend upon non-selective cation channels (Owen et al., 1986; Patridge and Swandulla, 1988; Oortigiesen et al., 1990).

Additional experiments to explore the preliminary finding that ryanodine

and NE depleted the same store(s) of intracellular calcium were conducted. Figure 17a demonstrates that repeated stimulation with NE in anococcyceus could only deplete the tissues of calcium to a certain basal level beyond which further depletion seemed impossible, even for an extended stimulation of 2-3 hours. Figure 18a, b and c demonstrate calcium response curves of the three agonists under examination following depletion of the NE sensitive Ca2+ stores with repeated NE exposure. When compared to depletion of cellular Ca2+ stores with ryanodine (Figures 15a, b and c), the responses were similar in the anococcyceus except that nifedipine did not significantly reduce the NE response as was the case following ryanodine treatment. These data confirm the postulate of lino et al. (1988) that Sa stores are sensitive to ryanodine and IPs generated by agonist. The only discrepancy was the insignificant reduction of NE response by nifedipine following NE induced-depletion of cellular Ca2+ stores. Furthermore, the data indicate that ryanodine, unlike NE, holds intracellular Ca2+-channels in an open configuration such that the intracellular stores lose their capacity to reaccumulate Ca2+ following stimulation, whereas NE depletes the cellular stores of Ca2+ but leaves them with the ability to reaccumulate and maintain a functional capacity. The availability of Ca2+ stores that are sensitive only to IP3 explains the capacity of NE to evoke a contraction after treatment with rvanodine. An interesting development is the isolation of the IPs receptor (Chadwick et al., 1990) and the inability to isolate Ca2+-induced Ca2+ release channels from the sarcoplasmic reticulum of smooth muscle. It was concluded that, although there is an IPs receptor in smooth muscle, there may not be a distinct ryanodine receptor (Chadwick et al., 1990). It is most probable that this store varies from tissue to tissue since Patel and Triggle (1986) were able

" " Sold and a start of a start o

"Carlow and

to deplete the rat tail artery of Ca2+ by repeated exposure to NE.

Further attempts to address the question of which intracellular calcium pools were sensitive to ryanddine and/or NE involved experiments in which tissues were repeatedly stimulated with NE in a Ca<sup>2+</sup>-free Krebs and then incubated in ryandine for one hour. The results from anococygeus (Figures 20a, b and c) maintained a pattern similar to those with ryandine alone which were earlier described (Figures 15a, b and c).

The possibility that the effectiveness of ryanodine could be enhanced by the simultaneous presence of an agonist which effectively holds the ryanodine-sensitive release channel in an open state, thus enhancing Ca2+ depletion, was explored. In order to address this possibility, experiments were designed in which rvanodine alone, rvanodine and caffeine, and rvanodine and agonist, respectively, were used to deplete the tissue of cellular Ca2+. In the anococcygeus (Figures 22a, b and c) Ca2+ concentration- response curves in the presence of 10 nM SRTX-b and 10 nM SRTX-b plus ryanodine showed no significant differences when evaluated by ANOVA. The data presented are consistent with those of Iino et al. (1988) who concluded that ryanodine acts on the calcium induced calcium release (CICR) channels only when they are open, and that rvanodine does not have any appreciable effect on the IP1induced calcium release (IICR) channels even if the drug is applied when these channels are open. From my data concerning interactions between caffeine and ryanodine I conclude that caffeine and ryanodine likely act on the same calcium pool(s). Support for this hypothesis is provided by the fact that the effects of ryanodine with and without caffeine were not significantly different from each other. Figure 23a, b and c illustrate the responses obtained in anococcygeus with the use of ET-1. Evaluation of the

three independent variables by ANOVA showed that the observed difference was not significant thus confirming earlier findings with SRTX-b concerning depletable Ca<sup>20</sup> pools.

Further elucidation of the routes of entry of extracellular calcium had become necessary as blockade with nifediping had been shown to be only partially effective and then only when used at a high concentration. To explore the roles of Ca2+ entry via dihydropyridine modulated Ca2+-channels in contractions induced by ET-1, SRTX-b and NE a known L-type calcium channel opener Bay K 8644 was used with depolarizing (15 mM K\*) Krebs buffer. Figure 26a, b and c show the responses in anococcygeus to Bay K 8644 without and with 1 nM ET-1 and SRTX-b and 100 nM NE (subcontractile concentrations). Contractile response to the three agonists was noted but since the response of the anococcyceus to Bay X 8644 (Figure 27) did not demonstrate strict concentration dependence, these differences were not statiscally evaluated for significance. This suggest the involvement of non-selective cation channels and perhaps, "N" and "T"-type channels in the contractile process of the smooth muscle as proposed by several authors (D'Orleans-Juste et al., 1989; Van Renterghem et al., 1989; Patridge and Swandulla, 1988; Inoue et al., 1990).

In further experiments conducted to compare and evaluate the role of extracellular versus intracellular Gs<sup>2+</sup> in the contractile response to E<sup>-1</sup>, SRTX-b and NE in the aorta (Figures 16s, b and c), a combination of ryanodine and nifedipine produced a marked and significant inhibition (ANOVA) of the contractile response to ET-1 and NE, but not SRTX-b (see also Table 4). This suggests that an intracellular source of Ga<sup>2+</sup>, which is maintained better extracellular Cs<sup>2+</sup> entering via a nifedipine-sensitive route plays a significant role in determining the contractile response to ET-1 whereas nifedipine-insensitive routes are utilized by and SRTX-b.

Experiments to expand on the preliminary finding that ryanodine and NE depleted the same scores of intracellular calcium in the sorta (Figure 17b) demonstrate that repeated stimulation with NE in a Ca<sup>22</sup>-free Krebs could only deplete the tissues of calcium to a certain basal level beyond which further depletion seemed impossible. Figures 19a, b and c demonstrate responses to ET-1, SRTX-b and NE from the sorts following depletion of NE-sensitive Ca<sup>22</sup> stores with repeated NE exposures . When compared to depletion of cellular Ca<sup>22</sup> stores with ryanodine, it can be seen that the results were similar (Figure 16s, b and c). Sequential depletion in sorta of NE-sensitive Ca<sup>22</sup> stores with repeated NE exposures followed by incubation in ryanodine (Figure 21a, b and c) were not different from Figures 19a, b and c or Figures 16a, b and c thus confirming our earlier speculation that ryanodine and NE stored on the same depletable Ca<sup>24</sup>

In a parallel study with the aorta, designed to determine whether ryanodine was more effective in the presence of an agonist, ryanodine alone, ryanodine and caffeine, and ryanodine plue either the agonist SRX=b or ET-1 were compared (Figures 24a-c and 25a-c respectively). No significant differences were observed (ANOVA). Nifedipine, even at 10 µM, proved to be only partially effective at inhibiting the responses to SRIX=b, ET-1 and NE in the aorta and thus, additional experiments were designed to elucidate the role and routes of extracellular Ca<sup>2+</sup> utilization. Figures 28a, b and concent responses induced by 10 µM Bay K 8644 in a depolarizing (15 mM K<sup>4</sup>) Krebs alone. In contrast to ancoccryenus, the responses of acta to Bay K 8644
demonstrated a strict concentration dependence (Figure 27b). No explanation for the "flapping" responses of anococcygeus to Bay K 8644 when contrasted with the sustained tone and concentration-dependent responses exhibited by the aorta to Bay K 86344 (Figure 27a and b) can be offered, although electrophysiological studies may provide an insight.

## 4.4 Kole of arachidonic acid metabolites.

There is a direct association between phosphatidylinositol turnover. diacylglycerol production, and arachidonic acid release (see review by Rasmussen, 1986). Arachidonic acid could be generated by one of three from phosphatidylinositol 4,5-bisphosphate (PIP) to mechanisms: diacylglycerol with further metabolism to phosphatidic acid and arachidonic acid or from phosphatidylcholine to lysophosphatidylcholine and arachidonic acid. The metabolism of phosphatidic acid +c arachidonic acid from these pathways is catalyzed by phospholipase A2 (see review by Exton, 1988). An alternate pathway is the hydrolysis of phosphatidylcholine by phospholipase C and D to arachidonic acid (Irving and Exton, 1987). The view that agonist increases diacylglycerol levels solely via the stimulation of phosphatidylinositol bisphosphate (PIP2) breakdown and resultant DAG leading to phosphatidic acid is not strictly supported by experimental data. Emergent biochemical data (Irving and Exton, 1987; Bocckino et al., 1985) have revealed that fatty acid composition of DAG and/or PA produced greatly exceeds the decrease in mass of inositol phospholipids. Thus, agonists may induce the breakdown of another phospholipid, phosphatidylcholine, and support for this hypothesis is provided by the agonist induced increases in phosphocholine and choline seen in hepatocytes, 3T3 fibroblasts and smooth

191

muscle cells (see review by Exton, 1988).

There means to be a prevalent notion (see Rammussen, 1986) that once produced, arachidonic acid is rapidly metabolized largely via the cyclooxygename pathway to endoperoxides, prostaglandine and thromboxane Ag with negligible contribution of the lipoxygename pathway. Data from recent studies with endothelin (Rapoport et al., 1990) seem to agree with this notion. However, it is well established that some lipoxgename products (Vanhoutte et al., 1985) do affect smooth muscle function, and a role for lipoxygename metabolites in mediating the effects of ET-1 has been described by Resink et al. (1985). Furthermore, the work of Raynolds et al. (1989) has demonstrated that phorbol ester treatment dissociated endothelin-stimulated phosphoinositide hydrolysis and archidonic acid release in vascular smooth muscle cells. This later study suggests parallel or synregistic mechanisms for initiating the contraction of smooth muscle.

In view of the possible role of arachidonic acid metabolites in agonist induced contraction, the effects of HT-1, SHX-b and NE were explored by constructing calcium concentration response curves in the presence of these agonists and in the absence or presence of the cyclooxygenase inhibitor, indomethacin (10 µK), (Figure 29a, b and c for anococygeus). The responses to the three agonists in presence of indomethacin were not significantly different from each other as analysed by ANOVA. Thus, at least in the anococygeus, products of cyclooxygenase are of negligible consequence in the contractile process (see Table 4). The results were similar for the apott et al. (1990) who noted a significant inhibition by indomethacin of ET-1 induced response in the averts. Purther examination of the effects of the three agonists in the anococcygeus in the absence and presence of 10uM nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, revealed that responses to ET-1 and NE were significantly reduced when compared to controls by "t"-test analysis (Figure 31a-c, and Table 4). In the aorta (Figure 32a, b and c), responses to SRTX and NE when compared to controls were not significantly reduced by NDGA, whereas that to ET-1 was significantly reduced when examined by the "t"-test respectively. The inability of (ANOVA) to detect a significant difference may reflect the low number of experimental replications. The results with ET-1 were consistent with the findings of Resink et al. (1989) who observed almost complete inhibition of [3H]arachidonic acid release by NDGA, suggesting that such extracellular labelled materials represented eicosanoid metabolites derived from lipoxygenase activity. Resink et al. (1989) also found that endothelin-induced arachidonic acid release was relatively insensitive to both indomethacin and meclofenamate (cyclooxygenase inhibitor), thus confirming our finding of lack of effect of indomethacin on responses to ET-1, SRTX-b and NE. The findings of Resink et al. (1989) also suggest that it is phospholipase A2 that mediates the generation of the lipoxygenase product following endothelin stimulation as they report that neomycin, a putative phospholipase C inhibitor (Slivka and Insel, 1987), did not inhibit arachidonic acid release. Resink et al. (1989) concluded that the lack of inhibition by neomycin indicates that activation of phospholipase A by endothelin may occur through a pathway that is independently parallel with, rather than secondarily sequential to, the phospholipase C pathway. Such independent pathways have been proposed for anadrenergic receptors (Slivka and Insel, 1988; Burch et al., 1986). The data from my experiments do not support this hypothesis, at least in the aorta,

197

since SRTX-b was not significantly inhibited by NDGA. However, in the anococcygeus, the NE response was significantly inhibited by NDGA. This further points to the diversity of pathways utilized by the different aconists in different tissues. Revnolds et al. (1989) have shown the doseresponse relationship of endothelin to [3H]-inositol phosphate formation and [<sup>3</sup>H]-arachidonic acid release in rabbit renal artery vascular smooth muscle cells and have alluded to the fact that since the EC50 values for both responses were very similar, 0.2-0.4 nM, both responses were, most likely, mediated by a single population of endothelin receptors. Revnolds et al. (1989) noted that, in the FRTL5 thyroid c alls, pertussis toxin completely inhibited a1-adrenergic receptor mediated PLA2 activation but did not affect an-adrenergic receptor-mediated phospholipase C activation (Burch et al., 1986). These data indicate that a-adrenergic receptors of these cells were coupled to PLC and PLA2 by different G proteins. Reynolds et al. (1989) concluded that the coupling of  $\alpha_1$ -adrenergic receptors to phospholipase C (PLC) and phospholipase A<sub>2</sub> (PLA<sub>2</sub>) activation occurred in parallel and was independently regulated in those cells.

The question of non-specific actions of NDGA (Rimele and Vanhoutte, 1983) was addressed by designing experiments which compared the inhibition of contractile response produced by NDGA on agonist cumulative concentration response curves, e.g. ET-1, NE compared to inhibition by NDGA of calcium incentration response curve in the presence of 50 mM K\*. Figure 33a and b showed that .- the anococygeus preparation, where significant inhibition of the maximal response to NE by NDGA was achieved, no significant inhibition by NDGA of K\* induced contractions were noted. Figures 34a and b show that in the acots, no significant reduction of contractile response to either NE or K<sup>\*</sup> by NDGA was achieved. A comparison of figures 33a and b to figures 34a and b leaves some possibility for equivocation and as such the specificity of NDGA may be questionable. Nonetheless, the more recent work by Scriabine, Pan and Vanhoutte (1990) has shown that the NDGA action was specific for lipoxygenase.

## 4.5. Agonist cross-desensitization.

In the course of tissue acreening, it was noted that ET-1, SRTX-b or NE, when cumulatively administered to reach bath concentrations of 10-7 H or 0.1 UM for ET-1 or SRTX-b, and 10 µM for NE, often resulted in desensitization to subsequent stimulation. It was reasoned that this might be desensitization or tissue toxicity and since the experimental protocol demanded repeated administration of a particular aconist, this question had to be addressed. As earlier pointed out in the Materials and Methods section, it was observed that if the concentration of 10 nM for ET-1 and SRTX-b or 1 µM for NE was not exceeded, desensitization on subsequent stimulation was not apparent and reproducible concentration response curves to ET-1, SRTX-b and NE could be obtained for up to 4 hours (Table 1). In the study by Miasiro and Paiva (1990), ET-1 pretreatment in rabbit aortic rings and cultured rat aorta smooth muscle cells did not affect responses to angiotensin II and NE, thus demonstrating homologous desensitization to ET-1. However, the concentration used was 100 nH (0.1 µH) which, as demonstrated in this study, is sufficient to induce myogenic activity in anococcygeus or subsequent non-response in the aorta. At the concentrations used in my study, which were approximately EC50 values for these aconists, desensitization was not observed and thus our findings are not consistent with those of Miasiro and Paiva (1990). A good discourse of the phenomena of desensitization (Triggle, 1980) does not seem

to relate desensitization to dose or concentration, which the author defines as diminished response during, or subsequent to, the initial action of a drug (variously described as tachyphylaxis, tolerance, refractoriness or subsensitivity). Recent developments in this area have clearly indicated that conditions which decrease or increase agonist-receptor interaction, either chronically or acutely, result in opposing alterations in effector sensitivity (Triggle, 1980). Given the agonist-receptor internalization of ET-1 as noted by Resink et al. (1990), it could be argued that internaliation of ligand-receptor complex leads to loss of receptor, thereby providing the basis for desensitization. However, August et al. (1990) had demonstrated that even at concentrations as low as 30 nM. ET-1 but not SRTX-b induces cross desensitization of rat aorta to SRTX-b or ET-1, respectively. In a second set of experiments, August et al. (1990) using 0.1 MM of ET-1 or SETXb demonstrated that pretreatment with SRTX-b did not affect subsequent responses to ET-1 or SRTX-b whereas pretreatment with ET-1 significantly reduced responses to ET-1 and SRTX-b. August et al. (1990) concluded that ET-1 and SRTX-b may activate a common receptor since ET-1 induces desensitization to both ET-1 and SRTX-b and went on to postulate that SRTX-b, unlike ET-1 (Hirata et al., 1988a), may be more readily dissociable from its binding site and hence does not normally induce desensitization. Furthermore, August et al. (1990) suggest that the long lasting effect of the peptides of the ET/SRTX family is more likely to be due to their post-receptor events rather than to the nature of binding of the drug to the receptor (irreversible or not), since the rate of washout was the same with the contraction induced by ET-1 and that induced by SRTX-b. My data, as determined by loss of myogenic activity in anococcygeus (Figure 6 and Table

3), show differing dissociation characteristics of ET-1 and SRTX-b. The argument that this activity may be a post-receptor event may be conceded on the bais of the work of Van Renterghem se al. (1989) and Sakata st al. (1989) who related ET-1-induced "spiking" activity to Ca<sup>2+</sup> activated K<sup>\*</sup> channels and cytosolic Ca<sup>2+</sup> spikes to mechanical response of tonus respectively.

However, my data (Figure 35a and b) demonstrate the phenomenon of crossdesensitization between SRTX-b and NE in rat anococcygeus and the absence of cross-desensitization between ET-1 and NE. This contrasts markedly with the data presented in Figure 35c and d which were designed as controls for the NE response by substituting cumulative concentration response curves of NE with KCl. In this subset, enhancement of the maximal response to KCL was noted with both ET-1 and SRTX-b. Statistical evaluation of responses by ANOVA showed significant differences for the effects of SRTX-b on the NE response and the SRTX-b effect on the KCl concentration response curves. This contrasts with the ET-1 effect on NE and KC1 concentration response curves where comparisons in the anococcygeus were not significant as assessed by ANOVA. In the aorta (Figures 36a, b, c and d), there was no desensitization, as assessed by ANOVA analysis to NE or KCl after pretreatment with either ET-1 or SRTX-b.

## Conclusions

The most obvious conclusion that can be reached from the present study is that ET-1 and SRTX-b interact with a heterogeneous population of receptors. If ET-1 and SRTX-b do interact with a homogeneous receptor population, then signal transduction pathways are differentially activated(see also Galron et al.1990). However,my data does suggest that the affinity of ET-1 and SRTX-b binding to their receptor(s) in the anococcygeus is increased in the presence of extracellular  $Ca^{2+}$  and this is reflected by the time interval needed for disappearance of induced myogenic activity in the anococcygeus muscle in  $Ca^{2+}$ -containing and  $Ca^{2+}$ -free Krebs buffer. A comparison of this interval in either Krebs solution shows that SRTX-b dissociates faster from its receptor than does ET-1. In contrast ,the offects of NE can be terminated in less than 2 minutes. ST-1 has been shown to be intercalized by endocytosis along with its receptor (Resink et al., 1990) and this may explain the basis of the persistent contractile activity of the pepties.

In some respects, the resistance of the effects of SRTX-b to inhibition by nifediplne in the anococygeus bears strong similarities to the resistance of NE to nifediplne. Noreover, the demonstration of cross-desensitization of NE effects by SRTX-b in the anococygeus suggest that these agonists may share a common post-receptor mechanism coupled via a common G-protein.The significant reduction in the aorta of ET-1, but not NE and SRTX-b, responses by nifedipine points to the divergent utilization of Ge<sup>2+</sup> channels by the two peptides in different tissues. The validity of this suggestion is not diminished by the finding of no significant differences (ANOVA) between three agonist following nifedipine treatment because other protocols

(nifedipine and ryanodine) have demonstrated significant differences between the peptides (ANOVA), Table 4. The electrophysiologic characteristics of small depolarizations (-7 mV) for ET-1 in contrast to -20 mV for NE (Wallmöfer et al., 1989), and the suggestion of the role of "N"-type channels (Inoue et al., 1990) for ET-1 along with the sensitivity of response to

202

dihydropyridines, suggest that ET-1 may be opening "L" and "N"-type calcium channels whereas SRTX-b may be opening "L" and "T"-type calcium channels depending on the preponderance of channels in the tissues. "N"-type channels, however, have not previously been associated in smooth muscle.

The inability, after ryanodine treatment, of nifedipine to further inhibit SRTX-b responses in the sorts is in contrast to the near complete inhibition of BT-1, after ryanodine treatment, thus lending additional support to the divergent use of calcium pools by the three agonists. This leads to the conclusion that the processes affecting ca<sup>2+</sup> mobilization are are intrinsic property of an agonist and the availability of sensitive Ca<sup>2+</sup> are are in a particular tissue determines the effectiveness of the agonist.

Since ET-1, SRTX-b and NE have been shown to produce DAG and IP<sub>3</sub> as universal second messengers the inability of NE to sustain tone in the absence of extracellular Ca<sup>24</sup> suggests that ET-1 and SRTX-b must be producing something in addition to DAG and IP<sub>3</sub> which could not be determined by my protocols. However, the demonstration by Price et al. (1989) that oncogenic ras could stimulate phosphatidylcholine hydrolysis, diacylglycerol release and arachidonic acid production without altering inositol phosphate levels in Swiss-373 cells is consistent with the findings of Hirate et al. (1988a) concerning the actions of ET-1 in vascular smooth muscle cells. Furthermore, the demonstration that ET-1 is a potent mitogen which stimulates c-myc and cfos proto-oncogene expression (see review by Simonson and Dunn, 1990b) leaves room for speculation that oncogenic ras can be stimulated by ET-1 and SRTX-b. Oncogenically activated ras proteins contain single amino acid substitutions and are generally unresponsive to GTPase activating protein, a cellular protein that atimulates GTB hydrolysis by normal p21<sup>744</sup> (Trahey and McCornick, 1987) in an "active" (GTP-bound) conformation. Price et al. (1989) have suggested that ras rapidly activates a number of cellular signalling systems, leading to a sustained increase in diacylglycerol levels. In contrast, Sunako et al. (1990) propose a phospholipase C system generating IP<sub>3</sub> and DAG as an explanation for ET-1 induced changes in diacylglycerol during sustained tone. Sunako et al.(1990) do concede that there could be other mechanisms of DAG production. The suggestion by Price et al. (1989) fits the Rasmussen (1986) model of sustained cellular response and would, perhaps, explain the basis of ET-1 and SRTX-b sustained tone in the absence of extracellular Ca<sup>2+</sup>. Additional studies are required to address this matter.

By far the most important cc clusion derived from the ryanodine studies is that IP3 may not be the intracellular Ca2+ mobilizer for contractions induced by ET-1 or SRTX-b whereas those induced by NE have a significant IP: dependency. Based on the characteristics of Sg and SB intracellular Ca2+ stores (lino et al., 1988), and the emergent "L" and "N"-like Ca2+ channel utilization by ET-1 and "L" and "T" type Ca2+ channel utilization by SRTX-b (Inoue et al., 1990; Lawson and Chatelain, 1989; Topouzis et al., 1989), it can be postulated that the primary electrophysiologic event in the action of these pertides involves the opening of "N"-like or "T"-type Ca2+ channels with a resultant Ca2+ induced Ca2+ release from Sa stores initiating contraction. Maintenance of tone is brought about by activation of protein kinase C with sustained levels of diacylglycerol not involving the inositol phosphate pathway. NE can be postulated to act via the activation of "L" and "T" type Ca2+ channels leading to Ca2+-induced Ca2+ release to initiate contraction. However, there is a dependence on extracellular Ca2+ to sustain activity of diacylglycerol and protein kinase C to maintain tone. The sharp spike of

contraction induced by NE in a Ca2+-free medium is likely due to IPt-mediated mobilization of Ca2+ from SB stores. The non-maintenance of tone is due to the reaccumulating property of SB stores thereby reducing intracellular Ca2+ to a level below which the diacylglycerol and protein kinase C activity cannot be maintained. The absence of the characteristic spiked contraction for the two peptides is evidence that the SS store is not stimulated by ET-1 and SRTX-b. This also explains the the ability of NE, in the absence of extracellular Ca2+, to mobilize intracellular Ca2+ from Sg and SB as opposed to the peptide use of Sa stores predominantly. In a Ca2+-free medium, NE leads to the production of IP3 which mobilizes SB Ca2+ to release Ca2+ from Sa stores to generate the phasic contraction. The rapid reaccumulation characteristics of SS stores lowers Ca2+ below a critical level for contraction while IP3 is metabolized. I further speculate that the small slowly rising tone of peptide induced contraction may be due to activation of oncogenic ras with production of diacylglycerol which, in association with protein kinase C, can function at low intracellular Ca2+ levels. Thus, large contractions may be dependent on Ca2+-induced Ca2+ release fostered by the entry of extracellular Ca2+ through "L", "T", "N" or, perhaps, non-specific cation channels.

The effects of NDGA have been clearly demonstrated to be specific for lipoxygenase products which could be generated from arachidonic acid derived from either the phosphatidylinositol or the phosphatidylcholine pathway.

Further electrophysiologic characterization of the Ca<sup>2+</sup> channel types in smooth muscle, as well as the effect of proto-oncogenes induced by ET-1 and SRTX-b, will be needed to completely characterize the physiologic effects of these peptides. The differences in the cell signalling processes in vascular versus non-vascular rmooth muscle demonstrated in this study suggest that SRTX-b an' ET-1 may not act on a homogeneous receptor population. Other evidence in the literature is also indicative of receptor subtypes for these related peptides (Webb, 1991).

In conclusion, my studies indicate that  $\mathbb{E}^{-1}$  initiates contraction in the rat thoracic aorta and anococcygeus by depolarising the plasma membrane with a resultant influx of  $Cm^{2r}$  through voltage-operated channels and nonspecific cation channels. The incoming  $Cm^{2r}$  leads to calcium induced calcium release from the So stores. Intracellular calcium, having risen above the critical concentration activates phospholipase  $\lambda_2$  to produce 5-lipoxygenase products to sustain the contraction. In the latter tonic phase, activation of ras oncogene produces sustained levels of diacylglycarol which, in association with protein kinsse C, maintains tone for long periods even in the face of a diminshing calcium concentration. The major membrane lipid catabolized is most probably phosphatidylcholine rather than phosphatidylinositol(see review by Strin, 1989).

A summary of the signalling processes that are involved is represented in Figure 37.

Figure 37: Schematic summary of cell signalling processes in smooth muscle activated by E7, SRXX, NS. DNP, dihydropyridine; PLC, phospholipase C; DAG, diacylglycerol; PLA<sub>2</sub>, phospholipase A<sub>2</sub>; PKC, protein kinase C, G7, o-protein.



.

## REFERENCES

- Ambar, I., Kloog, Y., Schwartz, I., Harum, E. and Sokolevsky, M. (1989) Competitive interaction between endothelin and sarafactoxini binding and phosphoinositide hydrolysis in rat atria and brain. Biochem. Biophys. Res. Commun. 158, 195-201.
- Ando, K., Hirata, Y., Shichiri, M., Emori, T. and Marumo, F. (1989) Presence of immunoreactive endothelin in human plasma. FEBS Lett. 245, 164-166.
- Ando, J., Komatsuda, T. and Kamiya, A. (1988) Cytoplasmic calcium response to fluid shear stress in cultured vascualr endotheliai cells. In Vitro 24, 871-877.
- Arai, H., Hori, S., Aramori, I., Ohkubo, H. and Nakanishi, S. (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348, 730-732.
- Auch-Schwelk, W., Katuszic, Z. and Vanhoutte, P.M. (1989) Contractions to oxygen derived free radicals are augmented in the aorta of the spontaneously hypertensive rat. *Hypertension* 13, 859-864.
- August, M., Delaflotte, S., Guillon, J.M., Rouberg, P., Chabrier, P.E., Braquet, P. (1990) Endothelin-1, but not sarafotoxin S6b, induces crossdesensitization of rat aorta contraction. Eur. J. Pharmacol. 187, 293-294.
- Auguet, M., Delaflotte, S., Chabrier, P.E., Pirotzky, E., Clostre, F. and Braquet, P. (1968) Endothelin and Ca<sup>2\*</sup> agonisc Bay K 8644; different vasconstrictive properties. *Biochem. Biohys. Res. Commun.* 156, 186-192.
- Badr, K.F., Murray, J.J., Breyer, M.D., Takahasi, K., Inagami, T. and Harris, R.C. (1989) Mesangial cell, glomerular and renal vascular responses to endothelin in the rat kidney. J. Clin. Invest. 83, 336-342.
- Bdolah, A., Wollberg, Z., Fleminger, G. and Kochva, E. (1989) SRTX-d, a new native peptide of the endothelin/sarafotoxin family. FEBS Lett. 256, 1-3.
- Bean, B.P. (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity and pharmacology. J. Gen. Physiol. , 1-30.
- Bean, B.P. (1989) Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51, 367-385.
- Benham, C.D. and Tsien, R.W. (1987) A novel receptor-operated Ca<sup>2+</sup>-channel activated by ATP in smooth muscle. Nature (Lond.) 328, 275-278.
- Berridge, M.J. (1985) The molecular basis of communication within the cell. Sci. Amer. 53, 142-152.

- Berridge, M.J. and Irvine, R.F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315-321.
- Besch, H.R. (1985) Effects of ryanodine on cardiac subcellular membrane fractions. Fed. Proc. 44, 2960-2963.
- Bevan, J.A., Bevan, R.D., Hwa, J.J., Owen, M.P., Tayo, F.M. and Minquiet, R.J. (1982) Calcium estrinsic and intrinsic (myogenic) vascular tone. In: Calcium Modultors, Godfraind, T., Albertini, A. and Palcette, R. Eds., pp. 125-132. Elsevier, Amsterdam.
- Bieger, D. and Triggle, C. (1985) Pharmacological properties of mechanical responses of the rat oesophageal muscularis mucosae to vagal and field stimulation. Br. J. Pharmacol. 84, 93-106.
- Boarder, M.R. and Mariott, D.B. (1989) Characterization of endothelin-1 stimulation of catecholamine release from adrenal chromaffin cells. J. Cardiovasc. Pharmacol. 13 (Suppl. 5), 5223-5224.
- Bocckino, S.B, Blackmore, P.F. and Exton, J.H. (1985) Stimulation of 1,2diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine and angiotensin II. J. Biol. Chem. 260, 14201-14207.
- Bolton, T.B. (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59, 606-718.
- Borges, R., Von Grafenstein, H. and Knight, D.E. (1989) Tissue selectivity of endothelin. Eur. J. Pharmacol. 165, 223-230.
- Brain, S.D. (1989) The direct observation of arteriolar constriction induced by endothelin in vivo. Eur. J. Pharmacol. 160, 401-403.
- Brody, M.J., Haywood, J.R. and Touw, K.B. (1980) Neural mechanisms in hypertension. Ann. Rev. Physiol. 42, 441-453.
- Burch, R.M., Luini, A. and Axelcod, J. (1986) Phospholipase Ag and phospholipase G are activated by distinct OTP binding processina in response to q-adremengic atimultion in FRTLS thyroid cells. Proc. Natl. Acad. Sci. U.S.A. 83, 7201-7205.
- Carafoli, E. and Penniston, J.I. (1985) The calcium signal. Sci. Amer. 261, 66-73.
- Cassel, D. and Selinger, Z. (1976) Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochem. Biophys. Acta 452, 538-551.
- Cernacek, P. and Stewart, D.J. (1989) Immunoreactive endothelin in human plasma: marked elevations in patients in cardiogenic shock. Biochem. Biophys. Res. Commun. 161, 552-557.
- Chadwick, C., Saito, A. and Fleischer, S. (1990) Isolation and characterization of inositol trisphosphate receptor from smooth muscle.

Proc. Natl. Acad. Sci. U.S.A. 87, 2132-2136.

- Chapman, R.A. (1979) Excitation-contraction coupling in cardiac muscle. Prog. Biophys. Hol. Biol. 35, 1-52.
- Chen, G. and Suzuki, H. (1990) Calcium dependency of the endothelium-dependent hyperpolarization in smooth muscle cells of the rabbit carotid artery. J. Physiol. 421, 521-534.
- Cherry, P.D., Furchgott, R.F., Zawadzki, J.V. and Jothianandan, D. (1982) The role of endothelial cells in the relaxation of isolated arteries by bradykinin. Proc. Natl. Acad. Sci. (S.A. 79, 2105-2110.
- Cocks, T.M. and Angus, J.A. (1983) Endothelium-dependent relaxation of corcnary arteries by noradrenaline and serotonin. Nature 305, 627-630.
- Cohen, P. (1979) The hormonal control of glycogen metabolism in mammalian muscle by multivalent phosphorylation. Biochem. Soc. Trans. 7, 459-480.
- Cozza, E.N., Gomez-Sanchez, C.E., Foecking, M.F. and Chiou, S. (1989) Endothelin binding to cultured calf adrenal zona glomerulosa cells and stimulation of aldosterone secretion. J. Clin. Invest. 84, 1032-1035.
- Creed, K.E. and Gillespie, J.S. (1973) The effect of excitatory or inhibitory nerve stimulation on the membrane potential of the rat anococycogus muscle. J. Physiol. 237, 47-48.
- Creed, K.E., Gillespie, J.S. and Muir, J.C. (1975) The electrical basis of exictation and inhibition in the rat anococcygeus muscle. J. Physiol. 245: 33-47.
- Criscione, L., Thomann, H., Rodriguez, C., Eglème, C. and Chiesi, M. (1989) Blockade of endothelin-induced contractions by dichlorobenzamil: mechanisms of action. Biochem. Biophys. Res. Commun. 163, 247-254.
- D'Orleans-Juste, P., DeNucci, G. and Vane, J.R. (1989) Endothelin-1 contracts isolated vessels independently of dihydropyridine-sensitive Ca<sup>2\*</sup> channel activation. Eur. J. Pharmacol. 165, 289-295.
- DeLean, A., Stadel, J.M. and Lefkowitz, R.J. (1980) A ternary complex model explains the agonist-specific binding properties of adenylate cyclesocoupled B-adrenergic receptor. J. Biol. Chem. 255, 7108-7117.
- DeMey, J.G. and Vanhoutte, P.M. (1982) Heterogenous behaviour of the canine arterial and venous wall: Importance of the endothelium. Circ. Res. 51, 439-447.
- DeMey, J.G. and Vanhoutte, P.M. (1983) Anoxia and endothelium-dependent reactivity of the canine femoral artery. J. Physiol. (Lond.) 335. 65-74.
- deNucci, G., Thomas, R., D'Orleans-Juste, P., Antunes, E., Walder, C., Warner, T.D. and Vane, J.R. (1988) Pressor effects of circulating endothelin are

limited by its removal in pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxation factor. Proc. Natl. Acad. Sci. U.S.A. 85, 979-9800.

- Deth, R. and van Breemen, C. (1977) Relative contributions of Ca<sup>2+</sup> influx and cellular Ca<sup>2+</sup> release during drug induced activation of rabbit aorta. *Pfluggers Arch. Bur. J. Physiol.* 346, 13-23.
- Devine, C.E., Somlyo, A.V. and Somlyo, A.P. (1972) Sarcoplasmic reticulum and excitation contraction coupling in mammalian smooth muscles. J. Cell Biol. 52, 690-718.
- Dominiczak, A.F. and Bohr, D.F. (1990) Cell membrane abnormalities and the regulation of intracellular calcium concentration in hypertension. Clin. Sci. 79, 415-423.
- Ebashi, S., Mikawa, T., Hirata, M. and Nonomura, Y. (1978) The regulatory role of calcium in muscle. Ann. N.Y. Acad. Sci. 307, 451-461.
- Eglen, R.M., Michel, A.D., Sharif, N.A., Swank, S.R. and Whiting, R.L. (1989) The pharmacological properties of the peptide, endothelin. Br. J. Pharmacol. 97, 1297-1307.
- Emori, T., Hirata, Y., Ohata, K., Shichiri, M. and Marumo, F. (1989) Secretory mechanisms of immunoreactive endothelin in cultured bovine endothelial cells. Biochem. Biophys. Res. Commun. 160, 93-100.
- Exton, J.H. (1988) Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASEB J. 2, 2670-2676.
- Feletou, M. and Vanhoutte, P.M. (1988) Endothelium-dependent hyperpolarization of canine coronary artery smooth muscle. Br. J. Pharmacol. 93, 515-524.
- Fitzpatrick, D.F. and Szentivanyi, A. (1980) The relationship between increased myogenic tone and hyper-responsiveness in vascular smooth muscle of spontaneously hypertensive rats. *Clin. Sxp.* Hypertens. 2, 1023-1037.
- Fleming, W.W., Westfall, D.P., De La lande, I.S. and Jehlett, L.B. (1972) Lognormal distribution of equieffective doses of norepinephrine and acetylcholine in several tissues. J. Pharmacol. Exp. Ther. 181, 339-345.
- Fleminger, G., Bousso-Kittler, D., Edolah, A., Kloog, Y. and Sokolovsky, K. (1989) Immunological and structural characterization of sarafotoxin/endothelin family of peptides. *Biochem. Biophys. Res. Commun.* 162, 1317-1323.
- Folkow, B. (1990) "Structural factor" in primary and secondary hypertension. Hypertension 16, 89-101.
- Forstermann, U., Trogisch, G. and Busse, R. (1984) Species-dependent differences in the value of endothelium-derived vascular relaxing factor.

Eur. J. Pharmacol. 106, 639-643.

- Fox, A.P., Nowycky, M.C. and Tsien, R.W. (1987) Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol. 394, 149-172.
- Fraser, C.L. and Sarnacki, P. (1990) Inositol 1,4,5-trisphosphate may regulate rat brain Ca<sup>2++</sup> by inhibiting membrane bound Na<sup>2</sup>-Ca<sup>2++</sup> exchanger. J. Clin. Invest. 86, 2169-2173.
- Freissmuth, M., Casey, P.J. and Gilman, A.G. (1989) G-proteins control diverse pathways of transmembrane signaling. FASEB J. 3:2125-2131.
- Friedman, M.E., Suarez-Kurtz, G., Kaczorowski, G.J., Katz, G.H. and Reuben, J.P. (1986) Two calcium currents in a smooth muscle cell line. Am. J. Physiol. 250, H699-H703.
- Fu uda, Y., Hirtta, Y., Yoshimi, H., Takatsugu, K., Kobayashi, Y., Yanagisawa, M. and Masaki, T. (1988) Endothelin is a potent secretagoque for atrial natriuretic peptide in cultured rat atrial myocyte. *Biochem. Biophys. Res. Commun.* 155, 167-172.
- Furchgott, R.F., Zawadzki, J.V. and Cherry, P.D. (1961) Role of endothelium in vamodilator response to acetylcholine. In: Vasodilation, Vanhoutte, P. and Lensen, I., Eds., pp. 49-66, Raven, New York.
- Furchgott, R.F. and Zawadzki, J.V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (Lond) 288, 373-376.
- Furchgott, R.F. (1988) Endothelium-dependent relaxation in systemic arteries. In: Relaxing and Contracting Factors; Biological and Clinical Research, Paul M. Vanhoutte, Ed., pp. 1-26, Clifton, NJ: Humana Press Inc.
- Furchgott, R.F. (1983) Role of the endothelium in respreses of vascular smooth muscle. Circ. Res. 53, 557-573.
- Galron, R., Kloog, Y., Bódiah, A. and Sokolovsky, M. (1989) Functional endothelin/saraftoxin receptors in rat heart mycoress is structure-activity relationships and receptor subtypes. *Biochem. Biophys. Res. Commun.* 163, 936-943.
- Galron, R., Kloog, Y., Bdolah, A. and Sokolovsky, M. (1990) Different pathways of endothelial sarafotoxin-stimulated phospholnositide hydrolysis in mycoytes. Eur. J. Pharmacol. 188, 85-88.
- Ganitkevich, V.Y. and Isenberg, G. (1990) Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea-pig coronary artery. J. Physical. (Lond.) 426, 19-42.
- Garcia-Sainz, J.A. and Hernandez-Sotomayor, S.H.T. (1985) Advanced regulation of gluconeogenesis: possible involvement of two mechanism of

signal transduction in a<sub>1</sub>-adrenergic action. Proc. Natl. Acad. Sci. U.S.A. 82, 6727-6730.

- Gillespie, M.N., Owasoyo, J.O., McMurtry, I.F. and O'Brien, R.F. (1986) Sustained coronary vasconstriction provoked by a peptidergic substance released from endothelial cells in culture. J. Pharmacol. Exp. Ther. 236, 339-343.
- Gillespie, J.S. (1972) The rat anococcygeus muscle and its response to nerve stimulation and to some drugs. Br. J. Pharmacol. 45, 404-416.
- Godfraind, T. and Hiller, R.C. (1983) Specificity of action of Ca<sup>2+</sup> entry blockers: comparison of their actions in the rat arteries and in human coronary arteries. Circ. Res. 52 (Suppl. 1) 131-191.
- Goetz, K.L., Wang, B.C., Madwed, J.B., Zhu, J.L. and Leadley, R.J. Jr. (1988) Cardiovascular, renal and endocrine responses to intravenous endothelin in conscious dogs. Am. J. Physiol. 255, R1664-R1068.
- Gostz, K., Wang, B.C., Leadley, R. (Jr.), Zhu, J.L., Madwed, J. and Bie, P. (1989) Endothelin and sarafotoxin produced dissimilar effects on renal blood flow, but both block the antidiuresic effects of vasopressin. Proc. Soc. Exp. Biol. Red. 191, 425-427.
- Golby, F.S. and Beilin, L.S. (1972) Relationship between arterial pressure and the permeability of arterioles to carbon particles in acute hypertension in the rat. Cardiovasc. Res. 6, 384-390.
- Goldberg, M.T. and Triggle, C.R. (1977) An analysis of the action of lanthanum on aortic tissue from normocensive and spontaneously hypertensive rats. *Can. J. Physical. Pharmacol.* 55, 1084-1090.
- Goto, K., Kauya, K., Matuui, N., Takwa, Y., Kurihara, H., Ishikawa, T., Kimura, S., Yanagisawa, M. and Maaski, T. (1995) Endothelin activates the dihydropyridine-sensitive voltage-dependent Ca<sup>20</sup> channel in vascular smooth muscle. Prov. Natl. Acad. Sci. U.S.A. 66, 3915-3918.
- Goyal, R.K. (1984) The anococcygeus muscle; a promising smooth muscle preparation for the autonomic research. Ind. J. Pharmacol. 16, 68-78.
- Graur, D., Bdolah, A., Wollberg, Z., Kochva, E. (1988/89) Homology between snake venom sarafotoxin and mammalian endothelin. Israel J. Zool. 35, 171-175.
- Griffith, T.M., Edwards, D.H., Lewis, M.J., Newby, A.C. and Henderson, A.H. (1984) The nature of endothelium-derived vascular relaxant factor. Nature 308, 645-648.
- Gustafson, T.L., EPISTAT : a statistical package designed for analysis of small data sets. Round Rock, TX 78664, U.S.A.
- Hashimoto, T., Hirta, H., Itoh, T., Kanmura, Y. and Kuriyama, H. (1986) Inositol 1,4,5-triuphosphate activates pharmacomechanical coupling in smooth muscle of rabbit mesenteric artery. J. Physical. 370, 605-618.

- Hay, D.W.P. (1990) Mechanism of endothelin-induced contraction in guinea pig trachea: comparison with rat aorta. Br. - Pharmacol. 100, 383-392.
- Hickey, K.A., Rubanyi, G.M., Paul, R.J. and Highamith, R.F. (1985) Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am. J. Physiol. 248, C550-C556.
- Hirata, Y., Yoshimi, H., Takaichi, S., Yanagisawa, M. and Hamaki, T. (1988b) Binding and receptor down regulation of a novel vasoconstrictor endothalin in cultured rat vascular smooth muscle cells. *FESS Lett.* 239, 13-17.
- Hirata, Y., Yoshimi, H., Nuramo, F., Watanabe, T.X., Kumagaye, S., Nakajias, X., Kimura, T. and Sakakibara, S. (1989) Interaction of synthesic sarafotoxin with rat vascular endothelin receptors. *Siochem. Biophys. Res. Commun.* 162, 441-447.
- Hirata, Y., Yoshimi, H., Takata, S., Watanabe, T.X., Kumagai, S., Nakajima, K. and Sakakibara, S. (1988) Collular mechanism of action by a noval vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. Blochem. Signpys. Res. Commun. 154, 858-875.
- Hisayama, T. and Takayanagi, I. (1988) Ryanodine: its possible mechanism of action in caffeine-sensitive calcium store of smooth muscle. *Pflugers Arch.* 412, 376-381.
- Buang, X-H., Yisayama, T., Takayanaji, I. (1990) Endothelin-induced contraction of rat aorta: contributions made by Ca<sup>2</sup> influx and activation of contractile apparatus associated with no change in cytoplasmic Ca<sup>2+</sup> level. *Faurynrs-Chindedberg's arch. Pharmacol.* 341, 80-87.
- Huttner, I., Boutet, M. and More, R. (1973) Studies on protein passage through arterial endothelium. I. Regional differences in paramability to fine structural protein tracers in arterial endothelium of normotensive rat. *Lab. Invest.* 28, 678-685.
- Hwang, K.S. and van Breemen, C. (1987) Ryanodine modulation of <sup>45</sup>Ca efflux and tension in rabbit aortic smooth muscle. *Pflügers Arch.* 408, 343-350.
- Ignarro, L.J., Byrns, R., Buga, G.H., Wood, K.S. and Chaudhuri, G. (1987) Pharmacological evidence that endothelium derived relaxing factor is nitric oxide: use of pyrogallol and supervaide dismutame to study endotheliumdependent and nitric oxide-elicited vascular smooth muscle relaxation. J. Pharmacol. Exp. Ther. 244, 191-189.
- Iino, H., Kobayashi, T. and Endo, H. (1988) Use of ryanodine for functional removal of the calcium store in smooth muscle cells of guinea pig. *Biochem. Biophys. Res. Commun.* 152, 417-422.
- Iino, M. (1987) Calcium dependent inositol trisphosphate induced calcium release in the guinea pig taenia caeci. Biochem. Biophys. Res. Commun. 142, 47-52.

Inoue, Y., Olke, H., Nakao, K., Kitamura, K. and Kuriyama, H. (1990)

Endothelin augments unitary calcium currents on the smooth muscle cell membrane of guinea-pig portal vein. J. Physiol. 423, 171-191.

- Inoue, A., Yanagisawa, M., Kimora, S., Kasuya, Y., Miyauchi, T., Goto, K. and Masaki, T. (1989) The human endothelin fanily: Three structurally and pharmacologically distinct isopepties predicted by three separate genes. *Proc. Natl. Acad. Sci. U.S.A.* 86 2853-2857.
- Irving, H.R. and Exton, J.H. (1987) Phosphatidylcholine breakdown in rat liver plasma membranes. J. Biol. Chem. 262, 3440-3443.
- Ishikawa, T., Yanagisawa, M., Kimura, S., Goto, K. and Masaki, T. (1988b) Positive chronotropic action of endothelin, a novel endothelium-derived vasoconstrictor peptide. *Flugers Arch.* 413, 108-110.
- Ishikawa, T., Yanagisawa, M., Kimura, S., Goto, K. and Masaki, T. (1988a) Positiva Inotropic action of novel vasoconstrictor peptide endothelin on quinea pig atria. Am. J. Physiol. 255, M970-M973.
- Israel, M., Dunant, Y. and Manaranche, R. (1979) The present status of the vesicular hypothesis. Prog. Neurobiol. 13, 237-275.
- Itoh, Y., Yangjasawa, M., Ohkubo, S., Kimura, C., Kosaka, T., Incus, A., Ishida, N., Mitsui, Y., Onda, H., Fujino, M. and Masaki, T. (1988) Cloning and sequence anlaysis of cDNA encoding the precursor of a human endothallumderived vasocontrictor peptide, endothelin: identity of human and porcine endothelin. FEBS Lett. 231, 440-440.
- Janis, R.A. and Triggle, D.J. (1973) Effect of diazoxide on aortic reactivity to calcium in spontaneously hypertensive rats. Can. J. Physiol. Pharmacol. 51, 621-626.
- Jenden, D.J. and Fairhurst, A.S. (1969) The pharmacology of ryanodine. Pharmacol. Rev. 21, 1-25.
- Jones, C.R., Hiley, C.R., Pelton, J.T. and Mohr, M. (1989) Autoradiographic visualization of the binding sites for [<sup>125</sup>]endothelin rat and human brain. Neurosci. Lett. 97, 276-279.
- Kamm, K.E. and Stull, J.T. (1985) The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Ann. Rev. Pharmacol. Toxicol. 25, 593-620.
- Katusic, Z.S., Shepherd, J.T. and Vanhoutte, P.H. (1984) Vasopressin causes endothelium-dependent relaxation of the canine basilar artery. *Circ. Res.* 55, 575-579.
- Katusic, Z.S., Shepherd, J.T., Vanhoutte, P.M. (1987) Endothelium-dependent contractions to stretch in canine basilar arteries. Am. J. Physiol. 252, H671-H673.

Khalil, R.A. and van Breemen, C. (1990) Intracellular free calcium

concentration/force relationship in rabbit inferior vena cava activated by norepinepehrine and high K\*. Pflugers Arch. Eur. J. Physiol. 416, 727-734.

- Kimura, S., Kasuya, Y., Sawamura, T., Shinni, O., Sugita, Y., Yanagiasua, M., Octo, K. and Masaki, T. (1988) Structure activity relationship of endothelin: importance of the C-terminal molety. *Biochem. Biophys. Res. Commun. 155*, 1183-1186.
- Kloog, Y., Bousso-Mittler, D., Bdolah, A. and Sokolovsky, M. (1989) Three apparent receptor subtypes for endothelin/sarafotoxin family. FEBS Lett. 253, 199-202.
- Kloog, Y., Ambar, I., Sokolovsy, M., Kochva, E., Wollberg, Z. and Bdolah, Z. (1988) Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science 242, 268-270.
- Kloog, Y. and Sokolovsky, M. (1989) Similarities in mode and sites of action of sarafotoxins and endothelins. Trends in Pharmacol. Sci. 10, 47-49.
- Knight, D.S. and Baksr, P.F. (1982) Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J. Membr. Biol. 68, 107-140.
- Kochva, E., Viljoen, C.C. and Botes, D.P. (1982) A new type of toxin in the venom of snakes of the genus itractaspis (Atractaspideinae). Toxicon 20, 581-592.
- Kojima, I., Kojima, K. and Rasmussen, H. (1985) Intracellular calcium and adenosine 3',5'-cyclic monophosphate as mediators of potassium-induced aldosterone secretion. Biochem. J. 228, 69-76.
- Kokesi, C., Imai, M., Hirata, Y., Yanagiaawa, M. and Masaki, T. (1989) Autoradiographic distribution in rat tissues of binding sites for endothelin: a neuropeptide? *An. J. Physiol.* 255, R858-R856.
- Komuro, I., Kurihara, H., Siugiyama, T., Takaku,F. and Yazaki, Y. (1988) Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 238, 249-252.
- Kuno, M. and Gardner P. (1987) Ion channels activated by inositol 1,4,5trisphosphate in plasma membrane of human T-lymphocytes. Nature (Lond.) 326, 301-304.
- Kurihara, H., Yoshiumi, M., Sugiyama, T., Takaku, F., Yanagiaswa, K., Maski, T., Hamaoki, M., Kato, H. and Yazaki, Y. (1999) Transforming growth factor-8 stimulates the expression of endothelin mNNA by vacular endothelial cells. Sicchem. Stophys. Res. Commun. 159, 1435-1440.
- Kwan, C.Y. (1985) Calcium-handling defects and emooth muscle pathophysiology, in Calcium and Contractility, Smooth Muscle, Grover, A.K. and Daniel, E.E., Eds., Humana Press, Clifton, NJ 299-325.

Lakatta, E.G., Capograssi, M.C., Kort, A.A. and Stern, M.D. (1985)

Spontaneous myocardial calcium oscillations: overview with emphasis on ryanodine and caffeine. Fed. Proc. 44, 2977-2983.

- Lawson, K. and Chatelain, P. (1989) Contractions of rat acrts to endothelin are sensitive to nickel and cadmium ions but not to nicardipine or w-conctoxin. Br. J. Phamacol. 98, 840p.
- Leijten, P.A.A. and van Breemen, C. (1984) The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J. Physiol. 357, 327-339.
- Lin, W.H., Lee, C.Y. and Chuang, D.-M. (1989) Cross desensitization of endothelin and sarafotoxin-induced phosphoinositide turnover. Eur. J. Pharmacol. 166, 581-582.
- Loeb, A.L. and Peach, H.J. (1989) F dothelial and smooth muscle interactions in hypertension. In: Blood Ve\_Jel Changes in Hypertension: Structure and Function, R.M.K.W. Lee, Sci., Vol. 1, 25-44.
- Long, C.J., Shikano, K. and Berkowitz, B.A. (1987) Anion exchange resins discriminate between nitric oxide and EDRF. Eur. J. Pharmacol. 142, 317-318.
- Lund-Johansen, P. (1977) Hemodynamic alteration in hypertension-spontaneous changes and effects of drug therapy. A review. Acta Med. Scand. (603) Suppl., 1-14.
- Lüscher T.F. and Vanhoutte, P.M. (1986) Endothelium-dependent contractions to acetylcholine in the acta of the spontaneously hypertensive rat. *Hypertension* 8, 344-348.
- Lüscher, T.F. (1990) The endothelium: target and promoter of hypertension. Hypertension 15, 482-485.
- MacCumber, M.W., Ross, C.A. and Snyder, S.H. (1990) Endothelin in brain: receptors, mitogenesis and biosynthesis in glial cells. Proc. Natl. Acad. Sci. U.S.A. 87, 2359-2363.
- MacCumber, M.W., Ross, C.A., Glaser, B.M. and Snyder, S.H. (1989) Endothelin: visualization of mRNAs by in situ hybridization provides evidence for local action. Proc. Natl. Acad. Sci. U.S.A. 86, 7285-7289.
- Maggi, C.A., Giulani, S., Patacchini, R., Santicioli, P., Turini, D., Barbati, G. and Neli, A. (1969) The C-terminal hexappetice, endothelin-(16-21), discriminate batween different endothelin receptors. *Eur. J. Pharmacol.* 166, 121-122.
- Marshall, J.J. and Kontos, H.A. (1990) Endothelium-derived relaxing factors: a perspective from in vivo data. *Hypertension* 16, 371-386.
- Martin, W., Villani, G.M. Jothianandan, D. and Furchgott, R.F. (1984) Selective blockade of endothelium-dependent and glycerol trinitrate-induced

relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232, 708-716.

- Matsuda, J.J., Volk, K.A. and Shibata, E.F. (1990) Calcium currents in isolated rabbit coronary arterial smooth muscle myocytes. J. Physiol. (Lond.) 427, 657-680.
- Mellander, S. and Johansson, B. (1968) Control of resistance, exchange, and capacitance functions in peripheral circulation. *Pharmacological Reviews* 20, 117-196.
- Miasiro, N. and Paiva, A.C.M. (1990) Homologous desensitization of the effects of endothelin on rabbit aortic rings and on cultured rat aorta smooth muscle cells. Eur. J. Pharmacol. 179, 151-158.
- Miller, V.M., Aarhus, L.L. and Vanhoutte, P.M. (1986) Modulation of endothelium-dependent responses by chronic alterations of blood flow. Am. J. Physiol. 251, H520-H527.
- Miller, R.J. (1987) Multiple calcium channels and neuronal function. Science 235, 46-52.
- Miller, V.H. and Vanhoutte, P.M. (1985) Endothelial a2-adrenoceptors in canine pulmonary and systemic blood vessels. Eur. J. Pharmacol. 118, 123-129.
- Miller, V.M. and Vanhoutte, P.M. (1989) Is nitric oxide the only endotheliumderived relaxing factor in canine femoral veins? Am. J. Physiol. 257, H1910-H1916.
- Minneman, K.P. (1988) a-Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca<sup>2+</sup>. Pharmacol. Rev. 40, 87-119.
- Morgan, J.P. and Morgan, K.G. (1984) Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J. *Physici. (Lond.)* 351, 155-167.
- Nulvany, N.J. (1989) Contractile properties of resistance vessels related to cellular function. In Blodd Yessel Changes in Nypertension: Structure and Function, R.M.K.W. Lee, Ed. pp. 1-24. Boca Raton, Florida: CRC Press Inc.
- Nyere, P.R., Guerra, R. Jr., Bates, J.N. and Harrison, D.G. (1989) Studies on the properties of endothelium-derived relaxing factor (EDRF), nitric oxide, and nitrosolthiols: Similarities beween EDRF and S-nitroso-L-cysteine (CysNO). J. Vasc. Med. Biol. 1: 106.
- Nakajima, K., Kumagaye, S., Nishio, H., Kuroda, H., Watanabe, T.X., Kobayashi, Y., Tamaoki, H., Kimura, T. and Sakakibara, S. (1989) Synthesis of endothalin-1 analogues, endothalin-3 and sarafotoxin 56b; structureacti:ity relationships. J. Cardiovasc. Pharmacol. 13 (Suppl. 5), 58-512.

Nayler, W.G. (1990) Endothelin: isoforms, binding sites and possible implications

in pathology. Trends in Pharmcol. Sci. 11, 96-99.

- Nomora, A., Uchida, Y., Kameyama, H., Saotome, H., Oki, K. and Hasegawa, S. (1989) Endothelin and bronchial asthama. Lancet 11, 747-748.
- Nowycky, M.C., Fox, A.P. and Tsien, R.W. (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature (Lond.) 316, 440-443.
- O'Brien, R.F. and McMurtry, I.F. (1984) Endothelial cell supernates contract bovine pulmonary artery rings. Am. Rev. Respir. 126, A337 (abstr).
- Ohlstein, E.H., Horohonich, S. and Hay, D.W.P. (1989) Cellular mechanisms of endothelin in rabbit aorta. J. Pharmacol. Exp. Ther. 50, 548-555.
- Oortgiesen, M., van Kleef, R.G.D.M. and Vijverberg, H.P.M. (1990) Novel type of ion channel activated by Pb<sup>2+</sup>, Cd<sup>2+</sup> and At<sup>st</sup> in cultured mouse neuroblastoma cells. J. Membr. Siol. 131, 261-268.
- Oriowo, M.A. (1984) Effect of calcium entry blockers and divalent cations on noradrenaline induced contractions of the rat anococcygeus muscle. Arch. Int: Pharmacodyn. Ther. 271, 45-52.
- Owen, D.G., Segal, H. and Baker, J.L. (1986) Voltge-clamp analysis of a Ca<sup>2+</sup> and voltage-dependent chloride conductance in culture mouse spinal neurons. J. Neurophysiol. 55, 1115-1135.
- Palmer, R.H.J., Ferrige, A.G. and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524-526.
- Patel, A.I. and Triggle, C.R. (1986) Pharmacological characterisation of calcium channels in vascular smooth muscle from hypertensive and normotensive animals. Unpublished M.Sc. Thesis, Memorial University of Newfoundland.
- Patridge, L.D. and Swandulla, D. (1988) Calcium activated non-specific cation channels. Trends Neurosci. 11, 69-72.
- Peach, M.J., Loeb, A.L., Singer, H.A. and Saye, J. (1985) Endothelium-derived vascular relaxing factor. *Hypertension* 7 (Suppl. I) I-94-I-100.
- Pernow, J., Hemsén, A. and Lundberg, J.K. (1989) Tissue specific distribution, clearance and vascular effects of endothelin in the pig. *Biochem. Biophys. Res. Commun.* 161, 647-653.
- Price, B.D., Morris, J.D.H., Marshall, C.J. and Hall, A. (1989) Stimulation of phosphatidylcholine hydrolysis, diacyldycerol release, and arachidonic acid production by oncogenic ras is a consequence of protein kinase C activation. J. Biol. Chem. 264, 16538-16643.
- Pohl, U., Busse, R. and Bassenge, E. (1987) Endothelial cells as oxygen sensors in Mechanisms of Vasodilation IV (Vanhoutte, P. M., ed.) Raven, New York.

- Rand, M.J. and Varma, B. (1970) The effects of cholinomimetic drugs on responses to sympathetic nerve stimulation and noradrenaline in the rabbit ear artery. Br. J. Pharmacol. 38, 758-770.
- Rapoport, R.M., Stauderman, K.A. and Highsmith, R.F. (1990) Effects of EDCF and endothelin on phosphatidylinositol hydrolysis and contraction in rat aorta. Am. J. Physiol. 258, C122-C131.
- Rasmussen, H. (1989) The cycling of calcium as an intracellular messenger. Sci. Amer. 261, 66-73.
- Rasmussen, H. (1986) Calcium messenger system. New Engl. J. Ned. 314, 1094-1101 and 1164-1170.
- Rees, D.D., Palmer, R.M.J. and Moncada, S. (1989) Role of endothelium derived nitric oxide in the regulation of blood pressure. Proc. Natl. Acad. Sci. U.S.A. 86, 3375-3378.
- Resink, T.J., Scott-Burden, T., Boulanger, C., Weber, E. and Bühler, F. (1990) Internalisation of endothelin by cultured human vascular amouth muscle cells: characterisation and physiological significance. *Mol. Pharmacol.* 38, 244-252.
- Resink, T.J., Scott-Burden, T. and Bühler, F.R. (1989) Activation of phospholipase A<sub>2</sub> by endothelin in cultured vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 158, 279-286.
- Reynolds, E.E., Mok, L.L.S. and Xurokawa, S. (1989) Phorbol esters dissociates endothelin-stimulated phosphoinositide hydrolysis and arachidonic acid release in vascular smooth muscle cells. *Biochem. Biophys. Res. Commun.* 160, 868-873.
- Rimele, T.J. and Vanhoutte, P.M. (1983) Effects of inhibitors of arachidonic acid metabolism and calcium entry on responses to acetylacholine, potassium and norepinephrine in the isolated canine saphenous vein. J. Pharmacol. Exp. Ther. 225, 730-738.
- Ringer, S. (1883) A third contribution regarding the influence of the inorganic constituents of the blood on the ventricles contraction. J. Physiol. 4, 222-225.
- Rodman, D.H., McMurtry, I.F., Peach, J.L. and O'Brien, R.F. (1989) Comparative pharmacology of rat and porcine endothelin in rat pulmonary artery. Eur. J. Pharmacol. 165, 297-300.
- Ru Ku, J., Von Harsdorf, R. and Lang, R.E. (1988) Endothelin has potent inotropic effect in rat atria. Eur. J. Pharmacol. 158, 275-278.
- Rubanyi, G.M., Kokinney, M. and Vanhoute, P.M. (1987) Biphasic release of endothaliam-derived relaxing factor(s) by acceltcholine from perfused canine femoral arteries. Characterization of muscarinic receptors. J. Pharmacol. Exp. Ther. 240, 802-808.

- Rubanyi, G.M. and Vanhoutte, P.N. (1987) Nature of endothelium-derived relaxing factor: are there two relaxing mediators? Circ. Res. 34, 317-326.
- Rubaryi, G.H., Wilcox, D.E. and Greenbarg, S. (1969) Studies on endothalium derived relaxing factor (IDRF) relaxed from caning femoral arteries by acetylcholine (ACh) and its identity as nitric oxide (NO) (abstract). J. Vasc. Wed. SiO.1, 111.
- Rubanyi, G.M., Lorenz, R.R. and Vanhoutte, P.M. (1985) Bloassay of endothelium-derived relaxing factor. Am. J. Physiol. 215, H1077-H1080.
- Rubanyi, G.H. and Vanhoutte, P.H. (1985) Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J. Physiol. (Lond.) 364, 45-56.
- Salda, K., Mitsui, Y. and Ishida, N. (1989) A noval peptide, vascative intestinal contractor of a new (endothelln) peptide family. J. Biol. Chem. 264, 14613-14616.
- Sakata, K., Ozaki, H., Kwon, S.-C. and Karaki, H. (1989) Effects of endothelin on the mechanical activity and cytosolic calcium levels in various types of smooth muscle. Br. J. Pharmacol. 98, 403-492.
- Sakurai, T., Yanagisawa, M., Takuwa, Y., Miyazaki, H., Kimura, S., Goto, K. and Manaki, T. (1990) Cloning of a 20NA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732-735.
- Sala, S. and Matteson, D.R. (1990) Single channel recordings of two types of calcium channels in rat pancreatic beta-cells. *Biophys. J.* 58, 567 -571.
- Sato, K., Ozaki, H. and Karaki, H. (1988) Hultiple effects of caffeine on contraction and cytosolic free Ca<sup>2</sup> levels in vascular smooth muscle of rat aorta. Naunyn-Schniedeberg's Arch. Pharmacol. 338, 443-448.
- Schofield, P.R. and Abbott, A. (1989) Molecular pharmacology and drug action: structural information casts light on ligand binding. Trends in Pharmacol. Sci. 10, 207-212.
- Scriabine, A., Pan, M. and Vanhoutte, P.N. (1990) Effect of lipoxygenase inhibitors on Ca<sup>2+</sup>-induced constriction of the rabbit ear artery. Gen. Pharmeol. 21, 235-239.
- Sharma, R.V. and Bhalla, R.C. (1989) Regulation of cytosolic free Ca<sup>2+</sup> concentration in vascular smooth muscle cells by A- and C-kinames. *Hypertension* 13, 845-850.
- Shearman, H.S., Sekiguchi, K. and Nishizuka, Y. (1989) Modulation of ion channel activity: a key function of protein kinase C enzyme family. Pharmacol. Rev. 41, 211-237.
- Shiba, R., Yanagisawa, M., Miyauchi, T., Ishii, Y., Kimura, S., Uchiyama, Y.,

Masaki, T. and Goto, K. (1989) Elimination of intravenously injected ET-1 from the circulation of the rat. J. Cardiovasc. Pharmacol. 13 (Suppl. 5) S98-5101.

Shibata, S., Kuchii, M. and Taniguchi, T. (1975) Calcium flux and binding in the aortic smooth muscle from spontaneously hypertensive rats. Biood Vessels 12, 279-289.

Harry

ころうちょうこう しんしん いっているいないないない うろう う

- Shichiri, M., Hirata, Y., Emori, T., Ohia, K., Nakajima, T., Sato, K., Sato, A. and Marumo, F. (1989) Secretion of endothelin and related peptides from renal epithelia cell lines. FEBS Lect. 255, 203-206.
- Shinokawa, H., Aarhus, L.L. and Vanhoutte, P.H. (1987) Forcine occonary acteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and seretonin. *Circ. Res.* 61, 256-270.
- Shinmi, O., Kimura, S., Sawamura, T., Sugita, Y., Yoshizawa, T., Uchiyama, Y., Yanagizawa, N., Goto, T., Masaki, T. and Kananzawa, I. (1989) Endothelin-J is a novel neuropaptide: isolation and sequence determination of endothelin-1 and endothelin-3 in porcine brain. Biochem. Biophys. Res. Commun. 164, 587-593.
- Silver, P.J. and Stull, J.T. (1982) Regulation of myosin light chain and phosphorylase phosphorylation in tracheal smooth muscle. J. Biol. Chem. 257, 6145-6150.
- Simonon, M.S., Wann, S., Mene, P., Dubyak, G.R., Kester, M., Nakarato, Y., Sedor, J.R. and Dunn, M.J. (1999) Endothelin atlaulates phospholipase G, Na<sup>6</sup>/H<sup>4</sup> exchange, c-fos expression and mitogenesis in rat mesangial cells. J. Clin. Invest. 83, 708-712.
- Simonson, M.S. and Dunn, M.J. (1990a) Endothelin: Pathways of transmembrane signalling. Hypertension 15 (Suppl. I), 15-112.
- Simonson, M.S. and Dunn, H.J. (1990b) Cellular signaling by peptides of the endothelin gene family. FASEB J. 4, 2989-3000.
- Singer, H.A., Saye, J.H. and Peach, M.J. (1984) Effects of cytochrome P-450 inhibitors on endothelium dependent relaxation of rabbit aorta. Blood Vessels 21, 223-230.
- Slivka, S.R. and Insel, P.A. (1987) cq-Adrenergic receptor mediated phosphoinositide hydrolysis and prostaglandin Eg formation in Madin-Darby canine kidey cells. J. Biol. Chem. 262, 4200-4207.
- Slivka, S.R. and Insel, F.A. (1988) Photbol ester and neowycin dissociate bradykinin receptor-mediated arachidonic acid release and polyphosphoinositide hydrolysis in Madin-Darby canine kidney cells. J. Biol. Chem. 263, 14640-14647.

Sokolovsky, M., Galron, R., Kloog, Y., Edolah, A., Indig, F.E., Blumberg, S. and

Fleminger, G. (1990) Endothelins are more sensitive than sarafotoxins to neutral endopeptidase: possible physiologic significance. Proc. Natl. Acad. Sci. U.S.A. 87, 4702-4706.

- Steinsland, O.S., Furchgott, R.F. and Kirpekar, S.M. (1973) Inhibition of adrenergic neurotransmission by parasympathetics in the rabbit ear artery. J. Pharmacol. Exp. Ther. 164, 346-356.
- Sturek, H. and Hermsmeyer, K. (1986) Calcium and sodium channels in spontaneously contracting vascular smooth muscle cells. Science 233, 475-478.
- Sugiura, M., Snajdar, R.N., Schwartzberg, M., Badr, X.F. and Inagami, T. (1989) Identification of two types of specific endothelin receptors in rat mesancial cell. Siochem. Biophys. Res. Commun. 163, 1396-1401.
- Sunako, M., Kawahara, Y., Hirata, K., Tsuda, T., Yokoyama, M., Fukuaki, H. and Takai, Y. (1990) Hass analysis of 1,2-discylphyseroi in cultured rabbit vascular smooth muscle cells; comparisons of simulation by angiotensin II and endothelin. Mypertension 15, 84-88.
- Sutko, J.L., Ito, K. and Xenyon, J.L. (1985) Ryanodine: a modifier of sarcoplasmic reticulum calcium release in striated muscle. Fed. Proc. 44, 2984-2988.
- Sutter, M.C. and Ljung, B. (1977) Contractility, muscle mass and agonist sensitivity of isolated portal veins from normo- and hypertensive rats. Acta Physiol. Scand. 99, 484-495.
- Suzuki, N., Matsumoto, H., Kitada, C., Yanaginawa, M., Miyauchi, T., Mamaki, T. and Fujino, M. (1989) Immunocative endothelin-1 in plasma detected by aandwich-type enzyme immunoassay. J. Cardiovasc. Pharmecol. 13 (Suppl. 5) 5151-5152.
- Tabrichi, R. and Triggle, C.R. (1990) Comparison between the vaeoactive actions of endothelin and arginize vaeopressin in pitthed rats after pretreatment with Bay K 8644, nifedipine or pertussis toxin. J. Pharmacol. Exp. Ther. 253, 272-276.
- Tabuchi, Y., Nakamura, H., Rakugi, H., Nagano, M., Mikami, H. and Ogihara, T. (1989) Endothelin inhibits presynaptic adrenergic neurotransmission in rat memetaric artery. Biochem. Biophys. Res. Commun. 161, 803-808.
- Takasaki, C., Tamiya, N., Bdolah, A., Wollberg, Z. and Kochva, E. (1988) Sarafotoxins 56: several isotoxins from Atractaspis engaddensis (burrowing asp) venom that affect the heart. Toxicon 26, 543-548.
- Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, H., Natsuo, H., Hirose, T. and Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 128, 133-318.

- Taylor, S.G., Southerton, J.S., Weston, A.H. and Baker, J.R.J. (1988) Endothelium-dependent effects of acetylcholine in rat acrta: a comparison with sodium nitroprusside and cromakalim Br. J. Pharmacol. 94, 853-863.
- Topouzis, S., Pelton, T.J. and Miller, R.C. (1989) Contractile effects of endothelin and [Ala<sup>3,11</sup>]endothelin in rat isolated aorta. Br. J. Pharmacol. 96, 1019.
- Trahey, M. and McCormick, K. (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238, 542-545.
- Triggle, D.J. (1980) Desensitization. Trends in Pharmacol. Sci. 1, 395-399.
- Triggle, D.J. (1984) Cellular calcium metabolism: activation and antagonism. J. Asthma 21, 375-385.
- Tsien, R.W., Lipscombe, D., Madison, D.V., Bley, K.R. and Fox, A.F. (1988) Nultiple type of neuronal calcium channels and their selective modulation. *Trends Neurosci.* 11, 431-438.
- Uchida, Y., Ninoniya, H., Saotome, M., Nomura, A., Ohtsuka, M., Yanaginawa, M., Goto, K., Naski, T. and Hasegawa, S. (1988) Endothalin, a noval vasoconstrictor peptide, as a potent bronchoconstrictor. Eur. J. Pharmacol. 154, 227-228.
- van Breemen, C., Aaronson, P., Loutzenhiser, R. and Meisheria, K. (1979) Sodiumcalcium interaction in mammalian smooth muscle. *Pharmacol. Rev.* 30, 167-208.
- Vanhoutte, P.M. (1974) Inhibition by acetylcholine of adrenergic neurotransmission in vascular smooth muscle. Circ. Res. 34, 317-326.
- Vanhoutte, P.M. and Katusic, Z.S. (1988) Endothelium-derived contracting factor: Endothelin and/or superoxide anion? Trends in Pharmacol. Sci. 9:229-230.
- Vanhoutte, P.M., Rimele, T.J. and Flavahan, N.A. (1985) Lipoxygenase and calcium entry in vascular smooth muscle. J. Cardiovasc. Pharmacol. 7, S47-S52.
- Vanhoutte, P.H. Rubanyi, G.M., Miller, V.M. and Houston, D.S. (1986) Modulation of vascular smooth msucle contraction by endothelium. Ann. Rev. Physiol. 48, 307-320.
- Vanhoutte, P.M. and Miller, V.M. (1989) a2-Adrenoceptors and endothelium-derived relaxing factor. Am. J. Ned. 87 (3C), 1S-5S.

k

١.

- Vanhoutte, P.M. (1989) Endothelium and control of vascular function: state of the art lecture. Hypertension 13, 658-667.
- Vanhoutte, P.H., Auch-Schwelk, W., Boulanger, C., Janssen, P.A., Katusic, Z.S., Komort, K., Hiller, V.H., Schnir, V.B. and Vidal, M. (1989) Does endothelin-1 mediate endothelium-dependent contractions during anoxia? J. Cardiovasc. Pharmacol. 13 (Suppl. 5) 124-128.

- Van Renterghem, C., Vigne, P., Barhanin, J., Schmid-Alliana, A., Frelin, C. and Zdunski, M. (1989) Nolecular mechanism of endothelin-1 action on aortic cells. J. Cardiovasc. Pharmacol. 13 (Suppl. 5), S186-S187.
- von Tscharner, V., Prod'hom, B., Baggiolini, K. and Reuter, H. (1986) Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. Nature (Ecod.) 324, 350-372.
- Wallhöfer, A., Weir, S., Rüegg, U. and Cauvin, C. (1989) The mechanism of action of endothelin-1 as compared with other agonists in vascular smooth muscle. J. Cardiovasc. Pharmacol. 13 (Suppl. 5) \$23-\$33.
- Matanabo, H., Miyazaki, H., Kondoh, M., Masuda, Y., Kimura, S., Yanagisawa, M., Masaki, T. and Murakami, K. (1989) Two distinct types of endothelin rescaptors are present on chick cardiac membranes. *Biochem. Biophys. Res. Commun.* 161, 1252-1259.
- Webb, D.J. (1991) Endothelin receptors cloned, endothelin converting enzyme characterized and pathophysiological roles for endothelin proposed. Trends in Pharamool. Sci. 12, 43-46.
- Wei, E.P. and Kontos, H.A. (1990) H202 and endothelium-dependent corebral arteriolar dilation: Implications for the identity of endothelium-derived relaxing factor generated by acetylcholine. Hypertension 16, 162-169.
- Weiser, E., Wollberg, Z., Kochva, E. and Lee, S.Y. (1984) Cardiotoxic effects of the venom of the burrowing ssp. Atractaspis engaddensis (Atractaspididae, Ophidia). Toxicon 22, 767-74.
- Wileman, T., Harding, C., Stahl, P. (1985) Receptor mediated endocytosis. Biochem. J. 232, 1-14.
- Wollberg, I., Shabo-Shina, R., Intrator, N., Bdolah, A., Kochwa, E., Shavit,G., Orcon, Y., Vinde, B.A. and Gitters, S. (1983) > novel cardiotoxic polypeptide from the venom of Atractaspis engaddemais (Burroving asp): Cardiac effects in mice and isolated rat and human heart preparations. Toxicon 26, 515-514.
- Yanagiaawe, K., Inoue, A., Ishikawa, T., Kauya, Y., Kimura, S., Kumagaye, S., Nakajima, K., Watanabe, T.X., Sakakibara, S., Goto, K. and Masaki, T. (1986b) Primary structure, synthesis and biological activity of rat endotholin and endothelium-derived vasoconstrictor peptide. Proc. Natl. Acad. Sci. U.S.A. 65, 6964-657.
- Yanagiaswa, M., Kurihara, H., Kimura, S., Tombe, T., Kobayashi, K., Mitsui, Y., Yazak, Y., Goto, K. and Masaki, T. (1988a) A novel potent vasoconstrictor paptide produced by vascular endothelial cells. Nature (Lond.) 312, 411-415.
- Yanagisawa, M. and Masaki, T. (1989b) Endothelin, a novel endothelium-derived peptide. Biochem. Pharmacol. 38, 1877-1883.

- Yanagisawa, N. and Masaki, T. (1989a) Molecular biology and biochemistry of the endotheling. Trends in Pharmacol. Sci. 10, 374-378.
- Yanagiaswa, M., Torous, A., Takuwa, Y., Mitsui, Y., Kobayashi, K. and Hasaki, T. (1959) The human preprondothelin-1 gene: possible regulation by endothelial phosphoinositide turnover signaling. J. Cardiovaso. Pharmacol. 13 (Suppl. 5), 513-517.
- Yoshizawa, T., Shinmi, O., Giaid, A., Yanagisawa, M., Gibson, S.J., Kimura, S., Uchiyama, Y., Polak, J.H., Maaaki, T. and Kanazawa, I. (1990) Endothalin: a novel peptide in the posterior pituitary system. Science 247, 452-464.
- Yoshiuuni, N., Kurihara, H., Sugiyama, T., Takaku, F., Xanagiawa, M., Masaki, T., Yazaki, Y. (199) Hendynamic aheas etress stimultess endothelin production by cultured endothelial cells. Siochem. Biophys. Res. Commun. 161. 859-864.
- Zeidel, M.L., Brady, H.R., Kone, B.C., Gullans, S.R. and Brenner, B.N. (1989) Endothelin, a peptide inhibitor of Na<sup>-</sup>-K<sup>\*</sup>-MPase in intact renal tubular cells. Am. J. Physiol. 257, C1101-1107.

--






