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ABSTRACT 

Cytokines and steroidal hormones modulate HLA-DR expression on breast cancer 

cell lines (BCCL ). This study compared the individual and combined quantitative effects 

of IFN-y, IL-4, TGF-J31, and 17J3-estradiol on HLA-DR expression on 8 human breast 

carcinoma cell lines (MCF-7, T47D, BT-474, BT-20, MDA MB 157, MDA MB 231, 

MDA MB 468, SKBR3) through the use of monoclonal antibodies and flow cytometry 

and CELISA. 

Due to problems with the reconstitution solvents, we were unable to determine the 

effects of estradiol treatment on HLA-DR expression. However, comparison of 

constitutive and IFN-y-induced HLA-DR expression in medium containing or depleted of 

estrogen illustrated that media components, particularly estrogen, significantly modulated 

HLA-DR expression on BCCL. 

We report distinct patterns in cytokine modulation of HLA-DR expression when 

co-cultured in estrogen-depleted media. Although IFN-y increased HLA-DR expression 

on all cell lines, addition of IL-4 selectively increased HLA-DR expression on MCF-7 

and SKBR3, and addition of TGF-J31 selectively increased expression on BT-20 and 

SKBR3. Furthermore, analysis of TGF-J31 sensitivity through detection of 

phosphorylated Smad2 and Smad3 proteins (P-Smad2, P-Smad3) by Western blotting 

showed differential expression of P-Smad proteins in BCCL, as both BT -20 and SKBR3 

expressed P-Smad3 but not P-Smad2. Since P-Smad3 is thought to inhibit CIITA in most 

cell types, we suggest that TGF-J31 mediated up-regulation of HLA-DR on breast cancer 

cell lines may be mediated through a Smad-independent pathway. 
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Chapter 1: Introduction 

1.1. Major Histocompatibility Complex (MHC) 

The major histocompatibility complex (MHC), also referred to as human 

leukocyte antigen (HLA) complex, is a collection of highly polymorphic genes that 

encode cell surface glycoproteins essential in the induction and regulation of adaptive 

immune responses. HLA proteins are divided into three groups: HLA class I, class II, and 

class III. HLA class I (HLA-A, -B, -C) and class II (HLA-DR, -DP, -DQ) molecules are 

vital in adaptive immune responses by virtue of their ability to bind and present antigenic 

peptides to CD8+ and CD4+ T cells respectively. HLA molecules on thymic epithelial 

cells (TEC) are also crucial for positive selection, negative selection, and maturation ofT 

cells in the thymus. This ensures survival ofT cells that carry T cell receptors (TCR) 

capable of recognizing self-MHC molecules, while eliminating autoreactive T cells (for 

review see [1]). 

While MHC class I molecules are present on most nucleated cells, constitutive 

expression of MHC class II molecules is largely restricted to antigen presenting cells 

(APCs), namely dendritic cells (DC), B cells, and macrophages. MHC Class II expression 

is regulated on these cells in a maturation-dependent manner, such that MHC expression 

on DC increases with maturation, whereas B cells lose MHC expression when they 

mature to plasma cells [2-4]. In addition, TEC and activated T cells also express HLA 

class II, and expression may be induced on most other MHC negative cell types by 

various stimuli, such as interferon gamma (IFN-y). 
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1.1.1. Nomenclature ofHLA Class II Molecules 

Nomenclature of HLA class II molecules consists of three letters: the first (D) 

indicates the class, the second (M, 0, P, Q, orR) the family, and the third (a or P) the 

chain. Individual genes are numbered, and the numerous allelic variants of these genes 

are noted by a number preceded by an asterisk. For example, HLA-DRBI *0401 stands 

for allelic variant 0401 of gene 1, which encodes the P chain of a class II molecule 

belonging to the R family [5]. 

1.1. 2. Structure of HLA Class II Molecules 

HLA class II genes are located within approximately 4 Mb of DNA on the distal 

part of chromosome 6p21.3 and encode the polymorphic HLA-DR, HLA-DP, and HLA

DQ proteins. Each HLA class II molecule is a heterodimer, composed of two 

transmembrane glycoproteins, a (34 kDa) and p (29 kDa), which associate through non

covalent interactions (Figure 1.1 ). 

Each chain has four domains: the peptide-binding domain (a1 or PI), the 

immunoglobulin-like domain ( a2 or P2), the transmembrane region, and the cytoplasmic 

tail. The peptide binding groove of HLA class II molecules consists of two parts. The 

floor consists of a rather flat antiparallel p-pleated sheet composed by both a and p 

chains, while both walls are coiled into a-helix formations. The peptide-binding groove 

is formed between the al and PI domains [5] and remains open-ended to accommodate 

longer peptides [6]. Peptides bind in an extended conformation and are held by a series of 

hydrogen bonds between the peptide backbone and conserved amino acid side chains 
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Figure 1.1. Structure of HLA class II molecules. Each of the Class II a and p chains has 
four domains: the peptide-binding domain (formed by al and pl), the immunoglobulin
like domain ( a2 or P2), the transmembrane region (TM), and the cytoplasmic tail. 
Adapted from [5]. 
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lining the groove. There is an extreme degree of variation concentrated on amino acid 

residues shaping the peptide-binding site, leading to a high degree of peptide-binding 

specificity. 

1.1.3. HLA-DR Polymorphism 

Both a and p chains may contribute to HLA-DR polymorphism. Currently, the 

HLA-DR a-chain has only three DRA alleles (DRA*0101, DRA*Ol0201, and 

DRA *010202) [7] offering limited polymorphism, while there are 394 HLA-DRB1 

alleles, 41 HLA-DRB3 alleles, 13 HLA-DRB4 alleles, and 18 HLA-DRB5 alleles [7]. 

Thus, most HLA-DR polymorphism is derived from DRB genes. 

The complete set of HLA alleles present on each chromosome is referred to as the 

HLA haplotype, and the number ofHLA-DRB genes expressed by an individual depends 

on the haplotype inherited. These haplotypes include DRB1 *15 and 16 expressed in 

association with DRB5; DRB1 *03, 11, 12, 13, and 14 with DRB3; DRB1 *04, 07, and 09 

with DRB4; and DRBl *01, 10 and 08, which are not in association with any other DRB

expressed genes [8]. Thus, assuming heterozygosity, an individual can express as many 

as 4 HLA-DR allotypes. 

1.2. MHC Class II Antigen Presentation Pathway 

Alpha and P chains of MHC class II molecules are rapidly synthesized within the 

endoplasmic reticulum. There they associate with the invariant chain (Ii), which acts as a 

chaperone to ensure efficient folding of newly synthesized a and p subunits. The Ii forms 
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trimers, with each subunit non-covalently binding to an a:f3 class II heterodimer, forming 

a large nonameric structure. The Ii binds to HLA class II molecules such that part of the 

polypeptide chain, the class II-associated invariant chain peptide (CLIP), occupies the 

peptide-binding groove [9] preventing loading of endogenous peptides within the 

endoplasmic reticulum [ 1 0]. 

Ii also directs assembled heterodimers out of the endoplasmic reticulum, through 

the Golgi apparatus, and into primary lysosomes which fuse with early endosomes to 

form the MHC class II compartment (MIIC) [11]. The cytoplasmic tail of Ii contains a 

dileucine motif that directs class II I Ii chain complexes to localize within the endocytic 

pathway [12]. It is within the MIIC that the majority of peptide loading will occur [13] as 

class II molecules encounter antigenic peptides generated by proteolytic degradation of 

endocytosed exogenous proteins [ 14]. 

Ii is degraded within the MIIC by lysosomal proteases, such as cathepsin LandS 

[15-17]. However the CLIP fragment is protected from degradation by being deeply 

embedded in the class II structure, and therefore continues to occupy the peptide -

binding groove. The exchange of CLIP for antigenic peptides is facilitated by the low pH 

of lysosomal MIICs [18]. Additional support is supplied by HLA-DM, a specialized 

lysosomal chaperone encoded by HLA-DMA and HLA-DMB genes in the HLA locus 

[19]. HLA-DM functions as a "peptide editor," releasing CLIP and unstable, low-affinity 

binding peptides from the peptide-binding groove, while retaining stable, high-affinity 

bound peptides [20-24]. HLA-DM also stabilizes empty class II molecules that would 

5 



otherwise aggregate into nonfunctional complexes [21, 25]. Most HLA-DM heterodimers 

reside in the MIICs with very low amounts detected on the cell surface [26, 27]. 

HLA-DO, a heterodimer composed of gene products of HLA-DNa and HLA

DOP [28, 29], is a negative regulator ofHLA-DM. HLA-DO is predominantly expressed 

in B cells, and regulates HLA-DM mediated CLIP release and formation of class II

peptide antigenic complexes [30]. 

1.3. Regulation of HLA Class II Gene Expression 

Expression of HLA class II and related genes is regulated mainly at the level of 

transcription and is characterized by the presence of a conserved sequence of cis-acting 

elements within the promoter region. These elements include the W (or S), X, X2 and Y 

boxes, and are collectively known as the S-X-Y module [31, 32]. 

Transcription of HLA class II genes requires the assembly of a highly stable 

macromolecular nucleoprotein complex that binds on the S-X-Y module. This complex, 

referred to as the enhanceosome, consists of regulatory factor X (RFX), X2-binding 

protein (X2BP) I cyclic adenosine monophosphate (cAMP) response element binding 

protein, and nuclear factorY (NF-Y) multimeric factors [33] (Figure 1.2). 

The transcription factors that compose the enhanceosome are well characterized. 

The X box is bound by RFX, a trimeric complex composed ofRFX5, RFXANK (RFX-B) 

and RFXAP [34-37]. The downstream X2 box is recognized by X2BP, a complex that 

includes cAMP response element binding protein (CREB) [38]. The trimeric NF-Y 

complex, composed ofNF-Y A, NF-YB, and NF-YC, binds to the Y box [39]. The in vivo 
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Figure 1.2. CIITA interaction with MHC enhanceosome on the HLA-DRa promoter. 
MHC Class II promoters share a common set of cis-acting elements, the W /S, XI, X2, 
and Y boxes (S-X-Y module) which are bound by constitutive and ubiquitous 
transcription factors forming the multiprotein MHC Class II enhanceosome complex. The 
enhanceosome provides an appropriate interaction surface for recruitment of CIIT A. 
CIITA associates with an array of TAFs and elongation factors which lead to initiation of 
mRNA synthesis. Upstream of the proximal promoter is a recently discovered inverted S
X-Y module, known as the locus control region, which also associates with CIIT A and 
RFX. Adapted from [33]. 
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W-box-binding protein remains unclear, although a number of proteins including RFX 

have been shown to bind the W box in vitro [ 40]. 

The DRa promoter also includes an ATGCAAAT octamer-binding site (OBS). In 

B cells this site is bound by transcription factors Oct-1 and Oct-2 [41]. Octamer binding 

factor 1 (OBF-1) binds to Oct-1 and Oct-2, increasing their ability to activate 

transcription [42, 43]. 

The transcription factors described above are ubiquitously and constitutively 

expressed, but fail to induce MHC class II expression on their own. Instead they form the 

enhanceosome complex which provides an appropriate interaction surface for recruitment 

ofthe class II transactivator (CIITA) [31, 44, 45]. 

CIIT A is believed to activate transcription by recruiting various components of 

the basal transcription machinery via its amino-terminal activation domains. CIITA can 

interact with general transcription factors TFIIB (TATA binding protein-associated 

transcription factor liB), TAFn32, and TAFn70, which promote transcription initiation 

[46, 47]; TIIH and p-TEFb (positive elongation factor b) which enhance promoter 

clearance and transcription elongation [47, 48]; and CREB-binding protein (CBP) 

involved in chromatin remodeling [49, 50]. These transcription factors are not mutually 

exclusive, thus several factors may activate transcription simultaneously. Recent studies 

also show that CIITA interacts with the cyclin-dependent kinases 7 (CDK7) and CDK9 

and enhances their ability to phosphorylate the carboxy-terminal domain of RNA 

polymerase II (Pol II), thereby initiating promoter clearance and mRNA synthesis [51]. 
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I. 3.1. Class II Trans activator 

CIITA functions as a non-DNA binding coactivator that exerts its activity through 

multiple protein-protein interactions with the enhanceosome complex [45, 52, 53]. 

Binding of CIIT A to the enhanceosome requires stereospecific alignment and stringent 

spacing, such that a 1-2 bp change in the S-X distance is detrimental for CIITA 

recruitment and function [54, 55]. Although multiple interactions between CIITA and the 

proximal S-X-Y module are essential for MHC Class II expression, basal and induced 

class II gene expression is also regulated by a putative Locus Control Region (LCR) that 

lies approximately 2.3 kb upstream of the HLA-DRa gene in humans [56]. 

In contrast to the relative constitutive expression of DNA-binding factors 

composing the HLA enhanceosome complex, expression of the MHC2TA gene encoding 

CIITA is tightly regulated. In most situations, the expression pattern of MHC2TA largely 

parallels MHC class II expression with CIITA dictating the extent to which MHC class II 

genes are expressed (for review see [57]). CIITA is thus referred to as the "master 

regulator" of MHC class II genes. 

In addition, CIIT A is important in the regulation of several other genes containing 

S-X-Y boxes within their promoters. These include genes encoding accessory proteins 

required for MHC class II restricted antigen presentation [58], such as Ii [59], HLA-DM 

[60, 61], and HLA-DO [15, 60, 62-64]. Expression ofthese proteins is essential for MHC 

class II complex assembly and translocation to the cell surface [23, 65, 66]. Reports also 

indicate that CIITA contributes, albeit to a lesser extent, to expression of classical MHC 

class I and P2 microglobulin CP2M) genes via interaction with a region showing homology 
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to the S-X-Y module within the MHC class I promoter and [32M promoter [67-69]. Thus, 

CUT A either partly or completely controls multiple genes involved in antigen 

presentation. 

1.3.1.1. Structure ofCIITA 

CIITA protein contains four domains (Figure 1.3). The amino-terminal contains a 

region rich in acidic amino acids (residues 1-125) which has transactivation properties, 

possibly achieved by providing surfaces for interaction with the histone acetylase CBP 

and RFXANK [44, 49, 50]. Downstream of this acidic region is a domain rich in proline, 

serine, and threonine (residues 126-336), containing multiple phosphorylation sites. The 

midsection of the protein contains a GTP-binding domain (residues 337-702), involved in 

protein self-association and is important in nuclear import [70-72]. Finally, the carboxy

terminus contains a leucine-rich (LRR) domain (residues 930-1130) that affects nuclear 

translocation and self-association [73, 7 4]. In total, three regions of CIIT A are implicated 

in nuclear localization: the carboxy-terminus [75], the GTP-binding motif [76], and the 

LLR [73]. 
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Figure 1.3. Structure and functional regions of CIIT A protein. CIIT A contains an acidic 
domain (red), a P/S/T domain (blue), three nuclear localization domains (NLS), and a 
LRR (pink). The Gl, G3, and G4 domains (gray boxes) define a GTP-binding domain. 
The four LXXL sites (green boxes) are thought to be involved in protein-protein 
interactions. Bars underneath schematic indicate regions of CIIT A found to interact with 
transcription factors and coactivators. Adapted from [31] and [77]. 
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1.3.1.2. Modulation ofCIITA Expression 

Since enhanceosome components are ubiquitously expressed, differences in MHC 

class II expression between cell lines, during differentiation, and induced by cytokines is 

due to differences in CIIT A expression. CIIT A transcription may be up-regulated by 

IFN-y [59, 78, 79], lipopolysaccharide [80], and interleukin-4 (IL-4) [80]. However, both 

constitutive and IFN-y-induced CIITA expressions are frequently silenced in tumor cells 

of various origins. 

CIIT A is also negatively regulated by several factors, such as interleukin-1-beta 

(IL-1P) [81], IFN-P [82], tumor necrosis factor-alpha (TNFa) [83], IL-10 [84], nitric 

oxide [85], transforming growth factor-beta (TGF-P) [86-88], prostaglandins [89], and 

statins [90, 91]. In addition, many human pathogens down-regulate MHC class II 

expression and evade the immune system by inhibiting CIITA expression [92-94]. 

1.3.2. MHC2TA Promoters 

Transcriptional activation of the MHC2TA gene encoding CIITA is controlled by 

four independent promoters (I-IV). These promoters are distributed over approximately 

12 kb, but do not share any sequence homology and are not co-regulated. Immediately 

downstream of each promoter exists a unique exon 1 that is spliced with the remaining 

shared exons to form three different types of CIIT A (I, III, and IV) (Figure 1.4 ). 

Translation of CIITA mRNA may begin in exon 2; however, types I and III CIIT A 

mRNA contain translational start sites in exon 1 that give rise to distinct mRNA 

transcripts encoding CIIT A molecules with different amino-terminal protein sequences 
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Figure 1.4. Expression of the MHC2TA gene. Four promoters (pi, pii, pill, piV) have 
been identified in humans. Usage of these promoters leads to the splicing (dashed lines) 
of alternative first exons (shaded boxes) to a shared second exon, forming three types of 
CIITA mRNA that encode three different protein isoforms (black bars). These proteins 
differ only at their amino-terminal ends. The boundary between the alternative first exons 
and the shared second exon is indicated by a vertical line. pii displays very low 
transcriptional activity and its significance is unknown. Adapted from [95]. 
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[96]. These three isoforms of CIITA (121, 124, and 132 kDa) are all known to exist in 

vivo [97]. 

Promoters I, III, and IV are highly conserved between the human and mouse 

genome, while promoter II has only been found in the human genome and its function 

remains unknown. Promoter I is active in myeloid cells (conventional DC and IFN-y 

activated macrophages); promoter III is active in lymphoid cells (B-1 and B-2 cells, 

activated T cells, and plasmacytoid DC) [96]; and promoter IV is mainly responsible for 

induction by IFN-y in non-bone marrow-derived cells (endothelial, epithelial, fibroblasts, 

and astrocytes) [98], but is constitutively expressed in TEC [99]. 

1.4. Cytokine Modulation of HLA-Class II Expression 

1.4.1. Interferon-gamma (IFN-rJ 

Induction of MHC class II molecules by IFN-y is CIITA-dependent [59, 78, 79]. 

IFN-y binds to the IFN-y-receptor and induces synthesis of CIITA through promoter IV 

in most cell types [81, 96, 98-100]. IFN-y may also contribute to CIITA induction via 

promoter III in human fibroblasts and B cells [100-102]. 

IFN-y induction via piV is dependent on three cis-acting sequences, a gamma 

activating sequence (GAS) element, an interferon regulatory factor (IRF) binding site, 

and an E box, which all function in synergy (Figure 1.5). Interaction of IFN-y with its 

receptor activates Janus activating kinases (JAK) 1 and JAK2, which leads to 

phosphorylation, dimerization, and nuclear import of signal transducer and activator of 

transcription 1 (STAT-1). STAT-1 binds cooperatively to the GAS sequences only in the 
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Figure 1.5. Signal transduction cascade mediating IFN-y induction of HLA class II. 
JAKl and JAK2 kinases become activated following interaction of IFN-y with its 
receptor. This leads to phosphorylation, dimerization, and nuclear import of STAT-I. 
STAT -1 binds cooperatively with USF -1 to the GAS/E box motif present in piV of the 
MHC2TA gene. STAT-I also activates IRF-1, which collectively with STAT-I and USF
lleads to expression ofCIITA and induction ofMHC class II. Adapted from [57]. 
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presence of a ubiquitously expressed transcription factor, upstream stimulatory factor 1 

(USF-1), which binds to the adjacent E box motif present in piV of the MHCT2A gene 

[99]. STAT-I also activates expression ofiRF-1, which binds to the IRF sequence [100]. 

Activation of piV by STAT-1, USF-1, and IRF-1 leads to expression of CIITA and 

subsequent induction ofMHC class II expression. 

In contrast to-the IFN-y response activated through piV, pili is activated directly 

by IFN-y-induced phosphorylation of STAT-1 [100, 101]. Thus, cooperation between 

STAT -1 and IRF -1 is not necessary for induction of CIIT A through pili, but may explain 

the enhanced response of piV to IFN-y. Activation of STAT-1 is an immediate response 

and does not require protein synthesis, while activation of IRF -1 is a secondary response 

that requires protein synthesis and prior activaction of other molecules, including STAT

I [ 1 00]. Therefore, STAT -1 mediates a faster IFN -y response via pi II, while IRF -1 

mediates a slower response via piV [100]. 

IFN-y-induced gene activation is generally a transient event. Suppressor of 

cytokine signaling -1 (SOCS-1) is induced by IFN-y and this protein negatively regulates 

the IFN-y signal transduction pathway by binding to JAK2 and inhibiting its kinase 

activity [103, 104]. SOCS-1 can also suppress IFN-y-activated expression ofpiV of the 

MHC2TA gene [84]. Hypermethylation and silencing of specific SOCS genes has been 

reported in breast and ovarian cancers, and may augment cytokine responses in these 

tissues [1 05]. 
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1.4.2. Interleukin-4 (JL-4) 

IL-4 is a pleiotrophic cytokine typically produced by mast cells, basophils, and 

TH2 lymphocytes [106, 107], but also produced by tumor infiltrating lymphocytes in 

breast cancer [ 108, 1 09]. IL-4 regulates differentiation of na'ive T lymphocytes, promotes 

proliferation and immunoglobulin class-switching in B cells, and controls growth and 

differentiation of other hematopoietic cells (for review see [110] and [111]). These 

actions are mediated via a multiunit transmembrane receptor, the IL-4 receptor (IL-4R) 

[112, 113]. 

The IL-4R is composed of two subunits, the first being the ligand-binding chain, 

IL-4Ra. The second subunit, in hematopoietic cells, is typically they-common chain (yc), 

first identified as a component of the IL-2R [114, 115], and forms type I IL-4Rs. 

However, recent studies indicate that in nonhematopoietic cells the IL-13Ra' chain is the 

predominant accessory chain of the IL-4R complex [116, 117], forming type II IL-4Rs. 

This agrees with other reports that the a chain is necessary for IL-4 activity but IL-4R 

may also act independently of yc chain [118, 119]. Breast tumor cells are reported to 

express type II IL-4Rs [120, 121]. 

The IL-4R lacks intrinsic kinase activity; therefore it requires receptor-associated 

kinases for the initiation of signal transduction. Binding of IL-4 to the IL-4R activates 

JAKI and JAK3 [122], which phosphorylate the cytoplasmic domain of the receptor as 

well as downstream signaling molecules. Two main pathways are activated in this 

manner, the insulin-receptor substrate-! (IRS-I) I IRS-2 pathway and the STAT-6 

pathway [123, 124]. Both of these pathways are thought to communicate with several 
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signaling pathways, including the phosphoinositol-3-kinase (PI3K), Ras/mitogen 

activated protein kinase (MAPK), and AKT pathways (for review see [111, 125]). 

Studies indicate that IL-4-mediated signaling by STAT -6 (Figure 1.6) plays a role 

in the transcription activation of MHC class II. IL-4 has been shown to increase MHC 

class II antigen expression on B cells [126-128], human endometrial adenocarcinoma cell 

lines [129], and to selectively increase HLA-DR and HLA-DP antigens on human 

monocytes [130]. However, IL-4-induced cell surface expression of both MHC class II 

antigens and IL-4 receptor are completely abrogated in lymphocytes from STAT -6-

knockout mice [131, 132], suggesting that such effects are STAT-6-dependent. 

Furthermore, transfection of STAT -6c, a dominant negative form of STAT -6 lacking the 

functionally critical SH2 domain residues, prevents cells from expressing MHC class II 

by inhibiting endogenous STAT-6 dimer formation [133]. 

IL-4 may also up-regulate MHC class I, class II, lhM, and tumor associated 

antigens on human melanoma cells and human renal cell carcinomas, and these effects 

are enhanced by combination with IFN-y [134, 135]. A similar additive effect ofiL-4 and 

IFN-y on HLA-DR expression in melanoma and breast carcinoma cells was reported by 

Obiri et al. [136], while contrasting reports indicate IL-4 suppresses IFN-y-induction of 

CIITA and MHC class II expression in microglial cells, astrocytes, and monocytes [84, 

130, 137-139]. It is currently unknown if IL-4-mediated induction of MHC on cancer 

cells is also STAT-6-dependent. Nevertheless, the combined augmentation ofMHC class 

II by IFN-y and IL-4 is of particular interest as these cytokines are generally known to 
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IL-4 

Figure 1.6. IL-4 receptor signaling through the STAT-6 pathway. IL-4 engagement of 
the IL-4R results in the activation of JAK1 and JAK3 and phosphorylation of specific 
tyrosine residues in the receptor cytoplasmic region. STAT-6 binds to the phosphorylated 
receptor by a highly conserved SH2 domain and becomes phosphorylated. 
Phosphorylated STAT-6 disengages from the IL-4Ra cytoplasmic tail, forms 
homodimers with a second P-STAT-6, and translocates to the nucleus where it activates 
transcription of responsive genes in cooperation with other transcription factors. 
Alternatively spliced forms ofSTAT-6 have deletion in the amino-terminal (STAT-6b) or 
SH2 regions (STAT-6c) and regulate STAT-6 signaling. The exact mechanism by which 
STAT-6 activates transcription is still being determined. Adapted from [111]. 
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have antagonist effects, such as during the differentiation of naive CD4+ T cells into TH1 

and T H2 subsets. 

1.4.3. Transforming Growth Factor-Beta (TGF-fJ) 

TGF -~ was first identified and named for its ability to stimulate the proliferation 

and transformation of mesenchymal cells [140]. It is now known as a ubiquitous and 

essential regulator of cellular and physiological processes including proliferation, 

differentiation, migration, cell survival, angiogenesis, and immunosurveillance (for 

review see [141]). 

Three TGF-~ isoforms are expressed in mammals (TGF-~1,-~2, -~3) and each is 

encoded by a unique gene and expressed in a tissue-specific and developmentally 

regulated fashion. Of these, TGF-~1 is the most abundant and universally expressed 

isoform [141]. 

TGF -~ is secreted into the extracellular matrix as a latent protein complex bound 

to a latency-associated-protein and one of four isoforms of the TGF-~ binding protein. 

Activation of TGF-~ is required for biological activity, which occurs through poorly 

understood mechanisms, likely involving proteolytic processing of associated proteins 

and release of the TGF-~ ligand. Once activated, TGF-~ regulates cellular processes by 

binding to three high-affinity surface receptors: T~RI, T~RII, and T~RIII [142]. Where 

expressed, T~RIII is the most abundant TGF-~ receptor and classically functions by 

binding TGF-~ ligand and transferring it to signaling receptors, T~RI and T~RII [143]. In 
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this manner, recent reports suggest that TPRIII plays an important role in regulating 

TGF-P signaling [144]. 

TPRI and TPRII contain serine I threonine protein kinases in their intracellular 

domains, and TPRI initiates intracellular signaling by phosphorylating the Smad family 

of proteins (depicted in Figure 1.7). The importance of this pathway in cancer 

development is underscored by the observation that Smad2 and Smad4 are deleted or 

mutated in some cancer cell lines and tumors [145-147]. Aside from the Smad-dependent 

signaling pathway, Smad-independent signaling may also occur through MAPK signaling 

pathways [148, 149], Rho guanosine triphophatases [150], PI3K I AKT [151], and protein 

phosphate 2A [152]. The precise molecular mechanism by which TGF-P signals through 

these alternative pathways has not been established. 

Reports indicate that TGF-P markedly attenuates IFN-y-induced CIITA 

expression by inhibition of MHC2TA transcription in various cell types, including 

astroglioma, fibrosarcoma, epithelial, monocyte, synovial, microglial, and B cells [84, 87, 

88, 101, 153]. This inhibition occurs through suppression of both CIITA pili and piV 

[101, 153]. Surprisingly however, TGF-P does not affect IFN-y-induced phosphorylation 

of JAK1, JAK2 or STAT-1, nor does it interfere with binding of STAT-1, USF-1 or IRF-

1 to piV of the MHC2TA gene [86, 154]. Thus, TGFP inhibits IFN-y-induced Class II 

expression without affecting the individual components of the IFN-y signaling pathway. 
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Figure 1.7. Transforming growth factor-P signaling through the SMAD pathway. TGF-P 
binds TPRII directly or through TPRIII, inducing association of TPRII with TpRI. The 
TPRII kinase is constitutively active and activates TPRI by phosphorylation of serine and 
threonine residues [155], which propagates the signal by phosphorylation of Smad2 or 
Smad3. Phosphorylated Smad2 or Smad3 associate with Smad4, a common partner for all 
receptor activated Smads, forming a heteromeric complex that translocates to the nucleus 
and regulates gene transcription in a cell-specific manner [156, 157]. Smad6 and Smad7 
are inhibitory Smads that block TGF-P signaling by preventing the activation of Smad2 
or Smad3 by TPRI [158]. Adapted from [141] and [159]. 
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1.5. Estrogen and Estrogen Receptors 

Approximately 60% of breast cancer patients have hormone-dependent breast 

cancer, which expresses estrogen receptors and requires estrogen for growth [ 160]. 

However, the proportion of patients with hormone-sensitive tumors is higher among 

postmenopausal women [160]. Studies illustrate that breast cancer development and 

progression are directly influenced by steroid hormones, particularly estrogen, via its 

interaction with specific target cell promoters (reviewed by [161]). Studies also indicate 

that prolonged stimulation of breast ductal epithelium by estrogen contributes to an 

increase in cell proliferation and an increase in cell survival (reviewed by [162]). 

Furthermore, the risk of developing breast cancer is enhanced in individuals experiencing 

early menarche or late menopause as these increase the exposure time to endogenous 

ovarian hormones [163]. 

Estradiol, the most biologically active estrogen, is synthesized primarily from 

androgens by the enzyme aromatase in the ovaries of premenopausal woman [ 164, 165]. 

This enzyme is also present in various tissues, including adipose tissue, skin, brain, bone, 

and placenta. It has been demonstrated that despite low serum levels, certain breast 

carcinomas display high concentrations of estrogen [166, 167] due to local synthesis and 

increased expression of intratumoral aromatase [168, 169]. This suggests that the 

estrogen responsible for breast cancer development may not be circulating estrogen, but 

rather that produced locally. 

Estrogen typically exerts its effects through the estrogen receptor (ER) [170]. Free 

estrogens passively diffuse across the cell membrane and are preferentially retained in 
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target cells through formation of a high affinity complex with nuclear ERs. ER variant 

proteins lacking the nuclear localization signals are also known to occur, causing them to 

remain in the cytoplasm or cell membrane [ 1 71-1 73]. 

Two forms of the human ER gene exist, the first identified was ERa [174], and 

the second was ERI3 [175]. ERI3 was originally cloned from the rat prostate [176], but has 

since been identified in mice [ 1 77], and in the human thymus, spleen, ovaries, and testis 

[175]. Low levels are also detected in normal and carcinoma human breast tissue [178, 

179]. However, the function and potential role of ERI3 in cancer progression is presently 

unclear. 

In the absence of ligand, ER exists as a monomer bound by heat shock proteins 

(HSPs) [180, 181]. Ligand binding activates the receptor, dissociating the HSPs, causing 

a conformational change in the receptor, phosphorylation of distinct serine I threonine 

residues [182], and nuclear translocation. Activated receptors dimerize, interact with a 

variety of coregulatory molecules forming a receptor complex that acts as a transcription 

factor by binding to estrogen-responsive elements (ERE) located in the promoter region 

of target genes. The classical ERE is a palindromic sequence composed of two inverted 

hexanucleotide repeats [180]. Ligand-bound ERa and/or ERI3 may bind to EREs as 

homo- or heterodimers to alter gene transcription [180, 181] (Figure 1.8A). Coactivators 

and corepressors may modulate this classical pathway of ER transcriptional activation by 

interacting with basal transcription machinery to either help unwind or repress the 

chromatin structure [183-189]. 
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In contrast to ERI3, ERa has been extensively studied. Protein levels of ERa and 

the ER-regulated progesterone receptor are elevated in premalignant and malignant breast 

lesions as opposed to normal tissue, and both receptors currently serve as predictive and 

prognostic factors in the clinical management of breast cancer [190]. Consequently, 

inhibition of ERa has become one of the major strategies for the prevention and 

treatment of breast cancer [191, 192]. ERa expression in breast tumor is considered a 

good prognostic indicator, identifying patients with a lower risk of relapse, better overall 

survival [193], and more likely to respond to antiestrogen therapy. 

The ERa protein is highly homologous between species, and several important 

domains (A-F) have been identified [194] (Figure 1.8B). The ligand-binding domain 

resides in the carboxy-terminal (region E) and contains an estrogen-inducible 

transcription-activating function, known as AF-2 [195, 196]. A second transcription

activating function (AF-1) is localized in the amino-terminal (AlB region) and is believed 

to be constitutively active in a cell- and promoter-specific manner [197]. Between AF-

1and AF-2 is the centrally located DNA-binding domain (DBD) (region C) and hinge 

region (region D). The DBD interacts with EREs [170, 192]. The flexible hinge region 

allows rotation of the DBD to accommodate bindings to DNA response elements and 

interaction with HSPs. The D region also contains a putative nuclear localization 

sequence [198]. 
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Figure 1.8. Estrogen receptor structure and signaling pathway. A) Estrogen signaling 
through the estrogen receptor. B) Functional domains of ERa. AFl, AF2, and AF2a 
function in transcriptional activation, DBD functions in DNA-binding, and LBD 
functions in ligand-binding. Adapted from [162]. 
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1. 5.1. Estrogen and MHC Class II Expression 

17P-estradiol has been shown to have immunomodulatory effects on MHC class 

II expression. In the early 1990s, investigators showed estrogen-mediated down

regulation of MHC class II expression on breast carcinoma epithelial cells and leukocytes 

[199, 200]. Furthermore, using different animal models it has repeatedly been shown that 

estrogen treatment of rodents receiving tissue transplants leads to better graft survival, 

accompanied by a significant reduction or complete abolishment of MHC class II on the 

allograft vasculature [201-203]. 

More recently, ovariectomy has been shown to up-regulate IFN-y-induced CIITA 

expression on macrophages [204]. ER-deficient mice also demonstrate increased 

stimulation of CD4+ T cells by splenic macrophages [205], suggesting that estrogen 

suppresses MHC class II expression. In addition, 17p-estradiol has been shown to down

regulate constitutive and IFN-y-induced class II expression on astrocytes, fibrosarcoma 

cells, macrophages, and brain endothelial cells [206]. 1 7P-estradiol stimulation also 

results in ERa association with the MHC class II promoter [207]. These inhibitory effects 

are not mediated by changes in IFN-y signaling components, or CIITA mRNA, or CIITA 

protein levels, but by inhibition of chromatin remodeling and recruitment of transcription 

factors to the class II promoter [206]. 

Reports indicate that association of CIITA with the class II MHC promoter 

correlates with H3 and H4 histone acetylation, and that histone acetylation is necessary 

for MHA class II transcription [56, 208]. 17P-estradiol attenuates H3 and H4 histone 

acetylation, as well as CBP recruitment to the class II promoter, thereby inhibiting 
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histone acetylation and ultimately inhibiting the chromatin conformation involved in 

MHC gene transcription [206]. 

Through the use of multiple pharmacological inhibitors and blocking of the 

classical estrogen-signaling pathway, Adamski and Beneveniste [207] demonstrated that 

estradiol-mediated inhibition ofMHC class II occurs through activation of a nonclassical 

signaling pathway, the c-Jun N-terminal kinase (JNK) pathway. Of further interest is the 

fact that the JNK signaling pathway is primarily activated by cytokines and cellular stress 

[209]. Moreover, increasing evidence suggests that other pathways, aside form the JNK 

pathway, can also phosphorylate and/or activate the ER. These pathways include PI3K I 

AKT, ERKl/2 (extracellular-signal-regulated kinase) MAPK, p38 MAPK, and SMAD 

signaling pathways, which may also become activated by cytokines. 

1. 6. Hypothesis 

Previous studies in our laboratory and by others showed that HLA class II 

expression on synovial fibroblasts and carcinoma cell lines is modulated by treatment 

with IFN-y [210-213]. Furthermore, generic HLA class II expression induced by IFN-y is 

further up-regulated by cytokines such as IL-4 on human melanomas, renal cell 

carcinomas, and breast carcinomas [134-136], or down-regulated by cytokines such as 

TGF-~ on astrocytes, monocytes, microglial cells, fibrosarcoma cells, epithelial cells, 

melanoma cells, and synovial cells [84, 87, 88]. More recently, Sharon A. Oldford in our 

laboratory showed that HLA-DR allotypic expression on breast carcinoma in situ is 

significantly associated with reduced ERa, reduced PgR, and reduced diagnosis age, 
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suggesting estrogen may be implicated (S.O., unpublished data). Her study also suggests 

that allotypic expression is influenced by the in situ cytokine milieu, particularly IFN-y, 

IL-4 and TGF-p. Based on these studies, we hypothesized that ERa, 17P-estradiol, and 

cytokines IFN-y, IL-4 and TGF-P 1 differentially modulate allotypic HLA-DR expression 

on breast carcinoma cell lines. 

1. 7. Objectives 

1) To examine the effects of 17p-estradiol on constitutive and IFN-y-induced HLA

DR expression on ER+ and ER- breast cancer cell lines. 

2) To investigate the individual and combined effects of IFN-y, IL-4, and TGF-P1 

treatments on HLA-DR allelic expression on breast cancer cell lines and correlate 

these results with ERa classification. 

As this study evolved, we found that TGF -P 1 treatment mediated differential 

effects on HLA-DR expression on breast cancer cell lines. Therefore, we extended the 

study to include a third objective: 

3) To examine breast cancer cell lines for differences in TGF-P1 sensitivity and 

particular components of the Smad signaling pathway to explain cell line specific effects 

ofTGF-Pl on HLA-DR expression. 
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Chapter 2: Materials and Methods 

2.1. Cell cultures 

Breast carcinoma cell lines BT-20, BT-474, MCF-7, MDA MB 157, MDA MB-

231, MDA MB 468, SKBR3, and T47D (Table 2.1) were generous gifts from Dr. Shou

Ching Tang and Dr. Alan Pater (Memorial University ofNewfoundland, St. John's, NL). 

These cell lines were maintained as adherent cultures in Iscove's Modified Dulbecco's 

Medium (IMDM) (Invitrogen, Burlington, ON) supplemented with 10% heat-inactivated 

FCS (fetal calf serum) (Invitrogen), 2 mM L-glutamine (Invitrogen), 100 units/ml 

penicillin G sodium (Invitrogen), 100 J.lg/ml streptomycin sulfate (Invitrogen), and 0.25 

)lg/ml amphotericin B as Fungizone® in 0.85% saline (Invitrogen). Cultures were 

incubated at 37°C in a 7% C02 atmosphere in 25 cm2 cell culture flasks (Coming 

Incorporated, Coming NY). The medium was refreshed every 3 days. 

Non-adherent B cell lines COX, VAVY, SAVC, MT14B, CB6B, SLE-005, 

MGAR, and PLH (Table 2.2) were used as positive controls throughout this study. B 

cells were grown as suspension cultures in 25 cm2 cell culture flasks and maintained at 

3.0 x105 cells/ml in IMDM under similar culture conditions as above. 

2. 2. Estrogen-Depleted Medium 

Standard medium components often contain steroidal estrogens within FCS and 

non-steroidal estrogen-like isomers in the form of the standard pH indicator phenol red 

[214, 215]. Phenol red has been shown to simulate estrogenic activity through 
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Table 2.1. Description of human breast carcinoma cell lines used in this study 

Breast Cancer Cell Line 
ATCCa 

Type of Cancer a HLA-DR type b 
Identification 

BT-20 HTB-19 Adenocarcinoma 
DRf31 *0404, DRf34, 
DRf31 *1301, DRf33*01 

BT-474 HTB-20 
Invasive Ductal DRf31 *0401, DRf34, 

Carcinoma DRf31 *15, DRf35 

MCF-7 HTB-22 Adenocarcinoma 
DRf31 *03, DRf33*0202, 
DRf31 * 15, DRf35 

MDAMB 157 HTB-24 Medullary Carcinoma 
DRf31 *0401, DRf34, 
DRf31 *15, DRf35 

MDAMB 231 HTB-26 Adenocarcinoma 
DRf31 *07, DRf34, 
DRf31 *13, DRf33*0202 

MDAMB468 HTB-132 Adenocarcinoma 
DRf31 *0102, 
DRf31 *07, DRf34 

SKBR3 HTB-30 Adenocarcinoma 
DRf31 *07, DRf34, 
DRf31 *1302, DRf33*0302 

T47D HTB-133 Ductal Carcinoma DRf31 *0102 

a American Type Culture Collection (Manassas, VA) 
bPreviously determined by A.D. Edgecombe 2002 [210] by DNA typing using commercially available kits. 
c Lacroix and Leclercq 2004 [216]. 
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Table 2.2. B cell controls used in this study 

B Cell Line IHW a Identification HLA-DR Type 

cox IHW9022 DRP1 *0301, DRP3*0101 

VAVY IHW 9023 DRP1 *0301, DRP3*0101 

SAVC IHW9034 DRP1 *0401, DRP4*0101 

MT14B IHW 9098 DRP1 *0404, DRP4*0101 

CB6B IHW9060 DRP1 *1301, DRP3*0202 

SLE-005 IHW9059 DRP1 *13, DRP3*0301 

MGAR IHW 9014 DRP1 *1501, DRP5*0101 

PLH IHW9047 DRP1 *0701, DRP4*0101 
a , th ... 

11 InternatiOnal Histocompatibility Workshop 
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competitive binding to the estrogen receptor, stimulation of the growth rate of human 

breast cancer (MCF -7) cells, and elevation of progesterone receptor levels in these cells 

(217]. For some experiments where it was necessary to exclude exogenous steroids, 

adherent breast cancer cell lines were cultured in Phenol Red-free IMDM medium 

supplemented with 10% inactivated charcoal-dextran treated FCS (HyClone, Logan, UT), 

for a maximum of 5 days before assays. Estrogen-depleted (E2-depleted) medium was 

further supplemented with L-glutamine, penicillin G sodium, streptomycin sulfate, and 

amphotericin B as before. Cell lines could not be maintained in such medium as studies 

indicate that ER+ breast cancer cells lose hormone responsiveness if maintained for 

prolonged periods in an estrogen-free environment [218]. 

2. 3. Harvesting of Breast Cancer Cell Lines 

Cultures were harvested once 80-1 00% confluent, as determined by phase 

contrast microscopy. Harvesting was accomplished by aspiration of medium from culture 

flasks and incubation with 0.25% trypsin (Invitrogen) diluted in phosphate buffered 

saline (PBS) for a maximum of 5 minutes at 3 7°C or until cells were no longer adherent. 

An equivalent volume of medium was added to quench trypsin activity before cell 

suspensions were transferred to 15 ml centrifuge tubes. Cells were centrifuged at 290 x g 

for 7 minutes at 7°C, after which supernatant was decanted, and pellet re-suspended in 5 

mls media. Cells were then washed as before, re-suspended in 5 ml medium, and counted 

using a hemocytometer and phase contrast microscopy. A volume containing 3.0 x 105 
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cells was re-plated into 25 cm2 cell culture flasks in a final volume of 7 ml medium to 

maintain cultures. Medium was refreshed every 3 days. 

B cells were maintained in standard medium at 3.0 x 105 cells/mi. Cells were 

removed and replaced with fresh medium every 3 days. 

2. 4. Cytokine and Hormone Treatment of Breast Cancer Cell Lines 

To determine the effects of cytokine and hormone treatments on HLA-DR 

expression, BCCL were treated with either 100 units/ml of human recombinant IFN-y 

(BD Pharmingen), or 500 units/ml of human recombinant IL-4 (BD Pharmingen), or 10 

ng/ml of human ;ecombinant TGF -P 1 (Chemicon International), or 10-9M 17p-estradiol 

(E-2257, Sigma), or combinations of the above treatments. Twenty-four hours prior to 

cytokine treatment, cell lines were subcultured as described above in 25 cm2 tissue 

culture flasks at 4.0 x 105 in 7 ml of medium or in 6 well plates at 1.5 x 105 in 2 ml of 

medium. 

At the time of treatment, standard medium was aspirated from cells and replaced 

with either standard medium or E2-depleted medium containing the respective cytokine(s) 

and/or hormone of interest. To identify constitutive gene expression, one flask/well 

received medium without addition of cytokine or hormone. Cell cultures were incubated 

for 96 hours (previously determined to be the optimal incubation period by A. 

Edgecombe [210]), after which HLA-DR expression was assessed by either flow 

cytometry or CELISA. 
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2. 5. Flow Cytometry 

2.5.1. Cell Surface Protein Expression 

Flow cytometry was used to detect cell surface expression of HLA-DR antigens. 

Adherent cell cultures were harvested using 0.25% trypsin as previously described and 

aliquots of non-adherent B cell lines were used as positive controls (Table 2.4). Cells 

were washed in medium, re-suspended in an appropriate volume ofF ACS buffer to give 

3.0 x 106 cells/ml, and 50 J.ll of cell suspension was added to each 5 ml polystyrene 

round-bottom tube (Falcon, Becton Dickson Bioscience). F ACS buffer contained 0.2% 

fetal bovine serum (Invitrogen) and 0.02% sodium azide (BDH Chemicals, Poole, 

England) in PBS. Twenty-five microlitres of primary mAb (monoclonal antibody), 

diluted to a predetermined concentration (Table 2.3) in F ACS buffer, was also added to 

each tube and mixture was incubated in the dark for 30 minutes at 4°C. 

Following this incubation, cells were washed twice with 2 ml F ACS buffer and 

centrifuged at 453 x g for 5 minutes. After the second wash, supernatants were decanted 

and tubes were blotted on gauze before 25 J.ll of secondary antibody, goat anti-mouse 

immunoglobulin-G labeled with phycoerythrin flurochrome (Jackson ImmunoResearch) 

diluted 1140 in F ACS buffer, was added to each tube. Following another 30 minute 

incubation in the dark at 4°C, cells were washed twice in F ACS buffer as before, and 

finally, 150 J.!ll% paraformaldehyde in PBS was added to each tube. Cells were stored in 

the dark at 4°C until analysis was done using a FACSCalibur flow cytometer (Becton

Dickinson, Franklin Lakes, NJ) and CellquestPro Software (Becton-Dickinson). 
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Table 2.3. Primary antibodies used to detect expression ofHLA-DR allelic products by flow cytometry and CELISA. 

Antibody Isotype Specificity Concentration Reference/Source 
Flow CELIS A 

L243 Mouse panHLA-DR 2.4 f.!g/ml 2.4 f.!g/ml Lampson and Levy 1980 [219] 
(Supernatant) IgG2a 
NFLD.D1 Mouse panDR4 39 f.!g/ml 50 f..lg/ml Drover et al. 1994 [220] 
(Purified) IgG1 
NFLD.D7 Mouse DR4, DR15, DR16, DR~3 Undiluted Undiluted Drover et al. 1994 [220] 
(Supernatant) IgG1 
NFLD.DIO Mouse DR1, DR4 except ~1 *0402, DR9, 2.5 f.!g/ml 1.0 f..lg/ml Drover et al. 1994 [220] 
(Purified) IgG1 DR10, DR14, DR15, DR~5*0201 
NFLD.M1 Mouse DR4, DRS, DR52 Undiluted Undiluted Drover et al. 1985 [221], 
(Supernatant) IgG1 Fu et al. 1995 [222] 
UK8.1 Mouse DR3, DR11, DR13, DR14 except 1/200 NT Bodmer et al. 1985 [223], 
(Supernatant) IgG2b ~1*1404 11th International Histocompatibility 

Workshop 
TAL8.1 Mouse DR3, DR6, DR11, DR13 50 f.!g/ml 50 f..lg/ml Research Diagnostics Inc. (Flanders, 

IgG2b NJ) 
7.3.19.1 Mouse DR3,DR~3 1/100 1/25000 Koning et al. 1984 [224], 
(Supernatant) IgG2b 11th International Histocompatibility 

Workshop 
SFR16.DR7G Rat panDR7 1125 1/20 Radka et al. 1984 [225], 
(Supernatant) IgG2b 11th International Histocompatibility 

Workshop 
359-13F10 Mouse panDR4 Undiluted 1/2 Radka et al. 1984 [225] 
(Supernatant) IgG1 
NT: Not Tested. 
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Table 2.4. Binding a ofHLA-DR specific monoclonal antibodies to cell surface HLA-DR on B cell lines. 

B Cell Line 
Antibody cox VAVY SAVC MT14B CB6B SLE-005 MGAR PLH 

P1*0301 P1*0301 P1*0401 P1*0404 P1*1301 p1 *13 P1*1501 P1*0701 
P3*0101 P3*0101 P4*0101 P4*0101 p3*0202 P5*0101 P4*0101 

L243 c 5633.1 1090.0 6824.5 3387.2 1480.9 3254.8 3722.1 2245.7 
bAll DR 
NFLD.D1 - - 3026.6 1380.1 - - - -
DR4 
NFLD.D7 a+ - 6293.1 - d+ - 2791.0 -
DR4, DR15, DRP3 
NFLD.D10 - - 6242.5 4489.3 - - 2661.5 -
DR1, DR4, R15 
NFLD.M1 d+ - 1407.5 a+ 1588.1 - 187.4 -
DR4,DRP3 
UK8.1 1570.5 - - - - - - -
DR3,DR13 
TAL8.1 - 30.4 - - - 27.8 - -
DR3,DR13 
7.3.19.1 8527.4 752.2 - - 1745.5 - - -
DR3,DRP3 
SFR16.DR7G - - - - - - 1370.7 
DR7 
359-13F10 - - 3262.6 2876.6 - - -
DR4 
a Antibody bmdmg was determined by flow cytometry. Data are the average of at least two separate experiments. 
b HLA-DR type recognized by the antibody. Antibodies may recognize more HLA-DR types than listed (see Table 2.3). 
c Mean fluorescence intensity with the background subtracted. 
dBindings previously reported by A. E. Edgecombe [210] through flow cytometry analysis. 
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2. 5. 2. Interpretation of Flow Cytometry Results 

HLA-DR expression was determined as: 

Mean Fluorescence Intensity (MFI) Test - MFI Negative control 

or as the degree ofHLA-DR expression determined as: 

MFI Test 

MFI Negative Control 

Values twice the backgrounds were considered positive. When two or more experiments 

were conducted, data were averaged and standard deviations were calculated. 

2. 6. Cell Enzyme Linked Immunosorbant Assay (CELISA) 

2.6.1. Cell Surface Protein Expression 

In addition to flow cytometry, CELISA was preformed to determine cell surface 

HLA-DR antigen expression. Adherent cell cultures were harvested using 0.25% trypsin 

as previously described and non-adherent B cell lines were used as positive controls. 

Appropriate volumes of cells were removed and centrifuged at 290 x g for 7 minutes at 

7°C, after which cells were re-suspended in 2 ml 0.5% bovine serum albumin (BSA) 

(Sigma Aldrich) in PBS, and centrifuged at 453 x g for 6 minutes at 7°C. Supernatants 

were decanted, and cells re-suspended in appropriate volume of 0.5% BSA to give 2.5 x 

106 cells/mi. Ten microliters of cell suspension and 10 ~-tl primary mAb, diluted to a 

predetermined concentration using 0.5% BSA (Table 2.3), was then added to each well of 
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polyvinyl chloride treated 96-well U-bottom flexible plates (Becton Dickinson, Franklin 

Lakes, NJ) before 1 hour incubation at room temperature. 

Cells were then washed three times with 100 ).d of 0.5% BSA and centrifuged at 

387 x g for 6 minutes at 7°C. Following each wash, supernatants were decanted and 

plates blotted on paper towel. After the third wash, 50 )..1.1 of secondary antibody, goat 

anti-mouse immunoglobulin-G specific for Fey chains and labeled with horseradish 

peroxidase (HRP) (Jackson ImmunoResearch), diluted 1/5000 in 2% BSA, was added to 

each well and incubated for I hour at room temperature. At this time, 75 )ll of IX poly-L

lysine (PLL) (Sigma) in PBS was added to each well of the reading plates, PRO-BIND 

polystyrene flat bottom plates (Becton Dickinson). 

Following this incubation, cells were washed three times with 0.5% BSA as 

before, and PLL was removed from the reading plates. One hundred microliters of IX 

PBS was then added to each well of the flex plates, and cells were transferred from a flex 

plate to a reading plate. Once transferred, cells were centrifuged at 248 x g for 6 min at 

7°C, supernatants decanted, and cells incubated in the dark for 30 minutes at room 

temperature with 50 )..1.1 of substrate. The substrate was prepared using 4.9 ml O.lM Citric 

Acid, 5.I ml 0.2M Phosphate, 10 ml dH20, 8 mg orthrophenylenediamine (Sigma), and 8 

)ll 30% hydrogen peroxide (BDH). The reaction was stopped by adding 50 )..1.1 of 2.5 N 

hydrogen sulphate in dH20 per well and the plates were read at 490 nm using a 3550 

BioRad Microplate Reader (Bio-Rad, Richmond, CA) and Microman software (BioRad). 
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2. 6. 2. Interpretation of CELISA results 

HLA-DR expression was determined as: 

Optical Density (OD) Test- OD Background 

or as a ratio of: 

ODTest 

0 D background 

Values less than 2 were considered negative. CELISA assays were performed in triplicate 

wells, allowing averages and standard deviations to be determined within each assay. 

When experiments were preformed more than once, data were averaged and standard 

deviations were determined between experiments. Student two-tailed t-tests were used to 

determine differences in HLA-DR expression. Differences were considered significant if 

p < 0.05. 

2. 7. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 

2. 7.1. RNA extraction 

Culture supernatant was aspirated from adherent breast cancer cell lines which 

had been cultured for 96 hours in 25 cm2 tissue culture flasks containing either untreated 

standard media or untreated estrogen-depleted medium, and cells were washed once with 

5 ml PBS. PBS was then aspirated and cells detached from culture flasks by addition of 1 

ml TRIZOL reagent (Invitrogen). Once detached, cells were transferred to a 1.5 ml 

Eppendorf tube and incubated for 4 minutes at room temperature to allow cell lysis. Cells 
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were then centrifuged at 16,000 x g for 10 min at room temperature. Following 

centrifugation, supernatant was transferred to a fresh 1.5 ml Eppendorf tube, and 0.2 ml 

chloroform (Sigma) added and shaken vigorously for 30 seconds. Mixtures were then 

centrifuged at 16,000 x g for 15 minutes at 4°C. After this incubation, the clear aqueous 

phase containing the RNA was removed and an equivalent volume of isopropanol 

(Sigma) was added. RNA was precipitated overnight at -20 °C. 

RNA was centrifuged at 16,000 x g for 15 minutes at 4°C, after which the 

supernatant was decanted and the pellet washed with 1 ml 75% ethanol dissolved in 

DEPC (diethyl procarbonate) water. Following centrifugation at 13,714 x g for 5 minutes 

at room temperature, the supernatant was removed, the pellet was allowed to air dry for 5 

minutes, and RNA was re-suspended in 20-50 !-!1 DEPC water depending on pellet size. 

RNA was quantified using UV spectrophotometry. A A26o/A2soratio of approximately 1.8 

was used to estimate RNA purity. The following calculation was used to measure RNA 

concentration: 

(A26o- A32o) x ( 40 ~-Lg/ml) x (reciprocal of dilution) = concentration RNA (1-!g/ml) 

2. 7.2. DNase Treatment of RNA 

All RNA extracts were subjected to DNase treatment (Ambion, Austin, TX) to 

remove any DNA contamination. 0.1% volume of DNA-free 1 OX DNase Buffer and 1 !-!1 

of DNA-free DNase was added to RNA samples, mixed gently, and incubated in a 37°C 

water bath for 30 minutes. After incubation, 0.1% total volume of DNase Inactivation 
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Reagent was added to the RNA preparation and incubated for 2 minutes at room 

temperature. Samples were then centrifuged at 13,714 x g for 1 min at room temperature 

to pellet the DNase Inactivation Reagent. Following centrifugation, supernatants were 

removed and RNA was transferred to a 1.5 ml Eppendorf tube. To prevent ribonuclease 

activity, 0.5 j..tl ofRNasine inhibitor (Promega, Madison, WI) was added to RNA samples 

before storage at -70°C. 

2. 7. 3. eDNA synthesis 

eDNA was synthesized from DNase treated RNA samples using a First Strand 

eDNA Synthesis Kit (Arnersham Pharmacia Biotech UK limited, Little Chaifont 

Buckinghamshire, England). 1 j.lg of RNA was diluted in a total volume of 8 j..tl DEPC 

water in 0.2 ml thin walled micro tubes (Gordon Technologies Inc., Mississauga, ON) 

and incubated at 65°C for 10 minutes to denature the RNA. Following this incubation, 

samples were quickly placed on ice. PCR reaction mixture consisting of 5 j..tl Bulk First

Strand Reaction Mix, 1 j..tl Not I-d (T)1 8 primer diluted 1125 in DEPC water, and 1 j..tl of 

DTT ( dithiothreitol) solution were added to each tube of denatured RNA. Samples were 

then incubated at 37°C for 1 hour, and 70°C for 10 minute in a Biometra T-Gradient 

(Montreal Biotech Inc., Kirkland, PQ). eDNA was stored at -70°C until needed. 
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2. 7.4. RT-PCR primers 

Primers used to analyze mRNA transcription of IFN-y, IL-4, and TGF-P were 

currently available in the laboratory, and had been previously synthesized by Invitrogen 

from sequences acquired from published references (Table 2.5). P-actin primers were 

kind gifts from Dr. Laura Gillespie and Dr. Gary Paterno (Memorial University of 

Newfoundland, St. John's, NL). ERa and GAPDH (glyceraldehyde phosphate 

dehydrogenase) primer sequences were acquired from published references and entered 

into the AmplifY program (Engels, 1993) to assess primer affinity to the gene of interest, 

as well as product size and possible primer dimer formations. ERa and GAPDH primer 

sequences were also analyzed using OligoTech Analysis software (Wilsonville, OR) to 

determine G+C content and melting temperature. Selection of ERa and GAPDH primers 

were based on the above analysis and were synthesized by Invitrogen. 

2. 7. 5. PCR Amplification 

For each reaction, 1 J.tl of eDNA or RNA was added to one well of a 96 well 0.2 

ml thin walled polypropylene PCR microplate (BioCan Scientific Inc., Gordon 

Technologies) in combination with a PCR reaction mix consisting of PCR buffer 

(Invitrogen) containing 200 mM Tris-HCl buffer (pH 8.4), 500 mM KCl, 10 mM dNTP 

(deoxyribonucleotide triphosphates) (Invitrogen), 50 mM MgClz (Invitrogen), Taq DNA 

polymerase (Invitrogen), 1 J.tl of both forward and reverse primers, and DNA-free RNA

free water in a final volume of 50 J.tl. Concentration of primers, and quantity ofMgClz, 
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Table 2.5. Primers used in this study to detect cytokine and ERa transcription by RT-PCR. 

Primer Sequence (5'-3') Size Reference/Source 

ERa sense GCTGCAAGGCCTTCTTCAA 550 Jazaeri et al. 1999 [226] 

ERa antisense TCATCAGGATCTCTAGCCAG 

IFN-y sense AGTTATATCTTGGCTTTTCA 356 Kotake et al. 1996 [227] 

IFN-y antisense ACCGAATAATTAGTCAGCTT 

IL-4 sense CCTCTGTTCTTCCTGCTAGCATGTGCC 373 Kotake et al. 1996 [227] 

IL-4 antisense CCAACGTACTCTGGTTGGCTTCCTTCA 

TGF -P 1 sense GCCCTGGACACCAACTATTGC 161 Marrogi et al. 1997 [228] 

TGF -P 1 antisense AGGCTCCAAATGTAGGGGCAGG 

pactin sense ATCTGGCACCACACCTTCTACAATGAGCTGCG 837 Paterno et al. 1998 [229] 

pactin antisense CGTCATACTCCTGCTTGCTGATCCACATCTGC 

GAPDH sense TGACCTTGCCCACAGCCTTG 443 Gottwald et al. 2001 [230] 

GAPDH antisense CATCACCATCTTCCAGGAGCG 
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Taq polymerase, and DNA-free RNA-free water varied depending of the gene of interest 

(Table 2.6). RNA samples were run simultaneously to ensure that RNA used in eDNA 

synthesis did not contain DNA contamination. PCR microplates were covered with 

domed caps, placed in a Biomed T -Gradient, and eDNA amplified using the respective 

35-cycle PCR protocol (Table 2.7). 

2. 7. 6. Electrophoresis of PCR Products 

Five microliters of each PCR reaction was mixed with 1 Ill of loading buffer and 

loaded onto a 1.5% agarose gel. Gels were composed of 0.6 g agarose (Invitrogen) 

dissolved in 40 ml 0.5X TBE buffer containing 0.5 llg/ml ethidium bromide. To access 

product size, gels were also loaded with 3 Ill of 100 bp DNA ladder (Invitrogen) mixed 

with loading buffer. PCR products were electrophoresed at 120V for 20-30 minutes in a 

Mini Sub DNA Cell electrophoresis chamber (Bio-Rad) containing 0.5X TBE buffer. 

Once separated, PCR products were visualized and photographed under UV light using 

Eagle Eye II Still Video system (Stratagene, La Jolla, CA), or ChemiGenius bio-imaging 

system (SYNGENE, Frederick, MD). 
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Table 2.6. PCR reaction mixtures used in eDNA amplification. 

PCRmix P-actin GAPDH IL-2 IL-4 TGFp IFN-y ERa 
(20 pM) (20 pM) (10 pM) (10 pM) (10 pM) (10 pM) (20 pM) 

(f.ll) (f.ll) (f.ll) (f.ll) (I-ll) (f.ll) (f.ll) 
lOX Buffer 5 5 5 5 5 5 5 

DNTP 1 1 1 1 1 1 1 

MgCh 1.5 2 2 1.5 2 2 2 

Primer+ 1 1 1 1 1 1 1 

Primer- 1 1 1 1 1 1 1 

TaqDNA 0.2 0.2 0.25 0.25 0.25 0.25 0.25 
polymerase 
H20 39.3 38.8 39 39.3 39 39 38.75 
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Table 2.7. PCR cycling conditions used to amplify gene transcription 

Primer PCR conditions 
IFN-y 94°C for 1 min, 55°C for 1 min, 72°C for 1 min for 35 cycles. 

IL-4 94°C for 1 min, 65°C for 1 min, 72°C for 1 min for 35 cycles. Final 

extension at 72°C for 5 min. 

TGF-f31 94°C for 1 min, 65°C for 1 min, 72°C for 1 min for 35 cycles. Final 

extension at 72°C for 5 min 

ERa 95°C for 2 min, 95°C for 2 min, 51 °C for 45 sec, 72°C for 45 sec for 35 

cycles. Final extension at 72°C for 10 min 
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2. 7. 7. Interpretation of RT-PCR Results 

The density of gene transcription was normalized to GAPDH according to the 

following calculation: 

Test ( cytokine or ERa) - water ( cytokine or ERa) 

Value X 100% 

Test (GAPDH) -Water (GAPDH) 

2. 8. Western Blots 

2.8.1. Preparation ofCell Lysates 

Western blots were used to assess breast cancer cell lines responsive to TGF -P 1 

stimulation. Adherent breast cancer cell lines were harvested using trypsin, plated in E2-

depleted medium at a density of 1.5 x 105 cells/well in 6 well plates and placed at 37°C in 

a 7% C02 incubator overnight. Medium was then replaced with fresh E2-depleted 

medium and cells were incubated for 96 hours. Following this incubation, ligand 

stimulations were performed by addition of 5 ng/ml TGF-P 1 (Chemicon) for 1 hour. 

Control wells were left untreated. Cells were placed on ice and washed twice with 2 ml 

cold PBS. After complete removal of PBS, cells were incubated on ice for 2 minutes with 

75 J.!l cold Ripa lysis buffer (0.5 ml lOX PBS, 0.5 ml Triton X 100, 0.5 ml lOX Roche 

complete EDTA-free (ethylenediaminetetraacetic acid) protease inhibitor cocktail 

(Roche, Mississauga, ON), 250 J.!l 1M p-glycerolphosphate, 250 J.!l 1M Tris pH 7.4, 250 

J.!l 10% deoxycholate, 50 J.!l 0.5M EDTA pH 7.5, 25 J.!l 20% SDS (sodium dodecyl 

sulfate), 50 J.!l sodium-ortha-vanadate, 7.5 J.!l PMSF (phenylmethylsulfanylfluoride), and 
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distilled water to a total volume of 5 ml). Cell lysates were scraped from wells using a 

micropoliceman and Ripa/lysis suspension was transferred to a 1.5 ml Eppendorf tube. 

Cell debris was removed by centrifugation at 21,890 x g for 10 minutes at 4°C. 

Supernatants containing isolated protein were transferred to 1.5 ml Eppendorf tubes. 

2.8.2. Quantification of Protein in Cell Lysates 

Protein within cell lysates was quantified by comparison with BSA standards. 

Five microliters of each sample and known amounts ofBSA: 0 Jlg, 2.5 jlg, 5.0 Jlg, 10 jlg, 

and 20 Jlg, were loaded in duplicate into a flat bottom 96-well plate. 5 Jll of lysis buffer 

was added to each well containing BSA. After addition of 300 Jlllwell BCA protein assay 

reagent (50:1, reagent A: reagent B) (Pierce, Rockford, IL), plates were incubated for 30 

minutes at 37°C. Absorbance at 562 nm was measured using a Polorstar Optima Plate 

reader (BMG, Durham, NC) and protein concentration was assessed using FLUOstar 

OPTIMA version 1.30 software (BMG). 

2. 8. 3. Electrophoresis of Cell Lysates 

Cell lysates were separated by SDS-P AGE (sodium dodecyl sulphate -

polyacrylamide gel electrophoresis). An appropriate volume of lysate to give 30 jlg of 

protein was removed from each sample and denatured in 1 00°C dry heat for 3 minutes. 

Following centrifugation at 16,060 x g for 1 minute to further remove cellular debris, 

samples were mixed with 10 Jllloading buffer and loaded onto 8.5 % SDS-PAGE gels. 

The loading buffer consisted of 5X sample buffer, 5% SDS, 10% glycerol, 0.5X stacking 
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gel buffer, J3-mercapoethanol, and bromophenyl blue to color. To access protein product 

size, gels were simultaneously loaded with 10 ~-tl BenchMark™ Pre-Stained Protein 

Ladder (Invitrogen). 

The SDS acrylamide gel was divided into two components: stacking gel and 8.5% 

running gel. The stacking gel consisted of 1.5 ml acrylamide, 1.15 ml stacking buffer 

(Tris HCl buffer) pH 6.8, 0.05 ml 20% SDS, 7 ml H20, 5 ~-tl TEMED, and 0.3 ml 2.8% 

APS (ammonium persulfate). Running gel consisted of 5.66 ml acrylamide, 5 ml running 

buffer (1.5M Tris HCL buffer) pH 8.9, 0.1 ml 20% SDS, 8.6 ml H20 20 ~-tl TEMED, and 

0.66 ml 2.8% APS. Cell lysates were electrophoresed in Mini-PROTEIN® Cell 

electrophoresis chambers (Bio-Rad) containing running buffer (1.5 M Tris HCl buffer) 

pH 8.9 at 15 rnA constant current until sample separations were below 5.5 em from gel 

bottom, then current was increased to 1 7 rnA until separation was completed. 

2. 8. 4. Transferring Protein Products 

Nitrocellulose membranes were activated by soaking in 1 00% methanol for 10 

seconds, in distilled water for 10 minutes, and in transfer buffer until use. Gels were 

removed from electrophoresis apparatus and placed in transfer buffer (20% methanol) for 

10 minutes. The transfer cassette was assembled as follows: plastic base, brillo pad (pre

soaked in transfer buffer), two 3M filter papers (pre-soaked in transfer buffer), 

nitrocellulose membrane, gel(s), two 3M filter paper (pre-soaked in transfer buffer), brillo 

pad (pre-soaked in transfer buffer), and plastic top. The transfer cassette was placed in a 
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Bio-Rad Trans-blot cell (Bio-Rad), which itself was immersed in a circulating 6°C water 

bath. Transfer was performed at 100 V for 60 minutes. 

2. 8. 5. Immunodetection of Proteins 

Following transfer, sticky surfaces of membranes were blocked by 45 minute 

incubation in Blotto Solution (20 mll.OM Tris HCl buffer pH 7.6, 56ml 5M NaCl, 20 ml 

10% Tween 20, 5% non-fat dry evaporated milk). Membranes were then incubated 

overnight at 4 °C while rocking with a predetermined concentration of primary Ab (Table 

2.8) diluted in Blotto solution containing 1 !J.l per ml 20% sodium azide solution. To 

remove unbound primary antibodies, membranes were washed 5 times in a TBST bath 

for 5 minutes while rocking. TBST solution was the same as Blotto solution with the 

exemption of dry milk. Next, membranes were incubated with an appropriate secondary 

Ab labeled with HRP (Table 2.9) diluted to a predetermined concentration in Blotto 

Solution without sodium azide. Membranes were then washed with TBST, once for 5 

minutes, then 4 times for 10 minutes. Finally, the location of bound Ab was revealed by 

incubating membranes in SuperSignal® West Pi co Chemiluminescent Substrate (Pierce) 

(1: 1 Peroxide solution: Enhancer solution) for 5 minutes while rocking. 

2. 8. 6. Interpretation of Western Blot Results 

Proteins immobilized onto membranes were detected using a traditional ECL 

Western blotting system where a HRP-conjugated secondary Ab in conjunction with a 

chemiluminescent substrate, luminal, generates a signal that can be captured on film. 
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Table 2.8. Primary antibodies used in the detection of proteins by Western blotting. 

Antibody Isotype Cone. Reference/Source 

anti-P-Smad3 Rabbit 1/2000 Murphy et al. 2004 [231] 
(anti-serum) IgG 
anti-Smad3 Rabbit 1 ~-tg/ml Zymed Laboratories Inc. 
(purified) IgG (Cat# 51-500) 
anti-P-Smad2 (Ser 465/467) Rabbit 1/1000 Cell Signaling Technology 

IgG (Cat# 3101) 
anti-Smad2 Mouse 1/500 Transduction Laboratories 

IgG1 (Cat# 610842) 
anti-aTublin (Clone DMIA) Mouse 1/5000 Sigma-Aldrich 
(ascites fluid) IgG1 (T-9026) 
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Table 2.9. Secondary antibodies used in the detection of proteins by Western blotting. 

Antibody Concentration Reference/Source 

Goat anti-Rabbit HRP-Linked 1/15,000 Cell Signaling Technology 
(H&L) (Cat# 7074) 
Goat anti-Mouse IgG-HRP 1110,000 Santa Cruz Biotechnology 

' (sc-2055) 
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After quick exposure of membranes to AGAF X-ray film in a dark room, X-rays 

were developed using a Konica SRX-101A developer. Protein expression was determined 

on the basis of presence or absence of appropriate band size. 

2. 8. 7. Repro bing Membranes 

Membranes to be reprobed were stripped of antibody by immersion in a stripping 

solution bath for 30 minutes at 55°C while rocking. Stripping solution contained 42.5 ml 

distilled water, 5 ml 20% SDS, 2.1 ml 1.5M Tris stripping buffer pH 6.8, and 405 J.ll P

mercaptoethanol. Once stripped, membranes were washed twice for 5 minutes in a TBST 

bath while rocking, and sticky surfaces were blocked by 1 hour incubation in Blotto 

Solution. Membranes were then incubated overnight with primary Ab (Table 2.8) at 4 °C 

as before (Section 2.8.5). 
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Chapter 3: Results 

3.1. Prdiminary Experiments to Assess the Effects of Different Cytokines on HLA-DR 
Expression. 

The purpose of this set of experiments was to evaluate whether IL-4 and/or TGF-

p1 individually or in combination with IFN-y modulated HLA-DRP allelic expression on 

an ER+ (MCF-7) and an ER- (BT-20) breast cancer cell line (BCCL). Cells were cultured 

and treated with cytokine combinations in standard E2-containing media. Resulting HLA-

DR expression was measured using antibodies L243 (pan HLA-DR), NFLD.DlO 

(DRP1 *15), UK8.1 (DRP1 *03, DRP1 *13), 7.3.19.1 (DRP3), NFLD.D1 (pan DRP1 *04), 

359-13F10 (pan DRP1 *04) and flow cytometry following 96 hour incubation with 

cytokines. 

The results, depicted in Figures 3.1, revealed no constitutive HLA-DR (L243) or 

allelic expression (NFLD.D10, UK8.1, 7.3.19.1) on MCF-7. Expression was not 

modulated by treatment with IL-4 or TGF-p1, but IFN-y strongly up-regulated HLA-DR, 

DRP1 *15, and DRp3. DRP1 *03 was not up-regulated by IFN-y alone, as indicated by 

poor UK8.1 binding (2.4% positive cells) (Figure 3.1A) and fluorescence intensity 

(Figure 3.1B). IL-4 augmented IFN-y-induced overall and allelic HLA-DR expression, 

while TGF-P1 had no modulatory effect. IFN-y + IL-4 and IFN-y + TGF-P1 did slightly 

increase the percentage of cells bound by UK8.1, however the fluorescent intensity of 

these cells was negligible. The combination of all three cytokines induced similar generic 

and allelic expression as IFNy + IL-4. 
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Figure 3.1. Preliminary data determining the effects of cytokine treatment on HLA-DR expression on MCF-7. Cells were 
cultured in standard E2-containing media and HLA-DR expression was assessed using the antibodies: L243 (pan HLA-DR); 
NFLD.D10 (DRP1 *15); UK8.1 (DRP1 *03); 7.3.19.1 (DRP3) and flow cytometry. Data are reported as: (A) histogram 
overlays where filled histograms = IgG isotype control; open histogram = test mAb; percentages indicate the percent of 
positive cells, or (B) MFI Test- MFI Background· 
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Overall, the results for MCF-7 suggested that modulation of allelic HLA-DR 

expression in response to individual and combined cytokine treatments displayed similar 

trends to that of generic HLA-DR. However, failure to up-regulate DRP 1 *03 suggested 

this allele was poorly expressed, or alternatively, that allotypic expression on MCF-7 was 

selectively-up-regulated in response to cytokine treatments. 

The results for BT-20 differed from MCF-7 as it displayed low constitutive HLA

DR (L243) and DRP1 *04 (359-13F10) expression. There was a notable difference in the 

amount of DRP1 *04 detected by NFLD.D1 and 359-13F10 despite equivalent 

recognition of DRP 1 *04 on B cell line control SA VC (Table 2.4). As these antibodies 

bind to different domains of HLA-DRP 1 *04 (Sheila Drover, personal communication), 

this suggested that the 359-13F10 epitope was more accessible than the NFLD.Dl 

epitope on BT-20 and was thus more representative ofDRPI *04 expression on BT-20. 

Constitutive HLA-DR and DRP 1 *04 expression was rather unaffected by IL-4, 

despite the slight increase in percentage of positive cells (Figure 3.2A). On the other 

hand, TGF -P suppressed this constitutive expression, as indicated by a small decrease in 

the percentage of positive cells (Figure 3.2A) and fluorescence intensity (Figure 3.2B). 

IFN-y strongly up-regulated HLA-DR and DRP 1 *04, but only moderately up-regulated 

DRPI *13 (UK8.1). Addition ofiL-4 or TGF-Pl decreased IFN-y induced pan- and allelic 

HLA-DR expression. However, treatment with IFN-y + IL-4 + TGF-Pl had no 

modulatory effect on generic HLA-DR and DRP 1 *04 expression compared to 

observations with IFN-y-treatment alone, but all three cytokines together slightly 
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Figure 3.2. Preliminary data illustrating effects of cytokine combinations on HLA-DR allelic expression of BT -20. HLA-DR 
expression was assessed using the antibodies: L243 (panHLA-DR); NFLD.Dl (pan DR~l *04); 359-13F10 (pan DR~l *04); 
UK8.1 (DR~ 1 * 13) and flow cytometry. Data are reported as: (A) histogram overlays where filled histograms = lgG isotype 
control; open histogram= test mAb; percentages indicate the percent of positive cells, or (B) MFI Test- MFI Background· 
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suppressed DRI31 * 13 expression. 

Taken together with the results for MCF-7, moderate up-regulation of DRI31 *13 

on BT-20 in response to IFN-y and selective suppressive of this allele by IFN-y + IL-4 + 

TGF -131 suggested that BCCL selectively modulated allelic expression in response to 

cytokine treatments. The results also suggested that ER+ and ER-BCCL may respond 

differently to individual and combined cytokine treatments, particularly as IFN-y + TGF-

13 did not modulate HLA-DR expression on MCF-7 but suppressed expression on BT-20. 

Alternatively, the results may simply reflect differential responses to the various cytokine 

treatments by different HLA-DR alleles, which were not common to either cell line. 

Furthermore, other factors such as estrogen or estrogen-like components in medium and 

production of endogenous cytokines by BCCL may also influence HLA-DR expression. 

Therefore, we decided to compare both constitutive and IFN-y induced HLA-DR 

expression on a panel of ER+ and ER- BCCL cultured in E2-containing and E2-depleted 

medium to determine the effects of exogenous estrogen and estrogen-like components on 

HLA-DR expression. 

61 



3.2. Establishing Optimal Culture Conditions to Investigate ERa and HLA-DR 
Expression on Breast Cancer Cell Lines 

Media components may contain steroidal estrogens within FCS and non-steroidal 

estrogens which have hormonal activity. The popular pH indicator phenol red, present in 

a variety of culture medium, displays structural resemblance to some non-steroidal 

estrogens, allowing binding to ERa and stimulation of estrogenic activity, as indicated by 

induced proliferation and progesterone receptor expression [217, 232]. To determine 

whether such endogenous estrogens affect constitutive and IFN-y-induced HLA-DR 

expression on BCCL, a panel of ER + and ER- cells were cultured for 96 hours in both 

standard (E2-containing) medium and E2-depleted medium. HLA-DR expression was 

compared using L243 and CELISA. 

As shown in Figure 3.3 (all panels), no BCCL cultured in standard medium 

displayed constitutive HLA-DR, but all except BT-474 up-regulated HLA-DR in 

response to IFN-y. Following culture in E2-depleted medium, only MDA MB 231 

constitutively expressed HLA-DR (Figure 3.3A), while IFN-y induced HLA-DR on all 

BCCL except BT-474. The reason why BT-474 does not up-regulate HLA-DR is 

presently unclear, but confirms previous findings in our laboratory [210]. BT-474 was 

shown to contain DRA and DRB mRNA following IFNy treatment [210], therefore this 

problem does not appear to be at the transcriptional level and likely involves post-

transcriptional modification. 

Additionally, student two-tailed T -tests were used to analyze differences m 

constitutive and IFN-y-induced HLA-DR expression between culture conditions. 
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Figure 3.3. Effects of medium components on HLA-DR expression on breast cancer cell 
lines. Non-induced and IFN-y-induced HLA-DR expression was assessed using the 
antibody L243 by CELISA after 96 hour culture in standard medium (light gray bars) or 
E2-depleted medium (dark gray bars). Results are reported as the average and standard 
deviations of 2-3 experiments. Values greater than 2 are considered positive. *p < 0.05, 
** p < 0.01. 
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Constitutive HLA-DR expression on MDA MB 231 was higher in E2-depleted medium 

than standard medium (p = 0.017) (Figure 3.3A). Differences in IFN-y-induced 

expression were also found for SKBR3, MDA MB 157 and T47D. IFN-y-induced HLA

DR expression was higher in standard medium on SKBR3 (p < 0.01) (Figures 3.3B) and 

T47D (p < 0.01) (Figure 3.3F), but higher in E2-depleted media for MDA MB 157 (p < 

0.01) (Figure 3.3C). No significant differences were observed for MDA MB 468, BT-20, 

MCF-7, or BT-474 (Figures 3.3D, 3.3E, 3.3G, and 3.3H, respectively). 

Taken together, these results showed that medium components can affect 

constitutive and inducible generic HLA-DR expression on some BCCL. We have 

highlighted differences in terms of estrogen content as this suggested that exogenous 

estradiol treatment may affect HLA-DR expression in a cell line specific manner. That 

being said, we realize other factors such as insulin, progesterone, and testosterone may 

too differ between the two media types and also affect HLA-DR expression. 

As the primary objective of this project was to assess the combined effects of 

17P-estradiol and cytokines on allelic HLA-DR expression, we decided to perform all 

future experiments in E2-depleted medium. By using E2-depleted medium, we minimize 

the variables of phenol red and high endogenous estradiol, thus allowing better 

assessment of the effects exogenous estradiol treatment may have on HLA-DR 

expression. 
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3.3. Estrogen Receptor-alpha Status ofBCCL 

The effects of estradiol are primarily mediated through ERa and ERP [233]. ERa 

status of each BCCL has been documented by the American Type Culture Collection 

(ATCC) and reported in various studies [216, 234, 235]. However, as cell lines may 

differ between laboratories and long term culture may change expression of various genes 

in cell lines, we decided to confirm the ERa status of each BCCL. Since expression of 

ERa also varies with amounts of estradiol components in medium [236, 237], we also 

compared the ERa status of cells cultured in standard medium to that in E2-depleted 

medium. To do this, we analyzed mRNA transcripts using an ERa exon 2 sequence 

specific primer and RT-PCR as described in Section 2.7. 

As shown in Figure 3.4, ERa mRNA was constitutively transcribed in BT-474, 

T47D, MCF-7, BT-20 (weak), and MDA MB 157 (weak). No detectable ERa mRNA 

was present in MDA MB 231, MDA MB 468, or SKBR3. However, differences in ERa 

transcription were observed for cells grown in the different media. ERa transcripts in 

T47D and MCF-7 were more prominent in cells cultured in standard medium than E2-

depleted medium (Figure 3.4A). We also found weak amplification of ERa in MDA MB 

157 cultured in both media (Figure 3.4B), which is in contrast to ATCC reports. As 

shown in Table 3.1 where results are also presented as a percentage of GAPDH 

expression, apart from MDA MB 157 our results agree with those published by the 

ATCC. 
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Figure 3.4. Representative gels depicting constitutive ERa expression in breast cancer 
cell lines cultured in standard medium (+) and estrogen-depleted medium (-). A) ERa 
transcription was analyzed by RT-PCR ,using sequence-specific primers. GAPDH was 
amplified as a control. RNA was subjected to PCR to ensure no DNA contamination. B) 
representative gel illustrating size of ERa transcripts in SKBR3, MDA MB 157 and BT-
474 alongside a 100 bp ladder with an arrow indicating 600 bp. 
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Table 3.1. Estrogen receptor-alpha transcription in breast cancer cell lines cultured in 
standard (E2-containing) medium or E2-depleted medium assessed using sequence 
specific primers and R T-PCR. 

Breast Cancer ERa. Constitutive mRNA 
Cell Lines Status 

(ATCC) Standard Medium E2-depleted Medium 

BT-474 + + (65.1 %) + (63.1 %) 

T47D + + (48.0 %) + (4.7 %) 

MCF-7 + + (14.2 %) + (4.1 %) 

BT-20 mRNA + (5.2 %) + (9.6 %) 

MDAMB 157 - + (7.3 %) + (8.0 %) 

MDAMB231 - - (0.0 %) - (0.0 %) 

MDAMB468 - - (1.6 %) - (1.7 %) 

SKBR3 - - (5.9 %) - (5.1 %) 

()Values in brackets indicate expression normalized in relation to GAPDH as described 
in section 2.8.7; +indicates visible band,- indicates no visible band. 
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3.4. Determining the Optimal Concentration of 17fJ-estradiolfor Modulating HLA-DR 
Expression 

To determine the optimal concentration of 17(3-estradiol, MCF-7 (ER+) and MDA 

MB 231 (ER-) were treated with 10-6
- 10-11 M estradiol in the presence I absence of 100 

units/ml IFN-y. Effects on HLA-DR expression were measured using the antibody L243 

and CELISA. Since our estradiol was reconstituted in absolute ethanol and diluted 1/50 in 

PRF-IMDM medium, appropriate dilutions of reconstitution solvent were also assessed 

as controls for each estradiol concentration. 

As shown in Figure 3.5, estradiol treatment did not induce HLA-DR expression 

on MCF-7 at any concentration tested. When co-cultured with IFN-y (Figure 3.6), the 

effects of estradiol on HLA-DR expression displayed discordant results, particularly at 

1o-6 M, 1o-7 M, 1o-8 M, and 1 o-11 M. At such concentrations, effects due to estradiol could 

not be distinguished from effects due to ethanol. In fact, estradiol-mediated effects could 

only be consistently distinguished from the vehicle control at 10-9 M. At this molarity, 

estradiol did not modulate IFN-y induction of HLA-DR while the vehicle control 

suppressed IFN-y induction. 

Analysis of estradiol treatment on MDA MB 231 also proved difficult. Again, the 

effects of estradiol could not be deciphered from the effects of ethanol on either 

constitutive (Figure 3.7) or IFN-y-induced HLA-DR expression (Figure 3.8). Therefore, 

we tried other reconstitution solvents for estradiol in hope of finding one that had 

minimal effects on HLA-DR expression. 

69 



1.000 
~~m~NoTx 

Vehicle Control 
..... Estradiol 

0.800 

c 
0 

'iii 
0.600 Ill 

Cl) ... c. 
>< w 

0:: 
0.400 c 

I 

~ 
J: .... 
0 
Cl) 0.200 
Cl) ... 
C) 
Cl) 

c 
0.000 -- -

_. 
- -~ 

r.-* - - -
NoTx 10-5 M 10-r M 10-!! M 10-!:l M 10-,u M 10-11 M 

-0.200 

Figure 3.5. Effects of estradiol treatment on HLA-DR expression on MCF-7. HLA-DR 
expression was assessed using the antibody L243 and CELISA after 96 hour culture in 
E2-depleted media in the presence of estradiol or vehicle control. Results are shown as 
OD Test- OD Background· Standard deviations were calculated from triplicates. 
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HLA-DR expression was assessed using the antibody L243 by CELISA after 96 hour 
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3.5. Determining Optimal Reconstitution Solvent for Estradiol 

As ethanol affected HLA-DR expression on both MCF-7 (ER+) and MDA MB 

231 (ER-), an attempt was made to find another reconstitution solvent. According to the 

Merck Index [238], 1713-estradiol is insoluble in water, but soluble in alcohol, acetone, 

dioxane, and other organic solvents containing fixed alkali hydroxides. The manufacturer 

(Sigma) recommended we try dimethylsulfoxide (DMSO) in place of ethanol. 

To test this, MCF-7 and MDA MB 231 were exposed to various dilutions of 

DMSO and ethanol, equivalent to that found in E2 concentrations of 10-6 
- 10-11 M, and 

effects on constitutive and IFN-y-induced HLA-DR expression were compared using 

L243 and CELISA. 

The results, depicted in Figures 3.09 and 3.10, revealed that both DMSO and 

ethanol did not induce HLA-DR expression on MCF-7 (Figure 3.9A), and had minimal 

effects on constitutive HLA-DR expression on MDA MB 231 (Figure 3.9B) at all 

molarities tested. When combined with IFN-y treatment (Figure 3.10), DMSO and 

ethanol had minimal effects on IFN-y-induced HLA-DR on MCF-7 (Figure 3.10A). 

However, DMSO suppressed IFN-y induction of HLA-DR on MDA MB 231 more than 

ethanol at all molarities except 2.7 x 10-6 M, equivalent to DMSO present in 10-8 M 

estradiol (Figure 3.1 OB). 

With DMSO now shown to suppress IFN-y-induction of HLA-DR on MDA MB 

231, other possible reconstitution solvents were tried, including 1-butanol, methanol, and 

acetone (results not shown). These solvents were also found to modulate both constitutive 

and IFN-y-induced HLA-DR expression. 
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MDA MB 231 (B). HLA-DR expression was measured using the antibody L243 and 
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Since we were unsuccessful in finding an appropriate reconstitution solvent, we 

continued with objective #2 of our project: investigating the effects of individual and 

combined cytokine treatments on HLA-DR expression on BCCL. 

3. 6. Constitutive Transcription of Cytokine Genes 

Since a major objective of this study was to analyze the effects of exogenously 

added IFN-y, IL-4, and TGF-Pl either individually or in combination on HLA-DR 

expression of BCCL, we questioned if the cells were making any of these cytokines 

endogenously. To address this, we analyzed for constitutive cytokine mRNA expression 

using sequence specific primers (Table 2.5) and RT-PCR. As before, mRNA analysis was 

performed on cells cultured in both standard and E2-depleted media following 96 hour 

incubation. 

Analysis of IFN-y and IL-4 transcription, depicted in Figures 3.11 and 3.12, 

illustrated that no BCCL constitutively transcribed IFN-y or IL-4 following culture in 

either media. Conversely, TGF-Pl transcripts were observed in all BCCL cultured in 

standard media, and all BCCL cultured in E2-depleted media except SKBR3 (Figure 

3.13). A weak band is visible in the gel photograph ofSKBR3 cultured in standard media 

which may not be apparent in Figure 3.13. 

Results of cytokine mRNA analysis, summarized in Table 3.2, show that 

differences in TGF-P1 amplification depended on media conditions. Normalizing TGF

Pl amplification to GAPDH indicated that transcripts were more intense in BT-474 and 
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Figure 3.11. Representative gels depicting constitutive IFN-y transcription in breast 
cancer cell lines cultured in standard medium(+) and estrogen-depleted medium(-). IFN
y transcription was analyzed by RT-PCR using sequence-specific primers. ClO/MJ eDNA 
was used as positive control for IFN-y. GAPDH was amplified as a control. 

78 



IL-4 

GAPDH 

IL-4 

GAPDH 

BT-474 

+ 

MDAMB 
157 

+ 

T47D 

+ 

MDAMB 
231 

+ 

MCF-7 

+ 

MDAMB 
468 

+ 

BT-20 Jurkat 

+ 

• 
SKBR3 

+ 

Figure 3.12. Representative gels depicting constitutive IL-4 transcription in breast cancer 
cell lines cultured in standard medium (+) and estrogen-depleted medium (-). IL-4 
transcription was analyzed by RT-PCR using sequence-specific primers. Jurkat eDNA 
was used as positive control for IL-4. GAPDH was amplified as a control. 
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Figure 3.13. Representative gels depicting constitutive TGF-P transcription in breast 
cancer cell lines cultured in standard medium (+) and estrogen-depleted medium (-). 
TGFP transcription was analyzed by RT-PCR using sequence-specific primers. Jurkat 
eDNA was used as positive control for TGFp. GAPDH was amplified as a control. 

80 



Table 3.2. Cytokine transcription in breast cancer cell lines cultured in E2-containing and 
E2-depleted media as assessed using sequence specific primers and RT-PCR. 

Breast Cancer Media Constitutive mRNA 
Cell Lines Type IFN-y IL-4 TGF-JH 

BT-474 E2+ - (0.8%) - (0.0%) + (25.1%) 

E2- - (3.3%) - (0.0%) + (4.4%) 

T47D E2+ - (0.0%) - (0.0%) + (48.9%) 

E2- - (0.0%) - (1.8%) + (30.5%) 

MCF-7 E2+ - (3.4%) - (0.5%) + (53.4%) 

E2- - (2.4%) - (1.2%) + (63.6%) 

BT-20 E2+ - (2.7%) - (0.2%) + (62.9%) 

E2- - (6.5%) - (1.3%) + (74.5%) 

MDAMB 157 E2+ - (1.1%) - (0.4%) + (43.1 %) 

E2- - (1.2%) - (0.4%) + (49.5%) 

MDAMB231 E2+ - (0.8%) - (0.8%) + (24.1 %) 

E2- - (3.1%) - (0.5%) + (50.4%) 

MDAMB468 E2+ - (2.1%) - (0.7%) + (12.0%) 

E2- - (4.2%) - (0.5%) + (40.7%) 

SKBR3 E2+ - (1.1%) - (0.2%) + (2.4%) 

E2- - (2.2%) - (0.6%) - (0.8%) 

()Values m brackets mdicate expression normalized to GAPDH as described in 
section 2.8.7; +indicates visible band,- indicates no visible band. 
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T47D cultured in E2-containing medium, while they were more intense in MDA MB 231, 

MDA MB 468, MCF-7 and BT-20 cells cultured in E2-depleted medium. No difference 

in TGF-Pl amplification was found for MDA MB 157. As the above differences in 

intensity of TGF-P1 transcripts did not indicate trends in either ER+ or ER- BCCL, we 

report no correlation between differences in TGF -P 1 amplification and ERa status. 

3. 7. Determining the Optimal Concentrations of Cytokines for Stimulating HLA-DR 
expression 

Before performing preliminary experiments (Section 3.1), IFN-y, IL-4, and TGF-

p 1 were titered on MDA MB 231 cultured in standard medium. MDA MB 231 was 

chosen as this cell line constitutively expresses HLA-DR, and IFN-y strongly up-

regulates HLA-DR expression [210]. Furthermore, reports indicate that MDA MB 231 

contains high affinity IL-4 receptors [120], and is sensitive to TGF-P1 through retention 

of TPRII expression [239, 240]. Upon selection of optimal concentrations of these 

cytokines for stimulation of HLA-DR expression in standard medium, the same 

concentrations were used on breast cancer cell lines cultured in E2-depleted medium. 
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3. 7.1. IFN-y 

It is well documented that IFN-y induces HLA-DR expression on most cell types 

including breast carcinoma [84, 130, 211-213, 241, 242]. Previous research in our 

laboratory determined that 500 units/ml IFN-y was optimal for HLA Class II induction in 

synovial cells [211]. However, our laboratory also reported no difference in the up

regulation of cell surface HLA-DR on T47D upon treatment with 100 units/ml or 500 

units/ml IFN-y [210]. 

Therefore, to assess whether 100 units/ml IFN-y was appropriate for induction of 

HLA-DR expression on other BCCL, MDA MB 231 and MCF-7 were exposed to 50-

500 units/ml IFN-y and resulting HLA-DR expression was measured using L243 and 

CELISA. Cells were treated for 96 hours as previous studies in our laboratory found this 

incubation period optimal for IFN-y induction ofHLA-DR on BCCL [210, 243]. 

As shown in Figure 3.14, HLA-DR induction on MCF-7 was virtually the same 

following 50 - 500 units/ml IFN-y, while expression on MDA MB 231 appeared to occur 

in a dose dependent manner. Based on these results, 100 units/ml IFN-y was selected to 

stimulate all BCCL as it provided appropriate up-regulation of HLA-DR on MCF-7 and 

MDAMB231. 
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Figure 3.14. Effects of various concentrations ofiFN-y on HLA-DR expression on MDA 
MB 231 and MCF-7. HLA-DR expression was assessed using the antibody L243 and 
CELISA following 96 hour culture in standard medium. Results are shown as OD Test -

OD Background· Standard deviations were calculated from triplicates. 
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3. 7.2. IL-4 

To determine the concentration ofiL-4 for induction ofHLA-DR in BCCL, MDA 

MB 231 was exposed to 50 - 500 units/ml IL-4 for 96 hours in the presence I absence of 

100 units/ml IFN-y. Resulting HLA-DR expression was measured using L243 and 

CELIS A. 

The results, depicted in Figure 3.15, showed that the greatest up-regulation of 

HLA-DR was found co-culturing 500 units/ml IL-4 with 100 units/ml IFN-y. Therefore, 

the concentration of 500 units/ml was chosen for all IL-4 stimulation assays. 

3. 7. 3. TGF-[31 

To determine the optimal concentration of TGF-f31 for experimentation, MDA 

MB 231 was exposed to 1- 10 ng/ml TGF-f31 for 96 hours in the presence or absence of 

100 units/ml IFN-y. Resulting HLA-DR expression was measured using L243 and 

CELIS A. 

As shown in Figure 3.16, TGF-f31 did not modulate constitutive HLA-DR 

expression at any concentration tested. Furthermore, when co-cultured with IFN-y, no 

TGF-f31 concentration suppressed IFN-y-induction of HLA-DR. Therefore, 10 ng/ml, 

which is commonly used in published studies [84, 86-88, 101], was considered a super

saturating dose ofTGF-f31 and selected for subsequent experiments. 
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Figure 3.15. Effects of various concentrations of IL-4 on IFN-y induction of cell surface 
HLA-DR on MDA MB 231. Cells were cultured in the presence or absence of IL-4 
and/or 100 units/ml IFN-y for 96 hours and assayed for HLA-DR expression using the 
antibody L243 and CELISA. Expression is shown as the ratio of OD Test I OD Background· 

Standard deviations were calculated from triplicates. 
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Figure 3.16. Effects of various concentrations of TGF-~1 on IFN-y induction of HLA
DR on MDA MB 231. Cells were cultured in the presence or absence of TGF-~ 1 and/or 
IFN-y for 96 hours and assayed for HLA-DR expression using the antibody L243 and 
CELISA. Expression is shown as the ratio of OD rest I OD Background· Standard deviations 
were calculated from triplicates. 
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3.8. Investigating Effects ofCytokine Combinations on HLA-DR Expression 

Preliminary data (Section 3.1) conducted in standard media illustrated the effects 

of combined cytokine treatment on HLA-DR expression on MCF-7 (ER+) and BT-20 

(ER-) BCCL. We decided to extend this study by examining BCCL cultured in E2-

depleted medium. We questioned if cells cultured in the absence of estrogen would also 

display cytokine-induced differences in HLA-DR expression in ER+ and ER- BCCL. 

To test this, ER+ (MCF-7 and T47D) and ER- (BT-20, MDA MB 157, MDA MB 

231, and SKBR3) BCCL were treated with IFN-y and/or IL-4 and/or TGF-Pl. Resulting 

effects on HLA-DR allelic expression were assessed using specific mAbs (Table 2.3) and 

both flow cytometry and CELISA. All assays were conducted following 96 hour culture 

in E2-depleted media. 

3.8.1. Estrogen Receptor-alpha Negative Breast Cancer Cell Lines 

3.8.1.1 MDA MB 157 

To evaluate the effects of cytokine co-culture on MDA MB 157, HLA-DR allelic 

expression was detected using the antibodies L243, pan HLA-DR; NFLD.D1, pan 

DRP1 *04; NFLD.D10, DRP1 *04 and DRP1 *15. CELISA analysis also incorporated 

NFLD.D7 for detection of DRP1 * 15. Expression of DRP4 and DRP5 proteins could not 

be determined due to lack of specific mAbs. 

The results of flow cytometry, depicted in Figures 3.17 A and 3.17B, showed that 

MDA MB 157 did not constitutively express generic HLA-DR (L243), and expression 

was unmodulated following treatment with IL-4, TGF -P 1, or IL-4 + TGF -P 1. Similar 
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results were also observed with NFLD.Dl (DRf31 *04) and NFLD.DIO (DRf31 *04, 

DRf31 *15). In contrast, IFN-y strongly up-regulated generic HLA-DR (L243) and a -DR 

epitope recognized by NFLD .D 10, as indicated by increased percentage of positive cells 

(Figure 3.17A) and fluorescence intensity (Figure 3.17B). However, NFLD.D1 binding 

was less than twice the background, suggesting that DRf31 *04 was not up-regulated on 

MDA MB 157. This is consistent with a previous study which showed poor DRf31 *04 

expression on MDA MB 157 [210]. Thus, we assume that NFLD.DlO staining indicated 

DRf31 * 15 expression. 

Addition of IL-4 to IFN-y had no effect on the percentage of positive cells or the 

expression of generic HLA-DR and DRf31 *15. In contrast, addition of TGF-f3 inhibited 

IFN-y induction of generic HLA-DR and DRf31 *15, as indicated by marked reductions in 

the percentage of positive cells and fluorescence intensity. Moreover, treatment of MDA 

MB 157 with the combination of IFN-y + IL-4 + TGF-f31 also resulted in severe 

suppression of generic HLA-DR and DRf31 *15. 

CELISA analysis (Figure 3.17C) confirmed flow cytometry results. Detection of 

DRf31 *04 was less than twice the background following IFN-y treatment, confirming that 

DRf31 *04 was poorly expressed on MDA MB 157. Therefore, NFLD.D7 staining 

indicated DRf31 *15 expression. Again, generic HLA-DR and DRf31 *15 expression 

induced by IFN -y or by IFN -y + IL-4 were inhibited by addition of TGF -f31, as indicated 

by sizeable reductions in optical density. Thus, CELISA and flow cytometry data suggest 

that TGF-f31 inhibits IFN-y-induced expression ofHLA-DR on MDA MB 157. This 
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Figure 3.17. Effects of cytokines on HLA-DR allelic expression on MDA MB 157. HLA-DR expression was measured using 
the antibodies L243 (pan HLA-DR); NFLD.D1 (pan HLA-DRp1 *04); NFLD.D7 (pan DRP1 *04, DRP1 *15); NFLD.D10 (pan 
DRP 1 *04, DRP 1 * 15). Results are reported as: (A) histogram overlays where filled histograms = IgG isotype control, open 
histogram = Test mAb and percents indicate the percentage of positive cells; (B) MFhest - MFisackgorund as measured by flow 
cytometry; and (C) ODrest- ODsackground as measured by CELISA. *p < 0.05. **p < 0.01. 
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finding also correlates with previous studies involving astrocytes, monocytes, microglial 

cells, fibrosarcoma cells, and synovial cells [84, 87, 88]. Aside from lack of DRP1 *04 

expression, allelic expression displayed similar trends as generic HLA-DR in terms of 

cytokine-mediated modulation. 

3.8.1.2. MDA MB 231 

The effects of cytokine combinations on allelic expression of MBA MB 231 were 

detected using the antibodies L243, pan HLA-DR; SFR16, HLA-DRP1 *07; and 7.3.19.1, 

HLA-DRp3. HLA-DRP4 expression could not be determined as no specific mAbs were 

available. 

Flow cytometry analysis, Figures 3 .18A and 3 .18B, showed strong constitutive 

expression of generic HLA-DR (L243) and DRP3 (7.3.19.1) on MDA MB 231, while 

DRP1 *07 (SFR16) expression was negligible. Expression of generic HLA-DR, 

DRP1 *07, and DRP3 was not altered by IL-4, but was inhibited by TGF-P1 and the 

combination of IL-4 and TGF -P 1, as indicated by the percentage of positive cells (Figure 

3.18A), and fluorescence intensity ofL243 and 7.3.19.1 (Figure 3.18B). In contrast, IFN

y strongly up-regulated the percentage of positive cells and expression of generic HLA

DR and DRp3, while the percentage ofDRP1 *07 positive cells was strongly up-regulated 

and DRP 1 *07 expression was poorly up-regulated. 
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Figure 3.18. Effects of cytokines on HLA-DR allelic expression on MDA MB 231. Cells were cultured in Ez-depleted media 
and HLA-DR expression was measured using the antibodies L243 (panHLA-DR); SFR16 (DR~1 *07); 7.3.19.1 (DR~3). 
Results are reported as: (A) histogram overlays where filled histograms= IgG isotype control, open histogram= Test mAb and 
percents indicate the percentage of positive cells; (B) MFhest - MFIBackgorund as measured by flow cytometry; and (C) ODTest
ODBackground as measured by CELISA. *p < 0.05. 

96 



Addition of IL-4 to IFN -y had no effect on the percentage of cells stained with 

L243, SFR16, and 7.3.19.1, but reduced fluorescence intensity of generic HLA-DR, 

DRP1 *07, and DRp3. IFN-y + TGF-P1 and IFN-y + IL-4 + TGF-P1 specifically reduced 

the percentage of cells stained with SFR16, but both treatments caused considerable 

reduction in expression of generic HLA-DR, DRP1 *07, and DRp3. 

CELISA analysis (Figure 3.18C) confirmed flow cytometry findings, except, IL-4 

did not suppress IFN-y induction of generic HLA-DR, DRP 1 *07, or DRp3. As previously 

indicated, TGF-P1 did remarkably inhibit IFN-y-induced generic HLA-DR, DRP1 *07 

and DRp3. Furthermore, IFN-y + IL-4 + TGF-P1 inhibited, while IFNy + IL-4 did not 

modulate, IFNy-induced DRP1 *07 and DRp3. 

All together, the results for MDA MB 231 suggest that BCCL can display 

differential expression and induction of HLA-DR alleles, as DRP1 *07 was not 

constitutively expressed and was poorly up-regulated by cytokine treatments. In addition, 

the results for MDA MB 231 are similar to those ofMDA MB 157 and suggest that TGF

P1 inhibits IFN-y induced HLA-DR expression on ER- breast cancer cell lines. 

3.8.1.3. SKBR3 

SKBR3 has a similar HLA-DR phenotype (DRP1 *07, DRP1 *13, DRp3, DRP4) 

to MDA MB 231, and both are ER-. Given this, we wondered if SKBR3 would display 

similar DR expression as MDA MB 231 following cytokine treatments. To answer this, 

we used the same antibodies: L243, pan HLA-DR; SFR16, HLA-DR1 *07; and 7.3.19.1, 
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HLA-DR~3. As previously stated, HLA-DR~4 expression could not be examined as no 

specific mAb was available. 

The results of flow cytometry analysis, Figures 3.19A and 3.19B, revealed that 

SKBR3 did not constitutively express generic HLA-DR (L243), DR~1 *07 (SFR16) or 

DRf33 (7.3.19.1), and expression was unmodulated by treatment with IL-4, TGF-~1, or 

IL-4 + TGF-~1. However, IFN-y strongly up-regulated generic HLA-DR, DR~1 *07, and 

DR~3, as indicated by increased percentage of positive cells (Figure 3.19A) and 

fluorescence intensity (Figure 3 .19B). 

Addition of IL-4 augmented IFN-y induction of generic HLA-DR, DR~ 1 *07 and 

DR~3, as indicated by increased percentage of positive cells, and more specifically, by 

increased fluorescence intensity. Similarly, addition of TGF-f31 to IFN-y increased the 

percentage of cells labeled with L243, SFR16, and 7.3.19.1, and increased fluorescence 

intensity. This suggested that either IL-4 or TGF-~1 could act synergistically with IFN-y 

to induce HLA-DR expression on SKBR3. However, IFN-y + IL-4 + TGF-~1 resulted in 

the highest percentage of generic HLA-DR and DR~3 positive cells and increased the 

expression of generic HLA-DR and DR~3, but did not modulate the percentage or 

expression ofDR~1 *07, indicating selective up-regulation ofHLA-DR alleles. 

CELIS A analysis, depicted in Figure 3 .19C, verified most flow cytometry 

findings. However, DR~1 *07 was poorly up-regulated, indicating a discrepancy with 

flow cytometry data that will be addressed in Chapter 4. Addition of IL-4 slightly 

increased IFN-y induction of generic HLA-DR, but did not affect DRf31 *07 or DR~3. 
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Figure 3.19. Effects of cytokines on HLA-DR allelic expression on SKBR3. HLA-DR expression was measured using the 
antibodies L243 (pan HLA-DR); SFR16 (DRIH *07); 7.3.19.1 (DR~3). Results are reported as: (A) histogram overlays where 
filled histograms = IgG isotype control, open histogram = Test mAb and percents indicate the percentage of positive cells; (B) 

* MFhest- MFIBackgorund as measured by flow cytometry; and (C) ODrest- ODBackground as measured by CELISA. p < 0.05. 
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IFNy + TGF-P1 up-regulated generic HLA-DR, while expression ofDRP1 *07 and DRP3 

was relatively unmodulated, suggesting that DRP 1 * 13 or DRP4 was up-regulated. 

Moreover, the highest expression of generic HLA-DR was found following IFN-y + IL-4 

+ TGF-p1, suggesting that TGF-P was not inhibitory to SKBR3. 

Taken together, the results of SKBR3 are in contrast to the results of MDA MB 

157 and MDA MB 231 as we showed that TGF-P does not inhibit IFN-y induction of 

generic or allelic HLA-DR on SKBR3. Moreover, as the BCCL examined thus far have 

all been ER-, these current results suggest that TGF-P is not inhibitory to all BCCL. 

Furthermore, as SKBR3 has similar HLA-DR phenotype to MDA MB 231, we now 

suggest that the effects mediated by cytokine combinations on HLA-DR expression may 

be cell line specific. 

3.8.1.4. BT-20 

To further examine the effects of cytokine combinations on ER- BCCL, allelic 

expression on BT-20 was detected using the antibodies L243, pan HLA-DR; NFLD.D1, 

pan DRP1 *04; 7.3.19.1, DRp3. CELISA analysis also incorporated TAL8.1 for detection 

of HLA-DRP1 *13. As stated previously, we were unable to detect DRP1 *04 with 359-

16F10 due to shortage ofthis antibody. 

The results of flow cytometry, depicted in Figures 3.20A and 3.20B, revealed a 

small amount of constitutive generic HLA-DR (L243), which was unaffected by IL-4, but 

was decreased by TGF-P treatment. Since constitutive DRP1 *04 (NFLD.D1) and DRP3 

(7.3.19.1) was not observed, we assumed that HLA-DRP1 *13 and/or HLA-DRP4 were 
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expressed. However, DRP1 *13 and DRP4 proteins were not ascertained by flow 

cytometry due to shortage or lack of specific mAbs. Alternatively, it is possible that low 

levels of HLA-DR allelic products were indictable using allele specific mAbs, but were 

detectable using L243 since this Ab recognizes all DR types collectively. 

Neither IL-4, TGF -P 1, nor IL-4 + TGF -P 1 modulated expression of DRP 1 *04 or 

DRp3. In contrast, IFN-y strongly up-regulated generic HLA-DR and DRP3, but only 

slightly increased DRP 1 *04, as indicated by increased percentage of positive cells 

(Figure 3.20A) and fluorescence intensity (Figure 3.20B). Addition of IL-4 to IFNy 

marginally increased the percent of positive cells stained with L243 and NFLD.D1, but 

did not affect fluorescence intensity, while it reduced IFN-y induction ofDRp3. 

In contrast, IFNy + TGF -P 1 increased the percentage of cells expressing generic 

HLA-DR, DRP 1 *04, and DRP3, but only substantially increased expression of generic 

HLA-DR when fluorescent intensity was analyzed. IFN-y + IL-4 + TGF-P1 treatment 

resulted in the highest percentage and expression of generic HLA-DR, DRP1 *04, and 

DRp3, suggesting that these three cytokines could act synergistically to modulate HLA

DRonBT-20. 

CELISA analysis (Figure 3 .20C) confirmed flow cytometry results for the most 

part. However, expression of constitutive generic HLA-DR was negligible, and although 

IL-4 slightly increased generic HLA-DR expression, this detection was less than twice 

the background and was also considered negligible. Furthermore, IFN-y, IFN-y + IL-4, 

IFN-y + TGF-p1, and IFN-y + IL-4 + TGF-P1 did not up-regulate DRPl *04 as 
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Figure 3.20. Effects of cytokines on HLA-DR allelic expression on BT-20. HLA-DR expression was assessed using 
antibodies: L243 (pan HLA-DR); TAL8.1 (DR~1*13); NFLD.D1 (pan DR~1*04); 7.3.19.1 (DR~3). Results are reported as: 
(A) histogram overlays where filled histograms= IgG isotype control, open histogram= Test mAb, and percents indicate the 
percentage of positive cells; (B) MFhest - MFisackgorund as measured by flow cytometry; and (C) ODTest- ODsackground as 

* ** measured by CELISA. p < 0.05. p < 0.01. 
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expression was less than twice the background. Other discrepancies included IFNy + IL-

4, IFNy + TGF-P1 and IFNy + IL-4 + TGF-P1 inducing similar amounts of generic HLA

DR expression, suggesting that either IL-4 or TGF-P1 could act synergistically with IFN

y. All three cytokines together also induced the highest expression of DRp3, but did not 

further augment generic HLA-DR or DRP 1 *04 as previously indicated by flow 

cytometry. The discrepancies identified here will be addressed in Chapter 4. 

CELISA analysis also revealed that DRP1 *13 (TAL 8.1) was not constitutively 

expressed on BT-20, suggesting that constitutive HLA-DR (L243) expression was HLA

DRp4. DRP1 *13 expression was unaffected by IL-4, TGF-p1, or IL-4 + TGF-Pl. 

Expression also remained less than twice the background following IFN-y and IFN-y + 

IL-4. Addition ofTGF-P1 to IFN-y induced positive levels of expression, and IFN-y + IL-

4 + TGF-P 1 did not indicate any synergistic activity of all three cytokines on DRP 1 * 13 

expression. 

Taken together, flow and CELISA results for BT-20 suggest that DRP1 *04 was 

poorly up-regulated by IFN-y and combined cytokine treatments. Our results also suggest 

that TGF-P1 inhibits constitutive HLA-DR expression on BT-20, but in combination with 

IFN-y, TGF-P 1 augments IFN-y induction of generic and allelic HLA-DR. This suggests 

that TGF-P1 alone acts differently than when combined with IFN-y to modulate HLA-DR 

expression on BT-20. Furthermore, as we showed that IFN-y + TGF-P1 induced HLA

DR expression on BT-20 and SKBR3, but suppressed expression on MDA MB 157 and 

MDA MB 231, we suggest the effects mediated by these cytokines are cell line specific. 
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3.8.1.5. Summary of the Differential Effects Mediated by Cytokines on HLA-DR 
Expression on ER-negative Breast Cancer Cell Lines 

A summary of the differential effects mediated by individual and combined 

cytokine treatments on ER- BCCL is presented in Table 3.3. Only MDA MB 231 and 

BT-20 constitutively expressed HLA-DR, and in each case, expression was down-

regulated by TGF-P 1. IL-4 + TGF-P 1 also reduced constitutive HLA-DR on MDA MB 

231, but not BT-20. In contrast, IL-4 did not modulate generic or allelic HLA-DR 

expression on any ER- breast cancer cell line. 

AllER- cell lines were responsive to IFN-y and up-regulated HLA-DR to varying 

degrees. This induction may depend on the allotypes expressed as DRP1 *04 was not up-

regulated on MDA MB 157, and BT-20 poorly up-regulated DRP1 *04 and DRP1 *13. 

IFN-y + IL-4 had inconsistent effects on MDA MB 231, SKBR3, and BT-20. 

However, flow cytometry indicated that IL-4 had antagonistic effects on IFN-y induced 

HLA-DR on MDA MB 231, but augmentative effects on SKBR3 which carries the same 

allotypes as MDA MB 231. TGF-P1 also had antagonistic effects on IFN-y induced 

HLA-DR on MDA MB 231 and MDA MB 157, while it had the opposite effect on 

SKBR3 and BT -20. 

All three cytokines together followed similar expression patterns as IFN-y + TGF-

p for each cell line. Thus, it appears that the modulatory effects of IFN-y + IL-4, IFN-y + 

TGF-p1, and IFN-y + IL-4 + TGF-P do not occur in an allotype-specific manner in ER-

breast cancer cell lines. 
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Table 3.3. Summary of the differential effects a on HLA-DR allelic products mediated by cytokine treatments on ER- breast 
cancer cell lines. 

Effects of Cytokine Treatment on Effects on HLA-DR 
Cell Line HLA-DR Constitutive HLA-DR Expression Expression in Relation to IFNy 

allele expression IL-4 TGF-~1 IL-4+ IFN-y IFN-y+ IFN-y+ IFN-y + 
TGF-~1 IL-4 TGF-~1 IL-4 + 

TGF-~1 
MDA HLA-DR - - - - i - ! ! 

MB 157 DR~1 *04 - - - - - - - -
DR~1 *15 - - - - i - ! ! 

MDA HLA-DR + - ! ! i ! (-) ! ! 
MB231 DR~1 *07 - - - - iw ! (-) ! ! 

DR~3 + - ! ! i ! (-) ! ! ER- HLA-DR + (-) ! (-) i - (i) i i - -
BT-20 DR~1 *04 - - - - i w (-) - i (-) i (-) 

DR~1*13 - - - - - - i i 
DR~3 - - - - iw ! (i) i i 

HLA-DR - - - - i i i i 
SKBR3 DR~1*07 - - - - i (-) i (-) i (-) -

DR~3 - - - - i i i (-) i (-) 
a Expression was considered positive if values were twice the background 
+ indicates detectable expression; - indicates no effect; i indicates increased expression; i w = weak increased expression; 
! indicates decreased expression; 
( ) indicates discrepant CELISA results. 
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3.8.2. Estrogen Receptor-alpha Positive Breast Cancer Cell Lines 

3.8.2.1. MCF-7 

The effects of cytokine. combinations on allelic expression of MCF-7 was 

detected using the antibodies L243, pan HLA-DR; NFLD.D10, HLA-DRP1 *15; and 

NFLD.M1, HLA-DRp3. CELISA analysis also incorporated TAL8.1 for detection of 

HLA-DRP 1 *03. Expression of HLA-DRP5 could not be evaluated due to lack of specific 

mAbs. 

Flow cytometry analysis did not reveal any constitutive generic HLA-DR (L243), 

DRP1 *15 (NFLD.D10), or DRP3 (NFLD.M1) expression on MCF-7. Generic HLA-DR 

and DRPl *15 were induced by IL-4 and IL-4 + TGF-pl, but not by TGF-p1, as indicated 

by increased percentage of positive cells (Figure 3.21A) and fluorescence intensity 

(Figure 3.21B). However, neither IL-4, nor TGF-P1, nor IL-4 + TGF-P1 modulated 

DRP3 expression. IFN-y strongly up-regulated expression of generic HLA-DR and 

DRP1 *15, but not DRp3, suggesting that DRP3 was poorly expressed by MCF-7. 

The combination of IL-4 and IFN-y increased the fluorescence intensity of cells 

stained with L243 and NFLD.DlO, but had marginal effects on the percentage of positive 

cells. In contrast, IFN-y + TGF-Pl had no effect on HLA-DR or DRP1 *15. IFN-y + IL-4 

and IFN-y + TGF-P both increased the percentage of cells stained with NFLD.Ml, but in 

both cases, expression was less than twice the background and was therefore considered 

negligible. The highest percentage and expression of HLA-DR, DRPl *15, and DRP3 

resulted following IFN-y + IL-4 + TGF-P1 treatment. 
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The results of CELIS A analysis, depicted in Figure 3.21 C, revealed some 

discrepancies with flow cytometry results, which will be addressed in Chapter 4. Neither 

IL-4 nor IL-4 + TGF-Pl induced generic HLA-DR (L243), DRP1 *15 (NFLD.D10), or 

DRP1 *03 (TAL 8.1). Furthermore, addition of TGF-P to IFN-y had no effect on general 

HLA-DR expression, while its effects on DRP1 *15, DRP1 *03, and DRP3 were 

negligible. Similarly, addition ofiL-4 did not augment IFNy-induced generic HLA-DR or 

DRP1 *03, and the slight up-regulation ofDRPl *15 was negligible. 

Taken together, flow and CELISA results establish that TGF-P does not inhibit 

IFN-y-induced HLA-DR on MCF-7. The results also indicate that TGF-P1 may act 

synergistically with IFN-y + IL-4 to up-regulate, rather than suppress, generic and allelic 

HLA-DR expression on ER+ BCCL. Differential up-regulation of HLA-DR allotypes 

was displayed by MCF-7 as both DRP1 *03 and DRP3 were not up-regulated by IFN-y. 
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Figure 3.21. Effects of cytokines on HLA-DR allelic expression on MCF-7. HLA-DR expression was assessed using Abs: 
L243 (pan HLA-DR); TAL8.1 (DRpl *03); NFLD.DlO (DRPl *15); NFLD.Ml (DRp3). Results are reported as: (A) histogram 
overlays, filled histograms = IgG isotype control, open histogram = Test mAb, and % indicate the percentage of positive cells; 

* (B) MFhest- MFisackgorund as measured by flow cytometry; and (C) ODrest- ODsackground as measured by CELISA. p < 0.05. 
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3.8.2.2. T47D 

To further evaluate the effects of cytokine co-culture on ER+ BCCL, experiments 

were performed on T47D. Since T47D only carries HLA-DRI31 *0102 [210] cytokine 

effects were detected using L243. 

Negligible amounts of constitutive HLA-DR were detected on T47D by flow 

cytometry (Figures 3.22A and 3.22B) and CELISA (Figure 3.22C). Expression was 

unmodulated by IL-4, TGF-131, or IL-4 + TGF-131, but was strongly induced by IFN-y, as 

indicated by increased percentage of positive cells (Figure 3.22A), fluorescence intensity 

(Figure 3.22B), and optical density (Figure 3.22C). Although the percentage of positive 

cells was relatively unaffected by addition of either IL-4 or TGF-131 to IFN-y treatment, 

IL-4 inhibited IFN-y-induced HLA-DR fluorescence intensity and optical density, while 

TGF-131 had no effect. Treatment with IFN-y + IL-4 + TGF-131 also resulted in inhibition 

ofiFN-y induced HLA-DR expression. 

As both T47D and MCF-7 are ER+ BCCL, these results confirm TGF-131 does not 

inhibit IFN-y-induced HLA-DR on ER+ BCCL. Furthermore, since TGF-131 did not 

augment IFN-y + IL-4 induction of generic and allelic HLA-DR on T47D, as previously 

observed on MCF-7, and these two cell lines have no common HLA-DR alleles, these 

results suggest that the effects mediated by cytokine combinations on HLA-DR 

expression are cell line specific. 
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Figure 3.22. Effects of cytokines on HLA-DR expression on T47D. HLA-DR expression 
was measured using the antibody L243 (pan HLA-DR). Results are reported as: (A) 
histogram overlays where filled histograms= IgG isotype control, open histogram= Test 
mAb, and percents indicate the percentage of positive cells; (B) MFhest- MFisackgorund as 
measured by flow cytometry; and (C) ODTest- ODsackground as measured by CELISA. 
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3.8.2.3. Summary of the Differential Effects Mediated by Cytokines on HLA-DR 
Expression on ER-positive breast cancer cell lines. 

A summary of the differential effects mediated by individual and cytokine 

combinations on HLA-DR expression for ER+ breast cancer cell lines is presented in 

Table 3.4. Neither MCF-7 nor T47D constitutively expressed HLA-DR, and in both cases 

expression was unaffected by TGF-Pl. Results for IL-4 and IL-4 + TGF-P1 were 

inconsistent on MCF-7, but flow cytometry suggested that IL-4 up-regulated generic 

HLA-DR and DRP1 *15. In contrast, T47D was unaffected by either treatment involving 

IL-4. 

Both cell lines were responsive to IFN-y to varying degrees, but DRP 1 *03 and 

DRP3 were not up-regulated on MCF-7, suggesting that these proteins were poorly 

expressed. 

IL-4 augmented IFN-y induced generic HLA-DR and DRP1 *15 on MCF-7, but 

antagonized HLA-DR on T47D. This suggested that the modulatory effects mediated by 

cytokines were cell line specific. However, TGF-Pl did not modulate expression on 

either cell line, indicated that TGF-P1 was not inhibitory to ER+ breast cancer cell lines. 

Intriguingly, weak positive expression of DRP 1 *03 and DRP3 was only detected 

on MCF-7 following IFN-y + IL-4 + TGF-P1, suggesting that allotypic expression may 

depend on the surrounding cytokine milieu. This treatment also up-regulated generic 

HLA-DR and DRPl *15 on MCF-7, while it down-regulated HLA-DR on T47D, again 

indicated that modulatory effects were cell line specific. 
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Table 3.4. Summary of the differential effects a on HLA-DR allelic products mediated by cytokine treatments on ER+ breast 
cancer cell lines. 

Effects of Cytokine Treatment on HLA- Effects on HLA-DR 
Cell Line HLA-DR Constitutive DR Expression Expression in Relation to IFNy 

allele expression IL-4 TGF-~1 IL-4 + IFN-y IFN-y+ IFN-y+ IFN-y + 
TGF-~1 IL-4 TGF-~1 IL-4+ 

TGF-~1 
HLA-DR - i (-) - i (-) i i (-) - i 

MCF-7 DR~1*03 - - - - - - - i 
ER+ DR~ I *15 - i (-) - i (-) i (-) i - i 

DR~3 - - - - - - - i (-) 
T47D HLA-DR - - - - i ! - ! 

a Expression was considered positive if values were twice the background. 
+ indicates detectable expression; - indicates no effect; j indicates increased expression; ! indicates decreased expression 
( ) indicates discrepant CELISA results. 

119 



3.9. Determining BCCL TGF-[31 Sensitivity 

Western blots were performed to determine BCCL responsiveness to TGF -~ 1 

stimulation, as indicated by phosphorylation of Smad2 and Smad3 proteins. As described 

in Section 1.4.3, Smad2/3 are key proteins involved in TGF-13 intracellular signaling that 

become activated upon phosphorylation, forming a complex with Smad4 which 

translocates to the nucleus and effects the transcription of TGF -13 sensitive genes. The 

presence ofphosphorylated-Smad2/3 (P-Smad2, P-Smad3) indicates active internal TGF

~ signaling and functional TGF-13 receptors on the cell surface. Thus, the absence of P

Smad2/3 suggests the absence of one or more of the TGF-13 receptors (TGFI3-RI, TGFI3-

RII) on the cell surface, or alternatively, that the receptors are present but nonfunctional. 

As shown in Figure 3.23, anti-P-Smad3 analysis indicated two bands in BT-20, 

MDA MB 157, MDA MB 231, MDA MD 468, and SKBR3. This work was performed in 

collaboration with Dr. Jules Dore using an Ab derived from rabbit anti-serum. P-Smad3 

is the lower of these two bands, with the upper band believed to be cross-reaction with 

total Smad3 or evidence of a contaminating Ab (Jules Dore , personal communication). 

P-Smad3 was found in all ER- BCCL, illustrating that ER- BCCL were sensitive 

to TGF-~1 treatment. Weak P-Smad3 expression was noted in SKBR3 compared to other 

ER- cell lines. Among the ER+ BCCL, P-Smad3 was detected in MCF-7, but not BT-474 

or T47D. Weak bands were visible in BT-474 and T47D, however, as these cell lines 

lacked Smad3 expression, this detection was believed to be artifactual or due to 

contaminating Ab in the rabbit anti-serum. Immunoblotting with anti-Smad3 confirmed 

there were equivalent amounts of Smad3 in treated and untreated cells. These results are 
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Figure 3.23. TGF-131-mediated phosphorylation of Smad3 in breast cancer cell lines. 
Cells were stimulated with 5 ng/ml TGF -~ 1 for 1 hour and Smad3 phosphorylation was 
determined by Western blotting. Total Smad3 and anti-a tubulin were detected as 
controls. The arrow indicates the location of P-Smad3. Results are representative 
examples of duplicate experiments. 
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consistent with a loss of TGF-~ sensitivity in most ER+ BCCL, as indicated in several 

previous studies [240, 244-248]. 

Notably, MCF-7, MDA MB 157, MDA MB 468, and SKBR3 (weak) were found 

to express constitutive P-Smad3. Furthermore, TGF-~1 treatment increased the amount of 

P-Smad3 in MCF-7, MDA MB 157, MDA MB 468, but not SKBR3. 

In contrast to P-Smad3, expression of P-Smad2 appeared more cell-line specific. 

P-Smad2 was detected in MDA MB 157, MDA MB 231, MDA MB 468 and BT-474, but 

was not detected in MCF-7, T47D, BT-20, or SKBR3. Furthermore, of cell lines 

displaying P-Smad2, none appeared to do so constitutively. Immunoblotting with anti

Smad2 confirmed there were equivalent amounts of Smad2 in treated and untreated cells. 

These results suggest that only selective BCCL are capable of mediating P-Smad2-

dependent signaling in response to TGF -~ 1 stimulation. 

Taken together, analysis of Smad 2 and Smad 3 phosphorylation in BCCL suggest 

that only T47D may lack or have a nonfunctional TGF-~ receptor on the cell surface as 

neither P-Smad2 nor P-Smad3 was detected in this cell line. All other BCCL displayed P

Smad2 and/or P-Smad3, or increased levels of P-Smad3 in response to TGF-~1 

stimulation (Table 3.5). However, no P-Smad2 or increase in constitutive P-Smad3 was 

detected in SKBR3, suggesting that TGF-~ 1 augmentation of IFN-y-induced HLA-DR 

expression in SKBR3 may be mediated through a Smad-independent pathway. 

122 



I'-- "l""' co 
Ll) C") CD 
"l""' N '011:1' 

aJ aJ aJ 
I'-- '011:1' :::E :::E :::E C") 

I I'-- 0 0 
<C <C <C 

0:: 
u. ..,. N aJ 
(.) I'-- I 0 0 0 ~ 1- '011:1' 1-
:::E aJ 1- aJ :::E :::E :::E en 

..-- ..-- ..-- ..-- ..-- ..-- ..-- ..--
X co.. 

~ 
co.. X co.. 

~ 
co.. X co.. X co.. 

~ 
co.. X co.. 

1-
I I 

1-
I I 1- I 

1-
I I 

1-
I 

u.. u.. u.. u.. u.. u.. u.. u.. 
0 (.9 0 (.9 0 (.9 0 (.9 0 (.9 0 (.9 0 (.9 0 (.9 
z 1- z 1- z 1- z 1- z 1- z 1- z 1- z 1-

P-Smad2 

Smad2 
__ .._,....._..,., ______ _ 

Anti-
atublin ~._~~----

--______ ,...,._' 

Figure 3.24. TGF-P1-mediated phosphorylation of Smad2 in breast cancer cell lines. 
Cells were stimulated with 5 ng/ml TGF-P 1 for 1 hour and Smad2 phosphorylation was 
determined by Western blotting. Total Smad2 and anti-a tubulin were detected as 
controls. Results are representative examples of duplicate experiments. 
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Table 3.5. Detection of Smad proteins in breast cancer cell lines through Western 
blotting. 

Breast Cancer Smad3 P-Smad3 Smad2 P-Smad2 
Cell Line NoTx TGF-(3 NoTx TGF-(3 NoTx TGF-(3 NoTx TGF-J3 

MCF-7 + + + + +w +w - -

BT-474 - - - - + + - + 

T47D - - - - + + - -

BT-20 + + - + + + - -

MDAMB 157 + + +w + + + - + 

MDAMB231 + + - + + + - + 

MDAMB468 +w +w + + + + - + 

SKBR3 +w +w +w +w + + - -

+=detectable express10n; +w =weak detectable express10n;- =no detectable expression. 
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Chapter 4: Discussion 

Ongoing research m our laboratory is focused on the mechanisms and 

significance of HLA-class II expression on breast cancer cells. A previous study by A.E. 

Edgecombe [21 0] clearly showed that a minority of breast cancer cell lines have 

constitutive class II expression, while the majority is inducible by treatment with IFN-y. 

Her work also revealed differential expression of HLA-class II (DR, DQ and DP) and co

chaperones. Recently, our laboratory showed that DR-positive tumor cells in breast 

carcinoma tissues differentially express their DR alleles [249]. Subsequently, it was 

found that expression is influenced by IFN-y, IL-4 and TGF-13 and is clinically associated 

with ERa and age of diagnosis (Sharon Oldford, personal communication). This implies 

that HLA-DR expression by breast cancer cells is modulated by estrogen and the 

cytokine milieu. Based on the background of these findings, the work described in this 

thesis was aimed at determining how these interacting factors affect HLA-DR expression 

in ER+ and ER- cell lines. 

4.1. Summary of Key Findings 

• Constitutive and IFN-y-induced HLA-DR expression on ER+ and ER- BCCL was 

affected by culturing the cells in E2-containing and E2-depleted medium, 

suggesting that estrogen had modulatory effects on DR expression. The individual 

effects of estradiol could not be ascertained as reconstitution solvents (ethanol, 

DMSO, 1-butanol, and methanol) suppressed HLA-DR expression on breast 

cancer cell lines. 
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• TGF-P1 mRNA in ER+ and ER- BCCL was affected by culturing the cells inEz

containing and E2-depleted medium, suggesting transcription was modulated by 

estradiol concentrations. 

• Two of 8 breast cancer cell lines constitutively expressed HLA-DR, which was 

inhibited by TGF-P1 and correlated with differential expression of constitutive P

Smad3 and P-Smad2. 

• IFN-y up-regulated generic HLA-DR molecules on all cell lines to varymg 

degrees. Aside from DRP 1 *04, which was poorly up-regulated on BT -20 and 

MDA MB 157, all other allotypes were up-regulated. Overall, the degree of IFN-y 

induction did not depend on the allotypes expressed by particular breast 

carcinoma cells. 

• IL-4 alone and combined with IFN-y, selectively modulated HLA-DR expression 

in a cell line-specific manner. 

• TGF-P 1 mediated differential effects on HLA-DR expression on breast cancer 

cell lines. In contrast to studies indicating TGF-P suppression ofCIITA, TGF-P1 

augmented DR expression on SKBR3 and BT-20. Analysis of P-Smad2 and P

Smad3 indicated these differential effects may be explained by differential 

expression of Smad signaling components, and suggested IFN-y + TGF-P1 

synergy may occur in a Smad-independent manner. TGF-P1 did not modulate DR 

on ER + cell lines. 

126 



• The effects of IL-4 + TGF-P on constitutive and IFN-y-induced HLA-DR 

expression suggest that the quantity and function of IL-4 and TGF-P receptors on 

the cell surface direct the effects of combined cytokine treatment. 

• Our study indicates that breast cancer cell lines mediate cell-line specific effects. 

Thus, studies employing cell lines need to be carefully evaluated before the 

results of in vitro studies can be translated to in vivo situations. 

4. 2. Study Concerns 

4. 2.1. Cell Lines 

Breast cancer cell lines used in this study were kindly provided by Dr. Shou

Ching Tang and Dr. Alan Pater (Section 2.1 ). The identity of each of these cell lines was 

previously confirmed by A.E. Edgecombe via comparison of short tandem repeat 

sequences published by the ATCC [21 0]. Whether these breast cancer cell lines are 

representative of the tumors from which they originated, and whether their diversity 

reflects inter-tumoral heterogeneity remains matters of debate. Some argue that 

prolonged in vitro culture of breast cancer cells in artificial conditions modify the 

properties of cell lines making them genetically different from the initial population. 

Furthermore, inter-laboratory differences are known to occur for commonly used cell 

lines, conflicting data comparison. For example, MCF-7 cell stocks from different 

laboratories have been shown to differ in sensitivity to 17P-estradiol, associated with 

variations in ER protein and mRNA levels [250]. 
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4. 2. 2. Experimentation Concerns 

Cytokine-mediated effects on HLA-DR expression on breast cancer cell lines 

were analyzed by both flow cytometry and CELISA. However, sometimes discrepancies 

were evident between these two experimental assays, causing limitations that will be 

discussed in Section 4.5.1. 

4.3. Estrogen Modulation of HLA-DR expression on Breast Carcinoma Cell Lines 

4.3.1. Media Composition Affects HLA-DR Expression on Breast Carcinoma Cell Lines 

As previously reviewed in Section 1.5.1, numerous studies have indicated that 

17P-estradiol has immunomodulatory effects on MHC class II expression on a variety of 

cell types. To analyze the effects of estradiol on HLA-DR expression on breast cancer 

cell lines, we began by comparing HLA-DR expression on cells cultured in standard 

medium and E2-depleted medium which differed particularly in the content of steroidal 

and nonsteroidal estrogens. 

Collectively these results indicated that media composition, and particularly 

estrogen in culture media, differentially affected constitutive and IFN-y inducible HLA

DR expression on breast cancer cell lines. Since media composition did not modulate 

HLA-DR expression on MDA MB 468, BT-20, MCF-7, or BT-474, our results did not 

indicate unanimous trends for ER- or ER + breast carcinoma cell lines. Thus, we suggest 

that the effects mediated by media composition and estrogen on HLA-DR expression are 

cell-line specific. Moreover, as IFN-y induction ofHLA-DR on SKBR3 (ER-) was higher 

in E2-containing media, our results suggested that estrogen could affect HLA-DR 
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expression on bothER+ and ER- cells lines. This posed the question of how estrogen

mediated modulation may occur in ER- cell lines, and suggested that ER- breast cancer 

cells are not totally insensitive to estrogen. Through in vitro studies, others have also 

indicated that some ER- breast cancer cell lines respond to estrogens and antiestrogens, 

suggesting that these compounds act through an alternative mechanism than ERa [179]. 

Although we have concentrated on effects mediated potentially by differences in 

steroidal and non-steroidal estrogen content, it is possible that other factors may be 

implicated. For example, the amounts of creatine, glucose, insulin, thyroxine, and 

phosphorous differ between normal FCS and charcoal dextran-treated FCS according to 

the composition information provided by the manufactures (Invitrogen and Hyclone, 

respectively). The effects of such factors on HLA-DR expression on breast carcinoma 

cell lines is presently unknown, and thus may warrant further investigation. 

Notably, our results are contradictory to previous studies reporting constitutive 

HLA-DR expression on BT-20, MDA MB 231, T47D, SKBR3, and MCF-7 cultured in 

standard medium [21 0, 251]. These discrepancies are not surprising, given that 

differences in cell line passage number may affect the ability to express different 

molecules, and cultured cells may acquire mutations over time. Batches of FCS may also 

vary in hormone and chemical content, altering medium composition. 

In agreement with other studies [210, 212, 213, 252], we found strong HLA-DR 

up-regulation on MDA MB 231, SKBR3, MDA MB 157, BT-20, and T47D in response 

to IFN-y. 
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4.3.2. Differential Expression of ERa mRNA in Breast Carcinoma Cell Lines 

ERa transcription was examined in all 8 breast cancer cell lines by RT-PCR using 

primers specific to a 550-base-pair wild-type fragment from exon 2 of human ERa 

eDNA [226]. Consistent with documentation provided by the ATCC, we found ERa 

mRNA expression in BT-474, T47D, and MCF-7, but not in MDA MB 231, MDA MB 

468 and SKBR3 (Figure 3.4A). In addition, we found ERa mRNA in BT-20, which is 

classified as ER- by ligand binding analysis, but was previously shown to express a 

variant ERa transcript that contains an exon 5 deletion [236, 253]. Sequence analysis of 

this BT -20 variant ER transcript has revealed a frame-shift alteration resulting in a stop 

codon at the 5' end of exon 6, which translates into expression of a truncated form of the 

receptor lacking the majority of the hormone-binding domain [254]. Since our ERa 

primers were specific for exon 2, this variant would be amplified by RT-PCR. 

We also found ERa mRNA in MDA MB 157 which is in contrast to ATCC 

reports. We are confident that this discrepancy is not the result of a mislabeled cell line as 

the identity of each breast cancer cell line was confirmed by comparison with short 

tandem repeat sequences published by the ATCC [21 0]. 

The ERa transcript observed in MDA MB 157 was of similar size as wild-type 

ERa found in BT-474 (Figure 3.4B), but may also indicate an ERa variant. Variants 

include exon-deleted, exon-duplicated, or truncated ER mRNA transcripts that encode a 

variety of incomplete ER-like proteins missing some functional domains ofthe wild-type 

receptor [255, 256]. Variant ERa mRNAs have been reported in breast cancer cell lines 
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other than BT-20, including T47D and MCF-7 [253, 257-259]. A range of ER variant 

mRNAs also occur in clinical breast cancer and are believed associated with altered 

responsiveness to estrogens and/or antiestrogens [256, 260-262] and play a role in 

tumorgenesis [263, 264]. However, since transcription does not necessarily correlate with 

protein translation, future work to determine whether MDA MB 157 expresses ERa 

protein should include Western blot analysis and comparison of molecular weight of this 

protein with wild-type ERa. 

An alternative explanation for ERa amplification in MDA MB 157 is cross

reaction of ERa primers with ERp. Our primers were checked using the AmplifY program 

for negative cross-reactivity with the wild-type ERP sequence, but 5 ERP isoforms are 

known to occur. In fact, four of these altered isoforms have been cloned and 

characterized from MDA MB 157 [265]. Since the human ERP is highly homologous to 

human ERa, particularly in the amino-terminal domain (96% amino acid homology) 

where our primers bind [175], it is possible that one of these isoforms was amplified by 

our primers. A recent BLAST search also confirmed that our primers may recognize 

mRNA of estrogen-receptor related variant protein (Accession # M69296), estrogen

related receptor beta (Accession # NM_004452), and estrogen-related receptor beta2 

(Accession# AF094517). 
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4.3.3. Media Composition Affects ERa mRNA in Breast Carcinoma Cell Lines 

We found that ERa transcript amplification was much higher for T47D and MCF-

7 cultured in standard medium than E2-depleted medium, suggesting that estradiol levels 

influenced ERa transcription. These results may be explained by genetic instability 

provoked by cell culture conditions, such as was described in T47D-5 (T47D subline) 

which developed estradiol insensitivity when maintained for almost continuous 

exponential growth [266]. On the other hand, differences in ERa mRNA may involve 

factors that control expression of ERa. 

The expression of ERa mRNA is differentially regulated by estrogen in estrogen

responsive breast cancer cell lines. Estrogen treatment has been shown to decrease ERa 

mRNA levels in MCF-7 cells [267, 268], and increase ERa mRNA levels in T47D cells 

[267, 269]. Studies examining short- and long-term culture ofT47D and MCF-7 cells in 

phenol red-free and estrogen-depleted medium also report considerable changes in 

morphology, growth rate, receptor content, and response to hormones and antihormones 

[270, 271]. These studies indicated that ER content steadily increased in MCF-7 cultured 

in low or estrogen-depleted medium [270, 271], whereas ER content and ER mRNA 

decreased in T47D in response to short-term and long-term estrogen deprivation [218, 

272]. Thus, our findings are in agreement with those reported for T47D, but are in 

contrast to those for MCF-7. 

Differential regulation by estrogen may also be due to different promoter usage. 

Cloning and sequencing of human ERa DNA has identified three promoters (A, B, C) 

which are coordinately regulated by estrogen [236]. It has been shown that all three 
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promoters are used by both MCF-7 and T47D for expression of ERa [236]. However, 

estrogen down-regulated all three promoters in MCF -7, but up-regulated all promoters in 

T47D [236]. This demonstrated that estrogen regulation varies in a cell-specific manner 

but not in a promoter-specific manner, and excluded the possibility that a single promoter 

controlled the expression of ER mRNA levels in breast cancer cells. Furthermore, 

Donaghue et al. [236] reported that BT-20 cells expressed low levels of ERa transcripts 

which were derived solely from promoter A, suggesting that low levels of ERa 

expression in BT-20 could be due to differential promoter usage, the number of 

promoters used, or lower activity of all promoters. Future research could examine 

whether similar differential promoter usage or differential promoter activity occurs in 

MCF-7 and T47D cultured in E2-depleted medium. 

A variety of signaling pathways may also influence ERa expressiOn. 

Hyperactivation of MAPK signaling pathways, as a result of overexpression or activation 

of epithelial growth factor receptor (EGF) and Her-2/neu [273, 274], correlates with 

down-regulation of ERa on breast carcinoma cells [275-277]. As T47D is Her-2/neu+ 

[278] and MCF-7 is Her-2/neu- [216, 276], this could potentially explain the reduction of 

ERa in T47D but not in MCF-7. However, our results suggest that Her-2/neu expression 

does not always correlate with down-regulation of ERa in breast cancer cell lines, as BT-

474, which overexpresses Her-2/neu [216, 276], did not display reduced ERa 

amplification when cultured in E2-depleted medium. Consistent with our findings, reports 

indicate that ERa is down-regulated in MCF-7 cells cultured under estrogen-depleted 

conditions due to hyperactivation of ERK1/2 [279, 280]. This inhibition may also be 
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attributable to nuclear factor-kappa B (NFKB) signaling, as inhibition of NFKB partially 

restored ERa activity and expression in MCF-7 [281]. These breast cancer cell lines may 

be capable of activating MAPK signaling in an autocrine manner, as Martinez-Carpio et 

al. [282] demonstrated that MDA MB 231 secretes and possesses EGF receptors. Several 

reports also indicate that MAPK can directly phosphorylate ERa on serine residue 118 

[283, 284]. Thus, if phosphorylation of this residue leads to ubiquination and degradation 

of ERa, then hyperactivation of MAPK as a result of culture in estrogen-depleted 

medium could lead to reduced ERa mRNA. Future research could examine whether 

medium composition modifies MAPK or NFKB signaling in MCF-7 and T47D. 

4.3.4. Effects of 17f3-estradiol Treatment on HLA-DR Expression on Breast Cancer Cell 
Lines 

A primary objective in this thesis was to examine the effects of 17P-estradiol on 

constitutive and IFN-y-induced HLA-DR expression on breast cancer cell lines. 

However, despite efforts to find alternative reconstitution solvents for estradiol, we were 

unable to determine the effects of estradiol on HLA-DR expression on MCF-7 or MDA 

MB 231 due to modulation of HLA-DR by ethanol, DMSO, 1-butanol, and methanol 

vehicle controls. These results thus emphasize the importance of including appropriate 

controls when examining the effects of estradiol on HLA-DR expression. 

Ethanol is known to affect MHC Class II expression. Studies on mice have 

indicated that ethanol decreased MHC Class II expression on B cells, and suppressed 

MHC Class II molecule-mediated T cell responses, but not MHC Class I molecule-
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mediated T cell responses, in a dose-response manner [285-287]. Ethanol also appears to 

mediate other effects on breast carcinoma cells, with results depending on ERa status. 

Reports indicate that culture of ER + breast cancer cell lines in ethanol containing 

medium is associated with increased proliferation rate, ERa content, and ER 

transcriptional activity, while no effects were seen with ER- breast cancer cells [288-

291]. In contrast, we found ethanol concentrations equalivant to that present within our 

10-6 
- 10-9 M estradiol solutions were anti proliferative to MCF -7 (data not shown). 

However, these results may depend on the cell lines investigated, the concentration of 

ethanol used, the incubation period, and medium composition. 

Although we report that both methanol and 1-butanol inhibit MHC class II 

expression on breast cancer cells, studies suggest that primary alcohols do not always 

exert similar effects despite similar molecular structure. Etique et al. [292] compared the 

effects of methanol and 1-butanol to ethanol on MCF-7 cells and found that unlike 

ethanol, methanol and 1-butanol did not stimulate MCF-7 cell proliferation or increase 

aromatase mRNA. However, methanol-treated cells displayed increased ERa content, 

which was not evident in butanol-treated cells [292]. 
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4. 4. Cytokine Expression in Breast Cancer Cell Lines 

4.4.1. Cytokine mRNA 

As our second objective was to analyze the effects of IFN-y, IL-4, and TGF-~1 

combinations on HLA-DR expression on breast carcinoma cell lines, we wondered if the 

breast cancer cells were transcribing and possible secreting any of these factors. Thus, 

breast cancer cell lines were assessed using sequence specific primers and RT-PCR 

(Section 3.6). 

Constitutive IFN-y and IL-4 transcription was not detected in any of the 8 BCCL 

cultured in either standard or E2-depleted medium, suggesting that neither IFN-y nor IL-4 

was produced by the breast cancer cell lines themselves. 

In contrast, TGF -~ 1 transcription was detected in 8/8 breast cancer cell lines 

cultured in standard medium, and 7/8 cultured in E2-depleted medium. These findings 

were not surprising as others have shown that TGF -~ mRNA is overexpressed in breast 

cancers and neoplastic breast tissues [293]. TGF-~ may also be secreted directly by breast 

cancer cells and several breast cancer cell lines, including MDA MB 468, MCF-7, T47D, 

MDA MB 231, BT-20, SKBR3, and Hs578T [244, 294-296]. TGF-~ is secreted as a 

latent protein by tumor cells, but once activated, confers a selective advantage to the 

tumor in vivo by suppressing the cytotoxic activity of infiltrating lymphocytes [297] and 

antigen presentation by APCs [298, 299], allowing the tumor to proliferate and progress. 

The activation of latent TGF-~ is poorly understood, but is believed to involve certain 

proteases. Therefore, if breast cancer cell lines are capable of secreting both TGF-~ and 
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protease enzymes, they could activate TGF -P within culture media and possibly mediate 

an autocrine effect. 

We found that medium conditions influence TGF-P1 transcription. TGF-P1 

amplification was more intense in BT-474 and T47D cultured in standard medium, while 

it was more intense in MDA MB 157, MDA MB 231, MDA MB 468, MCF-7 and BT-20 

cultured in E2-depleted medium (Figure 3.13). TGF-P1 amplification was also detected in 

SKBR3 cultured in standard medium but not E2-depleted medium. These results 

suggested that estradiol influenced TGF-P 1 transcription in breast carcinoma cells. Since 

TGF -P 1 transcription did not correlate with estrogen receptor status, which is in 

agreement with previous reports [300], we suggest that estradiol modulation occurs in a 

cell line specific-manner. 

Although we found that TGF-P1 transcription was slightly increased in MCF-7 

cultured in E2-depleted medium, it appears that some controversy exists over this issue in 

the literature. Herman and Katzenellenbogen [30 1] assessed long-term effects of steroid 

deprivation and reported that mRNA for TGF-P1 was transiently increased at 2 to 10 

weeks of steroid deprivation. On the contrary, others have reported that estrogen did not 

modulate TGF-P1 mRNA levels in MCF-7 at 48 hour or 7 day time points [302, 303], 

which are more similar to our study. 
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4.4.2. Cytokine Receptor Concerns 

This study did not examine the expression of IFN-y, IL-4, or TGF-P receptors on 

the surface of breast cancer cell lines. However, our laboratory has previously showed 

that IFN-y significantly up-regulated HLA-DR on all breast cancer cell lines examined in 

this study [210]. Thus, these cell lines must possess IFN-y receptors and components of 

the IFN-y-signaling pathway as they displayed sensitivity to IFN-y stimulation. 

Reports also indicate that the IL-4R is highly expressed on human melanoma and 

ovarian carcinomas compared to normal cells [136]. More relevant to this study, IL-4 

receptors are overexpressed on breast cancer cell lines, and breast carcinomas relative to 

normal breast epithelium [136]. Displacement analysis of 125I-IL-4 binding to breast 

cancer cells has revealed that MCF-7, BT-20, ZR-75-1, and MDA MB 231 express high 

affinity IL-4Rs, with receptor numbers varying among cell lines [120]. Thus, we can be 

fairly confident that three of the cell lines we used expressed IL-4Rs. 

On the other hand, loss of TGF-P response due to dysregulation of TGF-P 

receptors type I (TPRI) and type II (TPRII) is well known to contribute to oncogenesis in 

a variety of cancer cells [304], including breast carcinoma [305]. Several ER+ breast 

cancer cell lines are known to be defective of TPRII [240], complicating analysis of 

TGF-P-mediated effects in breast cancer cell lines. In contrast, ER- BCCL generally 

retain expression of TPRII but may show a low level sensitivity to TGF-P [239]. The 

only reported exception to this dogma is that early passage MCF-7 cells, which were 

initially sensitive to TGF-p, gain resistance after long term passage [239, 245, 296]. 
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Sensitivity to TGF-13 may be restored in ER+ BCCL through stable transfection ofTI3RII 

[240, 247, 306]. Mutations of TI3RI are reported to occur in a low percentage of breast 

cancers [306], and restoration of TGF-13 signaling in breast cancer cell lines with silenced 

TGFI3I may occur through use of histone deacetylase inhibitors [306]. 

4.5. Cytokine Modulation of HLA-DR Expression on Breast Cancer Cell Lines 

To our knowledge, this is the first study to report selective up-regulation of HLA

DR alleles on human cancer cell lines in response to combined cytokine treatment, and 

the first to examine differential HLA-DR allelic expression in E2-depleted medium. We 

decided that cells would be treated with 100 units/ml IFN-y, 500 units/ml IL-4, and 10 

ng/ml TGF -131 based on preliminary research, cytokine titrations, and previous published 

studies. The 96 hour incubation period was utilized as it was previously shown to be 

optimal for IFN-y induction ofHLA-DR on breast cancer cell lines [210]. 

4.5.1. Assay limitations 

HLA-DR specific antibodies, used to assess HLA-DR expression, were shown to 

bind strongly to HLA-DR allelic products on appropriate B cell line controls (Table 2.4). 

As HLA-DR molecular conformations may differ on breast carcinoma cells compared to 

B cell controls, our laboratory has previously established that these mAbs neither 

recognized cell-type restricted epitopes nor crossreacted with additional DRB allotypes 

based on examination of various cell types with known DR allotypes. These included 

IFN-y-treated ovarian and breast cancer cell lines, peripheral blood mononuclear cells 
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(from local donors), B cell lines (lOth IHW), mouse L-cell fibroblast lines transfected 

with HLA-DR molecules (11th IHW), and synovial tissue sections [249]. Thus, mAbs 

used in this assay were selected because they bound HLA-DR molecules on many cell 

types. Furthermore, each mAb was also previously shown to bind one or more breast 

cancer cell lines [210], indicating their suitability for binding HLA-DR on breast 

carcinoma cells. Based on this, failure to detect a particular HLA-DR product is likely 

due to lack of expression rather than weak antibody reactivity. 

Preliminary experiments indicated that despite equivalent detection of DRP 1 *04 

on B cell line controls (Table 2.4), 359-13F10 was much better than NFLD.D1 for 

detecting DRP1 *04 on BT-20 (Figure 3.2). This difference could pertain to the epitopes 

recognized by these antibodies as 359-13F10 binds the HLA-DRP1 *04 P1 domain [307] 

and NFLD.D1 binds the P2 domain [222]. Thus, glycosylation near the cell surface could 

inhibit accessibility to the NFLD.D1 epitope and be responsible for such findings. 

Consistent with this, NFLD.D1 was shown to bind strongly to intracellular DRP1 *04 

[210]. Unfortunately, the supply of 359-13F10 was limited so NFLD.D1 was utilized for 

detection of DRP 1 *04 on breast carcinoma cell lines. 

We were unable to study expression of DRP4 or DRP5 HLA-DR types on breast 

carcinoma cells due to lack of specific mAbs. Therefore, it is possible that additional 

HLA-DR types were also modulated in response to various cytokine treatments. 

Finally, cytokine-mediated modulation of HLA-DR expression was detected by 

both flow cytometry and CELISA; however, in some cases discrepancies were evident 

between flow cytometry and CELISA analysis (Tables 3.3 and 3.4). This may be due to 
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the ability to remove dead cells through gating in flow cytometry analysis, but inability to 

do similar removal by CELISA analysis. In this regard, primary antibodies often stick to 

dead cells and could skew CELISA optical densities, providing inaccurate results. We 

have also identified sensitivity differences between these two assays as constitutive and 

modulated expression was often detected by flow cytometry but not CELISA. 

4.5.2. Constitutive HLA-DR Expression 

As summarized in Tables 3.3 and 3.4, constitutive HLA-DR expression was 

detected on MDA MB 231 and inconsistently detected on BT-20 using the pan anti-HLA

DR antibody L243. Examination of DRP1 *07 and DRP3 allelic products on MDA MB 

231 revealed that constitutive expression was predominately DRp3. Examination of 

DRP1 *04, DRP1 *13, and DRP3 allelic products on BT-20 failed to reveal any 

constitutive expression suggesting that constitutive expression detected by L243 was 

either DRP4, or that individual allotypic expression was below the limits of detection of 

allele specific mAbs. This finding also confirmed a previous report on BT-20 [210]. 

Constitutive expression on BT -20 was also inconsistent as it was detected by flow 

cytometry during preliminary experiments (Section 3.1) and during analysis of cytokine 

modulation of HLA-DR (Section 3.8.1.4), but was not detected by CELISA during the 

medium comparison study (Section 3.2). Thus, our results indicate sensitivity differences 

between the two assays and suggest that flow cytometry was more sensitive than 

CELISA for detection ofHLA-DR on breast cancer cell lines. 
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4.5.3. IFN-y 

IFN-y induced generic and allelic HLA-DR to varying degrees on all breast cancer 

cell lines (Tables 3.3 and 3.4), confirming previous findings [210, 213, 308]. Up

regulation of nearly all HLA-DR molecules on breast carcinoma cells was not surprising 

as IFN-y is the most potent inducer of MHC class II expression [212]. However, 

differential induction of HLA-DR alleles on MDA MB 157, BT-20, MCF-7, and MDA 

MB 231 is intriguing as it suggested selective up-regulation of HLA-DR molecules on 

breast carcinoma cells in response to IFN-y. 

It is tempting to speculate that poor IFN-y induction ofDRj31 *04 in both MDA MB 

157 and BT -20 is inherent to DRj31 *04 as other alleles in these cell lines were expressed. 

However, since only two cell lines were analyzed, it is impossible to draw such 

conclusions. Another allotype, DRj33, which was poorly up-regulated on BT-20 and not 

up-regulated at all on MCF -7, was strongly up-regulated on MDA MB 231, illustrating 

the problem of drawing conclusions on the basis of a few cell lines. Similarly, DRj31 *07 

was poorly up-regulated on MDA MB 231, a line which strongly expresses HLA-DR, but 

moderately up-regulated on SKBR3, a line which expresses considerable less DR than 

MDA MB 231. Based on the small number of cell lines examined in this study, we 

suggest that allotypic expression is regulated internally in a cell line-specific manner. 

We suggest that DRj33 and DRj31 *03 are poorly expressed by MCF-7 as neither 

allele was up-regulated by IFN-y. These findings may be simply explained by loss of 

heterozygosity, as DRj33 and DRj31 *03 are commonly expressed as a haplotype. 
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Furthermore, our results are in contrast to a previous study in which 500 units/ml IFN-y 

provoked substantial up-regulation of DR~1 *03 and DR~3 on MCF-7 cultured in 

standard medium [210]. While our study differed in terms of both IFN-y concentration 

and medium composition, we have previously indicated that the concentration of IFN-y 

(Section 3.7.1) and the presence I absence of estradiol (Section 3.2) had minimal effects 

on generic HLA-DR expression on MCF-7. Thus, future research could examine if our 

cell line has lost the MHC complex on one of its chromosome 6. 

4.5.4. IL-4 

IL-4 did not modulate constitutive HLA-DR expression on MDA MB 157, MDA 

MB 231, SKBR3, BT-20 or T47D. However, IL-4 induced HLA-DR and DR~1 *15 on 

MCF-7 according to flow cytometry analysis (Table 3.4). Overall, addition of IL-4 did 

not affect IFN-y induced HLA-DR on MDA MB 157, but suppressed IFN-y induced 

HLA-DR on MDA MB 231 and T47D. In contrast, IFN-y + IL-4 augmented HLA-DR on 

SKBR3, and generic HLA-DR and DR~1 *15 on MCF-7. Taken together, the results 

suggest that IL-4 alone and in combination with IFN-y, selectively modulated HLA-DR 

on breast carcinoma cell lines. These effects also appeared to occur in a cell line-specific 

manner. 

IL-4 mediated modulation of HLA-DR has been previously reported in human 

monocytes [130], B cells [126, 127], melanoma cells [134], and renal cell carcinomas 

[135]. Such effects are believed to be dependent on JAK1/JAK3 activation of the STAT-
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6 pathway [ 122, 131-13 3]. Whether IL-4 mediated induction of HLA-DR on M CF-7 is 

also STAT -6-dependent is presently unclear and may warrant further investigation. 

Enhanced HLA-DR expression on MCF-7 and SKBR3 with IL-4 was modest at 

best, and the ability to detect these modest levels was inconsistent. However, the 

combination of IFN-y and IL-4 is known to augment MHC class II expression in primary 

microglial cells, melanoma carcinoma cells, and breast carcinoma cells [84, 136]. These 

findings are in contrast to other studies describing IL-4 suppression of IFN-y-induced 

CIIT A accumulation, and in turn, MHC class II expression on monocytes, murine 

microglial cell lines, and rat astrocytes [84, 130, 137-139]. Such studies indicated that IL-

4 did not inhibit phosphorylation of STAT-1 or USF-1 of the IFN-y signaling pathway, 

suggesting interaction with cis-acting elements in the CIIT A promoters [84]. 

Nevertheless, the discrepancy identified here may be due to the different cell types 

examined. 

The role of CIITA in IL-4 induction of MHC class II on B cells has been 

extensively studied. Itoh-Lindstrom et al. [80] demonstrated using CIITA_,_ mice that 

CIITA is required for IL-4 induction of MHC class II transcription in murine B220+ B 

cells and Mac-1 + cells. However, a more recent report indicated that while IL-4 caused a 

4-fold increase in MHC class II expression on B220+ murine splenic B cells, IL-4 did not 

affect mRNA levels of MHC class II or CIITA as determined by quantitative real-time 

RT-PCR [309]. Thus, post-transcriptional and post-translational mechanisms may 

contribute to increased MHC class II expression in response to IL-4. 
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Since we found that IL-4 modulated IFN-y-induced HLA-DR expression on MDA 

MB 231, SKBR3, BT-20, MCF-7, and T47D, this indicated that these cell lines were 

responsive to IL-4 and likely expressed IL-4Rs, confirming previous studies [120]. Based 

on our observations, only MDA MB 157 is questionable for IL-4 sensitivity, as there was 

minimal modulation of HLA-DR expression and affects on cell numbers were 

inconsistent (Appendix A). On this note, the differential effects mediated by IL-4 

addition on breast carcinoma cells may depend on the number of IL-4Rs present of the 

cell surface. Future research could examine whether an association exists between the 

quantity of IL-4Rs on breast cancer cells and the differential responses to individual and 

combined IL-4 treatments. 

4.5.5. TGF-fJJ 

We found that TGF -P 1 almost completely eradicated constitutive generic and 

allelic HLA-DR expression on MDA MB 231 and BT-20 breast carcinoma cells (Tables 

3.3 and 3.4). In combination with IFN-y, TGF-P1 inhibited IFN-y induction ofHLA-DR 

on MDA MB 157 and MBA MB 231, but surprisingly augmented IFN-y induced generic 

and allelic HLA-DR on BT-20 and SKBR3. TGF-P1 did not modulate IFN-y induced 

HLA-DR on MCF-7 or T47D, agreeing with previous studies that ER+ breast cancer cell 

lines lose responsiveness to TGF-P stimulation [239, 240, 245, 296]. More interestingly, 

results on BT-20 suggested that TGF-P1 may act differently when combined with IFN-y 

as TGF-P alone inhibited constitutive HLA-DR, but with IFN-y it increased HLA-DR. 
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TGF-f31 induction of HLA-DR on particular breast carcinoma cells is in contrast to 

previous reports describing TGF-f3-mediated suppression of CIITA and IFN-y-induced 

MHC class II expression in various cell types, including astrocytes [86], monocytes [87], 

macrophages [310], microglial cells [84], fibrosarcoma cells [88, 100, 101], epithelial 

cells [311], melanoma cells [312], and synovial cells [153]. In such studies, TGF-f3 

inhibited constitutive and IFN-y inducible CIIT A mRNA accumulation, and resulting 

MHC class II expression through interaction with CIITA pili and piV [86, 101]. 

However, this transcriptional inhibition was not due to destabilization of CIITA mRNA 

[88]. 

Piskurich et al. [100] revealed that TGF-f3 suppression of pill was more complete 

than that of piV in 2ITGH human fibrosarcoma cells. It is unknown whether TGF -f31 

mediates similar suppression of pill and piV in breast carcinoma cells, but this may 

correlate with the divergent patterns of TGF-f31 suppression on HLA-DR in breast 

carcinoma cell lines. Furthermore, as TGF-P did not completely abolish activity from 

either promoter [100], this provides a possible explanation as to why TGF-P did not 

completely eliminate constitutive or IFN-y induced HLA-DR expression on breast 

carcinoma cells. Future studies could examine breast carcinoma cell lines for differential 

usage of pili and piV under various physiological conditions. 

Inhibition ofiFN-y induced CIITA transcription upon exposure to TGF-f31 in breast 

carcinoma cells could result from a number of cellular modifications, including 

alterations in the number and/or affinity ofiFN-y receptors and/or interference with IFN-
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y-induced signaling events. Previous studies on astrocytes and monocytes showed that 

TGF-P treatment did not affect IFN-y induced tyrosine phosphorylation of JAKI, JAK2, 

and STAT-I, or IFN-y-induced IRF-I expression [86, 87, I54]. Thus, the effects ofTGF

p on CIITA can not be explained by altered signaling through the JAK-STAT-I pathway. 

However, this does not exclude the possibility that TGF-P may still interfere with the 

binding of STAT-I, IRF-I, and USF-I to their respective elements on the CIITA 

promoters. 

It is possible that TGF-P inhibition of CIITA expression may be mediated by 

proteins that interact with the transcription factors binding the CIIT A promoter. A 

number of reports have shown that TGF-P-activated Smads interact with transcriptional 

coactivators such as CBP and p300 [313-3I7]. CBP and p300 have histone acetyl 

transferase activity and may act directly by recruiting the RNA polymerase II to the 

promoter. Thus, while TGF-P does not alter the ability of STAT-I to bind DNA [I 54], it 

may affect the ability of STAT -I binding to induce transcription. 

TGF-P activated Smads have been shown to recruit transcriptional corepressors 

and strongly inhibit transcription from TGF-P-responsive promoters by binding to 

specific Smad binding elements (SBE) [318-32I]. Analysis using Smad3-deficient mice 

and overexpression of Smad3 protein in murine astrocytes has demonstrated that Smad3 

is essential in mediating TGF-P negative regulation of CIITA [86]. This suggests that 

Smad3 is a potential effector for TGF-P regulation ofMHC class II expression. However, 

examination of the -70 to -50 bp sequence within the CIITA piV region did not reveal a 
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SBE or TGF-P inhibitory element [86], suggesting that Smad3 complexes do not directly 

inhibit CIIT A transcription by binding to this promoter. It is tempting to speculate that 

TGF -P 1 mediates similar action in breast carcinoma cells, but to the best of our 

knowledge these studies have not been conducted. 

Others have shown that IFN-y inhibits TGF-P-induced phosphorylation of Smad3, 

the association of Smad3 with Smad4, the accumulation of Smad3 in the nucleus, and the 

activation of TGF-P-responsive genes [322]. Acting through JAK1 and STAT-1, IFN-y 

was also shown to induce Smad7 in human fibrosarcoma and monocytic leukemia cells 

[3 22] which antagonized TG F-p 1 signaling [3 23, 3 24]. Thus, these studies suggest that 

the differential effects mediated by TGF-P1 on HLA-DR on breast carcinoma cells may 

be attributed to differences in Smad-signaling components. We have addressed this issue 

in terms of Smad2 and Smad3, but future studies could investigate if IFN-y induces 

Smad7 in breast carcinoma cell lines which inhibit TGF-P1 phosphorylation ofSmad3. 

Consequently, our study showing that addition of TGF-P1 augmented IFN-y

induced HLA-DR expression on BT-20 and SKBR3 is novel. We do not believe that this 

is due to lack of estrogen in culture medium as Pouliot and Labrie [145] examined the 

regulation of Smad mRNA expression by estrogen and antiestrogens in ZR-75-1 ER+ 

BCCL and reported that neither estradiol nor dihydrotestosterone affected Smad2, 3, or 4 

mRNA levels in ZR-75-1 cells, suggesting that Smad expression is not regulated by sex 

steroids. Instead, our findings could be explained by differences in TGF -P 1 sensitivity or 

differences in TGF-P1 signaling components. Alternatively, such effects may be 
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mediated through a Smad-independent signaling pathway, preventing activation of 

Smad3 and its interaction with CIIT A. 

4.5.6. IL-4 + TGF-/31 

Modulation ofHLA-DR by IL-4 + TGF-P1 was only observed on MDA MB 231 

and MCF-7. In the case ofMDA MB 231, IL-4 + TGF-p1, like TGF-P1 alone, mediated 

suppression of constitutive HLA-DR. This was not unexpected since IL-4 alone did not 

modulate HLA-DR on MDA MB 231. In the case of MCF-7, IL-4 + TGF-P1 mediated 

similar effects as IL-4 alone, as HLA-DR expression was slightly increased. This finding 

also agreed with observations that MCF-7 was insensitive to TGF-Pl. 

IL-4 + TGF-P1 inhibited IFN-y-induced HLA-DR on MDA MB 157, MDA MB 

231, and T47D. As generic and allelic expression on MDA MB 157 was equivalent 

following treatment with IFN-y + IL-4 + TGF-P1 and IFN-y + TGF-p1, this further 

suggested that HLA-DR modulation on MDA MB 157 was insensitive to IL-4. 

Furthermore, as expression levels on MDA MB 231 were similar to that following IFN-y 

+ TGF-P1 treatment, we suggest that the effects mediated by combined cytokine 

stimulations are due to the quantity and functioning of specific cytokine receptors on the 

cell surface. 

Despite some discrepancies between flow cytometry and CELISA in expression 

of particular alleles on BT-20, SKBR3, and MCF-7, IL-4 + TGF-P1 appeared to augment 

IFN-y induction of HLA-DR on each of these cell lines. It was noted that the effects of 
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IFN-y + IL-4 + TGF-f31 were similar to IFNy-TGF-f31 for both MCF-7 and T47D, again 

suggesting that ER+ cell lines had lost sensitivity to TGF-f31. It was also noted that flow 

cytometry data indicated HLA-DR expression to be highest on BT-20 following IFN-y + 

IL-4 + TGF-f31, suggesting that all three cytokines may function in synergy to induce 

HLA-DR on specific cell lines. With exclusion of MDA MB 157, MCF-7, and T47D 

where cell lines displayed insensitivity to either IL-4 or TGF-f31, our results indicate that 

IFN-y + IL-4 + TGF-f31 mediated differential effects on HLA-DR expression on breast 

carcinoma cells, and these effects occurred in a cell line specific manner. 

4. 6. Factors Potentially Mediating Differential HLA Class II Expression by Breast 
Carcinoma Cell Lines 

We found selective up-regulation of HLA-DR allelic products on human breast 

cancer cell lines in an E2-depleted environment in response to individual and combined 

cytokine treatments. These findings correlate with a previous study in our laboratory 

indicating differential expression of HLA-DRB alleles on tumor cells in breast carcinoma 

[249]. In that study, 40% of HLA-DR+ tumors failed to express one or more of their DR 

allotypes [249]. Biologically, these findings may be significant as failure to express a 

particular HLA-DR allele on the cell surface may provide a selective advantage to the 

tumor if antigens on tumor cells are presented by HLA-DR for recognition by CD4+ 

tumor specific T cells. In this regard, and in accordance with earlier studies, our 

laboratory has established that HLA-DR expression on breast tumor cells is significantly 

associated with T-cell infiltration [249, 325], suggesting that HLA-DR is induced on 
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tumor cells in response to the cytokine milieu. Furthermore, others have shown that CD4+ 

T cells are capable of recognizing autologous tumor-specific antigens in an HLA class II 

restricted manner [326-328]. Thus, qualitative and quantitative alterations in the 

expression of HLA-DR molecules may dramatically affect the onset and maintenance of 

an immune response involving tumor rejection. 

We consistently found DR~ I *04 was poorly expressed on MDA MB 157 and BT-

20, while DR~ 1 *07 was weakly expressed on MDA MB 231, DR~ 1 *03 was weakly 

expressed on BT-20, and DR~3 was weakly expressed on MCF-7. These weak or 

differential expression of DRB genes by tumor cells may be due to promoter 

polymorphisms [329-332]. Expression of DRB genes is regulated mainly at the level of 

transcription and is characterized by the presence of S-X-Y motifs within the promoter 

region. Polymorphisms within X and Y box motifs have been shown to control the level 

of HLA-DRB1 gene expression and affect the recruitment of transcription factors and 

transcriptional activity [329, 332]. Furthermore, comparison of differential HLA-DRB 

promoter transcriptional activity with HLA-DRB mRNA levels indicated that differential 

DRB gene expression is regulated at both transcriptional and post-transcriptional levels 

[333, 334]. Whether breast carcinoma cells do not express, or weakly express, particular 

HLA-DR allotypes as a result of natural promoter polymorphisms, or genetic or 

epigenetic changes resulting from tumorgenesis is unknown. Thus, future research could 

examine DRB genes not up-regulated by IFN-y for possible nucleotide variations within 

promoter regions. Future work could also examine potential loss of heterozygosity and 

epigenetic alterations such as hypermethylation within CIITA promoter regions [335]. 
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IFN-y, IL-4, and TGF-13 receptor expression could also have drastically differed 

between cell lines, promoting differences in modulation of HLA-DR expression. In 

theory, one would speculate that cells with copious receptors would be more sensitive to 

cytokine treatment, and therefore up-regulate I down-regulate MHC class II expression to 

greater degree than cell lines with few cytokine receptors. On this note, we found 

selective and broad ranges of growth inhibition following all cytokine treatments 

(Appendix A) suggesting that cell lines differed in their sensitivity and response to 

particular cytokine(s). Thus, future studies could attempt to correlate differential class II 

expression with the expression ofiFN-y, IL-4 and TGF-13 receptors on the cell surface. 

In some cases, flow cytometry analysis indicated modulation of the intensity of 

HLA-DR expression, but comparable modulation was not indicated in the percentage of 

positive cells. This suggests that particular cytokine combinations increase the stability of 

HLA-DRB mRNA or the steady state expression of HLA-DR molecules, allowing DR 

proteins to be expressed longer on the cell surface. Alternatively, since HLA-DR 

molecules are contained in intracellular vesicles before transport and expression on the 

cell surface, these findings suggest that cytokines modulate the mobilization of MHC 

class II molecules in breast carcinoma cells. In addition, cytokine(s) may affect the 

expression of proteins involved in MHC class II antigen presentation, which could 

subsequently modulate class II expression on the cell surface. Our laboratory has 

previously shown that Ii and HLA-DM were up-regulated by IFN-y in some breast 

carcinoma cells expressing high amounts ofHLA-DR [210]. Future studies could conduct 

time course studies examining HLA-DR mRNA and protein expression, as well as 
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examine if addition of IL-4 and/or TGF-J31 to IFN-y modulates expression of Ii, HLA

DO, and HLA-DM in breast carcinoma cells. 

4. 7 Analysis of the TGF-/3 Signaling Pathway in Breast Cancer Cell Lines 

As reviewed in Section 1.4.3, TGF-J31 signaling is mediated predominately via 

TGF-J3 receptors and their substrates, the Smad proteins. We analyzed the Smad signaling 

pathway to determine if differences in TGF-J31 sensitivity or signaling components could 

explain the differential effects mediated by IFN-y + TGF-J31 on HLA-DR expression. 

Smad proteins themselves do not display enzymatic activity, therefore, this signaling 

pathway is not amplified as it progresses. Thus, the relative level of Smad2 and Smad3 in 

a given cell can not only affect its ability to respond to TGF-J3, but also influence the 

nature of the response. 

We found 8/8 breast cancer cell lines expressed Smad2, while 6/8 expressed 

Smad3 (Table 3.5). However, of cell lines expressing Smad2/3, equivalent levels of 

Smad2 and Smad3 were detected between untreated and TGF-J31 treated samples. As 

Smad3 was not detected in BT-474 or T47D, this suggested that Smad3 was differentially 

expressed in breast cancer cell lines. In contrast, Smad2 appeared to be universally 

expressed. 

Constitutive P-Smad3 in MCF-7, MDA MB 157, MDA MB 468 and SKBR3 

(Figure 3.24) was unexpected as Smad3 is phosphorlyated in response to TGF-J3, and 

thus, these findings suggested autocrine activation of the Smad signaling pathway. As we 

have indicated that SKBR3 did not transcribe TGF -J31 when cultured in E2-depleted 
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medium based on mRNA analysis (Section 3.6), and that MCF-7 was insensitive to TGF

Pl based on lack of HLA-DR modulation (Section 3.8.2.1), these results did not agree 

with previous findings. Furthermore, as no constitutive P-Smad2 was detected in any 

breast cancer cell line, this suggested that only selective components on the Smad 

signaling pathway were constitutively active. 

Since activated Smad3 is reported to interact with CIITA to inhibit HLA-DR 

expression [86], it was noted that constitutive P-Smad3 expression correlated with lack of 

constitutive HLA-DR on these particular cell lines. Consistent with this, constitutive 

HLA-DR expression on MDA MB 231 and BT-20 also correlated with the absence of 

constitutively active Smad2 and Smad3. However, no correlation was found for T47D, 

and thus the lack of constitutive expression of this cell line is unclear. 

The differential expression of P-Smad2 and P-Smad3 observed in response to 

TGF-P1 may partially explain the divergent effects mediated by TGF-P1 and IFN-y + 

TGF-P1 on HLA-DR expression in breast cancer cell lines. In this regard, MDA MB 157 

and MDA MB 231 both demonstrated sensitivity to TGF-P1 by phosphorylation of 

Smad2 and Smad3, suggesting such factors could suppress IFN-y induction of HLA-DR. 

Similarly, unmodulated IFN-y-induced HLA-DR expression on T47D following addition 

ofTGF-P1 may be explained by the lack P-Smad2, Smad3, and P-Smad3, suggesting that 

this cell line is unresponsive to TGF -P 1. 

MCF-7 did not express P-Smad2, but contained constitutive P-Smad3, with P

Smad3 levels induced by TGF-Pl. Hence, both constitutive and TGF-P1 induced P

Smad3 could theoretically interact with CIITA promoters and suppress HLA-DR 
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expression. Furthermore, induction of P-Smad3 by TGF-(31 in MCF-7 indicated active 

TGF -J31 signaling, which subsequently contradicts our previous findings that MCF -7 is 

insensitive to TGF-(31 based on its HLA-DR expression. This discrepancy may denote 

factors affecting the transport of P-Smad3 to the nucleus, or the interaction of P-Smad3 

with CIITA. Mutations in Smad3 appear to occur only rarely [336], but lack of Smad4 

expression has been reported in specific breast cancer cell lines, including MDA MB 468, 

and is essential in the activation of certain transcriptional responses [145, 337]. Dowdy et 

al. [338] reported up-regulation of Smad7 in endometrial cancers, suggesting that Smad7 

may be up-regulated in cancer cells and antagonize Smad3 signaling [339, 340]. In this 

regard, reports also indicate that Smad7 expression is induced by TGF-J3 [323, 339]. 

Based on these studies, future research could examine the expression of Smad4 and 

Smad7 proteins in MCF-7. 

More interesting, lack of P-Smad2 and unmodulated, weak expression of P

Smad3 following TGF-(31 raised the question whether SKBR3 was indeed sensitive to 

TGF-(31. These results were also in agreement with our findings that TGF-(31 augmented, 

rather than suppressed, IFN-y-induced HLA-DR expression on SKBR3. Such findings 

suggest that TGF-(31-mediated augmentation of IFN-y-induced HLA-DR expression on 

SKBR3 occurred in a P-Smad2/3-independent manner. As TGF-J3 may signal through 

MAPKs including c-Jun N-terminal kinase [149], p38 MAPK [341], and ERK1/2 kinase 

[342], preliminary research investigated the role ofthe ERK signaling using an upstream 

MEKl/2 kinase inhibitor. These results did not indicate that TGF-J3 augmentation 
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occurred through ERK signaling, but did indicate that IFN-y induction of HLA-DR on 

SKBR3 is predominantly MEK1/2 dependent (data not shown). Future research could 

examine the roles of other alternative pathway, including Rho guanosine triphosphates, 

PI3K I AKT, and protein phosphate A. 

The results ofBT-20 were also unique. BT-20 expressed both Smad2 and Smad3, 

but only expressed P-Smad3 in response to TGF-f31 treatment. Thus, theoretically, P

Smad3 could inhibit IFN-y induction of HLA-DR within this cell line. However, the 

reverse was found as addition of TGF-f3 augmented IFN-y-induced HLA-DR expression 

on BT-20. To explain such novel findings, we again suggest a Smad-independent 

signaling pathway in BT-20, similar to that speculated in SKBR3. 

4. 8. Conclusion 

The significance of HLA-DR expression on breast carcinoma cells is presently 

unclear. MHC class II molecules are not normally present on the epithelial cells of breast, 

but have been detected on late-pregnant and lactating epithelia, and on a portion of breast 

carcinomas [343]. Our laboratory has previously demonstrated that breast carcinoma cell 

lines differentially express HLA-DR molecules, but do not express CD80 and CD86 co

stimulatory molecules typically found on APCs, and selectively express CD40 [21 0]. 

Whether the expression level of CD40 would be sufficient to activate CD4+ T cells is 

unknown, but suggests that breast carcinoma cells may act as non-professional APCs. 

In this regard, substantial evidence supports a role for MHC class II antigen 

expression on tumor cells in antitumor immunity. Armstrong et al. [251] showed that 
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class II-transfected tumor cells could directly activate tumor-specific CD4+ T cells in 

vitro and in vivo. Similarly, transfection of CIITA into MHC class II-negative murine 

mammary adenocarcinoma cells resulted in expression of MHC class II and tumor 

rejection requiring both CD4+ and CD8+ T cells [344]. Vaccination with irradiated tumor 

cells transduced to secrete granulocyte/macrophage colony-stimulating factor was also 

found to simulataneous induce TH1 and TH2 responses in mice [345]. Thus, HLA-DR 

expression on breast carcinoma cells may also contribute to the tumor immune response 

in vivo by presenting tumor-specific antigens to effector CD4+ T cells. 

The association of HLA-DR expression on breast carcinoma cells with a 

favorable clinical prognosis appears controversial. A number of studies suggested that 

DR expression was associated with favorable prognostic indicators such as well 

differentiated tumors [346], and PgR expression [347], while others report no effect [348-

351]. However, these studies examined generic HLA-DR expression using pan-HLA-DR 

antibodies. Therefore, it is unknown if all or just selective HLA-DR allotypes were 

expressed. 

This thesis provided a comprehensive analysis of whether IFN-y, IL-4, and TGF

p 1 individually and collectively regulate the expression of HLA-DR allelic products on 

the cell surface of breast carcinoma cell lines in an estrogen-depleted environment. To 

our knowledge, this is the first study to show that breast carcinoma cell lines 

differentially regulate expression of HLA-DR allotypes in response to particular cytokine 

combinations. Significant modulation of HLA-DR expression on breast cancer cell lines 

by IFN-y, IL-4 and TGF-131 suggests that these cytokines may have important roles in 
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natural tumor immune defense mechanisms. When certain tumor-infiltrating lymphocytes 

are activated they may release IFN-y, IL-4, or TGF-~1 [108, 109, 352, 353], which may 

have significant direct effects on growth and modulation of antigen expression on tumor 

cells. Understanding the roles of cytokines in tumor immune responses should provide 

opportunities to develop better therapeutic strategies. 
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Figure 6.1. The anti proliferative I cytotoxic effects of cytokines on breast cancer cell 
lines. Counts were conducted using a hemocytometer and phase contrast microscopy. 
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